
Problem 1: Let A be an n × n matrix with strictly positive elements and two vectors
u, v ∈ Rn, also with strictly positive elements, such that

Au = v and Av = u.

Prove that u = v.

Problem 2: Calculate

lim
n→∞

n

∫ ∞

0

e−x n

√
ex − 1− x

1!
− x2

2!
− · · · − xn

n!
dx.

Problem 3: Let A ∈ Mn(C) such that A∗A2 = AA∗. Prove that A2 = A. (Here
we denote by A∗ the conjugate transpose of A.)

Problem 4: Let (an)n≥1 be a monotone decreasing sequence of real numbers that con-

verges to 0. Prove that
∞∑

n=1

an
n

is convergent if and only if the sequence (an lnn)n≥1

is bounded and
∞∑

n=1

(an − an+1) lnn is convergent.
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Solution 1 (due to Emmanouil Petrakis): A2 has positive elements (as a simple calcu-
lation shows), so let A2 = (aij)1≤i,j≤n with aij > 0 for all i, j.

Note that A2u = A(Au) = Av = u and A2v = v. Hence A2(u − tv) = u − tv, (1)

for all t ∈ R. We choose t = min

{
ui

vi
, i ∈ {1, 2, ..., n}

}
, denoting by ui, vi the re-

spective elements of u, v.

Hence, ui−tvi ≥ 0 for all i ∈ {1, 2, ..., n}, and moreover we can find a j ∈ {1, 2, ...n}
such that uj − tvj = 0. At relation (1), by looking the j−th row, we obtain:

n∑
k=1

ajk(uk − tvk) = uj − tvj = 0.

However, in this relation the left hand side is a sum of non-negative numbers, hence

ajk(uk − tvk) = 0 ⇒ uk = tvk,

for all k ∈ {1, 2, ..., n}.

We conclude that u = tv. Now,

Au = v ⇒ A(tv) = v ⇒ t(Av) = v ⇒ tu = v ⇒ t2v = v,

and so we conclude that t2 = 1, that is t ∈ {−1, 1}. However, if t = −1 we obtain a
clear contradiction since u, v have positive elements, hence t = 1, as desired.

Solution 2 (due to Orestis Lignos. In fact, the two solutions are more or less iso-
morphic to each other): Let us denote A = (aij)1≤i,j≤n, u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn). Note that all variables are positive from the problem statement.
We know that

ai1u1 + ai2u2 + . . .+ ainun = vi

and
ai1v1 + ai2v2 + . . .+ ainvn = ui

for all 1 ≤ i ≤ n. Let us denote k = min
1≤i≤n

(
ui

vi

)
, and WLOG let k =

u1

v1
. Note that

∑
1≤j≤n

aj1(uiuj − vivj) = uivi − uivi = 0, (1)

for all 1 ≤ i ≤ n. Moreover,∑
1≤j≤n

aij(ujv1 − u1vj) = viv1 − uiu1
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and so ∑
2≤j≤n

aij(ujv1 − u1vj) = viv1 − uiu1, (2)

for all 1 ≤ i ≤ n. Now, notice that ujv1 − u1vj ≥ 0 for all 1 ≤ j ≤ n, and so by
relation (2) we obtain that viv1 ≥ uiu1 for all 1 ≤ i ≤ n. Therefore, putting i = 1
in relation (1) we obtain that the left hand side is ≤ 0, and so equality must hold, i.e.
viv1 = uiu1 for all 1 ≤ i ≤ n.

Putting i = 1 this readily implies that k = 1, that is u1 = v1, and subsequently ui = vi
for all 1 ≤ i ≤ n, as desired.



Solution (due to Panagiotis-Nikolaos Glyptis): From Taylor’s theorem (we use the La-
grange remainder form), there exists a c ∈ (0, x) such that:

ex −
n∑

k=1

1

k!
=

ec

(n+ 1)!
xn+1

Now let
fn(x) =

n

((n+ 1)!)
1
n

e
c
n−xx1+ 1

n

and since we easily infer (for example, using Stirling’s formula or the Cesaro-Stolz
theorem) that

lim
n→∞

n

((n+ 1)!)
1
n

= e,

we obtain that

fn(x) → e1−xx

pointwise, and moreover

e
c
n−x < e

x
2−x for all n ≥ 2

and
64e

x
4 > x1+ 1

n for all n ≥ 2,

and since the sequence
n

((n+ 1)!)
1
n

converges, it is bounded and so there exists aM >

0 such that
n

((n+ 1)!)
1
n

< M for all n ≥ 1 All in all, fn(x) is bounded by a function

with a finite integral in the integration interval, and so by the dominated convergence
theorem we finally may write

lim
n→∞

∫ ∞

0

fn(x)dx =

∫ ∞

0

e1−xxdx = e,

and so the given limit equals e.
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Solution 1 (due to Anastasios Pastos): We know that A∗A2 = AA∗, (1). Our first
claim is the following:

