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ALGEBRA

A 1. Let z, y and z be positive numbers. Prove that

24
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1bers. our inequality is

Solution. Replacing z = a?,y = b,z = ¢, where a, b, ¢ are positive num

2

equivalent to
2 2 4/
b c v
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Using the Cauchy-Schwarz inequality for the left hand side we get
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Using Cauchy-Schwarz inequality for three positive numbers a. 5.~. we

Va+VB+v7<V3a+3+7).

Using this result twice, we have

VVb+ Vet \/vVe+rva+yVa+vh<y6lya—vi—1k
3la—b—c). (2)

S\G-\.‘": b

Combining (1) and (2) we get the desired result.

Alternative solution by PSC. We will use Holder’s inequality

(a11 + a12 + a13) (@21 + ag2 + az3)(as1 + aze — ass

> (((111621(131(141)1/4 o s (a12a22a32a42)1~ 1+ (a13a23a33a13

where a;; are positive numbers. Using this appropriately we get

2
2 2 2
a” b* g=

141+ 1)((Vb+ ve) + (Ve + va)+(va + Vb)) .

>(a+b+c)t.

By the Cauchy-Schwarz inequality we have

(Vb +ve) + (Ve + va) + (Va+ Vb) = 2(vVa+ Vb + ve) < 2/3(a+b+ o).

Combining these two inequalities we get the desired result.



A 2. Find the maximum positive integer k such that for any positive integers m, n such that m3+n3 >
m +n)?, we have
m®+n® > (m+n)® +k.

Solution. We see that for m = 3 and n = 2 we have m3 + n® > (m + n)?, thus
B3+2>0B+22%+k=Ek<10.
We will show that k = 10 is the desired maximum. In other words, we have to prove that
m3 +nd > (m +n)? +10.
The last inequality is equivalent to
(m + n)(m? +n? — mn —m —n) > 10.

IIm+n=2o0 m+n=3, then (m,n) = (1,1),(1,2),(2,1) and we can check that none of them
satisfies the condition m® + n® > (m + n)>2.

If m+n =4, then (m,n) = (1,3),(2,2),(3,1). The pair (m,n) = (2,2) doesn’t satisfy the condition.
The pairs (m,n) = (1,3), (3, 1) satisfy the condition and we can readily check that m3 +n? > (m +
n)? + 10.

If m +n > 5 then we will show that

m2+n2—mn—m—n22
which is equivalent to
(m—n)2+(m—-12+(n—-1)2>6.

If at least one of the numbers m,n is greater or equal to 4 then (m — 1)2 > 9 or (n — 1)2 > 9 hence
the desired result holds. As a result, it remains to check what happens if m < 3 and n < 3. Using the
condition m + n > 5 we have that all such pairs are (m,n) = (2,3),(3,2),(3,3).

All of them satisfy the condition and also the inequality m? +n? — mn —m —n > 2, thus we have the
desired result.

O
Alternative solution by PSC. The problem equivalently asks for to find the minimum value of

A= (m+n)(m?+n®—mn—m—n),
given that (m + n)(m? +n? —mn —m —n) > 0. If m = n, we get that m > 2 and
A =2m(m? — 2m) > 6(3%2 — 6) = 18.

Suppose without loss of generality that m > n. If n = 1, then m(m + 1)(m — 2) > 0, therefore m > 2
and
A>3-(3+1)-(3-2)=12.

If n > 2, then since m > n + 1 we have
A= (m+n)(mim—n—1)+n>-n)>2n+1)(n? —n) > 5(2% - 2) = 10.

In all cases A > 10 and the equality holds if m = n + 1 and n = 2, therefore if m =3 and n = 2. It
follows that the maximum £ is k = 10.



A 3. Let a,b,c be positive real numbers. Prove that

1; 1 ] 3
DO+ De+D) beerDat])  w@rDG+D) > AT ad

Solution. The required inequality is equivalent to

cla+1)+alb+1)+blc+1) 3
abcla+1)(b+1)(c+1) = (1+abc)?’

or equivalently to,
(1+abe)’*(ab+bc+ca+a+b+c) > 3abc(ab +bc+ ca+a+ b+ c+ abe + 1).

Let m =a+b+ ¢, n=ab+ be+ ca and 23 = abe, then the above can be rewritten as

(m+n)(1+2°)2 >33 +m+n+1),
or
(m+n)(2® —2® + 1) > 323(2% + 1).

By the AM-GM inequality we have m > 3z and n > 322, hence m +n > 3z(z +1). It is sufficient to
prove that

gz +1)(z° -2 +1) 2 a¥(e + D)2 -2+ 1) <=
328 — 2% +1) > 2%(s? —z+1) |
(22 —-1)2 >0,

which is true.
[
Alternative solution by PSC We present here an approach without fully expanding.

