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Bajaay npejacrasisior JI. Heycrpoesa, A.M. Paitropoackuii, O. B. Bypcuan, K. I1. Koxach

1 DBbazoBbie olpe/iejieHud

[Iycrs G = (V, E) — rpad 6e3 meresb, KparHbix pebep u opuentarmu. HazoBem kaukod B 5T0M rpade
7000t ero mostHbIH oarpad. OHa BepImHa U 0HO pebpo — 3To ToKe Kanukn. HazoBeM, jasee, kAukosovim
wucaom rpada G Besmunny w((G), paBHYIO MaKCHMaJbHOMY TakoMmy k, uro B rpade GG ecTh Kimka Ha k
BepmmHax. B TO ke BpeMst Ha30BEM HE3a6UCUMDIM MHOACECMBOM TaKOe MHOXKECTBO BepinuH rpada G, 9To
HU OJIHA TIapa BEPIIUH B HEM He obpasyeT pebpa. B cBoem posie 1o “antukimmka”’. OHa BepIInHA SBJISIETCS
HE TOJIbKO KJIUKON, HO W HE3aBUCUMBIM MHOXKeCTBOM BepIirH. COOTBETCTBEHHO, YUCAO HE3ABUCUMOCTIU,
rpadpa G — 5170 MakcuMmaJibHOe k, mpu KOTOpoM B (G €CTh HE3aBHCHMOE MHOMKECTBO BEPIITUH MOITHOCTH
k. Obosnauaercs sro uncio aG). Hakoner, xpomamuyeckoe wucao rpada G — 9170 MUHAMAJIBLHOE YUCIIO
X(G) 1BeTOB, B KOTOPBIE MOYKHO TaK IIOKPACUTH BCE BEPIIMHBI I'Pada, 4T0ObI KOHIIBI KayKJI0r0 pebpa MMeJH
pa3HbIE IBETA.

2 3ajaum g0 MPOMEXKYTOYHOTro (pUHUMIA

2.1 IlIpocTble ynpakHeHUd

Bamaua 1. [okaxkure, ato X(G) = w(G).
Bagada 2. [lokaxwure, uro x(G) = PR

Bamaua 3. I[lycrs A(G) — makcumasbHas crenenb Beprinnbl rpada G. Jokaxkure, aro x(G) < A(G)+1.

Teopema Bpykca (6e3 gokasaresibctBa). Fcau 2pad G ceazen u He ABAACMCA HU NOAHBM 2DaPHoMm,
HU NPOCMvLM (Hecamonepecekanuumcs) yukiom wewemnot daunn, mo X(G) < A(G).

2.2 Teopema Typana

Bagada 4. lIlycte G = (V, E) u |V| = n. Hokaxure, 1o ecian w(G) < 3 (nam, nHade roBops, B rpade
HeT TPEYTrOJIbHUKOB), TO 4ucio pebep B G He GoJiblie, deM \_gj . {%W Jlokaxkure TakxKe, 9TO 3Ta OIEHKA
HeyJTy qIIaeMa.

Bamaua 5. Jlokaxkure, 9T0 yTBepKjeHEE 33Ja49u 4 PaBHOCUJIbHO cieiyomemy: nycrtb G = (V, E) u
|V| = n; ecim o(G) < 3, 1o uncyo pebep B G He MeHbIIE, YeM
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1 3Ta OllcHKa HeyJlydllaeMa.

Baga4da 6 (teopema Typana). Ilycrs G = (V, E) u |V| = n. Jokaxure, aro ecin o(G) < k, 170 9nciio
pebep B (G He MeHbIIIE, YeM
(2] LG
2

k

?

1 9Ta OIleHKa HeyJIydIlaeMa.



2.3 wucrannmumoHHble rpadbl HA MJIOCKOCTH

Haszosem ducmanyuonnoim epagom na naockocmu (mimm epagom paccmosanudl Ha NA0CKOCTAU) TAKON
rpad, BepIIMHBI KOTOPOI'O — 9TO TOYKH IJIOCKOCTH, a pebpa — BCe Mmapbl TOYEK, PACCTOSTHUE MEXKYy KOTO-
pBIMHI paBHO 1.

Bagada 7. Jlokaxure, 9T0 B JucraHnnoHHoM rpade wer noarpados Ky (mosHbx rpados Ha 4-X BEp-
IITHAX ).

Banmaua 8. Jlokaxkure, 9T0 B JUCTAHIMOHHOM rpade HeT moarpados Ko 3 (MOIHBIX ABYI0IBHBIX TpadoB
¢ J0JIsMU pa3mepa 2 u 3).

Bamaua 9. /[lokaxkure, 9TO B JuCTaHIIMOHHOM T'pade HeT nojarpados W =

Bagada 10. /lucrannuonHbil rpad He CTOUT MyTaTh ¢ IIaHApHBIM rpadoM (rpadoM, KOTOPBIH MOKHO
TaK M300pasuTh Ha IJIOCKOCTH, YTOOBI pebpa Ha PUCYHKe MepeceKasich TOJIBKO Mo BepiimHaMm). [Ipuse-
JIATE TIPUMEpP HeIlJIaHAPHOTO I'pada paccTOosdAHUM U IJIaHAPHOTO I'pada, He SABJIAIONIErocs JTUCTAHIITHOHHBIM.
(Kpurepnit KyparoBckoro MoxKHO HCIIOJIB30BaTh 63 JI0Ka3aTe/IbeTBa. ¥l ero HAllOMHIO. )

2.4 Teopema Typana ajsa AUCTAHINOHHBIX TpadOB Ha MJIOCKOCTH

Bagada 11. Ilycrs B aucrannmonnom rpade G = (V) E) wa miockocru 4n sepris, a o(G) < n. Co-
riacio teopeme Typana |E| > 6n. lokaxkure, 9to B TekymieM ciydae (Korja rpad G aucTaHINOHHBII )
nMeer MecTo 6osiee cusbHas oreHKa |E| > Tn. Bocnonbayiitech pesynbraTom 3a1adn 7.

JanbHeiimas cepus 3aja4 MOCBSIIeHa YTOYHEHNIO pe3yiabTaTta 3aa4u 11. [Ipu sTom no-npexknemy mMbl
UCII0JIB3YEM TOJIBKO 3a/1ady 7.

Bagaua 12. [okaxure, aro ecau y rpada G = (V, E) (ue obgazare/bHO JUCTaHIMOHHOTO!) 4n BepInuH,
a(G) < n, w(G@) < 3 (rpad He comepxkuT Ky) U MunuMaAbHAA CTETEHb BepImuHb G He GOJIbIE TPEX,
TO 13 rpada MOKHO TaK yJaJIUTh He 60JIee YeThIpexX BEePIIUH CO BCEMHU MPHMBIKAIOIIIME K HIM peOpaMiu,
4100l B HOBOM rpade G = (V' E') 6pui0 o(G') < o(G) — 1, |E'| < |E| — 8 (ynamus e Gojiee deThIpex
BepIuH, u30aBUMCsI OT HE MeHee BOChMU pebep).

s pemmenns 3ajaqn 12 MOXKHO JeiicTBoBaTh Tak. Ilycth A — BeprimHa MUHUMAJILHOM CTEIEHU B
G. Paccmorpure no otnenbHocTu Bee 4 ciydas 3uadenus crernenu or 0 10 3. B mepBbIX Tpex ciydasx
yJajsiite Bepimuay A co BCeMU COCESIME U UCIOJIB3YHTE 3aady 2 B COUETAHUU ¢ TeopeMoil Bpykca jiist
JI0Ka3aTeJIbCTBa CYIEeCTBOBAHNS BEPIIMHBI OOJIBINON CTENeHN B ocTaroliemMmces rpade. B nmociaegaem cioydae
npoBeiuTe HEOOIbINOi mepedop BO3MOYKHBIX CUTYAITH.

Bagada 13. C momornbio HHIYKIMA BbIBeAUTe U3 3a1a49u 12 onerky |E| > 8n B yciaoBugx 3amaan 11.

Bamaua 14. [okaxure, uro st rpadoB (He 06s3aTeIbHO JUCTAHIIMOHHBIX!), Y KOTOPBIX 41 BEpINUH,
a(G) < nnw(G) < 3, onerka |E| > 8n Heyyurmaema.

N eme OosbIne yCuJIeHUS 3a CYET JOMOJTHUTEIBHBIX “3allpelIeHHbIX MOArpadoB.

Bamaga 15*. C moMmoIpo pe3yabTaToB 3aad 7, 8 u 9 JoKaxKuTe, IYTO eC/IM Y JUCTAHIIMOHHOTO rpada
na wiockocrn 4n sepumn u «(G) < n, 1o |E| = Ln.

Bagada 16 (oTkpbITasi mpobsiema). YiydriuTe OleHKy 3a1adn 15.



2.5 JlucranmmoHHBIe rpadbl B MPOCTPAHCTBAaX 0O0JIbINeil pa3MepHOCTHN

Ecymm Ber 3naere, 9To Takoe n-MepHOE TPOCTPAHCTBO, 0603HadaeMoe Tpaauimonto R™, To Bur mosioerr,
HO IPSIMO ceifiuac 3To 3HAHUE He sABJIIeTCs 00g3aTe/bHbIM. [103:Ke MBI Ja UM OIpeaeseHus], JOCTaTOYHbIe
JUI PelieHns COOTBETCTBYOMMX 3a1a4. OHaKko MoKa MOXKHO oboiTuch 6e3 ciioBa “npoctpanctso’. Pac-
emorpum rpad G(n,3,1). Ero sepumnamu ciyxkar Bee BosMozkHble C2 TpexXsieMeHTHbIE M0MHOKECTBA
muO)kecTBa {1,2,...,n}. A pebpaMu B HEM COEAMHSIOTCS T€ W TOJBKO T€ BEPIIUHBI, KOTOPHIM OTBEYAIOT
Tpex3JIEMeHTHbBIE TIOJIMHOYKECTBA, IIePECEKAIOIINEecs POBHO 110 OJHOMY djeMeHTy. Ha pucyrke 2 m300pazkeH
npumep rpada G(5,3,1).

Bamaua 17. Haiigure uuciio pebep B rpade G(n,3,1).
Bagada 18. Haiisure unciio rpeyronbaukos B rpade G(n,3,1).

Bagada 19. okaxure, ato o(G(n,3,1)) =n,n— 1 wm n — 2 B 3aBUCHMOCTH OT BEJIMYUHBI OCTATKA OT
neJeHnd ducsaa n Ha 4.

Bamaua 20. Haiigure w(G(n,3,1)).

V]l _ (n=1)(n=2)
a(G) 6 :

Bamaua 21*. Jloxaxkure, ato ecm n = 2%, 1o Y (G) =

Hamomunwm, ato jBe dpyHKInn f u g HATYPaJIbHOIO apryMeHTa 11, He TPUHUMATOIINE HYJIEBBIX 3HAYECHUI,
HA3BIBAIOTCS ACUMNMOMUYECKY, PASHbMU (T IKEUBAAEHMHBLML) , €CITH % — 1 pu n — oo. Hampuwmep,
acHMITOTHYecKH pasubl dynknun nt u nt + 100n2. Humyt f ~ g. Hamee, bynknua f 6eckoneuno mana

10 CPABHEHUIO C (, €CJIN % — 0 npu n — co. B arom ciywae numyr f = o(g). Hanpumep, n® = o(n?).

Bagaua 22. Ilycrs W, — npousBoJIbHOE MOJAMHOKECTBO MHOKecTBa Bepiud rpada G(n, 3, 1) (g kax-
JIOro n paccMaTpuBaeM cBoe MHOKecTBO W,,). O6osznaunm r(W),) quciio pebep, 0ba KOHIa KOTOPBIX IPUHA/I-
nexxar W,,. Ilycrs n = o(|W,,|) ipu n — oo. lokaxkure, aro obbranast reopema Typana rapanTupyer Torja,

Wal2 (W2

aro r(W,) = f(n), tae f — mexoropas (dbyHKIHsI, ACHMITOTUIECKN DaBHAsI BeJININHE T COe5T) o

Bor renepsb jaguMm (opMaibHOe onpejiesienrne npocTpacTBa R™. DT0O POCTO MHOMXKECTBO BCEX “TO-
yek” X, KaxKJlasd U3 KOTOPBIX €CThb II0CJIEI0BATEILHOCTD, COCTOAINAA U3 N JACHCTBUTEIHHBIX YUCE: X =
(x1,...,2,). Ilpu sTOM MeKy JIIOOBIME JIBYMsI TOYKAMU X = (T1,...,Z,) 1y = (Y1,...,Yn) MOKHO
[IOMEPHUTH PACCTOsiHKE 110 (hOpMYyJIe

|X_Y| = \/(331 _y1)2+"'+ (xn_yn)2'

B wactroctu, mpu n = 1 nojiydaem OOBIMHYIO HPSAMYIO, IPU N = 2 — OOBIMHYIO ILJIOCKOCTD, IIpU N = 3 —
0OBIYHOE TIPOCTPAHCTBO.
Hanee, ckajsipHoe TIPOU3BEJIEHNE BEKTOPOB X = (T1,...,%,), ¥ = (Y1,...,Yn) B R — 570 BbIpakenue

(X,y) =211 + ... + TpYn.

Herpyno mpoBeputsh, 4TO BCerja

x —y]*=(x,x) + (y,y) — 2(x,y).

Bamaua 23. [lokaxwure, uto rpad G(n,3,1) uzomopden cieyiomemy rpady B R™:
V=_{x=(x1,...,2,): z; €{0,1}, 2y +... 42, =3}, E={{xy}: (x,y) =1}

Taxum o6pazom, 3TOT rpad JUCTAHITMOHHBI, T.€. €r0 BEPIIMHBI — TOYKHU B IPOCTPAHCTBE, a pedpa — mapbl
TOYEK Ha 3aJJaHHOM Hallepe]l PACCTOSHUN.

Sagaua 24. Ilycrs K, ;. — TOJHBINR 7-10JBHBIH Tpad ¢ pasmepamu jpojeit [, ..., [,. Jokaxure, 1aTo
mucTannunonnbii rpad B R™ ne comepxutr B Kadecrse noarpada rpad K s ¢ guciaom goseit [n/2] + 1.



3 3ajaum mocJje MpoMexKyTOYHOro (PuHUIIA

Bamaua 25. Jlokaxkure, 9TO €CJIU B YCJOBHAX 3aJa9d 22 JONOJHATEIBHO MOTPEOGOBATDH BBIIOJIHEHUE
yenosus |[W,,| = o(n?), To onenka u3 3amaam 22 (T.e. 0OObIYHAS TYPAHOBCKAZ OINEHKA) aACHMIITOTHYECKH
ney tyumaeMa. VHbIME cioBamu, jyis Jio6oit byHnKiuu g, yaosiaeTsopstomieii yeaosusam g(n) = o(n?) u

W, 2
h = o0(g(n)) nmpu n — +o00, cymecrByer nocaeaoBareabnocts W, takas aro |W,| ~ g(n) u r(W,,) ~ ‘2—’;1'
Bamaua 26-27. Hasosem sepwunamu npasuavrozo cumnaexca B R™ moboit Habop u3 k ToUek, monapHbie
PACCTOSTHIS MEK/Ty KOTOPBhIME paBHbI 1. JlokakuTe, 9T0 TaKHe MHOXKECTBA CYIIECTBYIOT 1pu Beex k < n+1
(3amada 26) u He CYIIECTBYIOT HU IIPU Kakux k > n + 2 (3axada 27).

Bagaga 28. Ilycrs G, = (V,,, E,), n =1,2,..., — nucranmuonnbie rpadsl B R”. O6o3natunM ux dncia
HE3aBUCHMOCTH «v,. [Tycts W,, — mponsBosibHOE IO IMHOXKECTBO MHOKeCcTBa BepimH rpada G, (Kak 06brd-
HO, JIJIsI KayKJIOr0 n paccMarpuBaeM cBoe MHOxkecTBo W, ). O6o3naunm r(W,,) qucio pebep, oba KoHIA

KOTOpBIX nipuHayiexar W,. [Tycrs na,, = o |[W,]) npu n — oco. C nomornsio 3a1aun 26-27 JoKazKuTe, 9T0
r(W,) = f(n), tme f — Hexoropasi GyHKIHs, ACHMIITOTHIECKN DABHAST BEJINIIHE %

[Ipumenus yTBepxKierue 3ajgaquu 28 K 1mocienobarenbHoctu rpados G, = G(n,3,1) Mbl mosydnm
OIEHKY IPUMEpPHO B 2 pasa Jydlle, 4eM B 3ajadax 22 u 25 (BaBoe JiydIiasi TypaHOBCKOii). 37ech Her
[POTUBOPEYHsI, TOTOMY YTO B 3TUX 3a/a9aX chOPMYINPOBAHBI PasHble (IPAKTUIECKH TPOTHBOMOIOKHbIE)
TpeGoBanust K uuciy sepiuut |W,|: |W,| = o(n?) B samade 25 u (nposepsre!) n? = o(|W,]) B 3ama1e 28.
OxaseiBaercs, st rpados G(n, 3, 1), Kak HU CTPAHHO, MOYKHO TIOJIy9IHUTD erre 00Jiee CHIIbHBIE OIEHKHU TY-
PaAHOBCKOI'O THII&, BDEMEHHO OTKA3aBIINCH OT UCIOJIL30BAHUSA B HUX YUC/IA He3aBucumocTu. Vaeda cocrout
B TOM, 9TOOBI IIOCMOTPETH BEPIIUHBI, COJEPKAIINE TOT WM WHOI 1eMeHT MHOXKecTBa {1, ..., n}, oneHuTsh
COOTBETCTBYIOIIKE KOJHYECTBa pedep U BOCIOIb30BATHCA HEKOTOPBIMU CTAH/IAPTHBIMUA HEPABEHCTBAMU.

Bagada 29. Ilycrs W, — mpousBosibHOE TOJMHOKECTBO MHOXKecTBa BepinuH rpada G(n,3,1). Ilycts

n? = o(|W,,|) mpu n — oo. okaxure, uro r(W,) > f(n), tae f — mekoropas (hyHKIHUs, ACHIMITOTHICCKH
W, 2

paBHast BejmdauHe 4.5 - % NupiMur ciioBaMu, osrydaeTces IpuMepHo B 4.5 pasa jrydinas OIeHKa, 9eM B

zaj1aue 28!

Samaua 30. Jlokaxkure, 94TO OlEHKa U3 3aja49u 29 B CTaHIaPTHOM CMBIC/IE ACUMITOTHIECKH HEYJIydIlia-
eMma.

Camo obozuauenue “G(n, 3, 1)” mogckassiBaet, 910 y 910oro rpada ectb 0606meHue. 1o rpad G(n,r, s).
Y HEro BepIIMHAME CJIy’KaT BCE T-3JIeMEeHTHbIe MOJMHOXKeCTBa MHOXKecTBa {1,...,n}, a pebpamu cennHsi-
I0TCsl JIBe BEpIINHBI, €CJIM U TOJLKO eCJIH COOTBETCTBYIONIME MHOXKECTBA IIEPECEKalOTCs POBHO IO S 3JIe-
MeHTaM. VIHBIMEU cJIOBaMU, BEpIIMHBI — N-MepPHbIe TOYKK ¢ “KoopauHaTamu’ O wam 1, mpudeM B KazKI0i
TOYKe POBHO I €UHHUIL. PeOpo MpOBOINTCS TOTIA U TOJILKO TOIJIA, KOIJIa CKAJIAPHOE IIPOU3BEICHIE BEPIINH
pasuo s. I'padwr G(n,r, s) HaspBatoTcst epagamu locorncona, a WX 9acTHBIN caydait — rpader G(n,r,0)
— Ha3LIBAIOTCSA KHE3ePOGCKUMU 2padamu.

Bagada 31. Haiinure uncio pebep B rpade G(n,r,s).
Bamaua 32. Haiijgure unciio Tpeyrosibaukos B rpade G(n,r, s).

Bamaga 33*. JlokaxKute, 9TO AaHAJIOTOM PE3yJIbTATOB U3 3a1a4 29 u 30 CIy?KUT ACUMIITOTHIECKU HEYJTy -

L WR|2 O
TaceMasd OIICHKa BCJIMYMHOUN 57N
ns 2-(r—s)!

B1ech Hag0 TpeboBaTh, YToGB ' = o(|W,]).

Crenyrommuit pe3yabTaT MOXKHO HCIIOJIb30BATh 663 T0Ka3aTeIbCTRA.