Claim 1: kerA = kerA∗, (2).
Proof: Let u ∈ kerA. From relation (1) we obtain that

AA∗u = A∗A2u = 0 ⇒ ⟨AA∗u, u⟩ = 0 ⇒ ⟨A∗u,A∗u⟩ = 0 ⇒ A∗u = 0 ⇒ u ∈ kerA∗

Hence kerA ⊆ kerA∗. However,

rank (A∗) = rank
(
A

T
)
= rankA = rankA,

hence we obtain dim ImA∗ = dim ImA ⇒ dimkerA∗ = dimkerA, by virtue of the
rank-nullity theorem. To sum up, we have that kerA ⊆ kerA∗ and their dimensions
are equal, hence the claim follows ■

Moving on, we may write

(A∗)2A = (A∗A2)∗ = (AA∗)∗ = AA∗ = A∗A2,

that is A∗(A∗A − A2) = On, and so by the above Claim (relation (2)) we obtain
A(A∗A−A2) = On, that is AA∗A = A3, (3).

Multiplying relation (1) with A from the right, we obtain A∗A3 = AA∗A ⇒ A∗A3 =
A3, (4). Now, we move on to our next Claim:

Claim 2: kerA ⊥ ImA.
Proof: It is well-known that kerA∗ ⊥ ImA (indeed, if w ∈ kerA∗ and Av ∈ ImA,
then ⟨w,Av⟩ = ⟨A∗w, v⟩ = ⟨0, v⟩ = 0), hence using relation (2) we conclude that
kerA ⊥ ImA ■

Using Claim 2, we infer that kerA + ImA is a direct sum of two subspaces. How-
ever,

dim(kerA ⊕ ImA) = dimkerA+ dim ImA = n,

which implies that kerA ⊕ ImA = Cn.

Our next step is to chose orthonormal bases û = (u1, u2, . . . , uk) and v̂ = (v1, v2, . . . , vm),
corresponding to the subspaces ImA and kerA, respectively. Note that if A = On

then A2 = A trivially holds. Else, ImA ̸= {0}. From the above results we know
that ŵ = (u1, u2, . . . , uk, v1, v2, . . . , vm) is an orthonormal base of Cn. We perform a
change of basis from the ordinary base of Cn to base ŵ.

Thus, we write

A = U−1

(
B Ok×(n−k)

O(n−k)×k O(n−k)×(n−k)

)
U,
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with B being a k × k invertible matrix (this follows as rankB = dim ImA = k.
Moreover, we know that U is a unitary matrix, since its columns are elements of ŵ,
which themselves constitute an orthonormal basis of Cn.

Hence, we obtain A = U∗
(

B O
O O

)
U, and A∗ = U∗

(
B∗ O
O O

)
U . Return-

ing back, relation (4) easily turns into B∗B3 = B3 ⇒ B∗B3B−3 = B3B−3, that is

B∗ = Ik, which means B = Ik. Thus, to sum up, we obtain A = U∗
(

Ik O
O O

)
U,

and now it is trivial to conclude that A2 = A, as desired.

Solution 2 (due to Orestis Lignos): LetB = AA∗ and C = A∗A. Then, A∗A2 = AA∗

is rewritten as B = CA, and taking ∗ in the previous relation we obtain (A∗)2A =
AA∗, that is B = A∗C.

Claim 1: (CB)2 = B3.
Proof: Note that

(CB)2 = CB · CB = A∗A ·AA∗ ·A∗A ·AA∗ = (A∗A2) · ((A∗)2A2) ·A∗ =

= (AA∗)((A∗)2A ·A) ·A∗ = (AA∗)(A ·A∗A) ·A∗ = B3

■

Claim 2: Matrices B and C commute.
Proof: We begin with a preliminary result: we prove that AA∗A is Hermitian. Indeed,

AA∗A = ((A∗)2A)) ·A = (A∗)2A2 = A∗ · (A∗A2) = A∗AA∗,

hence AA∗A = A∗AA∗. Now, note that

BC = A(A∗)2A = (AA∗ ·A∗)A = (((A∗)2A) ·A∗)A = A∗ · (A∗AA∗) ·A =

= A∗ · (AA∗A) ·A = (A∗A) · (A∗A2) = (A∗A) · (AA∗) = CB,

as desired (note that we used the first result in the end of the first line) ■

Since B and C are Hermitian and commute, they are simultaneously orthogonally di-
agonizable. So, we may write

B = P∆BP
∗ and C = P∆CP

∗,

with P being a unitary matrix. Since B = AA∗ and C = A∗A, a well-known lemma
(XY and Y X have the same characteristic polynomial) implies that B and C, i.e. ∆B

and ∆C , have the same characteristic polynomial, that is the same eigenvalues.