Let abc = k® and set a = A; b= k—, R k—, where k,z,y,z > 0. Then. the inequality can be
rewritten as
22 3;2 yQ 3k2
& 4 ;i 3 ¥ e
(ky+2)(kz+x) " (kz+z)(ks+y) (kz+y)(ky+z) ~ (1+ k3)2

Using the Cauchy-Schwarz inequality we have that

Z g 5 (x+y+2z)
A (ky +2)(kz +x) = (ky+ 2)(kz + =) + (kz + z)(kx + y) + (kz + y)(ky + z)’

therefore it suffices to prove that

)2 2
(z+y+2) S _ 3k

(ky + 2)(kz +2) + (kz + z)(kz + y) + (kx + y) (ky + 2) — (1 + k3)2

or
(L+£%)2 = 38%) (2% + v* + 2%) > (Bk2(k? + K+ 1) — 2(1 + £%)2) (ay + yz + za).
Since x2 + y? + 22 > 2y + yz + 2z and (1+ k)% - 3k% > 0, it is enough to prove that
(14 k%) - 3K° > 3K% (K2 + k + 1) — 2(1 + K3)2,

or
(k—12(k2+1)(k+1)2 >0,

which is true.




A 4. Let k > 1, n > 2018 be positive integers, and let n be odd. The nonzero rational numbers z;,
k2 TP T, are not all equal and satisfy

k k k k k
B To— Say S eyt s s S e
) xs3 T4 Tn T
Find:
a) the product z122...2, as a function of k£ and n

b) the least value of k, such that there exist n, z1, %2, .., Z, satisfying the given conditions.

Solution. a) If ; = z;+1 for some ¢ (assuming Zn4+1 = 1), then by the given identity all z; will be
equal, a contradiction. Thus z; # z2 and

T2 — I3
r1 — Ty = k ¢
T2X3
Analogously
Ty — T3 2 T3 — T4 n &1 L9
X1 — 2= =k =...=k ¥
23 (:L'Q.’II,_Q,) (.’133.’E4) (3721173) (:133.’1,'4) s (:I:lmg)

Since z1 # 2 we get )
T1Zo...Tp = EVE® = +5"T Vk.

If one among these two values, positive or negative, is obtained, then the other one will be also obtained
by changing the sign of all z; since n is odd.
b) From the above result, as n is odd, we conclude that & is a perfect square, so k > 4. For k = 4
let n = 2019 and z3; = 4, x3j—1 = 1, z3j_2 = =2 for j = 1,2,...,673. So the required least value is
foe=rdly

O
Comment by PSC. There are many ways to construct the example when k£ = 4 and n = 2019. Since
3| 2019, the idea is to find three numbers x1, 2, 3 satisfying the given equations, not all equal, and
repeat them as values for the rest of the z;’s. So, we want to find x1, z2, 73 such that

4 4 4
L1+ — =220+ —=x3+—"
2 3 I
As above, z12223 = +8. Suppose without loss of generality that xix223 = —8. Then, solving the
above system we see that if 1 # 2, then
4
Lo = — and r3=2— —,
o e T

leading to infinitely many solutions. The example in the official solution is obtained by choosing
L= —2.

Comment by PSC. An alternative formulation of the problem’s statement could be the following:
Let k& > 1 be a positive integer. Suppose that there exists an odd positive integer n > 2018 and

nonzero rational numbers x1, s, ..., Ty, not all of them equal, that satisfy
k k k k
B+ — =%+ —=F3+— = =Tp1+— =Tp+—-
xI9 T3 T4 Tn ]

Find the minimum value of k.




A 5. Let a, b, ¢, d and z, y, 2, t be real numbers such that
0<a,b,c,d<1, z,9,2,t>1 and a+b+c+d+z+y+2z+t=38.

Prove that
A+ +E+ R+ P+ 2+ R <28
When does the equality hold?

Solution. We observe that if 4 < v then by replacing (u,v) with (u —¢, v+ &), where € > 0, the sum
of squares increases. Indeed,

(u—e)?+(v+e)?—u2—v?=2(v—u)+2>> 0.

Then, denoting
E(a,b,c,d,z,y,2,t) =a® + VP + P+ 2 + 22 + T R

and assuming without loss of generality that a <b<c¢<dand z < y < z < t, we have

E(a,b,¢,d,z,y,2,t) < E(0,0,0,0,a+2,b+y,c+ z.d+ 1)
< E(0,0,0,0,1,b+y,c+z2,a+d+2+~1t—1)
<E(0,0,0,0,1,1,c+z,a+b+d+x+y+t—2)
< E(0,0,0,0,1,1,1,5) = 28.