Teopema dpaema, Ko u Pago. ITycmv n > 2r. Tozda o(G(n,r,0)) = C 1.

n



Samaua 34. Jlokaxwure, uro eciu W,, — HIpOU3BOJbHOE IOAMHOXKECTBO MHOXKECTBa BEpIINH rpada

G(n,r,0) ul=|W,| > a(G(n,r,0)), o

Li- (G -Ci,))
- |

r(Wa) 2



Distance graphs and Turan’s theorem

A. Raigorodsky

The project is proposed by O. Bursian, K. Kokhas, L. Neustroeva, A. Raigorodsky

1 Definitions

Let G = (V, E) be a graph without loops, multiple edges and orientation. A cligue in G is any complete
subgraph. Single vertex or single edge are also cliques. The clique number of graph G denoted by w(G) is
the maximal integer k such that G contains a clique on k vertices. An independent set is a set of vertices
in GG such that no two of the vertices form an edge. It is an “anticlique” in a sense. Single vertex is not
only a clique but an independent set too. Accordingly, an independence number of graph G is the maximal
integer k£ such that G contains an independent set of k vertices. It is denoted by a(G). And finally, the
chromatic number of graph G is the minimal number y(G) of colors for which one can color vertices of
graph in these colors so that the endpoints of any edge have different colors.

2 Problems, 1

2.1 Exercises

Problem 1. Prove that x(G) > w(G).

Problem 2. Prove that x(G) > %

Problem 3. Let A(G) be the maximum degree of vertices of graph G. Prove that x(G) < A(G) + 1.

Brooks’ theorem (without proof). If connected graph G is neither a complete graph nor a simple
cycle (non self-intersecting) of odd length, then x(G) < A(G).

2.2 Turan’s theorem

Problem 4. Let G = (V, E)and |V| = n. Prove that if w(G) < 3 (in other words, the graph does not
contain triangles) then the number of edges in G is at most L%J . {%W Prove that this upper bound is
sharp (i.e. can not be increased).

Problem 5. Prove that problem 4 is equivalent to the following statement. Let G = (V, E) and |V| = n.
Prove that if «(G) < 3 then the number of edges in G is at least

<rigk

and this lower bound is sharp.

Problem 6 (Turan’s theorem). Let G = (V, E) and |V| = n. Prove that if a(G) < k then the number
of edges in G is at least
o [7] . LE+
k 2
and this lower bound is sharp.



2.3 Distance graphs in the palne

A distance graph on the plane or graph of distances on the plane is a graph such that its vertices are
some points of the plane and edges are all pairs of points at distance 1.

Problem 7. Prove that distance graphs do not contain subgraphs K, (complete graphs on 4 vertices).

Problem 8. Prove that distance graphs do not contain subgraphs Ks 3 (complete bipartite graphs with
parts of 2 and 3 vertices).

Problem 9. Prove that distance graphs do not contain subgraphs W = .@. :

Problem 10. Do note confuse distance graphs and planar graphs (the latter can be drawn on the plane
in such a way that its edges intersect only at their endpoints). Give examples of non-planar distance graph
and planar but non-distance graph. You may use Kuratowski’s criterion without proof.

2.4 Turan’s theorem for distance graphs on the plane

Problem 11. Let G = (V, E) have 4n vertices and a(G) < n. In this case |E| > 6n by Turdn’s theorem.
Prove that if G is a distance graph on the plane then the stronger inequality |E| > 7n holds. Use the result
of problem 7.

Next problems strengthen the inequality of problem 11 by applying the result of problem 7 only.

Problem 12. Let graph G = (V, E) (not necessarily being a distance graph) has 4n vertices. Assume
that a(G) < n, w(G) < 3 (that means G does not contain Kj) and mimimum vertex degree in G is at
most 3. Prove that it is possible to remove at most 4 vertices with all its edges from G in such a way that
in the new graph G’ = (V', E’) we have o(G") < a(G) — 1 and |E'| < |E| — 8 (by removing of at most 4
vertices we delete at least 8 edges).

You may use the following approach to problem 12. Let A be a vertex of minimal degree in G. The
possible the values of this degree are from 0 to 3. For the first three values apply problem 2 plus Brooks’
theorem in order to prove that the remaining graph has a vertex of big degree. For the last value investigate
possible cases.

Problem 13. Let G = (V, E) be a distance graphs on the plane, |V| = 4n and a(G) < n. Using induction
and problem 12 prove that |E| > 8n.

Problem 14. Let graph G = (V, E) (not necessarily being a distance graph) have 4n vertices, a(G) < n
and w(G) < 3. Prove that the estimation |F| > 8n can not be strengthened.

We can improve the bound better by using additional “forbidden” subgraphs.

Problem 15*. Applying results of problems 7, 8 and 9 prove that if a distance graph has 4n vertices
and a(G) < n, then |E| > Zn.

Problem 16 (open problem). Improve the bound of problem 15.



2.5 Distance graphs in high-dimensional spaces

If you already know what is n-dimensional space usually denoted by R", you are extremely smart,
but this knowledge is not obligatory right now. We will give all necessary definitions later. And now we
tend to avoid the word “’space”. Consider graph G(n, 3, 1). Its vertices are all 3-element subsets of the set
{1,2,...,n}, so it has (’;) vertices. And the edges correspond to the pairs of subsets which has 1-element
intersection. See example of graph G(5,3,1) in fig. 2.

Problem 17. Find the number of edges in graph G(n,3,1).
Problem 18. Find the number of triangles in graph G(n, 3, 1).
Problem 19. Prove that a(G(n,3,1)) =n, n — 1 or n — 2 depending on the remainder n mod 4.

Problem 20. Find w(G(n,3,1)).

Problem 21*. Prove that if n = 2%, then x(G) = OJZ/G',) = (nflic("*m.

Let f and g be two functions defined on the set of non negative integers and having no zero values. We
remind that f and g are called asymptotically equal (or equivalent) if % — 1 for n — oo. It is written as

f ~ g. For example n* ~ n* 4+ 100n2. Function f is said to be infinitesimal with respect to g if % — 0
for n — oco. It is denoted as f = o(g). For example n® = o(n?).

Problem 22. For each integer n > 3 let W,, be a subset of the set of vertices of graph G(n,3,1).
Denote by r(W,,) the number of edges with both endpoints in W,,. Let n = o(|W,|) for n — oco. Prove

that Turén’s theorem implies that r(W,) > f(n), where f is a function that is asymptotically equal to
[Wn|? W |?
20(G(n310) ~ 2n -

Now we will give a formal definition of the space R". It is just a set of “points” x, where each of points
is a sequence of n real numbers: x = (1, ..., x,). For any two points x = (x1,...,2,) andy = (y1, ..., Yn)
we define a distance between them by formula

x =yl = V(@ —y)2+ .+ (20— ya)2

In particular, for n = 1 this definition gives us the usual line, for n = 2 the usual plane and for n = 3 the
usual space.
Further, the scalar product of vectors x = (z1,...,2,) and y = (y1,...,¥,) in R" is the expression

(X,¥) =21y1 + ... + TpYn.
It easy to check that for all x,y € R”
x =y = (x,%) + (y,¥) - 2(x.y).
Problem 23. Prove that graph G(n, 3, 1) is isomorphic to graph (V, E)
V={x=(z1,...,2,): 2;€{0,1}, z1 +...+2, =3}, E={{xy}: (x,y) =1}

Thus, this is a distance graph in R"™: its vertices are points in R”, and edges are the pairs of points at
distance 2.

Problem 24. Let Kj, ; be the complete r-partite graphs, with parts of sizes ly,...,[,. Prove that
distance graphs in R™ do not contain subgraphs of the form K 3,...,3

[n/2]+1



3 Problems after intermediate finish

Problem 25. Prove that if in the statement of problem 22 to impose additionally the condition |W,,| =

o(n?), then the estimation of problem 22 (i. e. usual Turdn’s estimation) cannot be asymptotically improved.

In other words, for every function g such that g(n) = o(n?), h = o(g(n)) there exists sequence W,, such
‘2

that |W,| ~ g(n) and r(W,) ~ W#

Problem 26-27. We say that any k points in R" are the vertices of right simplex, if all the pairwise
distances between them are equal to 1. Prove such sets exist for all k£ < n 4 1 (problem 26) and do not
exist for all k£ > n + 2 (problem 27).

Problem 28. Let G, = (V,,, E,), n=1,2,... be unit distance graphs in R™. Denote their independence
numbers by «,. Let W,, be an arbitrary subset of the set of vertices of graph G, (as usual, for each n we
consider its own set W,,). Denote by r(W,,) the number of the edges, both ends of which belong to W,.
Let nay, = o(|W,|) as n — oco. With the help of problem 26-27 prove that r(W,,) > f(n), where f is some

function asymptotically equal to the value %

For sequence G,, = G(n, 3,1) problem 28 give the estimation that is approximately 2 times better than
the estimation in problems 22 and 25 (twise better than Turdn’s estimation). There are no contradiction
here, because these problems have different (in fact opposite) limitations for the number of vertices |W,,|:
in problem 25 |W,| = o(n?) and in problem 28 (check!) n?> = o(|W,]|). It turns out that for graphs
G(n,3,1) even stronger estimations of Turdn’s kind can be obtained, by temporary refuse of using the
independence number. The idea is to consider the vertices containing an element of set {1,...,n}, to
estimate the corresponding numbers of edges and to apply some standard inequalities.

Problem 29. Let W, be an arbitrary subset of the set vertices of graph G(n,3,1). Let n? = o(|WW,,|) as
n — oo. Prove that r(W,) > f(n), where f is some function asymptotically equal to the value 4.5 - %

By the other words, we have obtained the estimation, approximately 4.5 times better than in problem 28!

Problem 30. Prove that the estimation of problem 29 in the standard sense cannot be asymptotically
improved.

The notation “G(n, 3,1)” itself prompts that this graph has the generalization. It is graph G(n,r, s).
Its vertices are all r-element subsets of set {1,...,n}, and two vertices are connected by edge, if and only
if the intersection of the corresponding sets contains exactly s elements. In other words, the vertices are
n-dimensional points with “coordinates” 0 or 1, where the number of 1’s is exactly r. Edge is drawn if and
only if the scalar product of the vertices equals s. Graphs G(n,r,s) are called Johnson graphs, and the
particular case of them, graphs G(n,r,0), are called Kneser graph.

Problem 31. Find the number of the edges of graph G(n,r, s).
Problem 32. Find the number of the triangles of graph G(n,r, s).

Problem 33*. Prove that the analogue for the results from problems 29 and 30 is the estimation of the

Wal? . _C21 that asymptotically cannot be improved. Here we have to demand n™! = o(|W,l).

form ns 2-(r—s)!

The following result you can apply without proof.
Erdés—Ko—Rado theorem. Let n > 2r. Then o(G(n,r,0)) = C" 1.

n



Problem 34. Prove that if W, is an arbitrary subset of the set of vertices of graph G(n,r,0) and
[ = |W,| > a(G(n,r,0)), then
! (l B (CZ; B Cﬁ—r))

>
r(W,) = 5
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ON SETS OF DISTANCES OF n POINTS
P. ERDOUS, Stanford University

1. The function f(n). Let [P,] be the class of all planar subsets P, of n
points and denote by f(n#) the minimum number of different distances deter-
mined by its # points for P, an element of { P,}. Clearly, f(3) =1 (with the three
points forming the vertices of an equilateral triangle) f(4) =2, f(5) =2. The fol-
lowing theorem establishes rough bounds for arbitrary #. Though I have sought
to improve this result for many years, I have not been able to do so.

THEOREM 1. The minimum number f(n) of distances determined by n points
of a plane satisfies the inequalities

(n — 3/4)12 — 1/2 £ f(n) S on/(log n)l/2,

Proof. Let Py be an arbitrary vertex of the least convex polygon determined
by the # points, and denote by K the number of different distances occurring
among the distances P.P; (1=2, 3, - - -+, ). If N is.the maximum number of
times the same distance occurs, then clearly KN=#n—1.

If » is a distance that occurs NV times then there are N points on the circle
with center P; and radius 7, which all lie on the same semi-circle (since P, is a
vertex of the least convex polygon). Denoting these points by Qi, Qz, - - -, Qw,
we have Q1Q:<(1Q:< * » - <(Q1Qw, and these N —1 distances are pairwise dis-
tinct. Thus f(#) Zmax(N—1, (n—1)/N), which is a minimum when N(N—1)
=n—1. This yields the first part of the theorem.

Considering now the points (x, y) with integer coordinates for 0 Zx, y <n1/ 2
we obtain at least » points P; which pairwise have distances of the form
(u?+0v2)12, 0=u=n'% 0<v=n'% Now it is well-known that the number of
different integers not exceeding 2z which are of the form w242 is less than
cn/(log n)/?, and the proof is complete.*

For #- points in k-dimensional space the same method yields ¢inl/* <f(n)
< 62.”2/]3 .

2. Somg conjectures concerning f(n). Let us assume that our # points form
a convex polygon. Then I conjecture that f(z) = [#/2], with the equality sign
valid when the % points are vertices of a regular #-gon. I am unfortunately un-
able to prove this. The following conjecture is stronger: In every convex polygon
there is at least one vertex with the property that no three vertices of the poly-
gon are equally distant from it. If this is the case, then clearly we would obtain
[#/2] different distances by considering all the distances from such a vertex.

A still stronger conjecture is that on every convex curve there exists a point
P such that every circle with center P intersects the curve in at most 2 points.

3. The function g(n; r). Denoting by g(#; 7) the maximum number of times
a given distance 7 can occur among # points of a plane we establish

* Landau, Verteilung der Primzahlen, vol. 2.
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THEOREM 2. nite/loglar gy r) <nd2,

Proof. Assuming that there are x; points at distance » from P;, clearly
g(n;r)=max 3> 7. ,x:; We suppose that x;=x,2 - - - 2, Now the x; points

at distance 7 from P; can contain at most two points with distance 7 from P;.
Hence ‘

i
) 2 (w—2i+2)Sn for j=1,2,-++,m.

1=l

Put [nY%]=a, n/2—a=¢, 0<e<1. We have from (1)

a
x1+xz+---+xa§n+2(2>=2n—2m1/2+ez—-n‘/2+e

(2)
< 2n — 2ent!?
forn=4. Thus
1
3) %o < — (2n — 2enl/?) = 25102,
a

Hence from (2) and (3)

X % < 2 — 2enV? 4 (n — a)2n12 = 23/

=1
or
g(n; r) < ndl2,

By agzﬁn considering the set of points (x, y), 0=x, ¥ <a we easily obtain
(using well known theorems about the number of solutions of #%2-4-y2==m)*

g(n) > nl+c/log log n

which completes the proof.
It seems likely that g(n) <nl*e,

4. Maximum and minimum distances. If 7 is the diameter of the points P;,
it is well known that 7 can occur only % times.} This follows almost immediately
from the fact that if P,P,=r and P;P,=r the lines P,P, and PsP, must intersect,
for otherwise a simple argument shows that the diameter of PyP;PsP4 would be
greater than 7. Connect P; with P; if and only if their distance is ». We distin-
guish two cases. In Case 1, every P; is connected with at most two other P’s,
In this case the number of lines, 7.e., of pairs of points at distance 7 is clearly <.

* See e.g. P. Erdos, London Math. Soc. Journal, 1937, vol. 12, p. 133. The proof would depend
on the prime number theorem for primes of the form 4%2+1 (or on some weaker elementary result
concerning the distribution of primes of the form 4%21).

t Jahresbericht der Deutschen Math. Vereinigung, vol. 43, 1934, p. 114,
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If P; would be connected with three vertices say P,, P;, Py where P1P; is be-
tween P1P; and P1P4 then P; can not be connected with any other P;, since
P3P; would have to intersect both P,P;and PP, (the angle PoP; P, is of course
=w/3), and thus be greater than . Now we can just omit P; and since both the
number of points and the number of distances are reduced by 1, the proof can
be completed by induction.

It would be interesting to have an analogous result for # points in k dimen-
sional space. Vézsonyi* conjectured that in three-dimensional space the maxi-
mum distance can not occur more than 27 —2 times.

If one could prove that in k-dimensional space the maximum dlstance can
not occur more than kz times, the following conjecture of Borsuk would be es-
tablished: Each k-dimensional subset of diameter 1 can be decomposed into 241
summands each having diameter <1. )

Let now 7’ denote the minimal distance between any two P’s. First it is easy
to see that #’ can not occur more often than 3z times. This is immediately
clear from the fact that since 7’ was the minimal distance between any two P’s,
there can be no more than 6 P’s at distance #’ from any given P.

Connect P; with P; if and only if their distance is #’. A simple argument
shows that no two such lines P;P; and P; P, can intersect (otherwise there would
be two P’s at distance <7’). Thus the graph we obtain is planar, and from
Euler’s theorem it follows that the number of edges of such a graph is not
greater than 3z —6. Thus we have proved the following

THEOREM 3. Let the maximum and minimum distances determined by n points
in a plane be denoted by r and ', respectively. Then r can occur at most n times and
v’ at most 3n—6 times.

It is easy to give # points where the maximum distance occurs exactly »
times. By more complicated arguments we can prove that the minimal distance
7’ can occur not more than 3n—cn'/? times, where ¢ is a constant. On the other
hand the example of the triangular lattice shows that 7’ can occur 3#—cyn!/2
times. I did not succeed in determining exactly how often 7’ can occur.

One could try to generalize Theorem 3 to higher dimensions. But already
the case of three-dimensional space presents great difficulties. It would be of
some nterest to determine the maximum number of points on the unit sphere
of & dimensions such that the distance of any two is =1.

* Oral communication.



Turan type results for distance graphs®

L.E. Shabanov! A.M. Raigorodskiit

Abstract

The classical Turdan theorem determines the minimum number of edges in a graph on n vertices
with independence number a. We consider unit-distance graphs on the Euclidean plane, i.e., graphs
G = (V,E) withV c R?and E = {{x,y} : |x—y| = 1}, and show that the minimum number of edges
in a unit-distance graph on n vertices with independence number @ < An, A € [%, %], is bounded
from below by the quantity Wn, which is several times larger than the general Turdan bound and
is tight at least for A = %

Key words: Turan theorem, independence number, distance graphs.

1 Introduction

The classical Turdn theorem proved in [8] can be formulated as follows.

Theorem 1. The minimum number of edges in a graph on n wvertices with independence number « is
attained on a graph consisting of o pairwise disjoint cliques whose sizes differ at most by one.

One of the most important classes of graphs arising from combinatorial geometry is that consisting of
distance graphs G = (V, E), where

VcR", E={{xy}:|x—y|=1}

On the one hand, distance graphs are naturally related to the famous Nelson Hadwiger problem on
the chromatic numbers of spaces, and so their chromatic numbers and their independence numbers are
intensively studied (see [1], [6], [7]). On the other hand, multiple questions concerning the edge numbers
in distance graphs go back to Erdés (see [1], [3], [6]).

In this paper, we study distance graphs on the plane. Our main goal is to prove a Turan type result
for such graphs, that is to find a lower bound for the minimum number of edges in a distance graph in R?
given a number n of vertices and an independence number . Before stating our main result it is worth
noting that for distance graphs with n vertices, a cannot be arbitrary. It is definitely at least 0.2293n
(see [2], [4], [5]). Moreover, a strong belief is that it is greater than or equal to 0.25n. Anyway, given a
sequence of graphs with growing sets of vertices, the independence numbers of these graphs are quite far
from being constant: they are proportional to the numbers of vertices.

One of the main results of our paper is as follows.

*This work is done under the financial support of the following grants: the grant 15-01-00350 of Russian Foundation for
Basic Research, the grant NSh-2964.2014.1 supporting Leading scientific schools of Russia.

THigher School of Economics, Mathematics Faculty.

fMoscow State University, Mechanics and Mathematics Faculty, Department of Mathematical Statistics and Random
Processes; Moscow Institute of Physics and Technology, Faculty of Innovations and High Technology, Department of Data
Analysis; Buryat State University, Institute of Mathematics and Informatics.



Theorem 2. The minimum number of edges in a distance graph on n vertices with independence number
a<An, A€ H, %], s bounded from below by the quantity wn

The result of Theorem 2 is much stronger than that of Theorem 1. If, for example, A = i, then
Theorem 1 gives 1.5n edges. In the same case, Theorem 2 gives at least %n edges. If, in turn, A = %
and n is divisible by 7, then the classical bound is equal to %n, and our bound equals %77 Moreover, in
this case, our bound is tight, since one can take disjoint copies of the so-called Moser spindle, which has

7 vertices, 11 edges and independence number 2 (see fig. 1).