Assume that ∆B = diag{b1, b2, . . . , bn} and ∆C = diag{c1, c2, . . . , cn}. Then,
{bi}1≤i≤n = {ci}1≤i≤n, and bi, ci ∈ R (B and C are Hermitian matrices, so they
have real eigenvalues). Using Claim 1,

(CB)2 = B3 ⇒ (∆C∆B)
2 = ∆3

B ⇒ (cibi)
2 = b3i , for all i ∈ {1, 2, . . . , n} ⇒



⇒ bi = 0 or bi = c2i , for all i ∈ {1, 2, . . . , n}, (∗).

We contend:

Claim 3: bi ∈ {0, 1} for all i ∈ {1, 2, . . . , n}.
Proof: Assume otherwise. Assume that b1 ̸= 0 and b1 ̸= 1. Then, using (∗), we obtain
c1 = b

1/2
1 . Since {bi}1≤i≤n = {ci}1≤i≤n, there is an index j such that c1 = bj , hence

bj = b
1/2
1 ̸= b1. Therefore, using (∗) again, we obtain that cj = b

1/4
1 /∈ {b1, b1/21 }.

Continuing, we produce infinitely many mutually distinct eigenvalues b1/2
i

1 (i ≥ 0),
a contradiction ■

Now, returing back to (∗), we infer that if bi ̸= 0, then 1 = bi = c2i , hence ci = 1.

This implies that the multiplicity of the eigenvalue 1 in ∆C is at least as large as the
multiplicitity of the eigenvalue 1 in ∆B . Since these two multiplicities must be equal
(XY and Y X have the same algebraic multiplicitity in non-zero eigenvalues), we must
have equality everywhere: these two matrices must have the zeros and the ones in the
exact same places.

To sum up ∆B = ∆C , hence AA∗ = A∗A, and so A,A∗ commute. Therefore, A
is orthogonally diagonizable itself, that is A = QDQ∗ for some unitary matrix Q.
Thus, A∗A2 = AA∗ implies (assume that∆ = diag{λi}1≤i≤n)

λiλ
2
i = λλi,

and now this last relation easily implies λi ∈ {0, 1}, hence

A2 = QD2Q∗ = QDQ∗ = A,

as desired.



Solution (due to Orestis Lignos): In the following solution, we merely write n ≥ 1 in
all series, meaning that n ranges from 1 to +∞. Moreover, we write log(·) instead of
ln(·). We split the solution into two parts.

Part 1: If the series
∑
n≥1

an
n

is convergent, then (an log n) is bounded and
∑
n≥1

(an −

an+1) log n is convergent. Note that

(a1−a2) log 1+. . .+(an−an+1) log n = a1 log 1+a2 log
2

1
+. . .+an log

n

n− 1
−an+1 log n,

and since the sequence ((an − an+1) log n) is positive, we need to prove that

sn := a1 log 1 + a2 log
2

1
+ . . .+ an log

n

n− 1
− an+1 log n

is bounded. This follows using the inequality log x ≤ x− 1. Indeed,

sn ≤ a1 · 0 + a2 ·
1

1
+ . . .+ an · 1

n− 1
− an+1 log n <

a1
1

+
a2
2

+ . . .+
an
n
,

and this last sum is obviously bounded, as the series
∑
n≥1

an
n

is convergent.

To prove that (an log n) is bounced, note that

log n <
1

1
+

1

2
+ . . .+

1

n

for all n ≥ 1. Hence, it suffices to show that
an
1
+
an
2
+ . . .+

an
n

is bounded. However,

this is trivially true, as (an) is decreasing, and
a1
1

+
a2
2

+ . . .+
an
n

is bounded, as we
explained above.

Part 2: If (an log n) is bounded and
∑
n≥1

(an − an+1) log n is convergent, then the

series
∑
n≥1

an
n

is bounded. The proof of this direction closely follows the proof in Part

1. Let t =
n

n− 1
. Then, using the inequality log t ≥ t− 1

t
, we obtain

log n− log(n− 1) = log
n

n− 1
= log t ≥ t− 1

t
=

1

n
.

Therefore,∑
1≤n≤k

an
n

≤ a1+
∑

2≤n≤k

an(log n−log(n−1)) = a1+
∑

1≤n≤k−1

(an−an+1) log n+ak log k.
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To conclude, we observe that ak log k and
∑

1≤n≤k−1

(an−an+1) log n are boundedwhen

k → +∞, hence the partial sums of the series
∑
n≥1

an
n

are bounded, and since the series

has positive terms we conclude it must be convergent, as desired.
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