Note that if (a,b,¢c,d,z,y,2,t) # (0,0,0,0,1,1,1,5), at least one of the above inequalities, obtained
by the € replacement mentioned above, should be a strict inequalitv. Thus. the maximum value of E
is 28, and it is obtained only for (a,b,¢,d,z,y, z,t) = (0,0,0,0.1.1.1.3) and permutations of a,b,c,d
and of z,y, 2, .

|
Alternative solution by PSC. Since 0 < a,b,¢,d < 1 we have that 2 < a. b < b, ¢® < ¢ and
d? < d. Tt follows that
A+t +d? <a+b+c+d (1)
Moreover, using the fact that y + z + ¢ > 3, we get that x < 5. This means that
(x—1){x-5) <0 < z%<6z—5.
Similarly we prove that y? < 6z — 5, 22 < 6z — 5 and #2 < 6t — 5. Adding them we get
P+ + 2+ 2 <6(@+y+z+1)—20. (2)

Adding (1) and (2) we have that

A+ +E+ P+ P 2P <atbtetrd+brryszot) =20
<6a+b+c+d+z+y+z+1)—20=28.

We can readily check that the equality holds if and only if (a,b,c,d, z,y.2.t) = (0.0,0,1,1,1,5) and
permutations of a,b, ¢, d and of z, vy, 2, t.




A 6. Let a,b, ¢ be positive numbers such that ab + be + ca = 3. Prove that

la n b PR - S@'
Va3+5 VB +5 VE+57 2

Solution. From AM-GM inequality we have

a® +a® + 1> 3a% = 2(a® +5) > 3(a® + 3).
Using the condition ab + bc + ca = 3, we get

(a® +5) > 3(a® + ab+bc+ ca) = 3(c+a)(a +b),

therefore
2
a < 2a - ()
vad+35 (c+a){a+d)
Using again the AM-GM inequality we get
i) (e @
3(c+a)e+b) — V3 2 6 \e+a a+bd/’
Irom (1) and (2) we obtain
o Vi _a)
vad+s5 6 \c+a a+b
Similar inequalities hold by cyclic permutations of the a,b, ¢’s. Adding all these we get
I o, (I TP, T T P
cyclic a3+5 cyc 6 c+a a+b 6 2
which is the desired result.
O




A 7. Let A be a set of positive integers with the following properties:

(a) If n is an element of A then n < 2018.

(b) If S is a subset of A with |S| = 3 then there are two elements n,m of S with [n—m| > \/n++/m.

What is the maximum number of elements that A can have?

Solution. Assuming n > m we have

In—m| > Vn+vme (Vo—-vm) (Va+vm) > va+vm
&vn=vm+1.

Lgt Apa=r{l? 24T, oot 12— 1}. Note that each Ay can contain at most two elements of since
if n,m € withn >m then

Vi—vm </ (k+1)2—1-Vi2< (k+1) —k = 1.
In particular, since C A; U--- U Ay, we have |S] < 2-44 = 88.

On the other hand we claim that A = {m?2 : 1 < m S U4} U{m?+m:1 < m < 44} satisfies the
properties and has |A| = 88. We check property (b) as everything else is trivial.
So let 7, 5,t be three elements of A and assume 7 < s < ¢. There are two cases for r.

(i) If we have that r = m2, then ¢ > (m+1)? and so vt — /7 > 1 verifying (b).

(ii) If we have that » = m2 + m, then t > (m+1)2+ (m+1) and

\/£>\/F+1®\/m+12+(m+1)>\/m24m+l
& m? +3m +2 > m? +m+14+2vVm2+m

S2m4+122vVm2+m

& 4m? +4m+1 > 4m? + 4m.

So property (b) holds in this case as well.

10




COMBINATORICS

C 1. A set S is called neighbouring if it has the following two properties:

a) S has exactly four elements

b) for every element x of S, at least one of the numbers z — 1 or z + 1 belongs to S.
Find the number of all neighbouring subsets of the set {1,2,...,n}.

Solution. Let us denote with a and b the smallest and the largest element of a neighbouring set S,
respectively. Since @ — 1 ¢ S, we have that a + 1 € S. Similarly, we conclude that b— 1 € S. So,
every neighbouring set has the following form {a,a + 1,6 — 1,b} for b — a > 3. The number of the
neighbouring subsets for which b — e = 3 is n — 3. The number of the neighbouring subsets for which
b—a =4isn—4 and so on. It follows that the number of the neighbouring subsets of the set
{ LB coplh 362

(n=38)(n-2)

m—3)+n—4) 4+ +3+2+1= ;

11



C 2. A set T of n three-digit numbers has the following five properties:
(1) No number contains the digit 0.
(2) The sum of the digits of each number is 9.
(3) The units digits of any two numbers are different.
(4) The tens digits of any two numbers are different.
(5) The hundreds digits of any two numbers are different.
Find the largest possible value of n.