Figure 1: Moser’s spindle

Finally, for A >
graphs.

The paper is organized as follows. In Section 2, we give a more general setting of the problem and
formulate another main result of the paper. In Section 3, we prove a “key lemma”. In Section 4, we prove
both main theorems of the paper. In Section 5, we give some discussion.

%, Turdn’s bound is trivially tight, since cliques on at most 3 vertices are distance

2 More general setting

Consider a graph I' = (W, E)). We call the configuration of T' the vector (|W/|, «(T'),|E|) and we denote
it by Config(T").

Let V be a set of vectors (a, b, ¢) with non-negative integer coordinates a, b, c. Then we call an extension
of the set V' the set of vectors (a,b+n,c+ k), where (a,b,c) € V and n, k are again non-negative integers.

We say that a vector (a,b,c) is good, if it belongs to the extension of the set of all linear combinations
with non-negative integer coefficients of the following vectors: (1,1,0), (2,1,1), (3,1,3), (4,1,9), (5,1, 15),
(6,1,22), (7,2,11), (n+ 1,1, n(n — 1)), where n > 6.

Figure 2: Semi-star graph



We call the graph, which is drawn on Figure 2, semi-star graph with center X and top verter Y.
The following proposition is quite simple, and we omit its proof here.

Proposition 1. Any distance graph is free of K, (complete graphs with four vertices), Ko (complete
bipartite graphs with part sizes 2 and 3), and semi-star graphs.

We say that a graph is correct, if it does not contain either K, or K3 5, or a semi-star graph as subgraphs.
In particular, as we have just mentioned, every distance graph is correct. The second main result of our
paper is given below.

Theorem 3. The configuration of a correct graph is a good vector.

The proof of Theorem 3 is based on

Key Lemma. From any correct graph I', one can delete several vertices together with all the adjacent
edges in such a way that for the remaining graph T, the vector Config(T") — Config(T") is good.

In the next section, we prove Key Lemma. In Section 4, we deduce Theorems 2 and 3 from Key Lemma.

3 Proof of Key Lemma

3.1 Some preliminaries

We say that a vector v = (v, vy, v3) exceeds a vector w = (wy, wa, w3), if v1 = wy, v = Wy, v = w3,
and we denote this relation by v > w.

Proposition 2. If u,v are vectors of dimension 3 such that u = v and v is good, then u is also good.

The proposition is straightforward, and thus we prove Key Lemma, provided we show that the vector
Config(T") — Config(T"’), with an appropriate I'", exceeds some good vector.

Proposition 3. The vectors (1,1,0), (2,1,1), (3,1,3), (4,1,9), (5,1,15), (7,2,11), (8,2,18), (6,1,22),
(12,3,26), (6,2,9), (10,2,30), (4n,n,10n), (4m+1,m,10m+3), (k+1,1,k(k—1)) (n,m,k € Z; n,m > 3;
k> 6) are good.

Proof. The vectors
(1,1,0), (2,1,1), (3,1,3), (4,1,9), (5,1,15), (7,2,11), (6,1,22), (k+1,1,k(k—1)) for k > 6
are good by definition. Now, we briefly explain what happens with the other vectors:

e (8,2,18) =2(4,1,9);

12,3,26) = (5,1,15) + (7,2, 11);

6,2,9) = (6,2,6) = 2(3, 1, 3);

(
(
(
(10,2, 30) = 2(5,1,15);
(4n,n,10n) > (4n,n,9n) = n(4,1,9);
(

dm+1,m,10m+3) = (4dm+1,m,9m +6) = (m —1)(4,1,9) + (5,1,15) for m > 3.
U

Let A be a vertex of the minimum degree in I". Consider several cases depending on the value of deg A.



3.2 Case of degA =0
Remove the vertex A from I'. Since A had no neighbours, we get Config(I') — Config(I") = (1,1, 0).

3.3 Case ofdegA=1

Remove from I' the vertex A and its unique neighbour B. Obviously the independence number is
reduced by 1 and the number of edges is reduced at least by 1. Therefore, Config(I') —Config(I'") = (2,1, 1).

3.4 Case of deg A =2

Remove from I' the vertex A and both its neighbours B and C. Note that the number of edges is
reduced at least by 3, since AB, AC' are removed and also some edge adjacent to B and different from AB
is removed (2 is the minimum degree in this case). Now it is clear that Config(I") — Config(I'"") = (3,1, 3).

3.5 Case of degA =3

3.5.1 Preliminaries

Let B,C, D be the neighbours of A. Since G does not contain K, we may assume that the vertices B
and D are not adjacent. Below we consider several variants of subgraphs induced on A, B, C, D:

A A
A
D
B D B
D B
C C c
Figure 3: First variant Figure 4: Second variant Figure 5: Third variant

3.5.2 Graph from Figure 3

Let us calculate possible total numbers of edges adjacent to B or D. If the number of such edges is 6
or 7, then we remove the vertices B and D and all the vertices adjacent to them. Since the vertices B and
D are not adjacent and also they are not adjacent to any of the vertices of the remaining graph I", the
independence number is reduced at least by 2. Moreover, since I' is free of K3, the vertices B and D do
not have common neighbours different from A and C. Therefore, the number of vertices that have been
removed is 6 or 7. Finally, since the degree of each vertex is at least 3, the total number of edges adjacent
to the removed vertices is not less than 9 or 11, respectively. Thus, the vector Config(I') — Config(I")
exceeds the vectors (6,2,9), (7,2, 11), respectively.

If the number of edges adjacent to B or D is at least 8, then we remove the vertices A, B, C, D. The
independence number is reduced at least by 1, since the vertex A is not adjacent to any of the remaining
vertices. The number of edges is reduced, in turn, at least by 9, for at least 8 edges adjacent to B or D
are removed and also the edge AC is deleted. Thus, Config(I') — Config(I") = (4,1,9).



3.5.3 Graph from Figure 4

Let us look at possible total numbers of edges adjacent to B or D. If the number of such edges is
6, then we remove the vertices B and D and all the vertices adjacent to them. Since the vertices B and
D are not adjacent and also they are not adjacent to any of the vertices of the remaining graph I, the
independence number is reduced at least by 2. The number of vertices that have been removed is 6 or 7.
Since the degree of any vertex is at least 3, the total number of edges adjacent to the removed vertices is at
least 9 or 11, respectively. Thus, the vector Config(I') — Config(I") exceeds the vectors (6,2,9),(7,2,11),
respectively.

If the number of edges adjacent to B or D is 7 or larger, then we remove the vertices A, B,C, D. The
independence number is reduced at least by 1, since the vertex A is not adjacent to any of the remaining
vertices. The number of edges is reduced, in turn, at least by 9, for at least 7 edges adjacent to B or D
are removed and also at least two more edges adjacent to C are deleted. Thus, Config(I') — Config(I") >
(4,1,9).

3.5.4 Graph from Figure 5

Just remove the vertices A, B,C, D. Since the degree of each vertex B,C, D is at least 3 and these
vertices are pairwise non-adjacent, the number of removed edges is at least 9. As usual, the independence
number is reduced at least by 1, and therefore Config(I') — Config(I") = (4, 1,9).

3.6 Case of degA =4

3.6.1 Preliminaries

Let B,C, D, E be the vertices adjacent to A. Consider a subgraph induced on B, C, D, E. Note that it
cannot have a vertex of degree 3, since otherwise by adding the vertex A we get K34, which is forbidden.
Also, the absence of K3, yields that among B,C, D, E, there are no 4-cycles. Finally, the absence of
Ky yields, in turn, that among B,C, D, E, there are no 3-cycles (triangles). Thus, only the following 5
variants are possible for a graph on the vertices A, B, C, D, E (see fig. 6-10).

A o8 4 E
E
B
D
C c D

Figure 6: First variant Figure 7: Second variant Figure 8: Third variant

3.6.2 Graphs from Figures 6 and 7

Remove the vertices A, B,C, D, E. The independence number is reduced at least by 1. The number of
edges is reduced at least by 15, since any vertex among B, C, D, E is of degree at least 4 and at most 1
edge is calculated twice. Therefore, Config(I") — Config(I'") = (5, 1,15).



B A B E
A
E
C D C D
Figure 9: Fourth variant Figure 10: Fifth variant

3.6.3 Graph from Figure 8

Figure 11: Figure 12: Figure 13:

First, assume that the vertices B, D are both of degree 4. Denote by F, G the vertices adjacent to B
and different from A and C. Also, denote by H the fourth vertex adjacent to D. The vertex H does not
coincide either with F' or with G, since otherwise B and D share three neighbours and we obtain a Kj .
Remove the 8 vertices A,B,C,D,E F ,G,H (see fig. 11). The independence number is reduced at least by
2, since the vertices B and D are neither adjacent one to the other, nor adjacent to any of the remaining
vertices.

Let us prove that the number of removed edges is greater than or equal to 18. The sum of the degrees
of the vertices A,B,C,D,E,F,G,H is at least 32. If we show that the number of edges in a subgraph on
the vertices A,B,C,D.E,F .G ,H is at most 14, then we are done.

Some 10 edges are drawn on fig. 11. Moreover, all the edges adjacent to A, B, D are indicated there.
Let us prove that among the vertices C, E, F, G, H, there are at most 4 edges. Since the vertices B,
have no more than 2 common neighbours, the edges CF, CG cannot appear simultaneously. Without loss
of generality, assume that there is no CG.

Since C' and E have at most 2 common neighbours, the edges CH and FH cannot appear simultane-
ously.

If the edge EF(EG) is present as on fig. 12, then the vertices A, B,C, D, E, F(G) form a semi-star
graph with center A and top vertex F(G). Therefore, the graph I' does not have edges EF and EG.

If in T, the edges C'F and F'H appear simultaneously (see fig. 13), then the vertices A, B,C, D, F, H
form a semi-star graph with center C and top vertex H.

The edge C'E is absent due to the construction of the subgraph on the vertices A, B,C, D, .. So only
the pairs of vertices (F, G), (G, H) remain, which can form the third and the fourth edges of the subgraph



on the vertices C, F, F, G, H. Thus, we really get the bound 14 for the number of edges in the subgraph
on the vertices A, B,C, D, E, F,G, H, and we eventually have that Config(I') — Config(I") > (8,2, 18).

Recall that we assumed that the vertices B, D were both of degree 4. Of course, if the same is true for
C, E, then again Config(I") — Config(I") > (8, 2, 18).

Thus, assume that there exists a vertex of degree at least 5 both among B, D and C, E. In this case,
remove the vertices A, B,C, D, E. The independence number is reduced at least by 1. The number of
edges is, in turn, reduced at least by 15, since the sum of the degrees of the vertices B,C, D, F is at least
18 and there are only 3 edges between these vertices. Finally, Config(T") — Config(I'") = (5,1, 15).

3.6.4 Graph from Figure 9

Divide the argument into two parts roughly in the same way as it was done in the previous case.
Namely, either the degrees of both B and D equal 4, or at least one among B, D has at least 5 neighbours.
The second situation is much simpler, as before, so let us start here with it. Indeed, remove the vertices
A, B,C, D, E. The independence number is reduced at least by 1. The number of edges is, in turn, reduced
at least by 15, since the total number of edges adjacent to the vertices B, C, D, E is not less than 17 and
only 2 of them were calculated twice. Thus, Config(T") — Config(I"") = (5,1, 15).

Now, assume that both B, D are of degree 4. We proceed like in Subsection 3.6.3. Since the vertices B
and D cannot have 3 common neighbours (due to the absence of Kj5), they have exactly 2 such neighbours
— A and C. So we can denote by F, G the two other vertices adjacent to B and by H, I — the two other
vertices adjacent to D (see fig. 14).

Figure 14:

Let us prove, as in Subsection 3.6.3, that removing some 8 vertices (namely, A, B,C, D, F,G,H,I)
gives us the bound Config(I') — Config(I") > (8,2, 18). Of course, we just need to show that here again the
number of edges is reduced at least by 18, and to this end we need to analize the structure of a subgraph
on the vertices A, B,C, D, F,G, H, I and to see that the number of edges in this subgraph is at most 14.
This seems to be very similar to what was done earlier. However, there are important subtleties: actually,
either that is true, or we come back to a previously considered situation.

Since the graph I is free of K35, among CF,CG as well as among CH, C1I, at most one edge is present
in I'. Without loss of generality, assume that the edges C'G, C'I are absent.

If among C'F, F'G both edges are drawn, then we come back to the situation from fig. 8 with the vertices
B, A,C, F,G. Analogously, if among CH, HI both edges are drawn, then we come back to the situation
from fig. 8 with the vertices D, A,C, H, I. Therefore, we may assume that among C'F, FG,CH, HI at
most two edges are present.

Furthermore, I' is free of K39 and thus among F'H, F'I, GH,GI we have at most 3 edges.

Summing up all the above inequalities, we see that a subgraph on the vertices C, F, G, H, [ has at most
5 edges, which means that we do really have the bound by 14 for the number of edges in a subgraph on
the vertices A, B,C, D, F,G, H, I. The case is complete.
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3.6.5 Graph from Figure 10

If the degree of a vertex among B,C, D, E is at least 5, then we remove A, B,C, D, E. It is already
clear that Config(T") — Config(I'"") = (5,1, 15). Let us discuss the opposite case.

We need some new definitions. Let a vertex of a graph satisfy the three following conditions: it is of
degree 4; each of its neighbours is of degree 4; the configuration of the neighbours is the same as the one
of the vertex A on fig. 10. We call such vertex a key vertex. If all the vertices of a graph are key vertices,
then we call key graph the graph itself.

Proposition 4. If in a connected graph, there is a vertex of degree 4 and all the vertices of degree 4 are
key ones, then the graph is key.

All the cases, in which a graph I' has a non-key vertex of degree 4, are already considered. Thus, it
remains to analize the case of a key graph.

Lemma 1. Any key graph contains a cycle of length at least 4.

Proof. Take a vertex A in a key graph and suspend the graph on A. Let the level of A be 0. Let U be a
vertex of the maximum level and V' be a vertex of the previous level adjacent to U. Let W be a common
neighbour of U and V. Let X be a vertex adjacent to V and different from U and W. Consider paths from
U to A and from X to A, in which the level of any vertex is by 1 smaller than the level of the preceeding
vertex. Since obviously the level of V' is greater than 1, the vertices U and X do not coincide with A. Let
B be the first common point of the paths UA, X A. Then since U and X are not adjacent and their levels
differ at most by 1, they do not coincide with B. Therefore, the cycle UBXV (UB, BX denote paths,
whereas UV, VX denote edges) consists of at least 4 edges, which completes the proof. O

Take a key graph I'. Consider its shortest cycle of length greater than 3. Note that if two vertices in
the cycle are not consecutive, then they cannot be adjacent. Indeed, otherwise, if the length of the cycle
exceeds 4, then we would get a cycle, which is shorter than the initial one, although its length would be
still greater than 3; if the length of the initial cycle is, in turn, exactly 4, then the existence of an edge
inside the cycle would contradict our assumption that all the vertices are key ones.

Figure 15: A minimum cycle of length greater than 3 in a key graph

Let us analize the vertices, which are adjacent to the cycle. Let P be a vertex of the cycle. Denote by
@ and R its neighbours in the cycle. Let S, T be the two other neighbours of P. Clearly among @, R, S,T
we have two pairs of adjacent vertices and they are not among (Q, R), (S,T). Without loss of generality,
we assume that they are (Q,S), (R, T). Now, consider the vertices adjacent to (). These are of course
P, S and two more vertices that are also adjacent one to the other, but not adjacent to P, S: one of these
vertices belongs to the cycle. Taking the next vertex of the cycle and proceeding the same way we see that
all the edges coming out from the vertices of the cycle look like on fig, 15 (an example with 8 vertices).
Here any two vertices adjacent to some two different vertices of the cycle do not coincide, since otherwise
either they are not key ones, or there is a shorter cycle of lenght exceeding 3.

Consider different cases as on fig. 16-19.



D C'
G E
A B
F
Figure 16: Figure 17: Figure 18: Figure 19:

Cycle of length 4 (fig. 16) Among the edges, which are not drawn on the picture, only the edges
EG and FH might belong to the graph I'. Therefore, the number of edges in a subgraph on the vertices
A, B,C,D,E,F,G, H is at most 14. Remove the vertices A, B,C, D, E, F, G, H. The number of edges is
reduced at least by 18, since, as usual, the total number of edges adjacent to the removed vertices is 32
and at most 14 edges are counted twice. The independence number is reduced at least by 2, since the
vertices A and C' are not adjacent one to the other as well as they are not adjacent to any of the remaining
vertices. Thus, Config(I") — Config(I") = (8,2, 18).

Cycle of length 5 (fig. 17) Among the edges, which are not drawn on the picture, only some two
edges from K and some two edges from L may belong to the graph, since otherwise a cycle of length 4
appears. Remove the 12 vertices A, B,C, D, E, F,G, H, I, .J, K, L. The number of removed edges is at least
48 — 22 = 26. The independence number is reduced at least by three due to the vertices A, C,.J. Thus,
Config(I") — Config(I"’) = (12, 3, 26).

Cycle of length 2n, n > 3 (fig. 18) Let the cycle consist of vertices Ay, ..., Ag,, and let By, ..., By,
be the vertices outside the cycle adjacent to the vertices of the cycle. Note that all possible edges are
drawn on the picture, since otherwise there is a cycle of length strictly greater than 3, but strictly smaller
than 2n. Remove the vertices Ay, ..., As,, By, ..., By,. The independence number is reduced at least by
n due to the vertices Ay, A4, ..., As,. The number of edges is reduced at least by 16n — 6n = 10n. Thus,
Config(I") — Config(I'’) = (4n,n, 10n).

Cycle of length 2n + 1, n > 3 (fig. 19) Let the cycle consist of vertices Aq,..., Agyi1, and let
By, ..., By,y1 be the vertices outside the cycle adjacent to the vertices of the cycle. Note that, as in the
previous case, all possible edges are drawn on the picture. Remove the vertices A;,...,A9,41,B1,...,Bo,.

The independence number is reduced at least by n due to the vertices Ay, Ay, ..., As,. The number of edges
is reduced at least by (16n+4) — (6n+ 1) = 10n + 3. Thus, Config(I") — Config(I'") = (4n+ 1,n,10n + 3).

3.7 Case of degA =5

Let B,C, D, E, F be the vertices adjacent to A. If a subgraph on the vertices B, C, D, E, F' contains a
3-cycle, then, with the addition of the vertex A, a K4 appears. In case of a 4-cycle, we get a K35. Finally,
with a 5-cycle, we obtain a semi-star graph. Therefore, there are no cycles on the vertices B,C, D, E, F,
which means that the number of edges in this subgraph is at most 4. Also, the absence of K3, yields
that in the subgraph on the vertices B, C, D, E, F' there are no vertices of degree 3. Thus, 4 edges can be
drawn only as on fig. 20.

If the number of edges in a graph on the vertices B,C, D, E, F' is bounded by 3, then the subgraph
on the vertices A, B,C, D, E, F has at most 8 edges. Remove these vertices. As usual, the number of the
removed edges is at least 30 — 8 = 22. Thus, Config(I") — Config(I'") = (6,1, 22).
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Figure 20:

If the number of edges in a graph on the vertices B,C, D, E, F' is exactly 4, then the subgraph on the
vertices A, B,C, D, E, F has 9 edges (see fig. 20). Call the vertex A a support vertez, if each of the vertices
B,C, D, E, F is of degree 5.

If A is not a support vertex, then remove the vertices A, B,C, D, E, F. Clearly in this case, the sum
of the degrees of the removed vertices is at least 31. Thus, the number of the removed edges is not less
than 22 and we have Config(I") — Config(I") = (6, 1, 22).

Let A be support. Since I' is K3 o-free, the vertices C' and E have no other common neighbours than
A and D. Since the vertices C, E are of degree 5, let G, H be the vertices adjacent to C' and let I,.J be
the vertices adjacent to E (see fig. 21).

Figure 21:

Let us prove that the number of edges in a subgraph on the vertices on fig. 21 does not exceed 20.

On Figure 21, 13 edges are drawn. Moreover, for the vertices A,C, E, all the adjacent edges are
indicated there. So it remains to show that a subgraph on the vertices B, D, F,G, H, I, .J has at most 7
edges.