Solution. Let S denote the set of three-digit numbers that have digit sum equal to 9 and no digit
equal to 0. We will first find the cardinality of S. We start from the number 111 and each element
of S can be obtained from 111 by a string of 6 A’s (which means that we add 1 to the current digit)
and 2 G’s (which means go to the next digit). Then for example 324 can be obtained from 111 by the

string AAGAGAAA. There are in total

8!
6r.o1 — 28

such words, so S contains 28 numbers. Now, from the conditions (3), (4), (5), if abc is in T then each
of the other numbers of the form ¥%¢ cannot be in T', neither =b= can be, nor @=*. Since there are
@+ b — 2 numbers of the first category, a + ¢ — 2 from the second and b+ ¢ — 2 from the third one. In

these three categories there are
(a+b—2)+(b+c—2)+(c+a—2):2(a+b+c)~6=2-9—6:12

distinct numbers that cannot be in T if abe is in T So, if T has n numbers, then 12n are the forbidden
ones that are in S, but each number from S can be a forbidden number no more than three times,

once for each of its digits, so

1
T o s, GE
3 d

and since n is an integer, we get n < 5. A possible example for n = 5 is

n +

T = {144,252, 315, 423, 531}.

O
Comment by PSC. It is classical to compute the cardinality of S and this can be done in many
ways. In general, the number of solutions of the equation

T+ 2o+ +ap=n

In positive integers, where the order of z; matters, is well known that equals to (Zj) In our case,
we want to count the number of positive solutions to @ + b+ ¢ = 9. By the above, this equals to
(g:}) = 28. Using the general result above, we can also find that there are ¢ + b — 2 numbers of the

form *=c.

12



C 3. The cells of a 8 x 8 table are initially white. Alice and Bob play a game. First Alice paints n of
the fields in red. Then Bob chooses 4 rows and 4 columns from the table and paints all fields in them
in black. Alice wins if there is at least one red field left. Find the least value of n such that Alice can
win the game no matter how Bob plays.

Solution. We will show that the least value of n is n = 13.

1If n < 12, Bob wins by painting black the 4 rows containing the highest numbers of red cells. Indeed,
if at least 5 red cells remain, then one of the rows not blackened contains at least 2 red cells. Thus,
each one of the rows blackened contained at least 2 red cells, and then all blackened cells were at least
R. However, in this case, at most 4 would be not blackened, a contradiction. It follows that at most 4
red cells remain which can be easily blackened by Bob choosing the 4 columns that they are in.

Now let n = 13. Enumerate the rows and the columns from 1 to 8 and each field will be referred to
by the pair (row,column) it is in. Let Alice paint in red the fields

(1’ 1)’ (]" 2)7 (21 1)1 (27 3)1 (3’ 2)’ (3’4)7 (47 3)7 (4’ 5)’ (5’ 4)3 (57 5)7 (6’ 6)7 (7’ 7)3 (8’ 8)’

as in the following figure.

Suppose that Bob has managed to paint all red fields in black. The cells (6,6), (7,7), (8,8) are
painted black by three different lines (rows or columns) containing no other red felds, so the remaining
10 red fields have to be painted black by the remaining 5 lines. As no line contains more than 2 red
felds, each red field has to be contained in exactly one of these lines. Assume that (1,1) is painted
black by a row, that is, row 1 is painted black. Let & be the least positive integer such that row k& has
not been painted black, where 2 < k < 5. Then field (k,k — 1) should be painted black by column
k — 1. However, in this column there is another red field (j,k — 1) contained in the painted row with
number j < k, which is a contradiction. Similar reasoning works if (1, 1) is painted black by a column.

O
Comment by PSC. Here is another reasoning to conclude that if Alice paints the table as above,
then she wins.
Let A be the 5 x 5 square defined by the corners (1,1) and (5, 5).

Case 1: If Bob chooses 3 rows to paint black the cells (6,6), (7,7) and (8, 8) then he has to use 1 row and

3

4 columns to paint in black the remaining 10 red squares in A. Then no matter which 4 columns

13



Case 2:

Bob select, the remaining 1 column in A contains two red squares which cannot be painted in
black using only 1 row. Similar reasoning stands if Bob chooses 3 columns.

If Bob chooses 2 rows and 1 column to paint black the cells (6,6), (7,7) and (8,8), then he has
to use 3 columns and 2 rows to paint in black the remaining 10 red squares in A. Then, no
matter which 3 columns Bob select, the remaining 2 columns in A contain 4 red squares in 3
different rows which cannot be painted in black using only 2 rows. Similar reasoning stands if
Bob chooses 1 row and 2 columns,

14



GEOMETRY

G 1. Let H be the orthocentre of an acute triangle ABC with BC > AC, inscribed in a circle T'.
The circle with centre C' and radius C'B intersects I' at the point D, which is on the arc AB not
containing C. The circle with centre C and radius C'A intersects the segment CD at the point K.
The line parallel to BD through K, intersects AB at point L. If M is the midpoint of AB and N is
the foot of the perpendicular from H to C'L, prove that the line M N bisects the segment CH.

Solution. We use standard notation for the angles of triangle ABC. Let P be the midpoint of CH
and O the centre of I'. As
a = ZBAU = ZBDC=XZDKL,

the quadrilateral ACKL is cyclic. From the relation CB = CD we get ZBCD = 180° — 2a; , so
LACK =+ 2a — 180°,
where v = ZACB. From the relation CK = C'A we get
LALC = LAKC =180°—a — 3
and thus from the triangle ACL we obtain

ZACL = 180° — o — ZALC = %
which means that C'L is the angle bisector of ZACB, thus ZACL = /BCL. Moreover, from the fact
that CH 1 AB and the isosceles triangle BOC has Z/BOC = 2a, we get LZACH = Z/BCO = 90° —a.
It follows that,

LNPH =2ZNCH = 70CH. (3)

15



On the other hand, it is known that 2CP = CH = 20M and CP || OM, so CPMO is a
parallelogram and
EMPH — J0CH. (4)

Now from (3) and (4) we obtain that
/MPH = /NPH,

which means that the points M, N, P are collinear.

d
Alternative formulation of the statement by PSC.
Let H be the orthocentre of an acute triangle ABC with BC > AC, inscribed in a circle I'. A point
D on T, which is on the arc AB not containing C, is chosen such that CB = CD. A point K is chosen
on the segment C'D such that CA = CK. The line parallel to BD through K, intersects AB at point
L. If M is the midpoint of AB and N is the foot of the perpendicular from H to CL, prove that the
line M N bisects the segment CH.

16



G 2. Let ABC be a right angled triangle with ZA = 90° and AD its altitude. We draw parallel lines
rom D to the vertical sides of the triangle and we call F, Z their points of intersection with AB
and AC respectively. The parallel line from C to EZ intersects the line AB at the point N Let A’
be the symmetric of A with respect to the line EZ and I, K the projections of A’ onto AB and AC
respectively. If T" is the point of intersection of the lines IK and DE, prove that ZNA'T = ZADT.

Solution. Suppose that the line AA’ intersects the lines EZ, BC and CN at the points L, M,
F respectively. The line JK being diagonal of the rectangle K A’TA passes through L, which by
construction of A’, is the middle of the other diagonal AA’. The triangles ZAL, ALE are similar, so
LZAL = ZAEZ. By the similarity of the triangles ABC, DAB, we get LZACB = /BAD. We have
also that LZAEZ = ZBAD, therefore

LZAL = LCAM = LACB = LACM.

CW

M

K A

Since AF1CN, we have that the right triangles AFC' and CDA are equal. Thus the altitudes
from the vertices F', D of the triangles AF'C, C DA respectively are equal. It follows that FD || AC
and since DE || AC we get that the points E, D, F are collinear.

In the triangle LFT we have, A'I || FT and LLA'Il = ZLIA, so ZLFT = /LTF. Therefore the
points F, A, I, T belong to the same circle. Also, ZA'IN = ZA'FN = 90° so the quadrilateral
ITA'FN is cyclic. Thus, the points F, A’, I, T, N all lie on a circle. From the above, we infer that

INAT=LPFN = LACF = LFEZ = ZADT.

17



G 3. Let ABC be an acute triangle, A’, B’, C’ the reflexions of the vertices A, B and C with respect
to BC, CA, and AB, respectively, and let the circumecircles of triangles ABB’ and ACC’ meet again
at Aj. Points By and C) are defined similarly. Prove that the lines AA;, BBy, and CC1 have a
common point.

Solution. Let 07, O3 and O be the circumcenters of triangles ABB’, ACC’ and ABC respectively. As
AB is the perpendicular bisector of the line segment C'C’, O is the intersection of the perpendicular
bisector of AC with AB. Similarly, O; is the intersection of the perpendicular bisector of AB with
AC. Tt follows that O is the orthocenter of triangle AO10>. This means that AO is perpendicular
to O102. On the other hand, the segment AA; is the common chord of the two circles, thus it is
perpendicular to O10;. As a result, AA; passes through O. Similarly, BB; and CC; pass through
O, so the three lines are concurrent at O. O

Comment by PSC. We present here a different approach.
We first prove that 4;, B and C" are collinear. Indeed, since /ZBAB' = /CAC'! = 2/BAC, then from
the circles (ABB’), (ACC'") we get

LAA1B =90° — LZBAC = LAA;C.