Since in the graph on fig. 20 all the edges between the vertices A, B,C, D, E, F are present, the edges
BD, BF, DF do not belong to I'. Furthermore, since I' does not contain a semi-star, it does not have any
of the edges BI, BJ, FG, FH. Also I' is K3 o-free, which means, in particular, that I' cannot contain more
than one edge in each of the following pairs: (BG,BH),(DG,DH),(DI,DJ),(FI,F.J). Since the edges
BG, DG cannot be present in I' simaltaneously, we may assume without loss of generality that I' does not
contain the edges BH and DG. Similarly, let us assume that I' does not contain the edges DJ and FI.

N

a c E J

H 1

Figure 22:

Only 10 edges remain that are colored red on fig. 22. Suppose that, in contrast to what we want to
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prove, one can keep some 8 red edges in such a way that the subgraph on the vertices
A B,C,D,E,F,G,H,I,J]

stay correct. Since I' does not contain a semi-star graph, among the edges BG,GH, DH, only at most 2
can be drawn. Also, at most 2 edges are among DI, I.J, F'J. Therefore, if among the red edges, at least 8
are in I', then ' contains the edge HI. If I' contains the edge DH, then the vertices A,C, D, E, H, I form
a semi-star graph with center D and top vertex I. Similarly, the edge DI is not in I'. Once again, since
we have at least 8 edges in I', we have in ' the edges GH,GI,G.J, HJ,I.J. This eventually gives us a K,
on the vertices G, H, I, J leading to a contradiction.

Thus, we have finally shown that the number of edges on the vertices A, B,C,D,E,F,G,H,1,.J is
at most 20. Remove these vertices. The number of the removed edges is at least 50 — 20 = 30. The

independence number is reduced at least by 2, since the vertices C', ' are not adjacent one to the other.
So Config(T") — Config(I") »= (10, 2, 30).

3.8 CaseofdegA=n=>6

Let By,...,B, be the vertices adjacent to A. If in a subgraph on the vertices By, ..., B,, there is a
vertex of degree at least 3, then we obtain a Kj5. Therefore, the maximum degree of a vertex in this
subgraph is bounded by 2. So this subgraph has at most n edges. Then the number of edges in the
subgraph on the vertices A, By, ..., B, does not exceed 2n.

Remove the vertices A, By,...,B,. Clearly the independence number is reduced at least by 1 and
the number of edges is reduced at least by (n + 1)n — 2n = n(n — 1). Thus, Config(I") — Config(I"') >
(n+1,1,n(n —1)).

4 Proofs of the two main theorems

4.1 Proof of Theorem 3

Let us proceed by induction in the number of vertices.

Base of induction. Note that in cases 3.6-3.8 of Key Lemma definitely not all the vertices were being
removed from the corresponding graphs I'. And in cases 3.2 3.5 at most 7 vertices were being removed.
So we may consider here all the graphs on at most 7 vertices.

Let us call the graph from Theorem 1 the «, n-Turdan graph. Note that for a > %n, the «, n-Turan
graph is the disjoint union of K3, K, and K, and so it is correct and its configuration is good.

Consider all possible pairs (a,n), where a < n < 7. For all such pairs, but
(1,4),(1,5), (1,6), (1,7),(2,7),

we have a > n/3, which has been just discussed. For the pairs (1,4), (1,5),(1,6), (1,7), the only corre-
sponding graphs are the complete graphs on 4,5,6,7 vertices. They are of course not correct.

Only one case of @ = 2,n = 7 remains. Consider a vertex of the minimum degree in any such correct
graph. Remove it and all its neighbours. The new graph is correct, and its independence number is at
most 1. Therefore, it has no more than 3 vertices. This means that at least 4 vertices were removed,
and so the above-considered vertex had at least 3 neighbours. Thus, each vertex in the graph has degree
greater than or equal to 3, and consequently the number of edges is bounded from below by 72;3, that is,
it is at least 11.

The base of induction is proved.
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Inductive step. Apply Key Lemma and remove from graph I' some of its vertices in such a way that the
vector Config(I") — Config(I"”) is good. Then by the induction hypothesis, the vector Config(I") is good.
Since the sum of good vectors is good, the vector Config(I') = (Config(I') — Config(I'")) + Config(I"”) is
good, too. O

4.2 Proof of Theorem 2

Lemma 2. If a vector (u,v,w) is good, then it exceeds the vector (u,v, %u — 53—01))

Proof. Let us check the lemma for the “basis” vectors:
(1,1,0) = (1,1,-31/3),(2,1,1) = (2,1,-12/3),(3,1,3) = (3,1,7/3),

(4,1,9) = (4,1,26/3), (5,1,15) = (5,1,15), (6,1,22) = (6,1,64/3),
(7,2,11) = (7,2,11), (n+ 1,1, n(n — 1)) = (n+1,1,19/3n — 31/3), n > 6.

The last series of inequalities holds true, since for n = 6, we have (7,1,30) = (7,1,83/3) and if n increases
by 1, then the third coordinate in the left-hand side increases by 2n and the third coordinate in the
right-hand side increases by 19/3.

Suppose the lemma is true for some vectors u, v. Of course the relations a = ¢, b > d yield the relation
a+0b > c+d. Then for u + v, the lemma is also true. The same type of argument can be used for any
Au, where A is a positive constant. Finally, the relation “>” is transitive. Thus, the lemma is true for all
good vectors. O

It follows from the lemma that the configuration of our graph I' exceeds the vector (n, An,
and, therefore, the number of edges in our graph is really greater than or equal to @n.

]9—350)\77/)’

5 Some comments

In order to prove the main results, we used the fact that in any distance graph on the plane, there
are no Ky, K3, and semi-stars. A natural question arises: maybe one could use only one or two of these
forbidden graphs and get the same result?

First, assume that only K, and semi-stars are forbidden. In this case, one can prove the following
result.

Theorem 4. The minimum number of edges in a graph on n vertices with independence number o < An,
A€ [i, %] , and without K, and semi-stars is bounded from below by the quantity @n

This result is a bit worse than the one of Theorem 2. For example, if A = %, then Theorem 4 gives the
bound by %n instead of %n following from Theorem 2.

The proof of Theorem 4 is very close to the proof of Theorem 2. We do not present it in this paper
because of its complete similarity to the above-given argument. We only list here a set of “good” vectors,
which plays, in a proof, the same role as it was in Proposition 3:

3 2
(1,1,0), (2,1,1),(3,1,3), (4, 1,9), (5.1, 14), (6, 1,20), (7. 2,11), (8,2, 17), (n+ 1, 1, %), n> 6,

(5,2,8),(6,2,9), (6,2,12), (7,2,14), (7,3,14), (8,3,16), (9, 3, 18), (10, 3, 20), (11, 3, 22).

Note that we do not claim that Theorem 4 cannot be improved further. However, for our proofs, K3,
appears to be important.
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Now, assume that only K is exluded. For simplicity, consider again the illustrative case of o < n/4.
We claim that in this case, the bound for the number of edges is 2n and this bound is tight for n = 0
(mod 4). If we are right, then of course semi-stars appear to be important as well: 2n is smaller than 2 —77
So let us prove the claim. On the one hand, the graphs on fig. 23 show that 2n is the best possible bound
under the current conditions.

Figure 23: Graphs for the 2n bound

It is worth noting that the graphs on fig. 23 are not only Ky-free, but also Kjo-free. Thus, K3 is
important only together with both K, and the semi-star graph. Of course, we see a semi-star graph on
fig. 23.

On the other hand, let us show that the lower bound for the number of edges in a K,-free graph with
independence number at most one fourth of the number n of vertices is indeed 2n. For more transparence,
let us switch to the case when the number of vertices is 4n and the independence number is at most n. In
this notation, we have to show that the number of edges is at least 8n. As usual, we proceed by induction
on n.

The case of n = 1 is obviously impossible: there are no graphs on 4 vertices without K, but with
a = 1. So let n = 2. Either each of the 8 vertices of a given graph is of degree at least 4, in which case
the number of edges is indeed at least 16 (and thus the base of induction is proved), or there is a vertex
of degree at most 3, and we will show below that in this case, one can remove 4 vertices from the graph
reducing the independence number at least by 1 and the number of edges at least by 8: for n = 2, that
is impossible, as we would again obtain a graph on 4 vertices without K, but with independence number
1. Therefore, we get the base of induction. To make this argument complete and to provide the induction
step, we need the following lemma.

Lemma 3. Let I be a graph with 4n vertices (n > 2), without K4 and with «(T') < n. Let A be a vertex
of the minimum degree in I'. Suppose deg A < 3. Then one can remove 4 vertices from the graph reducing
the independence number at least by 1 and the number of edges at least by 8.

The induction step is obvious, so that it remains to prove the lemma.

Proof. Let us consider all possible values of deg A.

Case of deg A = 0. Remove the vertex A from I". Obviously in the new graph I the independence
number is smaller. However, we have not yet removed 8 or more edges. Consider ['. Tt has 4n — 1 vertices
and a(I") < n — 1. Consequently, the chromatic number x(I") is bounded from below by 2=l > 4. In
other words, x(I'") > 5. Of course this means that the maximum degree of a vertex in ' is greater than
3. Tt cannot be exactly equal to 4, since by Brook’s theorem (we do not forget that I is K,-free) the
chromatic number would be bounded by 4 from above. Thus, we have a vertex B of degree at least 5 in
['. Remove it. In the new graph I'”, the number of vertices is 4n — 2, the independence number is at most
n — 1, and the number of edges is by at least 5 smaller than in the initial graph I'. Since 4: 2 > 4, we
apply once again the above argument and find a vertex C' of degree at least 5. Removing C', we already
get even more than we needed: the number of vertices is reduced by 3 (we promised 4). The number of
edges is reduced by 10 (we promised 8). The independence number is reduced by 1 or more. The case is

complete.
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Cases of deg A € {1,2}. Here the same procedure as in the first case applies. Let us consider only the

case of degree 2. Remove the vertex A and both its neighbours B, C'. We removed 3 vertices and at least

3 edges (2 is the minimum degree of a vertex). The independence number is already reduced. In the new
4n—3

graph, we have 4n — 3 vertices, and since “'=* > 4, we find a vertex D of degree 5. We remove it, and we

are done.

Case of deg A = 3. Let B,C, D be the neighbours of A. We do not forget that the degrees of these
vertices are at least 3 each. Since K} is forbidden, we may assume that BD is not in our graph. One can
easily check that if in addition some of the edges BC,CD is absent or the degree of at least one vertex
among B, C, D is strictly greater than 3, then the total amount of edges adjacent to A, B, C, D is at least
8. Thus, it suffices to remove the vertices A, B, C, D.

It remains to consider the case when the degrees of the vertices B, C, D are all exactly equal to 3 and
both edges BC and C'D are in the graph. In this case, the vertex B has one more neighbour E. Remove

from the graph the vertices A, B,C, E, and we are done.
O
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HexkoTopsbie cBoiicTBa KOHCTpyKIuii Mukess.

[IpoekT npencrasiager Koncrantun Banos nipu jesresbnom yyacruu Vana @pososa. Unes: [lasen
Honrupes. Otnenbrast O1aromapraocts Asekcanapy CkyTtuny 3a ¢popMynpoBky 3agad 20-23.
[Tpn mogmepxkke Asekcest m OJtera 3aciaBckux, a Takxke [lasna KoxxeBrukosa.

BraukoM ° 0603HaYEHBI HEKOTOPBIE 00IEen3BecTHbIe (haKThl, 6€3 KOTOPHIX, OJHAKO, PeIleHne galbHeli-
UX 3a/1a49 OyJIeT 3aTPYIHUTE/IHHO. 3BE3/I0UKOM * 0003HAUEHBI TIPE/IITOIOKUTENTHHO CI0KHBIE 33/ 1a4N.

Yacrs 1

1°  (Teopema Muxensn) B tpeyronsuuke ABC ua croponax AB, BC,CA Bzarsl touku Cy, Ay, By
coorBercTBeHHO. JlOKaxkuTe, 9T0 OKPY:KHOCTH, onucanubie okoio AABCy, NA1BC, AA1B{C, umeior
OOIIYIO TOYKY.

2°  (Jlemma o eopobvax) Han yron ABC. Ilo npameim AB, BC' niepeMeriamTrcest ¢ HOCTOSTHHBIMBI
(Heobst3aTesIbHO paBHBIMEI) cKopocTsiMu Touku C, A coorBercTBenHO. JloKaxKuTe, 9TO BCE OKPYIKHOCTH
BC Ay npoxosgaT depe3 Ipyryio TOUKy, OTIHIHYI0 oT B. B KakoMm ciydae 5T0 HEBEPHO?

3°  (Teopema Heswvi 6 ghopme cunycos) B rpeyronwauke ABC na croponax AB, BC, C'A B3sTbl TOYKU
C1, Ay, By coorBercrBenno. Jlokaxkure, uro npsiMble AA,, BBy, C'CY nepecekaioTcst B OJHON TOYKe WA BCe
TPU TapaJlIeJIbHbI TOTJIa U TOJBKO TOTJA, KOTJIa

sin ZABB, -sin ZBCCy - sin ZCAA;
sin /B;BC - sin ZC,CA - sin /A, AB

4°  (Touwxa Muxensn) IlycTb naHbl deTbIpe IpsMble OOITIETO MoJIozKeHus . VICKtoYeHneM oIHO# mpsiMoii
MOKHO TOJTy9IHUTh TPH MPsSMbIe, 00pa3yolue TPeyroJabHIK, BCETO YeThIpe TpeyroibHuKa. Jlokaxkure, 910
OINMCAaHHBbIE OKPYKHOCTH ITUX YETHIPEX TPEYTOJHHUKOB MIEPECEKAIOTCS B OJTHOM TOUKe.

5°  (Oxpyorcnocmov Mukeasn) Tlycrb gaubl 5 IpsaMbIX 00MIero mnoJjoxkenus. JloKaxKure, 9TO TOYKU
Mukesist BcexX MATH BO3MOXKHBIX YeTBEPOK MPSMBIX JIEYKAT HA OJIHON OKPYKHOCTH.

6° annr gse okpyxuoctu A, B. Jlokaxkure, aro I'MT Touek X Takumx, 910

cTereHb X OTHOCUATEJILHO A
= const

cTeneHb X OTHOCHUTEJIBHO B

SIBJISIETCS OKPY?KHOCTBIO, B CJIydae
a) xorja A, B nepecekarorcs
b) s npoussBosbHoro mostoxenus A u B .

7° B tpeyrompuuke ABC niefanibHble OKPYKHOCTH JIBYX TOYEK COBHAIAOT. JlokaxKkuTe, 94TO TOUKU
n30roHaIbHO conpsizkeHbl B ANABC.

8.  Buyrpm tpeyrospuuka ABC BbiOpana touka M, a nHa croponax AB,BC,CA B34Tbl TOYKH
C1, A1, By coorBercreerso. Ilpsmbie AM, BM,CM nepecekaioT OKPY:KHOCTH, OIMCAHHBIE OKOJIO Tpe-
yroabankoB AB,Cy, A;BC:, A1B;C B Ttoukax M,, My, M. coorBercrBenno. Jlokazkure, aro Touku M,
M,, M,, M. nexxar Ha OJHOI OKPY2KHOCTHU (B JaJibHefineM OyjieM Ha3bIBATH €6 OKPYKHOCTHIO M).

9. Ilycre B 0603HAUEHNAX TIPEABLIYIEH 3aauu P — Touka nepecedenns: okpyzkuocreit AB1Cy, A; BCY,
A1 B, C. Tlycrs npsimasi PA; nepecekaer M B Touke A’. Jlokaxkure, uro M A’ || BC.

10. Jlokazkure, uro npsmeie M,A', My,B’', M.C’ nepecexaiorcss B OJHOM TOYKE WK HaPAJLIEIbHDL.

11* Jlokazkure, 9TO OKPYZKHOCTH, OIUCAHHBIE 0KOJIO Tpeyroibaukos AM,A', BM,B', CM.C’, coocHBbL.

12* Ilyctb ecThb deThIpe TpsiMbie a, b, ¢, d 00IIIEro moI0KeHUsT U UX TOUKHU repecedeHns X qp, Xae, Xad,
Xpe, Xpa, Xeq. Ectb okpyzkuaOCTh K € BBIIEIeHHON TouKoit K Ha Heit. [Iycrs Y; — Touka nepeceuennss X; K
¢ K. Hoxazkure, ato npambie Y,,Y,.q, YaoeYod, YaaYse TI€PECEKAIOTCA B OIHON TOYKE MJIN HapPaJLIeIbHBI.

13. B rtpeyronasuuke ABC Buibupatorcs nponsBosbao Touku Ch, Cy Ha cropone AB, Touku Ap, A; Ha
cropone BC, Touku B, By na cropone C'A. Ilapa npsmbix A; By u As By niepecekaercss B TOUKe L., TOUKH
L, Ly, onpenensiorcs anajgorudio. OKpyKHOCTH, omrcaHibie 0Koyo ANAyAs L. u A BBy L. nepecekaioTcs
B Toukax L. u N., touku Ny, u N, OIpeIe/saoTcs aHaJIOTTIHO.



a) Hokaxwure, aro npsmeie AN,, BN,, C'N. nepecekatorcs B 0JlHOI TouKe (Ha30BEM eé N ).
b) Jlokaxkure, uro N, N,, N;, N, jexar Ha oaHoil oKpyKHOCTH (HazoBéM €€ N).
[Tycts okpyxuoctu AB,Cy, A1 BCY, A1 B1C nepecekaiorcs B Touke P, a okpyxkuoctu AByCo, A3 BCy,
AgByC' nepecekarorcst B ToUke ().
c) okaxwure, uro P u () nexar na N.
d) Jlokaxkure, uro Touka A’ nepecevenns npsambix PA; u QQ Ay nexur Ha N.

YacTp 2

B sToM pasjieiie 3Ha4uKoM rutep6oibi \ 0603HaueHbI 33121, B KOTOPBIX Baireil mesibio 6yIeT J0Ka3aTh
HCXOJTHOE YTBEPKIeHHE, a 3aTeM ¢cOPMYINPOBATh U JIOKA3aTh AaHAJOTUYIHOE YTBEPIKICHHE JIJIsi THIIEPOOJIbI.

14. Jlambr gBe HenojapukHbe Toukn A, B m Ttouka X, jaBuratomasicst o mpsamoii. Vcciemyiite na
poMeKyTKH MOHOTOHHOCTH byHKImIO f. [TocTpoiiTe mupKyieM u JTUHEHKONW TOYKY 9KCTPEMyMa, €CJIn
a) f(X)=XA+XB
b) f(X)=XA—-XB
15°  (Badavwa @anvano) B tpeyrompuuke ABC' na croponax AB, BC, C'A B3sarbl touku C', A’
B’ coorercTBenHo, He coBnajaromue ¢ BepmmHamu AABC. UsBectho, uro tpeyroibauk A’ B'C’ umeer
MUHAMAJbHBIN BO3MOXKHBII TEPUMETP U3 BCeX TPEyToJbHUKOB, BmcaHHbIX B AABC'. Jlokaxute, ato AA1,

BB, u CC; — Boicorsl AABC.

16)0  (Onmuvueckoe ceoticmeo) Ilyers A — Touka ma smmmmce ¢ poxycamu Fy u Fy. Jlokaxure, 410
BHeIlHsisl OuccekTpuca yria Fy AFy siBigercs: KacarebHOl K JunIcy (MMeeT POBHO OJIHY OOIIYI0 TOUKY C

170 Dmumnc ¢ dokycamu Fy u F, kacaercs cropon yria ABC. Jlokaxure, uro ZABF, = /CBF,.

180 @ukcuposan smmmc ¢ dokycom F, mpamas { ero kacaercs. Ilyers P — mpoekrust F ua (.

Jokaxkute, 9To ecyu ¢ ABUNKETCS, TO P IBUXKeTCs 110 OKPYZKHOCTHU, KACAIOIIEHCs SJIIUICA B JIBYX TOUYKAX.

19. Jlan siaaunc K ¢ poxycamu Fy u Fy. OKpy:KHOCTH w ¢ 1ieHTpoM O IBaXKIbl KACAeTCsI er0 B TOUKAX
X uY (ssummnic BHyTpH OKpyzKHOCTH). [ToKazkure, 9To

a) OF1 = OFQ

b) XFOF,Y — BuucaHHbIil OATHYTOJIbHUK.

c))( [Iyctp Touka P nBuxkercda mo w. Torma yron mexay PF) m oaHoll n3 KacaTeJabHbIX u3 P K
SJLJINIICY TTOCTOSTHEH.

d) laiite apyroe omnpejeserne w Tak, 9Tob w HEOOA3aTETHHO JIBaKIbl Kacazach K.

e) llpsmas wepes O u nentp K nepecekaer K B Touke Z. JlokazkuTe, 9T0 OKPY?KHOCTb, OIMUCAHHAS
okosio ANOZ F}, Kacaercs w.

f) Tlycrs okpyzKHOCTH (v M [3 KACAIOTCSA w BHYTPEHHUM 0Opa3oM, IpoxojsT Yepe3 F u Bropoii pa3
nepecekaroTcs B Touke F. Jlokaxkure, 910 U3 JABYyX TOUYEK Iepecedenns: o u K MOXKHO BbIOpaTh TOUKY I, a
u3 AByX Touek repecedenns [ u K MoxkHO BeIOpaTh TOUKY J, Tak, aro F Oyaer jexkarb Ha mnpsmoit [.J.

g)* Ilpsmast uepe3 O u EHTD JUIAIICA TIEPECEKAET FJUIUIC B TOUKaX Z 1 T, & OKPY’KHOCTb B TOYKAX
A n B. Ha mpamoit ZT Beibpana Touka U Tak, aro ZUF;0 = 90°. JlokaxXKuTe, 9TO ABOIHOE OTHOIIEHHE
touek A, Z, U, B paBHo jBoitHoMy orTHomienuo touek B, T, U, A (B yKa3aHHOM TIODSJIKE).

h) [lokaxkure, uTo, eciu MPUHATH W 3a abcotoT Mojenn Kieitna miockoctn Jlobauesckoro, To K
Oy/IeT OKPYKHOCTBIO MU SKBUJIMCTAHTON.

200 JTambr gBe OKpyKHOCTH (v 1 3, HepeceKaommmecs B Toukax X u Y, B "101bKy"UX mepecedeHns
BITNCAH JIINIIC, JIBAXKJIbI KACAIOIIMIICS KaxK10# 13 okpykHocTeil. [Ipavas {x Kacaercs s/uiumca, OTIessaer
ot Hero TouKy X u nepecekaeT "1obKy "B aBYX TouKax. Takke npsimas {x mepecekaeT OKPYKHOCTh (v BHE
JIOJIBKE B TOUKe Aj, U 1iepecekaeT OKpYKHOCTB [3 BHE JIOJbKU B TOUYKe Bj. AHAJIOrMIHO BbIGEPEM TPSIMYIO
Uy u oupenesmm Toukn As n Bs. [lokaxkure, uto Ay Ay || By Bs.

21* Ilo aByM OKpYXKHOCTSIM C OJIMHAKOBBIMU YTJIOBBIMH CKOPOCTAMU JIBUKYTCs jiBe Toukn N u M.
Haiiure orubaroryto (KpuBYyI0, Kacatolryocst Beex) npsambix N M.

22* Ilo aByM IPSAMBIM C ITOCTOAHHBIMU CKOPOCTAMHU JIBHKYTCs jiBe Touku N u M. Haiijure orndaro-
myto mpamMbix N M.

230 Jlanbl 1Be TepeceKaloNmecss OKPYZKHOCTH. B "101bKy"UX Mepecedenns BIMCHIBAIOTCI BCEBO3-
MOXKHBIE 3JIIUIICHI, JIBAXKJIbI Kacarolnecs Kaxkioi u3 okpyxkuaocreit. Haitmure 'MT ux dokycos.



YacTte 3

24°  (Opmonoceuunvie mpeyeosrvrnuru) daner Toukn A, B,C, Ay, By, Cy obimero mojoxenus. [lyctsb
nepreHuKyasapbl 3 Toukn A wHa npamyio BiCh, u3 B na A;Cy, u3 C' na A;B; mepecekaiTcss B OIHOI
touke. Jlokaxkure, 9ro mepneHIUKyIapbl u3 A; Ha upamyio BC, w3 By na AC, uz C; ma AB Toxe
[IEPECceKaroTCsd B OJIHON TOYKe.

25* Tlycrh B yCJIOBUSIX TIPEIBLIYIIEH 3a/1a90 BMECTO TIepIEH UK IsipoB u3 Bepiuiud AABC' Ha cTOPOHBI
A A, B, C} omnyckaroTcst HAKJIOHHBIE IO yiIoM «, a u3 Bepmma AA; B1C] #a croporsr AABC onyckaroTcs
HaKJIOHHBIE 1107 yriom 180° — av.

Bynem ucnonbzoparh obozHadenus 3agadu 13. IIpeamnosoKuM JonoJIHITEILHO, YTO TOYKH
Ay, Ag, By, By, Cy, Cy ntexxar Ha omHOI OKpy2kHOCTH R ¢ mmenTpom R.

26. Jlokaxkwure, ato P u () m3oronaabno conpsizkerbl B AABC.

27. Jlokaxxure, 4TO:

a) ReN.
b) RN — mmamerp N.
c) PR=CQR.

28. JloxkaxkwTe, 9TO B UCXOJHBIN TPEYrOJBHUK MOXKHO BrmcaTh muic K ¢ dokycamm P u ().
29. Ilpamble PA' u QA’ Bropuuno nepecekaior R B roukax X u Y. Joxkaxkure, uro XY kacaercs XK.
30. Jlokaxwure, uro K Kacaercs R Torma u TosibKo Torma, koria N mepecekaercs ¢ R, npuueM B 3TOM
caydae TOYKU KACAHUs COBIIAJIAIOT C TOYKAMU IIEePEeCeueHus .
31. /lokaxkure, 9TO B TPEYTOJbHUKE:
a) Touka Jlemyana, aBe Toukn Bpokapa u IEHTDP OIMUCAHHONW OKPY’KHOCTH OOPA3yIOT JIEJIBTOUJ, C
JIBYMSI IPSIMBIMU YTJIAMH.
b) Dumaic ¢ dokycamu B Toukax Bpokapa KacaeTcs CTOPOH B OCHOBAHUSAX CUME HAH.
32* Ilycrb upsimbie AA;, BBy, CCY niepecekatorcsi B ojHoi Touke L. Jlokaxkure, 9ro L JIEXKUAT Ha
paaukaiabHoil ocu N n R.



HexkoTopsbie cBoiicTBa KOHCTpyKIuii Mukess.
Pentenus

Yacre 1

1°  OueBugHO.

2°  Ilycre B OJIMH MOMEHT BPEMEHHU TOYKHM HaXoJsdaTcd B mosiokenusx A; m Cp, a B Japyroii — B
nostoxkernsax X u Y coorsercrBento. Okpyxuocru (BC1A;) u (BXY') MOryT KacaTbCsl HJIH [IEPECEKATHCS
BTOpHYHO B TOuKe G # B.

B nepBom citydae cymecTByeT roMOTeTHS ¢ EHTPOM B, miepeBo/isimast oKpy:KHOCTh (BC ) Ay) B OKpyK-
HocTh (BXY'). Ona nepesogur A; B X, a C B'Y. Crenosarensno, C1A; || XY. Pacemorpum Tpetuit Mo-
AX  CY
AP GiQ
PQ || A1Cy. CrenoBatensro, okpyzkHOCTE (BPQ)) Kacaercs okpyxuoct (BA;C}), T.e. Bce OKPYKHOCTH
(BA;CY) xacatorcst IpyT apyra B Touke B.

Bo Bropom ciaydae tpeyroibaukn GX A; u GY Cy nopobuser, nosromy Z(GA;, A1B) = Z(GCy,C1B)
u /(GX,XB) = Z(GY,Y B). Torna cymiecrByer OBOPOTHasI TOMOTeTUsI ¢ ¢ TeHTpoM (G, mepeBojsiiast
A; B C1, a X B Y. BHOBB paccmorpum MoMmeHT, kKorjia Toukun A; m C) 3armMaior noJioxkenuss P u Q)
coorBercrBenno. Torma ¢(P) = @ u, 3naunr, Z(GP, PB) = Z(GQ,QB), r.e. G 1eXuT Ha OKPYKHOCTH

(BPQ).

3-4° U3BecTHble DAKTHI.

MeHT, Korja Touku A; u C] Haxoagarcesa B mojoxkenusx P u () coorBercrBenHo. Torma , 3HAYUT,

5° O6o3Ha4NM TOUKY IepecedeHud NpaMbIX ¢; n £; depe3 X;;, a Touky Mukemsa Bcex IPAMBIX, KPOMe
l;, gepes A;. Hdocrarouno mokazarsb, aro Ay, As, A3 n Ay nmexar Ha omHO#l okpyzkHOCTH. PaccmarpuBast
OKPY2KHOCTU (A1A2X35X45)7 (A2A3X15X45)7 (A3A4X15X25) u (A4A1X25X35), IIoJIydJaeM:

L(A1 Ay, AsAg) = L(A1Ag, Ao Xys) + £(Xus Az, AsAs) = L(A1 X5, X35 Xu5) + £( X5 Xa5, X1543) =
= L(A1 X35, X35X05) + L(Xos X5, X15A43) = L(A1 Ay, Ay Xos) + £(Xos Ay, AyAz) = L(A1 Ay, AsAg).

6° Ilpusesem ajrebpanmdeckoe pelieHne, rofgiieecs st 00ouX IIyHKTOB. [eoMeTpriIecKoe perieHue,
B KOTOPOM IIyHKT a) IPOIIE IyHKTa b), Mbl IPUBEJIEM TIOC/IE aIrebpaniecKoro.

[Iycrs f(z,y) = 0 u g(z,y) = 0 — ypaBaenuss A 1 B cOOTBETCTBEHHO B JICKAPTOBBIX KOOD/MHATAX, TJIE
flr,y) = 22 + > + ez + asy + a3 u g(x,y) = 22 + y* + bz + boy + bs. Bamernm, 4TO CTeneHn TOUKH
(x,y) ornocurenvro A u B pasubl f(z,y) u g(x,y) coorsercreento. [losromy nckomoe 'MT zamaercs
ypasaenuem f(z,y) = cg(x,y) g HEKOTOPOH KOHCTAHTHI ¢. JIErKO BUJETH, YTO 9TO ypPABHEHUE 3aJ[aeT
npsgmyto 1npu ¢ = 1 u okpyzkuoctb € npu ¢ # 1.
f(x>y) _ Cg(l‘, y)

1—-c
BOJIbHAsI TOYKA Ha PaJMKaJbHON ocu okpyzkuocreir A u B, re. f(p,q) = g(p,q). Torma crenenb Touku
f(p.q) —cg(p.q)

1—-c

[Iycts ¢ # 1. Okpyxuoctsh C 3ajaercss ypaBHEHHEM = 0. [Iycrs (p,q) — npous-

(p, q) orHOCUTENIbHO OKpYyzKHOCTH C paBHA = f(p,q) = g(p, q). Cnenosaresnvuo, A, B u

C coOCHBI.

T'eomempuueckoe pewenue, ezamoe uz [1]: Tlpeanonoxum, aro okpyxuoctn A n B mepecekatorcs B
toukax A m B. O603HaUInM IEHTPHI 3TUX OKpyxKHOCTell depe3 O n Oy a X paauychl — depe3 | U 79
cooTBeTcTBeHHO. Toukm, cummerpudable Touke A otHOCHTE/HHO (O7 1 O, 0bo3HaUNM 1uepe3 A; u As. Ilo-
KaxkeM, 9TO MHOYKECTBO TaKUX TOYEK X, 9TO OTHOIIEHUE MX CTEleHeil OTHOCUTEJIBHO W M Wo PaBHO Kk,
— 910 oKpyzKHOCTh. [IpoBemem npsimyio X A. Ilycrs ona mepeceder wy u wo B ToUKax X; u Xy COOTBET-

crBeHHO. Torya k OyzeT paBHO (B3siToMy ¢ HyKHBIM 3HaKOM). [lockosbky AA; 1 AAs — nuamerpsl

2
cooTBeTCTBYIOIMUX OKpyzkHOCTeH, yriibl AX 1 A; u AXyAs npsivbre, a 3nadnt, X; u Xy — 9T0 mpoeKmun

1

PA,

touek A, n As Ha npamyo AX. Bosbmem na npsimoit A; A; Takyio Touky P, 910 = k (Takux ToYeK,



9TO 9TO OTHOINEHUE paBHO |k|, OymeT nBe, HAI0 BBIGPATH TY, y KOTOPOii «3HaK» cooTBeTcTBYoMmMuii). Torma
o Teopeme Pasreca Touka X Oyaer nmpoekimeit Toukun P Ha npamyo AX, a 3HaqnT, OHa Oy/IeT JieKaTh Ha
okpyzkHOCTH ¢ juamerpoM AP. O6paTHBIME pacCyKIeHUIMHI JIEFKO MOKa3aTh, 9TO JiJIsl JII000# TOYKN Ha
9TON OKPY?KHOCTH OTHOIIIEHUE CTeleHell TOYeK OTHOCUTEIHbHO Wy U Wy PABHO k.

st Toro 4TobOh! JIOKA3aTh 9TO YTBEPXKICHUE I HEIIePECEKAIOIINXC sl OKPYXKHOCTEH, ITPUMEHUM HJIeI0
«BBIXOJIa» B TpexMepHoe mpocTpancTBo. [Iycrh ganbl aBe mepecekarornyecs: ¢epbl, IMepeceKaroIue Halry
ILJIOCKOCTB 110 9THM JBYM OKPY2KHOCTsIM. [IpoBOjIsi aHaIorndHbie paccyzKIeHus, TOKa3bIBAEM, YTO T'€OMeT-
PUYECKIM MECTOM TaKHX TOUEK, YTO OTHOIIEHHUE UX CTEelleHeil OTHOCUTEIbHO 3TUX JIBYyX cdep paBHO k, eCcTh
cdepa U3 3TOrO MydKa, TO ecTh cdepa, cojiepKaliasg OKPYKHOCTh Iepecedenuns 3Tux AByx cdep. [lepece-
JeHue 3Toi cephl ¢ Halllell MJI0CKOCThIO €CTh OKPYXKHOCTH U3 Iy4YKa, 00PA30BAaHHOTO OKPYKHOCTAMU Wy
U Wo, & 9TO U TPEOOBAJIOCH JIOKA3ATh.

7°  Ilycrs X, u Y, — npoeknun X u Y coorBercBenno Ha AC, a X, u Y, — mpoekiun X u Y
coorBercrBenHo Ha AB. Tak kak X, Yy, X, u Y, mexxar Ha 0IHON OKPYKHOCTH,
L(BA,AX) = L(X A AX) = L(X X, Xp X) = Z£(X Xy, XpYp) +90° =
= L(XY. YY) 4 90° = LYY, Y.Yy) = Z(Y A, AY;) = (Y A, AC)
Ananornuno Z(AB, BX) = Z(Y B, BC'). 3uauut, X u Y n3oronanbHo conpsizkenbl ornocutesbno AABC.
8. Ilycrs P — touka nepeceuenus: okpyzxkuocreii (AB,C1), (A1 BCY), (A1 B1C). 3amernm, uro

L(MM,,M,P)=Z(AM,, M,P) = Z(AB;, BiP) = £(CBy, BiP) =
= /(CA, A P) = L(CM,., M.P) = Z(MM,., M.P).
Buaunt, M, nexur Ha okpyzxuoctu (M PM,). Anansorudno nosxydaem, 9ro M, JIeKUT HA ITONH OKPYKHO-
CTH.

9. U3 caenyromux paseHcts nosydaeM, aro M A’ || BC.

L(MA', A'P) = Z(MM,, M.P) = /(CM,, M.P) = /(CA,, A, P) = Z/(BC, A'P),

10. Imeem
L(A'B',B'M,) = Z(A'M, MM,) = Z(CB, BM).
Ananornuno Z(C'B’', B'M,) = Z(AB, BM) u r.x.. Ilostomy tpeyronasaukn ABC u A’B'C’ nopobusr n

[IPOTHBOIIOJIOKHO opueHTHpoBanbl. Kpome toro, A’M,, B'M, u C'M, upoxoJsaT depe3 TOYKY, COOTBET-
CTBYIOIIYIO M30TOHAJIBHO compsizkennoit K M B ANABC.



o
B /A\l /C
11* O6ozuaunm okpyzkuoctu (AM,A"), (BMyB'") u (CM.C") 1epes wy, wp 1 w, coorBeTcTBeHHO. [TycTh
Ap=ABNAC', By = BANB'C', Ac = ACNA'B',Cy =CANC'B', B = BCNB'A',Czg = CBNC'A’.
[ToscaeroMm yrioB mosydaeMm, 9To w, TpoxomauT depe3 Ag nu Ac. Ananornano By, Bo € wy, u Cy, Cp € w,.
Torma

AB-ABy  sinZACB -sin ZAC4By  sin ZAcCBg -sin ZAcCaB'  AcBg - AcB’
AC - AOA N sin ZABC' - sin ZABACA N sin ZAcB/CA - sin ZAcBCc N ACCA : Acc ’

3HAYHUT, OTHOIIEHUE CTeleHeil ToYKu A OTHOCUTEHHO Wy M W, PABHO OTHOINEHUIO CTereHeil Touku Ao
OTHOCHUTEJIbHO 3TUX OKpyzkHOcTeil. Takoe ke oTHomeHuWe creneneit moydaem st Touku Ag. Ocraioch
IIPUMEHUTH yTBep:KeHne 33491 6.




12*  Ilepsoe pewenue: Ilo Teopeme [lesapra o6 MHBOJIIOIMUN CYIIECTBYET MWHBOJIFOIUS IIyUKa IMPSIMBbIX,
npoxojsmux depe3 K, koropas nepecrasisier KYy, ¢ KY,.y, KY,. ¢ KYy,y u KY,; ¢ KY).. 3Hauur, cyiie-
crByeT nHBOJONMA Ha K, mepecraBisiomast Yy, € Yeq, Yae € Ypq U Yyq C Yy, DTa WHBOIONUS TEPEBOJINT
kaxk1yio Touky P € K Bo Bropyio Touky nepecedenus mnpsamoir PU ¢ K, tiae U = Y, Yeq N Y, Yyq. Caeno-
BaTe/bHO, YupYed; YacYod, YadYpe IEPECEKAIOTCS B OJIHONW TOYKE.

K
Yac
Y,
Xae You bd
Yab
Y.
“ Ve
Xad
Xcd
X
Xab Xbc b

Bmopoe pewerue: (Mbl urHOPEpPYEM TPY/HOCTH, CBSI3aHHbIE C DACIIOJIOKEHIEM ToYeK.) Vneem

YabYad }/;LC)/Cd }/;)C}/E)d o sin ZYvab]:(Y;wl sin 4YacK}/cd sin AYE)CKYE)d o
YadYac }/Cd}/EJC Y;)dY;zb B sin ZYvad[(Y;zc sin AYrchY'I-)c sin ZY;)df(yvab B

sin £ XopK Xoa 0 £ XK Xeq S0 Z X300 K Xpg XavXoa/ KXoy XaeXea/ K Xae  XoeXpa/ K Xpe
Sin £ XoqK Xoe  Sin ZXogK Xpe S0 ZXpaK Xap XoaXao/ K Xae XeaXoe/ K Xpe XoaXap)K Xay
- XanXaa XaeXea XpeXpa
C XeaXee XeaXpe XpaXay

VTBepKIeHne 3a/1a41 Terepb CJIe/IyeT U3 TPUIOHOMETPUIECKO TeopeMbl YeBbl j1jist TPeyTOabHUKA Yp Yoe Yae.

1

13. 3Bamernm, uro N, sBasercsa Toukoil Mukens mia AC, BC, A1B; nu A3y Bs, a 3HAUNT sIBJISIETCSI
BTOPOIl TOUKOIT mepecedenust okpyzkuocreii (A3 B1C) n (AyBo(C).
a) Creayer u3 TpuroHOMeTpudeckoil Teopembl Hesbl jyist Tpeyrobauka ABC, MOCKOIbKY

SiHZBCNC . AlAQ SiDZCANa . B1B2 SiIléABNb . 0102
Sil’léACNc a BlBQ’ SiIlZBANa B 01027 sinZC’BNb N AlAQ.

b) Creayer us 3amaun 8 jist tpeyrosbanka ABC, touek Aj, By, C Ha cropoHax u Touku N.

c) B perennn 3amaun 8 goKazano, 9T0 TOUYKa P Hiepecevdenust TPEX OKPYKHOCTeN Tak:Ke JIeKUT Ha
okpyzkHOCTH N. OTCIO/IA CIIeyeT YTBEPKICHNE 38 Ia4H.

d) Ilycrs A’ — rouka ma N, takast uro NA' || BC. U3 zamaqau 9 ciemnyer, uro PA; u Q A, nepece-
karorcsa B A’



YacTte 2

14. a) Moxno cunrarb, 9T0 TOUYKH A U B JIeKaT 10 pasHble CTOPOHBI OT MPSMOil (B MPOTHBHOM
cllydae OTpasvM TOUYKY B orHocuTesibHO IpsiMoit). Temepb oueBHIHO, 9TO MHHUMYM JOCTHIaeTCsi KOTJIa
X, Au B nexat Ha ojiHO# nipsiMoit. A Ha JBYX Jiydax MyHKIUS f MOHOTOHHO BO3PACTAET, U4TO CJIC/LyeT U3
HEPaBEHCTBA TPEYrOJIbHUKA.