It follows that
LATAC = ZA{C'C = £BCO'C = 90° — ZABC (1)

On the other hand, if O is the circumcenter of ABC' , then
ZOAC = 90° — LABC. (2)

From (1) and (2) we conclude that A;, A and O are collinear. Similarly, BB; and C'Cj pass through
O, so the three lines are concurrent in O.

18




G 4. Let ABC be a triangle with side-lengths a, b, ¢, inscribed in a circle with radius R and let I be
ir’s incenter. Let P, P> and P be the areas of the triangles ABI, BCI and CAI, respectively. Prove

that
R* R* RY
i I Wb O Wl |
TR ES

Solution. Let r be the radius of the inscribed circle of the triangle ABC. We have that

It follows that
11,1 _4/1.1 1
PPOR R R\ @ By
From Leibniz’s relation we have that if H is the orthocenter, then 8
OH?=9R?> - a®> - b* - 2.

It follows that
9R? > a® + b% + 2 (1)
Therefore, using the AM-HM inequality and then (1), we get

1,1, 1 9 1
2 a2 T a?+b2+c¢2 T RY

Finally, using Euler’s inequality, namely that R > 2r, we get

1,11 4 16
A R I A

a
Comment by PSC. We can avoid using Leibniz’s relation as follows:
as in the above solution we have that
1+1+i_4 l+1+l
B2 P AN @ o B
Let a +b+ ¢ = 27, E = (ABC) and using the inequality z* + y? + 22 > xy + yz + 2z we get
1 s 1 4 i 1 1 1 1 2%
2 a2 b2 " ab be ca abe
o7y
"~ 2RE  2Rr’
be
where we used the area formulas £ = % = 7r. Finally, using Euler’s inequality, namely that R > 2r,

we get

i+1+1> 2 >16
P2 R TR PR R
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G 5. Given a rectangle ABCD such that AB =b > 2a = BC, let E be the midpoint of AD. On a

line parallel to AB through point EF, a point G is chosen such that the area of GCE is
I [a?
'BE)==|— ;
(GCE) 5 < 2 +ab>

Point H is the foot of the perpendicular from E to GD and a point / is taken on the diagonal AC
such that the triangles ACE and AET are similar. The lines BH and I E intersect at K and the lines
CA and FH intersect at J. Prove that KJ 1 AB.

Solution. Let L be the foot of the perpendicular from G to EC and let Q the point of intersection
of the lines EG and BC. Then,

(GCE) = %EC $ el %\/@2 L5 <@L

S 0L = %\/(12 B2

D

B

Y

GL
Observing that the triangles QCE and ELG are similar, we have 2 — = which implies that

b EL’
EL = +/a? + b2, or in other words L = C.
Consider the circumcircle w of the triangle EBC'. Since

LEBG =/BCG =ZEBHG = 9P,

the points H and G lie on w.
From the given similarity of the triangles ACFE and AEI, we have that

LAIE = ZAEC = 90° + ZGEC = 90° + ZGHC = LEHC,
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therefore EHC1I is cyclic, thus I lies on w.
Since EB = EC, we get that ZEIC = ZEHB, thus ZJIE = ZEHK. We conclude that JIHK is
cyclic, therefore

EIRH = £LHIC = LHEBC.

It follows that KJ || BC, so KJ L AB.

]
Comment. The proposer suggests a different way to finish the proof after proving that I lies on w:
We apply Pascal’s Theorem to the degenerated hexagon EEH BCI. Since BC and EFE intersect at
infinity, this implies that K J, which is the line through the intersections of the other two opposite

pairs of sides of the hexagon, has to go through this point at infinity, thus it is parallel to BC, and so
KJ 1 AB.
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G 6. Let XY be a chord of a circle €, with center O, which is not a diameter. Let P, Q be two
distinct points inside the segment XY, where @ lies between P and X. Let £ the perpendicular line
dropped from P to the diameter which passes through Q. Let M be the intersection point of £ and
Q, which is closer to P. Prove that

MP XY >2-QX - PY.

Solution by PSC. At first, we will allow P and @ to coincide, and we will prove the inequality in
this case. Let the perpendicular from @ to OQ meet  at B and C. Then, we have that QB = QC.
We will show that

BQ - XY >20X-0Y. (1)

By the power of a point Theorem we have that
QX -QY =QB-QC =QB,

therefore it is enough to prove that XY > 2BQ or XY > BC. Let T be the foot of the perpendicular
from O to XY. Then, from the right-angled triangle OT'Q we have that OT < OQ, so the distance
from O to the chord XY is smaller or equal to the distance from O to the chord BC. This means
that XY > BC, so (1) holds.