X

A B T

b) MozxkHo cuurarh, 9To TouKH A U B JeKar 10 OHY CTOPOHY OT MpsiMOii (B MIPOTHBHOM CJIydae
OTpasuM TOUYKY B oTHOCHTEebHO TpsaMoii). VI3 HepaBeHCTBa TpeyroabHUKA CJIEIYET, 9TO SKCTPEMYM JOCTH-
raercst Koryia Touku A, B u X Jexar Ha ofHON npsiMoil (1o mosioxkenune Touku X obosHaunm depes3 T').
Y1o0b! JT0Ka3aTh, YTO Ha JIBYX Jiydax (PYHKIINS MOHOTOHHO yObIBaeT, cleiaeM ciefytoriee. [IycTth Touka
A nasbiie or npsimoit uem B. Pacemorpum siBe pasubix Touku X u Y Ha mpsmoit (em. puc.). st Toro,
9TOOBI JI0KA3aTh MOHOTOHHOCTE (byHKIMK f, Ha0 jjoka3arh, 910 X A — X B < Y A —Y B. llepenuriem 310
kak XA+ YB < XB + YA, a 970 BepHO, MIOTOMY 9TO CyMMa JIMaroHaJell B 9eThIPEXyTrOJbHIKE OOJIbIIe
YeM CyMMa JBYX ITPOTHUBOIOJIOKHBIX CTOPOH.

15° Badurcupyem B’, C' u 6ynem asurars A’. Tak kak cymma B’ A'+ A'C’ munnmanbia, BC' — BHer-
Hss buccekrpuca yriia B'A'C’. Ananornuno AC' u AB — sremnue 6uccekrpuckt yrios A'B'C' u A/C'B’

coorBercTBeHHO. [losromy A, B u C' — IeHTPBl BHEBIUCAHHBIX OKpy:KHOCTel Tpeyroabuuka A'B'C’) a
AA’, BB', CC" — Boicors! Tpeyrosnbanka ABC.

16)C  Cwm. [1], Teopema 1.1 1 0bCyzKIeHNIe HOCTIE €€ J0KA3ATEIHCTBA.
170 Cwm. [1], Teopema 1.3 i 06CyzKIeHIe HOCTIE €€ JOKA3ATEIHCTBA.

180 TIyers K — ssmme, G — ero Bropoit dokye, a M — cepennna F'G. Iycrs Touka A cuMmerprdna,
F ornocuresnbho ¢, a B = (NXK. Torna MP = GA/2 = (FB + BG)/2 nocroguuo, T.e. P aBuxkercs 1o
OKpyzKHOCTH ¢ 1enTpom M, Kacatomeiics XK.

19. a) b) IIposesem kacaresnbubie K 3umicy B Toukax X u Y. Ilycrs onu nepeceksncs B Touke U.




JlaBaiiTe JI0KazkeM BCIOMOTATEIbHBIN (hakT — OuccekTpuca yria X F1Y mpoxoaut depe3 Touky U.
st 3TOTO OTpazKkaeM TOYKY Fh OTHOCHUTE/IHLHO 00eMX KacaTeJbHBbIX U mojydaeM Touku H; m Hs. Torma
rpeyrosipauku U H Fy n U Ho Fy pasabr 1o Tpem croponam. Orciona Z X FiU = LY FiU.

Mper nostygaem, ato depes Touky U npoxogut u 6uccekrpuca yriaa X F1Y (u ananornano yria X FyY),
a TaKyKe CepeJINHHBIN nepreHuKy/aap K XY (T.K. KacaresjbHble paBHbl). Torma Touku X, Fy, Fy, Y u U
Jtexkar Ha ojHoit okpyxkHOCcTU. Tak kKak XOY U Brmcan, To Touka O TOXKE JIEXKUT HA ITOH OKPYKHOCTH.
XO sBasiercs 6uccektpuccoit yrma Fy X Fy (Tak Kak 9T0 MEPIEHIUKYIIP K KaCATEJIbHON K JUINICY), a
sanayut F10 = OF5.

c))( [To 3ama4de 18 I'MT npoeknnit pokyca F) Ha KacaTelbHbIE K 3JLIUIICY — OKPY?KHOCTD. [Ipumensis
[OBOPOTHYIO TOMOTETHIO ¢ 1eHTpoM F), yriiom nmosopora /2 — o u kosddunuenrom 1/ sin v, mosrydaem,
gyro 'MT P Takux, 9T0 HanpaBJIeHHBII yroa mexiay PF) m KacateabHOU K Juicy u3 P paBeH «, ToxKe
oyzer okpyxkHocThiO. IIpu oo = ZY XU 310 I'MT Oyer okKpyKHOCTBIO W.

d) B coorBercTBHE € TPEIBIIYIIUM IIyHKTOM w MOXKHO omnpejaentb kak ['MT P rakux, 9to Ha-
HpaBJIEHHBIN yros Mexy PF| u KacareJbHON K /utuicy u3 P paBeH JJaHHOMY YIJIy (.

IIpumeuyanue. Ecimu okpyxkuoctu OF|Fy, n w He mepecekaioTcs, Toukn Kacanusgs K n w He OyayT
CYIIECTBOBATDH Ha OOBIYHOM IJIOCKOCTH (IIPH YKEJIAHUHA MOXKHO PACCMOTPETHh KOMILIEKCHBIE TOUKHU KACAHUS ).

e) Ilycrs neprnenmukynsp k OF; B Touke F) mepecekaer w B Touke Uy, Z' — mpoeknus U; Ha
npsamyto OZ. Torpa rouku Fy u Z' nexkar Ha okpyzkuHOocTH ¢ guamerpom OUq, kacatoreiicst w. [Tpu srom
L(FyU, UL Z') = Z(F10,0U) = Z(F1 X, XU), nockonbky U1 Z'OF; n F1 XOU suucanbt. CiienoBaresb-
Ho, U1 Z wacaercsg K (Tak KaK OKPYKHOCTH W — I€OMETPHYECKOE MECTO TOUYEK, TAKUX UTO yTOJ MEZKILY
KacaTeJbHO 1 0TPe3KOM B (hOKYC MOCTOSIHEH) 1 Z' COBIAJAET C Z .

f) Brerrekaer u3 ciremyroreit seMMbl, 000OIIAOIIE yTBEPIK I€HNE TIPEIBIIYIIEro Iy HKTA (C TIOMOIIBIO
HOBOPOTHO FOMOTETHH C IIEHTPOM B TOUKe []).

Jlemma. Ilycts P — mpousBosibHasg Touka sjutuica K, kacarenbHad K K B Touke P mnepecekaeT w B
toukax A u B. Torma oxkpyxuoctb APF) Kacaercs w.

g)* U3z . e) ciemyer, uto Touku Z u 1 gBJISIOTCS MPOEKIUSMU HA MPIMY0 AB KOHIIOB XOPJIbI W C
cepeaunoii F. IToaToMmy MOXKHO B JIBOHBIX OTHOIIEHUSIX 3aMEHUTH /Z 1 1’ Ha KOHIIBI 9TOM XOpanl, a A u B Ha
TOYKH TepPecevIeHrs KacaTeIbHBIX B 9TUX To4uKax ¢ npsamMoit U Fy. Eciu U jiexKuT BHE OKPY2KHOCTH, CJIe/TaeM
IIPOEKTUBHOE IIpeobpa30BaHme, COXpPAHIIONee OKPYKHOCTD 1epeBojidinee U B GeckoHedHyo TO4ky. Ecin
ke U BHYTpH OKPYKHOCTH, CJiejlaeM IPOEKTHBHOE IpeobpasoBanue, nepesojdinee U B meHTp. B obonx
CIydasgxX yTBEPKIEHUE 3a1a9i CTaHEeT OYEBUJIHO.

h) Henocpeacrsenno caeayer u3 npeapytytiero. (Ilpo momenn mmockoct JlobadeBCKOro MOXKHO
npounTaTh B [2].)

200 Tlycrs Fy u Fy — doxycsl sumica, npudeM Fy 6mmke k Y, gem Fh. 13 3amaqm 19¢ ciaemyer, 9o
tpeyrosbHUKU F1 A1 By n Fy Ay By mogobusr o aByMm yriam. Ilycts S = Ay By N Ay B,. I3 ontudeckoro
cBoiicTBa ajumnca /A SF; = ZA3SF;. TlosroMy cymecTByeT KOMIIO3UIUS TOMOTETHH C LEHTPOM S |
CUMMETPHUM OTHOCUTEJILHO OucceKTpuch! yria A;SAs, mepepossinast Tpeyrojibauk A Fi By B TpeyroabHUK

AS  B;S
Ay Fy By, 3navur, A_:S = @, orkyna A As || By Bs.

21* Ilyctb O — 1eHTp HOBOPOTHON T'OMOTETHH, IPU KOTOPOH OJ/IHa U3 JAHHBIX OKPYXKHOCTEN Iepe-
x0T B Jpyryio, a Touka N B M. Tak kak Bce Tpeyrosbunkun ON M 1omoOHbl ApyT JApyTy, npoeknus H
touku O Ha npsamyio M N Oyrer ABUTATHCS [0 HEKOTOPOH OKPY2KHOCTU w. Takum obpaszom 3a1ady MOK-
HO TIepeOpMyYINPOBAThL TaK: JAHBI OKPYKHOCTh w 1 TOYKa (), HANTH OTMOAONTYIO IPSIMBIX, TTPOXO/IATIIIX
Jepe3 MpOU3BOJIBHYI0 TOUKy H € w u neprenaukyasipabix O H .

Ecmn O nexut Ha w, TO Bce TaKue MPsIMbIe MIPOXO/IAT Yepe3 THaMeTPAIbHO MPOTUBOMOJIOKHYIO TOUKY.
B nporusnOM cityuae orubaroras OyieT KoHukoii ¢ ¢pokycom O — sjumuicoM, ecjin O JIEXKUT BHYTPU W, U
runepbosIoi, ecyim BHe. (DTO HECTIOXKHO BBIBECTH U3 3aja4u 18 06paTHBIM XOJIOM. )

22*  Omsert: [lapabosa, Kacamormasics JaAHHBIX TPIMbBIX.

Joka3zareabcTBo. [Iycth A u B — TOYKY, JBUTAIOIIAECS JIMHERHO 110 JIBYM JIAHHBIM IIPSIMbBIM, & 9TH JIBE
mpsiMble Tepecekatorcst B Touke X . Pacemorpum Touky F, ommmdsyo oT X, 4epe3 KOTOPYIO MPOXOJISIT BCe
okpyzxkHocTu (ABX) (Takast cymiecTByer 1o JjieMMe 0 BOpobbsx, eciiu A u B B pa3Hble MOMEHTBHI BPEMEHH



npoezxkatoT depe3s X. Ecnu B ommnakosbie, To AB ocrtaércs mapaJuiesibHa cama cebe u Ormbaroreit He
cymectByer). Touka Mukesst 9eThIPEX MPSIMBIX SIBJIsIETCsT (POKYCOM MapabOJIbl, KACAIOIEHCsT 9THX YeThIPEX
npsivMbix (em. [1], Teopema 4.10). ITosromy mckomast orubatormasi — mapabosia ¢ dpokycom F', Kacarormasicst
JIBYX JIAHHBIX ITPSAMBIX.

230 OTBer: OKPYKHOCTD, IIPOXOJSAIIAS UePe3 TOUKH [ePECETeHNsT JAHHBIX, SBIISIONMAACT OKPYZKHO-
CThI0 ATIOJIJIOHUST JIJTsT UX TIEHTPOB.



YacTte 3

24° O6a ycsoBust 9KBuBasieHTHB! paserctsy AB? + BC? + CA? = BA? + AC? + CB:.

25* Ilo ycmosuio cymecrByer Touka P, takas uro Z(AP, BiC,) = Z(BP, A,C,) = Z(CP, A1 B;) = «.
[Iycts Ay BoCy — obpas tpeyrosbaunka ABC npu moBopore BoKpyr P ma yros a — 90°. Torma A ByCh
u Ay ByCy OPTOJIOrMYHBI, 3HAYUT CyIecTByeT Touka () Takas, aro A1(Q) L ByCy, B1Q L A;Cy u C1Q L
AyBs. Tak kak Z(BC, BoCy) = o — 90°, mosmyaaem Z(A1Q, BC) = Z(A1Q, BoCy) — Z(BC, ByCs) = —a.
Ananornuno Z(B,Q, AC) = Z(C1Q, AB) = —a, 910 1 TpebOBaJIOCh.

Hwuxe mpuBoimM HAOPOCOK €I1ie 0JTHOTO PEeNteHusl, He UCTIOJIb3YIONIEro 3a1ady 24.

CkazkeM, 910 Tpoiika npsameix a’, b, ¢ 2apmonuvna Tpoiike UpAMBIX a, b, ¢, ecjin B TPeyroJbHUKE CO
CTOPOHAMMU, NAPAJUICJLHBIMU @, b, ¢, COOTBETCTBYIOIINE YeBHAHbI, Hapa/uieabibie a’, b, ¢, KOHKYpPEeHTHBI.

Jlemma. OrHOMEHME "OBITH FAPMOHUYHBIM CUMMETPUYHO, T.€. e/ Tpoiika a’, b, ¢ rapmMonnyuHa Tpoiike
a, b, ¢, To a, b, ¢c rapmonnuna a’, v, .

Joxazameavcmeo. Ilycts ¢ — npsamas. Yepes Touky O, He Jiexkaltyio Ha {, IpOBeeM IPsIMble, TTapaJi-
JenbHble a, b, ¢, a’, b, . Ilycrb a3t npsaMble nepecekator £ B Toukax A, B, C, A', B’, C' cooTBeTCTBEHHO.
Vcnonb3ys cuaycHyio TeopeMy UeBbl, IEpernieM yeJIoBue rapMOHMIHOCTH Tpoiiku o', b/, ¢ Tpoiike a, b,
¢ B BHUJE

AN
AB" CA" BC'
A T i -
B'C AB (C'A
Jlerko BHieTh, 9TO TO YCJIOBHE COXpaHsieTcs Ipu 3aMene a, b, ¢ na ', b/, . Jlemma jgokaszana.

Ilycte a, b, c w d', b/, ¢ — npsamele, comepzxKainue cropons! Tpeyronbuukos ABC u A;B1Cy. Yepes t,
0bO3HaUaeM MPAMYIO, HOJydaeMylo U3 ¢ OBOPOTOM Ha yroJl ¢. YCJIOBHE 3aJa4i O3HavYaeT, 9TO TPOHKa a,
b, ¢ rapmonuyna a/, by, ¢,. BbIIOJHUE TIOBOPOT Ha —, MOJIyYaeM, 9To a_y,, b_,, ¢, Tapmonuyna a’, Vf,
¢, OTKyJa U ClIefyeT Hy:KHOe YTBEPKICHHE.

Ucnos3yem obozuadenuns u3 3aga4qu 13. lomosauTrebHo npemnoaaraeM, 9o Touku Ay, As, By, B,
C1, Cy nexkar Ha onHOR oKpy2KHOCTH R ¢ eHTpom R.

26. (Koconedarvrwvie mpeyeoavruru) Ilycrs P’ uzoronanbho conpsizkena touke P. Ilycrs P,, Py, P.
— npoeknuun P va BC', C'A, AB cOOTBETCTBEHHO; aHAJIOIMIHO 0603HAYNM TpoeKiyn Touku P’. Mbr 3Ha-
eM, dro cepenmna Ry orpeska PP’ apiserca mentpom okpyxkunoctun (P,BP.) = (P.PP!). Iomoxum
L(PAy,CAy) = L(PBy, ABy) = Z(PCy, BCy) = ¢. Ilycts Ry — nentp okpyzxuoctu (Ay B1C). Tpeyrosn-
nuk P, P, P, nepexoqur B A1 B;C npu nmosoporHoii romorerun ¢ nearpom P, orcioga PP,A; ~ PRyRy,
s3HauuT R — TOYKa Ha CepeJMHHHOM mepreHuKyaspe Kk PP’ rakas, aro Z(PRy, Ri1Ry) = ¢. Orcio-
na Z(RyRy, R1P") = . Paccmorpum 110BOpOTHYIO roMoreTnio ¢ mneHrpom P’ nepesopsiiyio Ry B Rj.
Ona nepesogur P, P} P! 8 nekoropslit Tpeyronsuuk A)B)CY taxoit, uro P'RyRy ~ P'P. A, ~ P'P/B), ~
P'P!CY, rakum obpasom, Ay, B, CL — rtouku Ha npsimbix BC, CA, AB takue, uro Z(P'AL, CA}) =
L(P'By, ABY) = Z(P'CY, BCY) = —¢. Tak kak Ry — mentp okpyxuoctu (P.P/P!), to Ry — neHrp
okpyzxuoctu (A,B,CY). Pamuycer okpyzkuocteit (A B1Ch) n (A,BLCY) oba pasusr R(P,P,P.)/ sin ¢, 31a-
9UT, 3TH OKpYyzKHOCTH coBlagaor. Orcioma ciemyer, uro A, = Ay, By = By, CL = Cs, Q = P’ u Ry = R.

B mononnenne, 3amernm, uro Tpeyronbankn ABC u A B1CY yaoB/IeTBOPSIOT YCIOBUIO 3a1a9u 25, ¢ P
u () B KQIeCTBE TOYECK MEPECCUCHNUS.

27. U3 pemenust npeasiaymeii 3agauan: (PR, QR) = 2p = Z(PA;,QA,). U3 3amaun 13 noaygaem
A'=PAI NQA; € N, orkyna R € N,

Bamernm, aro Z(PN., N.N) = Z(PN,., N.C) = Z(PA;, A,C) = ¢. Anamorunano Z(QNy, NyN) = —¢.
910 oznauaer, uto jayru NP u N okpyxuoctu N pasubl. PaBerctBo PR = QR ciiejtyeT u3 perienus 3a-
nmaan 26. Takum obpaszom, RN — cepeauHHbBIH epreHuKyaap K PQ, T.e. RN — nuamerp okpyxuOCcTH N.

28. Ilycrs Q,, Qp n Q. cummerpuanbl () otHocuTenbHO BC, C'A n AB coorBercrBenno. Ilycts PQ),,
PQy, PQ. nepecekator BC, C'A, AB B Toukax A*, B*, C* coorBercrBenno. Torma P sIBIsteTCs IEHTPOM
okpyKHOCTH (Q,QpQ).), orciona PA* + QA* = PB* + QB* = PC* + QC*. Takum o6pa30M, CyIecTByer
smrnc ¢ poxkycamu P u (Q, mposomsimuit yepes A*, B*, C*. On kacaercs ctopon tpeyroibauka AABC,
coryiacHo 3ajia4de 16.



29. Tak kak Z(PA;, BC) = Z(BC,QAy) = ¢, u AjAsY X Brmcan B R, 0 A1 A2Y X cummerputien
OTHOCHTEJHHO ODIIEro CepeIMHHOTO MepIeHnKyIapa K orpeskam XY u Aj Ay (B wactaoct, XY || A1A,).
Yrobel jokazarh, uro XY kKacaerca K, mocrarouno nokasarh, uro reHtp K (r.e. cepepuna PQ)) nexur
Ha cpeaneil quaun Tpanerun A; AoY X mim, sKBUBaJIeHTHO, IToKa3aTh, Yro PA; = QY. U3 mokaszaHHOro
panee Mbl 3HaeM, 9T0 Z(PR,QR) = 20 u RP = RQ. Tak xak Z(A1R, RY) = 2/(A1A, A)Y) = 2¢p,
nmeeM Z(PR,A1R) = Z(QR,Y R), u 1o mepBoMy HpPU3HAKY DaBEHCTBa, TpeyrojbHukun PRA; u QRY
paBHBI. Tak, Hy2KHOe paBeHcTBO PA; = QY moxasaHoO.

30. Jlna okpyxuoctu R, Toukn P u yrita ¢ pacCMOTpuUM asaunc Bpokapa, T.e. orubaromniyo o0pasos
npsiMbix PZ 1ocsie moBopoTa Ha ¢ BOKpYT Z € R (cMm. obpaTHoe yTBep:kaeHue K 3amade 19c¢). st mectu
nostoxkenuit Toukn Z (A; u X u3 3aaun 29 v Tpu aHAJIOTUYIHBIE TAPHI) COOTBETCTBYIOIINE KacaTeIbHbIE K
smunicy Bpokapa rakake kacaores K. Suaqut, K coBuajiaer ¢ atum sjumuiicom bpokapa. Terneps Hy2kHOE
HaM yTBep2KJEeHUE CjIeyeT U3 yTBEPKIeHUs, 00paTHOTO K 3aj1ade 19b.

31. a) Ceemem 3ajady K 06IIeMy CIydar0, PACCMOTPEHHOMY B 3ajadax 26-27 (KocoreaibHbie Tpe-
YTOJIBHUKH ).

Ecim P u (Q — toukun Bpokapa, To ABC — 49acTHBIH ciiydail KOCOIe aJbHOIO TPeyTroJbHUKa, I
koroporo B = A, C =B, A=Cyu B=0C,, C =A;, A= By Tak, B roM ciiydyae O = R, 3nauur
PO =0Q u £L(PO,0Q) = 2y, tae 90° — ¢ — yroa Bpokapa.

[Iycts L — touka Jlemyana. /loctaTrouno jgokasarb, uro Touka N u3 3amaqn 27 jgexkut Ha AL, wim,
skBuBaseHTHo, N, sexxur Ha cumennane AABC u3 Bepmmabl A. Mer 3naem, aro okpyzxuoctu (AN,C)
u (AN,B) xacaorcs AB u AC' coorBercrsenno. Ilycrs V' usoronasnsuo conpszkena N, B8 AABC. Jlerko
BusieTh, 9To okpyxkuoctn (AVC) n (AV B) xacaorca BC, orkyma V' jexunr na meamane AABC u3
BepmuHbl A, 9T0 1 TPEOOBAJIOCD.

B pemennn Boime N = L u R = O. Huxke Mbl IpUBeieM JIPyroe pacrojioyKeHne TOUeK, IIPU KOTOPOM
N=0OuR=1L.

[IpoBesem uepes L mpsimyto BoCy (By € AC, C; € AB) rak, uro B,C, By, C} nexar Ha OJHOI
OKPY>KHOCTH.

N3 nonobust ABC ~ AB,C cienyer, uto AL — mennana B Tpeyroibuuke AByCh, orcioga BoL = C1 L.
Ananornano crpoum Cy Ay, AsBy. Umeem Z(LBsy, AC) = Z(AB,BC) = Z(AC, LB;). CrenoBareibHo
LBy = LBy. Taum obpasom, Bce 6 orpeskoB LA, LAy, LBy, LBy, LCy, LCs paBubl, u Ay, Ay, By, By, C1, C
JIe’KaT Ha OJTHON OKPY?KHOCTH (M3BECTHOI Kak OKPYKHOCTH T3itiopa) ¢ nearpom R = L. Teneps mokazkem,
aro Touku P u () (omnpejesennble Kak B 0o0MIeil KOHCTPYKIuK 3aja4du 26) sBIAI0TCA TouKaMu Bpokapa.
(Ormernm, uro LP = LQ)). Tak xak LA; = LAy = LCy, umeem AyCy 1 BC'. Ananornuno By Ay | CAn
CyBy L AB. Hanee, uz okpyxuocreii (AByCsQ), (BC2A2Q), (CAyB2Q) nmeem:

y = Z(CyAz, AQ) = Z(CoB, BQ) = 90° — Z(QCsy, C2B) = Z(ByCa, C5Q) = £(ByA, AQ)

u anasorudHo, y = Z(A2C, C'Q). Dro oznaugaet, 1to () — Touka Bpokapa (¢ yriiom Bpokapa y), i (Ay B2Ch)
— ee KOCOTelajibHasi OKPYKHOCTh, oTBedamoniasg yriay ¢ = Z(QC;, AB) = 90° — y. CremoBareibHO
Z(PL,LQ) = 2p. Takum obpasom, P,Q, L, O jexar Ha OKP:KYHOCTH, IpU 3TOM P u () cuMMeTpHYIHBI
otnocuTebHO O L.

b) Ilycrs AS — cumemuana, tak uro BS : CS = ¢ : b2 JlocraTouno jokazaTh, uro APBS ~
AQCS, umn PB : QC = ¢ : b?; orcrona nocienyer, uro Z(PS,SB) = Z(CS, SQ).

N3 teopemMbl cunycos
PB c c QC b

— n —

siny sin APB " sinB siny  sinC’

Paznenmus oH0 paBeHCTBO Ha JIpyroe, ¢ ydaeToM TeopeMbl cuiycoB st AABC, notydaeM HY>KHOE COOT-
HOIIIEHNE.

32* Hecoxno Busierh, uro AAy, BBy u C'Cy nepecekatorces B Kakoii-to Touke L. Ilycrs K, = B1CyN
ByCy, rouku K u K. oupenenum ananornano. ITo Teopeme Ilamma, Toukun L, L' n K, nexar Ha OmHOI
npsiMoii. JloctaTodno nokasarh, aro K, JI€KUT Ha pajuKaJbHOl ocn okpyzxkHOcTeit R u N (aHasorndubie



paccyKIeHnsl Tora MoKaxKyT, 9To K, n K. TakzKe JiekaT Ha 9Toil pajukanbHoil ocn). [Ipsameie B Ch,
ByCy u AN, KOHKYPEHTHBI, [IOCKOJIbKY OHU SIBJISIOTCS PaJMKAIbHBIME OcsiMu OKpyzkHOCTeil (AB;C1N,),
(AByC5N,) u R. Tak, AN,L,N — nonsipa Ttouku K, oraocuresibao okpy:kaoctu R. Bosee Toro, N, € N u
N R — muamerp N, ciiegoarenbio RN, | AN,. Takum obpasom, maBepcus oTHOCHTEIHHO R mepeBogut K,
K N,. D1a naBepcus nepeBoauT upsmyio BoCh K, B okpyxuOocTh RBoC1 N,. Cnenosarensuo, K,C1-K,By =
K,R-K,N,. Orcroga, K, J1exXuT Ha paJuKkaJabHOIl ocu okpyxKHOCcTel R 1 N.
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Some features of Miquel’s structures.

The project is presented by Konstantin Ivanov with the active participation of Ivan Frolov. Idea: Pavel
Dolgirev. Special thanks to Alexander Skutin for formulating problems 20-23. With the support of
Alexey Zaslavsky, Oleg Zaslavsky and Pavel Kozevnikov.

The symbol ° denotes some well-known facts, without which, however, the solution of further problems
will be difficult. An asterisk * indicates a problem that is suspected to be difficult.

Part 1

1° (Miquel’s theorem) In a triangle ABC, points Ci, Ay, By are chosen on the sides AB, BC,CA,
respectively. Prove that the circumcircles of AAB,Cy, AA;BC:, AA; B,C have a common point.

2° Let an angle ABC be given. Points C7, A; move along the lines AB, BC' with constant (not
necessarily equal) speeds. Prove that all circles BCjA; pass through another fixed point other than B.
When is it wrong?

3°  (Trigonometric form of Ceva’s theorem) In a triangle ABC, points C, Ay, By are chosen on the
sides AB, BC,C' A, respectively. Prove that lines AA;, BBy, C'C} meet at one point or are parallel if and
only if

sin 4ABB1 - sin 43001 - sin ZOAAl .

sin ABlBB -sin ZC01CA - sin /A, AB a

4°  (Miquel’s point) Let £y, ls, {3, and ¢4 be four lines in general position. Excluding one line, one gets
three lines forming a triangle, four triangles in total. Prove that the circumcircles of these four triangles
have a common point.

5°  (Miquel’s circle) Let £q,...¢5 be 5 lines in general position. Prove that Miquel’s points of all five
possible quadruples of these lines are concyclic.

6° Given two circles A, B. Prove that the locus of points X such that

power of X with respect to A
= const

power of X with respect to B

is a circle, in the case
a) when A, B intersect
b) for arbitrary position A and B.

7° 1In a triangle ABC, the pedal circles of points X and Y coincide. Prove that X and Y are isogonal
conjugate with respect to AABC.

8. Inside a triangle ABC', a point M is selected, and points C;, A1, By are chosen on the sides
AB, BC,CA, respectively. Lines AM, BM,CM intersect for the second time the circumcircles of triangles
ABCy, AiBC:, A1 B,C at points M,, My, M., respectively. Let P be the intersection point of the circles
AB,Cy, A1BCy, A1 B,C. Prove that the points M, M,, M,, M., and P are concyclic. (From now on, we
denote the corresponding circle by M).

9. Let, in the notation of problem 8, the line PA; intersect M again at A’. Prove that M A’ || BC.

10. Prove that the lines M, A’, M,B’, M.C" are concurrent or parallel.

11* Prove that the circumcircles of the triangles AM,A’, BM,B’', CM_.C" are coaxial.

12* Let a,b, c,d be lines in general position and let X5, Xoe, Xad, Xoe, Xod, Xea b€ their intersection
points. Let X be a circle with a point K on it. Let Y;; be the intersection point of X;; K with X. Prove
that the lines Yy, Y.q, YacYoa, YaaYse are concurrent or parallel.

13. In a triangle ABC' arbitrary points C, C5 on the side AB, points Ay, As on the side BC, points
B1, By on the side C'A are selected. The lines A;B; and Ay B, intersect at L., points L,, L, are defined
similarly. Circumcircles of AA;AsL. and AByBsL, intersect at points L. and N.. Points N,, and N, are
defined similarly.

a) Prove that the lines AN,, BNy, C N, meet at one point (let’s call it N)
b) Prove that N, N,, Ny, N. lie on a circle (let’s call it N).
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Let the circles AB;Cy, A1BC:, A1 B1C intersect at P, and let the circles AB>,Cy, A3BCy, AyByC
intersect at Q).
c) Prove that P and @ lie on N.
d) Prove that the intersection point A’ of lines PA; and QA; lies on N.

Part 2

In this section, the hyperbola icon )¢ will denote some problems. In these problems, your goal will be
to prove the original statement, and then formulate and prove a similar statement for a hyperbola.

14. Let A, B be two fixed points and let X be a point moving along a line. Examine the function f
for intervals of monotonicity. Construct an extremum point with a compass and a ruler if

a) f(X)=XA+XB

b) f(X)=XA—-XB

15°  (Fagnano’s problem) In a triangle ABC', points C’, A’, B’ are chosen on the sides AB, BC, AC,
respectively, which do not coincide with the vertices of AABC'. It is known that the triangle A’B’'C’ has
the smallest possible perimeter among all triangles inscribed in AABC'. Prove that AA;, BB; and C'C}
are altitudes of AABC.

16)C  (Optical Property) Let A be a point on an ellipse with foci F| and F,. Prove that the outer
bisector of the angle F} AF}, is tangent to the ellipse (has exactly one common point with it).

170 An ellipse with foci Fy and F, is tangent to the sides of an angle ABC. Prove that ZABF, =
/CBF,.

180 An ellipse with focus F is fixed, and a line £ is tangent to it. Let P be the projection of F onto
¢. Prove that if ¢ is moving, then P is moving along a circle tangent to the ellipse at two points.

19. Let K be an ellipse with foci F} and F5. A circle w with center O is tangent to X at points X
and Y (the ellipse lies inside the circle). Prove that

a) OF1 = OFQ

b) XF,OFyY is an inscribed pentagon.

c))( Let a point P move along w. Then the angle between PF; and one of the tangents from P to
the ellipse is constant.

d) Redefine w so that w does not have to touch X twice.

e) The line through O and the center of K meets K at Z. Prove that the circumcircle of AOZF
is tangent to w.

f) Let circles @ and /8 touch w internally, pass through Fj, and intersect for the second time at the
point E. Prove that from the two intersection points a and X you can choose a point I, and from the two
intersection points 5 and X you can choose a point J, so that £ will lie on the line I.J.

g)* The line through O and the center of K intersects K at points Z and T, and the circle at points
A and B. Point U is chosen on the line ZT so that ZUF,0 = 90°. Prove that the cross-ratio of the points
A, Z,U, B is equal to the cross-ratio of the points B, T, U, A (in the order indicated).

h) Show that if we take w as an absolute for the Klein model of hyperbolic plane, then X is a circle
or an equidistant curve.

200 Let circles a and 3 intersect at points X and Y. An ellipse X is inscribed in the ”slice” of their
intersection, twice tangent to each of the circles. A line £y is tangent to K, separates the point X from XK,
and intersects the ”slice” at points S and T. Also, {x intersects the circle o outside the segment ST at
Ay, and intersects the circle § outside the segment ST at B;. Similarly, chose a line ¢y and define points
AQ and BQ. Prove that A1A2 || BlBQ.

21* Points N and M move along two circles with the same angular velocities. Find the envelope
(curve touching all) of lines NM.

22*  Two points N and M move along two lines with constant speeds. Find the envelope of lines
NM.

230 Given two intersecting circles, consider all ellipses lying inside both circles and touching each of
the circles twice. Find the locus of their foci.



Part 3

24°  (Orthologic triangles) Let A, B, C, Ay, B, C} be points in general position. Let the perpendiculars
from A, B, and C to the lines B,C;, A;C}, and A, By, respectively, intersect at one point. Prove that
perpendiculars from A;, B, and C; to the lines BC, AC, and AB, respectively, also intersect at one
point.

25 Let A, B,C, Ay, By, be points in general position. Suppose that there exists a point P such
that Z(AP,B:Cy) = Z(BP,ACy) = Z(CP,A1B;) = a. Prove that there exists a point @) such that
Z(A1Q,BC) = 4L(B1Q, AC) = £(C1Q, AB) = —a.

We use the notation of Problem 13. Suppose additionally that the points A;, Ay, By, By, C1, C5 lie on
a circle R with center R.
26. Prove that P and @ are isogonal conjugate with respect to AABC.
27. Prove that:
a) ReN.
b) RN is a diameter of N.
c) PR=CQR.
28. Prove that an ellipse K with foci P and ) can be inscribed into the triangle ABC.
29. Lines PA’ and QA’ meet R again at points X and Y. Prove that XY is tangent to X.
30. Prove that X is tangent to R if and only if N intersects R, in which case the tangency points
coincide with the intersection points.
31. Prove that in a triangle:
a) The Lemoine point, two Brocard points and the circumcenter form a deltoid (i.e. a kite) with
two right angles.
b) An ellipse with foci at Brocard’s points touches the sides at the bases of the symmedians.
32* Suppose that the lines AA;, BBy, CC; meet at a point L. Prove that L lies on the radical axis
of N and R.



Some features of Miquel’s structures.
Solutions

Part 1

1° Well-known.

2°  We consider one position of points A; and (4, and another position, which we denote X and Y,
respectively. The circles (BC1A;) and (BXY') are tangent or intersect at a point G # B.

In the first case there is a homothety with center B mapping the circle (BC}A;) to the circle (BXY).
It maps A; to X and C; to Y. Therefore, C1A; || XY. Consider a third position of points A; and Cf,
which we denote P and (). Then ill)]g = %, hence PQ || A;C;. Thus the circle (BPQ) is tangent to
the circle (BA;CY). So all circles (BA;C}) are tangent at B.

In the second case the triangles GX A; and GY C} are similar, since Z(GA;, A1B) = Z(GCy,C1B) and
Z(GX,XB)=Z(GY,Y B). Hence there is a spiral similarity ¢ with center G, mapping A; to C; and X
to Y. Consider a third position of points A; and €, which we denote P and (). Then ¢(P) = @ and it
follows that Z(GP, PB) = Z(GQ,QB), so G lies on the cirle (BPQ).

3-4° Well-known.

5° Denote the intersection point of ¢; and ¢; by X,;; and the Miquel point of all lines except ¢; by A;.
It suffices to prove that A;, Ay, Az, and Ay are concyclic. Using the circles (A1 A2 X35Xy5), (A2A3X15Xy5),
(A3A4X15X25), and (A4A1X25X35) we obtain

L(A1 Ay, AsAg) = L(A1Ag, Ao Xus) + £(Xus5A0, AsAz) = L(A1 X35, X35 Xu5) + £(Xus X5, X15A43)
= L(A1 X35, X35X05) + £(Xo5 X5, X15A43) = L(A1 Ay, Ay Xos) + £L(Xop Ay, AyAs) = L(A1 Ay, ALA3).

6° Below we present an algebraic solution of this problem, which works for parts a) and b) simulta-
neously. For a synthetic solution, where part a) is easier than part b), see [1], Theorem 2.12.

Let f(x,y) = 0 and g(z,y) = 0 be the equations of A and B, respectively, in Cartesian coordinates,
where f(z,y) = 22 + y* + a1x + asy + az and g(z,y) = 2* + y* + bix + boy + bs. Note that the powers of
point (z,y) with respect to A and B are equal to f(x,y) and g(z,y), respectively. So the desired locus is
given by equation f(z,y) = cg(x,y) for some constant c. It is easy to see that this equation defines a line
if c=1 and a circle C if ¢ # 1.
flz,y) —cglz,y)

1—c
on the radical axis of A and B, i.e. f(p,q) = g(p,q). The power of the point (p,q) with respect to € is
f(p,q) —cg(p,q)
1—c

7°  Let X, and Y, be the projections of X and Y onto AC, respectively. Let X. and Y. be the

projections of X and Y onto AB, respectively. Since X, Y}, X., and Y, are concyclic, we obtain

Assume now that ¢ # 1. The circle € is given by equation = 0. Let (p,q) be a point

equal to = f(p,q) = g(p,q). Therefore, A, B, and € are coaxial.

Z(BA,AX) = £(X A, AX) = L(X. Xy, XpX) = Z(X.Xp, XpY3) + 90°
= Z(XY, YY) 4+ 90° = Z(YY,, YY) = Z(V A, AY,) = Z(Y A, AC)

Similarly, Z(AB, BX) = Z(Y B, BC'). Hence X is the isogonal conjugate of Y with respect to AABC.
8.  Observe that

Z(MM,, MyP) = /(AM,, M,P) = /(ABy, B,P) = /(CBy, B, P)
= /(CAy, A P) = Z(CM,, M.P) = Z(MM.,, M,P).

So M, lies on the circle (M PM,). Similar argument shows that M, also lies on this circle.

1



9. The following equalities imply that M A’ || BC.
L(MA', A'P) = /(MM,, M,P) = Z(CM,, M,P) = Z(CA,, A, P) = Z(BC, A'P),
A

10. We have
L(A'B', B'My) = Z(AM,MM,) = Z/(CB, BM).
Similarly Z(C'B’', B'M,) = Z(AB,BM), and so on. It follows that the triangles ABC' and A’B'C" are
similar and have different orientations. Moreover, A’M,, B'M,, and C' M, pass through the point, corre-
sponding to the isogonal conjugate of M in AABC.

\C
11*  Denote the circles (AM,A"), (BM,B’), and (CM.C") by ws, wp, and w,, respectively. Let
Ap = ABNA'C', By = BANB'C', Ag = ACNA'B', Cy = CANC'B’, Bo = BCAB'A', Cy = CBNC'A'.

2



By angle chase, w, passes through Ap and Ac. Similarly By, Bo € w, and Cy, Cg € w.. Then
AB - ABA sin ZACB - sin AACABA sin ZAccBC - sin AACCAB’ . AcBC : AcB/

AC . ACA N sin ZABC - sin AABACA N sin ZAcB/CA - sin AA(;BCC’ N ACOA . Aco

which implies that the ratio of powers of A with respect to w;, and w, is equal to the ratio of powers of Ax
with respect to w, and w.. Similarly, this ratio is the same for Ag. The result now follows from problem 6.

12* By the Desargues involution theorem, there exists an involution on the pencil of lines through K,
which swaps KY,, with KY.4, KY,. with KY}4, and KY,; with KY}.. So there exists an involution on X,
which swaps Yy, with Y.4, Y,. with Y4, and Y,4 with Yj.. Such involution must map every point P € K to
the second intersection point of PU with K, where U = Y, Y.q N Y,.Yyq. Therefore, Y 1 Y.q, YoeYoa, YaaYoe
are concurrent.