Back to the initial problem, we have to prove that

Xy Py
] 1 XY > = > —.
MP-XY >2QX - PY < 50X = PM
By (1) we have that
Xy Qv
2QX ~ QB’
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so it is enough to prove that
Qv | PY
OB~ PM
If CB meets Y M at S, then from MP || QS we get

QY o QY PY
QB~ QS PM’
which is the desired.
O
Comment. The proposer’s solution uses analytic geometry and it is the following.
We will show that (QM — QP) - XY >2-QX - PY. Since MP > QM — QP, our inequality follows
directly. Let A the intersection point of ¢ with the diameter which passes through Q. Like in the
following picture, choose a coordinative system centered at O and such that Q = (a,0), A = (c,0),
P = (¢, h) and denote the lengths QX =z, PQ =t, PY =y, OP =d, QM = 2.
Let A\g = r? — a? and Ap = 12 — d? respectively the power of Q@ and P gith respect to our circle €.
We will show that:
(z=t)(t+z+y) =22y (1)

Adding and multiplying respectively the relations (¢ + y) = Ag and y(t + z) = Ap, we will have
tx+y)+2zy =Ap+ Ao (2)

and
ry(t+z)(t+y) = Ap)g. (3)

Using these two equations, it’s easy to deduce that:
(my)z — :I:y(t2 +Ap+ )\Q) +ApAg =0 (4)
So. w1 = zy is a zero of the second degree polynomial:

p(w) = w? — ’w(tz +Ap+ )\Q) + )\pAQ
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But w; = zy < z(t +y) = A\g and

p()\Q) (?" —a ) ( (t2 +Ap+ )\Q) + )\p)\Q
=(r? —0?)? o (t2+r W —a2)+('r2—d2)(r2—a2)
= (2 = a®)? - (+* — (P =) -a®) - (P =)+ (r? = (% - d?)

= —t2(7‘ ==l ) = ""tz)aQ < O
This implies that Ag lies (strictly) between the two (positive) zeros wy,ws of p(w) and w; = Ty is the

smaller one.
After using (2) and (3), inequality (1) can be rewritten as:

@) < (355) ane )

In order to show this, it is enough to show that

gz
2
p ( z—l—tAPAQ) <0, (6)

&t

because this will imply 1/~—t)\ pAg € [wi,ws]. After some manipulations, inequality (6) can be
zZ+

cquivalently transformed to:

432)\]9/\@ < (22 wss 1) (tg + Ap + )\Q)z (7)
Since z2 — t2 = r? — d% = Ap, this is equivalent to:
42°00 < (2 4+ Ap + Xg)? (8)

But * = (a—c)®+h? = a®+d>—2ac, 2° = *+7r? - & = a®—2ac+r? and 2+ Ap+ g = ... = 2(r2—ac).
Hence, (8) is equivalent with:

(@* =2ac+r)(r? —a®) < (P —ac’ & - & 0< d?(a— o),

which is clearly true.
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NUMBER THEORY

NT 1. Find all the integers pairs (z,y) which satisfy the equation
P y5 = 16xy.

Solution. If one of z, y is 0, the other has to be 0 too, and (z,y) = (0, 0) is one solution. If zy # 0,
let d = ged(z,y) and we write z = da, y = db, a,b € Z with (a,b) = 1. Then, the given equation is
transformed into

d®a® — d®b° = 16ab (1)

So, by the above equation, we conclude that a | d*b° and thus a | d. Similarly b | d®. Since (a,b) = 1,
we get that ab | d°, so we can write d®> = abr with r € Z. Then, equation (1) becomes
abra® — abrb® = 16ab =
r(a® — b®) = 186.
Therefore, the difference a® — b° must divide 16. Therefore, the difference a® — b must divide 16. This

means that
a® —b% = +1, 2, +4, +8, +16.

The smaller values of |a® — b°| are 1 or 2. Indeed, if |a® — b%| = 1 then a = +1 and b =0 or a = 0 and
b = +1, a contradiction. If |a® —b%| =2, thena=1and b= —lora = —1 and b= 1. Then r = —8,
and d® = —8 or d = —2. Therefore, (z,y) = (—2,2). If |a® — b°| > 2 then, without loss of generality,
let @ > b and a > 2. Putting a = x + 1 with z > 1, we have
la® — 8% = |(z + 1)° — b°|
> |(x +1)° — z°|
= |5z + 102 + 102 + 5z + 1| > 31

which is impossible. Thus, the only solutions are (z,y) = (0,0) or (—2,2).



NT 2. Find all pairs (m, n) of positive integers such that
125-2" — 3™ = 271.
Solution. Considering the equation mod5 we get
3m=-1 (mod 5),

so m = 4k + 2 for some positive integer k. Then, considering the equation mod7 we get

L 92k+1 =

(mod 7) =

!
2% 4 2241 =9  {(mod 7).

Since 2° = 1,2,4(mod7) for s = 0,1,2(mod3), respectively, the only possibility is 2% = 22+1 =
1{mod7), so 3| n and 3 | 2k + 1. From the last one we get 3 | m, so we can write n = 3z and m = 3y.

Therefore, the given equation takes the form
53.2% 3% — 271, (2)

or
(5-2% —3¥)(25. 2% 1 5.97 .3V + 3%) = 271,

It follows that 25-2% +5.2%.3V 432 < 271, and so 25-22% < 271, or 2 < 2. We conclude that z = 1

and from (2) we get y = 2. Thus, the only solution is (m,n) = (6,3).

(]
Alternative solution by PSC. Considering the equation mod5 we get

3" =—-1 (mod 5),
so m = 4k + 2 for some positive integer k. For n > 4, considering the equation mod16 we get

~3%+2 = _1  (mod 16) =

9-81F =1 (mod 16),

which is impossible since 81 = 1 mod 16. Therefore, n < 3.
We can readily check that n =1 and n = 2 give no solution for m, and n = 3 gives m = 6. Thus, the
only solution is (m,n) = (6,3).

Comment by PSC. Note that first solution works if 271 is replaced by any number A4 of the form
1mod 5 and at the same time 5 mod 7, which gives 4 = 26 mod 35, while the second solution works
if 271 is replaced by any number B of the form 1 mod 5 and which is not 7 mod 16, which gives that
B is not of the form 71 mod 80. This means, for example, that if 271 is replaced by 551, then the first
solution works, while the second doesn’t.




NT 3. Find all four-digit positive integers abed = 103a + 1025 - 10¢ - d, with a # 0, such that

abed = aa+b+c+d _ a—a+b—c+d +a.

Solution. It is obvious that a # 1 and —a+b—c+d > 0. It follows that b+d > ¢+ a > a. The,
10000 > abed = a,a+b+c+d — g—otb—ctd B
> gotbtetd _ jatbtetd—2

B N )

For a > 4, we have -
g 1) =45.15>45.10 = 10240 > 10000,

a contradiction. This means that a = 2 or @ = 3.

Case 1: If a = 3, then since 37 = 2187 < 3000, we conclude that ¢ +b-+c—-d 2> 8 and like in the previous
paragraph we get

3a+b+c+d _ 3—a+b—c+d T 3 > 30+b+6+d—2 .8 Z 729 .8 5 4000,
which is again a contradiction.

Case 2: If a = 2 then 20 = 1024 < 2000, thus a + b+c+d > 11. If a+b+c+d > 12, we have again as
above that
abed > 20F0Ferd=2 .3 _ 1094.. 3 > 3000,

which is absurd and we conclude that a +b+c+d = 11. Then abed < 211 + 92 = 2050, so b = 0.
Moreover, from
2050 — 27772 > 2000 <= 29772 < 50,

we get d—c—2 < 5. However, from d+c = 9 we have that d—c—2 is odd,sod—c-2 € {1, 3,5}.
This means that
abed = 2050 — 29772 ¢ {2048, 2042, 2018}.

The only number that satisfies a + b+ ¢ +d = 11 is 2018, so it is the only solution.

|
Comment by PSC. After proving b+d > a+ ¢ > 2, we can alternatively conclude that a < 3, as
follows. If a > 4, then

m — aa+b+c+d _ a-—a+b—c+d +a
S ab+d—a—c (a2a+2c - 1)

> a2a+2c ]
> 48 — 1 = 65535,

a contradiction.
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NT 4. Show that there exist infinitely many positive integers n such that
442" 41
n?+n+1

is an integer.

Solution. Let f(n) =n? 4+ n + 1. Note that
fe)=nt+ni+1=m2+n+1)(n?—n+1).

This means that f(n) | f(n?) for every positive integer n. By induction on k, one can easily see that
fn) | f (n2k) for every positive integers n and k. Note that the required condition is equivalent to
f(n) | £(27). From the discussion above, if there exists a positive integer n so that 2" can be written
as n2", for some positive integer k, then f (n) | £(2™). If we choose n = 22" and k = 2™ —m for some
positive integer m, then 2" = n?" and since there are infinitely many positive integers of the form
n = 22", we have the desired result.

O