K

Yac
Y,
Xae You bd
Yab
Y,
“ Ve
Xad
Xcd
X
Xab Xbc b

13.  Observe that N, is the second intersection point of the circles (41 B;C) and (A3 B2C).
a) Follows from trigonometric Ceva’s theorem for the triangle ABC since
sin ZBCNC o A1A2 sin ACANG . BlBQ sin AABNb o 0102
sin /ACN.  B1B,”  sinZBAN, CiC;’  sinZCBN, AjAy

b, ¢) Follows from problem 8.
d) Follows from problem 9.

Part 2

14.  See [1], pp. 6-7.

15° We fix B’, ', and move A’. Since B’A’+ A’C" is minimal, BC'is the external bisector of ZB'A'C".
Similarly, AC and AB are the external bisectors of ZA'B'C" and ZA'C'B’, respectively. So A, B, and C'
are excenters of AA'B'C’'. Thus AA’, BB', and CC’ are altitudes of AABC.

16)C  See [1], Theorem 1.1 and the discussion after its proof.
170 See [1], Theorem 1.3 and the discussion after its proof.

180 Let K be the ellipse, let G be its second focus, and let M be the midpoint of FG. Let A be the
reflection of F'in £ and let B =¢NX. Then MP = GA/2 = (FB+ BG)/2 is constant, so P moves along
a circle with center M tangent to XK.

19. a) b) Construct tangents to the ellipse at X and Y. Let them meet at U.

3



First, let us prove an auxiliary fact — the bisector of the angle X F1Y passes through U. Reflect F3
in both tangents, denote reflections by H; and H,. Triangles UH,F; and UHsF) are congruent, by SSS.
Therefore, /X F1U = LY F1U.

It follows that U lies on the bisector of the angle X F1Y (and similarly, the angle X F;Y'), and on the
perpendicular bisector of XY (since the segments of tangents are equal). Hence X, Fy, Iy, Y U are
concyclic. Since XOYU is inscribed, O lies on this circle, too. XO is the bisector of the angle F; X F;
(since it is perpendicular to the tangent to the ellipse), therefore, F10 = OF5.

c))C By Problem 18, the locus of projections of Fy onto tangents to the ellips is a circle. Applying
spiral similitude with center F, angle 7/2 — a and ratio 1/sin«, we obtain that the locus of points P
such that the oriented angle between PF)} and the tangent to the ellipse through P is equal to «, is also
a circle. For a« = ZY XU this locus in the circle w.

d) By the previous item, w could be defined as the locus of P such that the oriented angle between
PF; and the tangent to the ellipse through P is equal to a.

Note. If the circles (OF1F;) and w do not intersect, the tangent points of K and w are not real
(complex).

e) Let the perpendicular to OF; through F intersects w at Ui, let Z’ be the projection of U;
onto OZ. Points F} and Z’ lie on the circle with diameter OU; touching w. Moreover, Z(F Uy, U1 Z") =
L(F10,0U) = L(F1 X, XU), since U1 Z'OF; and F1 XOU are inscribed. Hence U;Z touches K (since the
circle w is the locus of points such that the angle between the tangent and the segment joining with the
focus, is constant), and Z’ coincides with Z.

f) Follows from the following Lemma that generalizes the statement of the previous item (by a
spiral similitude with center F}).

Lemma. Let P be an arbitrary point of the ellips K, let the tangent to X through P intersect w at A
and B. It follows that the circle APF; touches w.

g)* From e) it follows that Z and T are projections onto AB of the endpoints of the chord of w
having the midpoint F;. Hence in cross ratios one can replace Z and T by the endpoints of this chord,
and replace A and B by the intersection points of these tangents with UF;. If U lies outside the circle,
then perform a projective transformation that maps the circle to itself and takes U to infinity. If U lies
inside the circle, then perform a projective transformation that maps U to the center. IN both cases the
statement is obvious.

h) Directly follows from the previous. (About models of Lobachevsky plane one can read in [2].)

200 Let F} and F, be the foci of the ellipse, where F} is closer to Y than F,. From 19c it follows that
F1 A1 By and FyA5 B, are similar, by equal angles. Let S = A; By N Ay Bs. from the optic property we have



LASF, = LZASF,. Hence there exists a product of a dilation with center S and the reflection in the

AS  B;S
bisector of the angle A;.SA,, which maps A, F1 B, to Ay F5B5. Hence fS = B;S’ therefore Ay A; || By Bs.
2 2

21* Let O be the center of the spiral similitude taking one of the circle to the other and taking N
to M. Since all the triangles ONM are similar to each other, the projection H of O onto M N lie on a
certain circle w. Thus we can reformulate the problem in the following way: let w and O be a circle and
a point; we need to find a curve touching lines passing through a point H € w and perpendicular to OH.
If O lies on w, then all such lines pass through the antipodal point. Otherwise, this curve ia a conic

with one its focus at O. This conic is an ellipse, if O lies inside w, and a hyperbola, if it lies outside w (It
could be derived from the Problem 18.)

22* Answer: A parabola tangent to given lines.

Proof. Let A and B be points moving linearly along two given lines intersecting at X. Consider a
point F' # X, which is a common point of all circles (ABX) (it is known that such point exists, if A and
B do not pass X simultaneously. If they pass X simultaneously, then AB has a constant direction). The
Miquel point of four lines is the focus of the parabola touching these four lines (e.g., see [1], Theorem
4.10). this argument completes the proof.

23/ Answer: The circle passing through the intersection points of two given circles, which as the
Apollonius circle for their centers.



Part 3

24° Tt is known that both conditions are equivalent to AB} + BC? + CA? = BA? + AC? + CB3.

25*  Let Ay;ByCy be the image of the triangle ABC under the rotation about the point P through
the angle a — 90°. Then the triangles A;B;C; and A;B>Cy are orthologic, so there exists a point )
such that A1Q L ByCy, B1Q L AyCy, and C1Q L AsB,. Since Z(BC, By(Cy) = a — 90°, we obtain
Z(A1Q, BC) = £(A1Q, BoCy) — L(BC, BoCy) = —a. Similarly Z(B1Q, AC) = Z(C1Q, AB) = —a, as
required.

Below we sketch a different solution, which does not use problem 24.

Let us call a triple of lines @', ¥', ¢ harmonic to a triple of lines a, b, ¢, if in a triangle whose sidelines
are parallel to a, b, ¢, the corresponding cevians parallel to a’, ¥, ¢ are concurrent.

Lemma. The relation "harmonic’ is symmetric, i.e., if @', b, ¢ is harmonic to a, b, ¢, then a, b, ¢ is
harmonic to ', ¥/, ¢.

Proof. Let ¢ be a line. Through a point O (O not in ¢) let us construct lines parallel to a, b, ¢, a’, U/,
. Let these lines intersect £ at A, B, C, A", B, (', respectively. Using Ceva theorem in the sine form,
rewrite the condition that @', ¢/, ¢ is harmonic to a, b, ¢ as % . % . % = —1. We see that this condition
is invariant under replacement of a, b, ¢ by a’, V', ¢. Lemma is proved.

Now let a, b, c and o', V', ¢ be the sidelines of triangles ABC and A, B,C;. By t, denote ¢ rotated by
angle . The condition of the problem means that a, b, ¢ is harmonic to a;,, b;, c:O. Using rotation by —¢,
we get that a_,, b_,, c_, is harmonic to o', b', ¢/, and the statement follows.

We use the notation of Problem 13. Suppose additionally that the points Ay, Ay, By, By, C1, C5 lie on

a circle R with center R.

26. (Generalized pedal triangles) Let P’ be the isogonal conjugate to P. Let P,, P,, P. be projections
of P onto BC, CA, AB, respectively; similarly denote projections of P’. We know that the midpoint Ry of
PP' is the center of the circle (P,P,P.) = (P,P/P!). Let Z(PA,,CA,) = Z(PB,,AB,) = Z(PC,, BC}) =
¢. Let Ry be the circumcenter of (A;B;C}). Triangle P, P,P. maps to A;B;C; by some spiral similitude
with center P, hence PP,A; ~ PRyR;, thus R; is a point on the perpendicular bisector of PP’ such that
Z(PRy, RiRy) = . Hence Z(R1Ry, R1P") = ¢. Perform the spiral similitude with center P’ taking Ry
to Ry. It maps P.P/P! to A,BLCY so that PPRyR, ~ P'P/A, ~ P'P/B, ~ P'P!C}, so A, B}, C) are
the points of BC', CA, AB such that Z(P'A,, CA,) = £L(P'B}, AB)) = Z(P'C}, BC)) = —p. Since R,
is the center of the circle (P.P)P!), R, is the center of the circle (A,B5CY). Radii of circles (A;BCh)
and (A,B,CY) are both equal to R(P,P,F.)/sin ¢, hence these circles coincide. It follows that A} = Ay,
Bé:BQ, CQ:C'Q,Q:P',andezR.

In addition, note that triangles ABC and A;B;C} satisfy the condition of the Problem 25 with P and
() as points of concurrency.

27.  From the previous proof we have Z(PR,QR) = 2p = Z(PA;,QA;). By problem 13, we obtain
A= PA NQA; € N, hence R € N.

Note that Z(PN., N.N) = Z(PN., N.C) = Z(PA;, A,C) = . Similarly, Z(QNy, NyN) = —p. This
means that the arcs NP and NQ of N are equal. PR = QR follows from the proof of Problem 26. So
RN is the perpendicular bisector of PQ), i.e. RN is a diameter of N.

28. Let Qq, @, and Q. be the reflections of () in BC', CA, and AB, respectively. Let PQ,, PQy,
PQ). intersect BC, CA, AB at A*, B*, C*, respectively. Then P is the circumcenter of Q),, @y, (., hence
PA* + QA" = PB* + QB* = PC* + QC™. So there is an ellipse with foci P and () passing through A*,
B*, C*. Tt is tangent to the sides of AABC by problem 16.

29. Since Z(PA;,BC) = Z(BC,QAs) = ¢, A1 AY X is inscribed in R and A;A2Y X is symmetric
in the common perpendicular bisector of XY and A; A, (in particular, XY || A;A,. To prove that XY is
tangent to X it suffices to show that the center of X (that is the midpoint of PQ lies on the midline of
A1 AY X)), or, equivalently, to show that PA; = QY. From previous we know that Z(PR, QR) = 2¢ and
RP = RQ. Since Z(A1R,RY) = 2/(A1 Ay, A5Y') = 2, we have Z(PR, A1R) = Z(QR,Y R), and by SAS,
triangles PRA; and QQRY are congruent. Thus PA; = QY follows.
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30. For the circle R, point P and angle ¢ consider the Brocard ellipse that is a conic touching the
lines PZ rotated by ¢ around Z € R (see the Problem 19¢, inverse statement). For 6 positions of Z (A;
and X from Problem 29 and 3 analogous pairs) the corresponding tangents to the Brocard ellipse also
touch K. Thus X is the Brocard ellipse. Now the statement follows from the Problem 19b and its inverse.

31.
a) We put this situation into a general case from the solution of Problem 26 (generalized pedal
triangles).

For P and @) being the Brocard points, ABC' is a particular case of generalized pedal triangles with
B=A,C=B;,A=Cyand B=C,, C = Ay, A= By. Thus in this case O = R, and we know that
PO = 0Q with Z(PO,0Q) = 2¢p, where 90° — ¢ is the Brocard angle.

Now let L be Lemoine point. Though L draw a line BoC4 (By € AC, Cy € AB) so that B, C, By, Cy are
concyclic. From ABC ~ AByCY it follows that AL is the median in AB>C, hence BoL = C L. Similarly
construct CoAy, AsBy. We have Z(LBy, AC) = Z(AB, BC) = Z(AC, LBy). 1t follows LBy = LB;. Thus
all 6 segments LA, LAy, LBy, LBy, LC;, LCy are equal, and Ay, Ay, By, By, C1, Cs lie on a circle (known
as Taylor circle) centered at R = L. Now we will show that points P and ) (from general construction of
Problem 26) are Brocard points. (Note that LP = LQ). Since LA; = LAy, = LC5, We have A,Cy 1 BC.
Similarly, BoAy 1. CA, and CyBy L AB. Now from the circles (AByC2Q), (BC2A5Q), (C A3B2@Q) we have:

= A(CQAQ, AQQ) = A(CQB, BQ) = 90° — A(QCQ, CQ ) (BQCQ, CQQ) (BQA AQ) and similarly,
= /(A2C,CQ). This means that @ is the Brocard point (with y as the Brocard angle), and (A2 ByCs) is
its generalized pedal circle corresponding to ¢ = Z(QCs, AB) = 90° — y. Hence Z(PL, LQ) = 2¢. Thus
P,Q, L,O are concyclic with P and ) symmetric in OL.
b) Let AS be the symmedian, so that BS : C'S = ¢* : b*. Tt suffices to show that PBS ~ QCS, or
PB:QC = ¢ : b? from this it follows that A(PS SB) = (CS SQ)
PB c

Now from the sine law, sy = AP — = el Similarly, £

second one, we get the required similarity.

32* It is not hard to see that the lines AAy, BBy, and CCy are concurrent at some point L’. Let
K, = B1C5 N By(C4, points K;, and K. are defined similarly. By the Pappus theorem the points L, L/,
and K, are collinear. It suffices to show that K, lies on the radical axis of R and N (a similar argument
then implies that K, and K, also lie on this radical axis). The lines B;C4, B2Cy, and AN, are concurrent,
since they are the radical axes of circles (AB;C1N,), (AByC3N,), and R. So AN,L,N is the polar line
of K, with respect to R. Moreover N, € N and NR is the diameter of N, hence RN, L. AN,. Thus the
inversion in R maps K, to N,. This inversion maps the line BoC| K, to the circle RByC1N,. Therefore
K,C,-K,By, = K,R-K,N,. It follows that K, lies on the radical axis of R and N.

Dividing the first equality by the

siny smC
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And the leap is not — is not what I think you sometimes
see it as — as breaking, as acting. It’s something much
more like o quiet transition after a lot of patience and —
tension of thought, yes — but with that [enlightenment/] as
its discipline, its orientation, its truth. Not confusion and
chaos and immolation and pulling the house down, not
something experienced as a great significant moment.

I. Murdoch, The Message to the Planet

1 BsBeneHme u OCHOBHBIE PE3YyJIbTATHI
1.1 O0630p U MOTUBUPOBKH

DTOT pasjes He UCHOIb3YETCs B JaabHeNIeM.

JIaHHBI TEKCT COEPKUT KOPOTKOE U3TI0KEHNE JJOKa3aTe bcTBa Kpo-
Hekepa TeopemMbl L'asya 1.3.2 o HepazperuMocTu aarebpanieckux ypas-
HEHWI B pajMKaIax. ITO J0KA3ATETbCTBO MHTEPECHO, TaK KaK MPeJIno-
JIOKUTETLHO OHO SIBJISIETCS CAMBIM KOPOTKHM.

Mpgr He ucnob3yemM TepMuH «rpyina laqyas u 1axKe TePMUH «TPYII-
may. Tem He MeHee HaIlle W3JI0KEHIE JaeT HelLIOX Y0 BO3MOKHOCTh OCBO-
HUTb (I/IJTI/I OCBEKUTH B HaMHTI/I) HCKOTOPbIC maeun, JiezKalnrue B OCHOBE
Teopun [asmya. Takum oOpa3om, MaHHBIM TPOEKT MEPEKUIBLIBAET MOCT
(moKa3bIBasi, 9TO HET HUKAKON MPOMACTH) MEXKIY JeMEHTApHO MaTe-
MaTukoit u Teopueit Lamya. [IpoekT mqocTymnen mKoOJIBHUKAM, 3HAKOMBIM
¢ MHOTOUJICHAME W KOMILJIEKCHBIMH YHCJIAMU (3HAKOMCTBA C MEpecTa-
HOBKaMK He Tpefyercs).

IIpuBomnMBIE JOKA3aTeJbCTBA HE MPETEHAYIOT HA HOBHU3HY (BO3-
MOZKHO, 32 MCKJIIOUEHUEM METOMYECKUX HAXOJIOK). [y1aBHAst miues mo-
kazaresbcrBa mspectHa (cM. [Do65, §25], [Pr07, Ti03]), u npemnmoso-
KUTENBHO npuHayiexnT Kpornekepy (ommbka B IPUBEIEHHBIX BBIIIE
TeKCTaX, yKazaHHas B [Sk21m, 3ameuanne 8.4.18b|, ucnpasiena B [Sk08,
PC19] u [Sk21m, §8|). K coxasenuto, camo JJ0Ka3aT€/1bCTBO HE OUY€Hb
IMUPOKO M3BECTHO.

ITpuBoaUMOe OKA3ATEIHCTBO UHTEPECHO TaK¥Ke TeM, UTO OHO He
UCTIOIB3YeT TIepecTanoBKu. [109TOMY B KadeCTBe «IPUYMHBI» BO3HUK-
HOBEHUST HEPA3PEIINMOCTH B PaJMKajIaX Mbl BUJIUM He TOT (hakT, 9To
rpynma As HepaspemmnMma, a 9To CyIIeCTBYeT MHOIOUWIEH CTElmeHdu b ¢



paImoHATBLHBIMU KD PUIeHTaMu, HenpuBoauMblii Ha Q, wverormit
Hostee OIHOTO BEIMECTBEHHOTO KOPHS W XOTs GBI OTMH HEBEIECTBEHHBIH
kopeHb. TakumM 06pa3oM, JaHHOE JOKA3aTeJbCTBO OTJIMYIHO OT J0Ka3a-
TenbeTB TeopeM lamya u Abens, npusogumMbix B |7, Ay82, Bel0, Br,
Ed84, FT, Ha78, Lell, PC19, Pe04, R0o95, St94, Sk15] (kommenTapuu
U HCIPABJIEHNS HEKOTOPHIX ommubok cM. B [Sk15|).

1.2 Hepa3penimMoOCTh B BeIIeCTBEHHBIX PagNKaIax

BeiiectBentoe uncsio Ha3bIBaeTCH BEIECTBEHHO PaINKAJIBHBIM, €C-
JIV €70 MOYKHO TIOIYYHUTD U3 YHcaa 1 TIpu MOMOIMN CIOKEeHMH, BRITUTA-
HUM, YMHOXKEHUM, JeJeHN Ha HeHyJ/IeBble YNCja U U3BJIeYeHUH KOpHeil
TIETIBIX TIOJIOXKUTETBHBIX CTelleHeH M3 MoJIOKUTeTbHBIX uncest. T.e. ecn
HEKOTOPOE MHOXKECTBO, €r0 COAeprKaIee, MOXKHO IOIYYUTh U3 MHOXKE-
cra {1}, ucnonp3yst oneparuu n106aBaeHns K yKe UMEIOIIEMYCs MHO-
xxectBy M C R, cogepxamemy uucia z, vy,

qucen r+y,x —y,ry, uncaa x/yupuy #£0

u unciaa v/x mpu x > 0 u memom n > 0.

1.2.1. (a) JIwo6Goii BemecTBEHHBIN KOPEHb KBAJIPATHOrO YPABHEHUS
C paIMoHAJIBHBIMT K03 OUIIMEeHTAMT BEIIECTBEHHO PaINKaIeH.

(b) Vpapuenne 23 + x + 1 = 0 wMeeT POBHO OIWH BEIIECTBEHHbIIT
KOPEeHB, KOTOPBIN BEIEeCTBEHHO PaUKAJIEH.

(c) Ypasuenue z* + 42 — 1 = 0 uMeer [Ba BENICCTBEHHBIX KODHS,
KaXKJIbIfl 13 KOTOPBIX BEIECTBEHHO PaJIMKAJIeH.

Teopema 1.2.2. (a) Yucno cos(27/9) ne siBasiercss BerecTBEHHO
PA/IMKATLHBIM.

(b) CymecrByer MHOrOWIEH 3-i CTENEHN C PAIMOHANBHBIMU KO-
dbummenTamu (Hampuvep, 3 — 3x + 1), HE 0UH W3 KOPHEi KOTOPOTo He
SIBJISIETCS BEIIECTBEHHO PAMKATIBHBIM.

Bei emokere mokasarh 1. (b) 3T0i TeOpeMbl ¢ TOMOIIBIO 33184, BbI-
IaBaeMBbIX 110 TpoMexkyTounoro (gpunura. Pazpernaerca ncmob30BaTh
. (b) 6e3 moKazaTENBCTBA JJIS PEIIeHrs IPYyrux 3a1a49 B §1.2.

1.2.3. (a) Jns groboro n > 3 cymiecTByer MHOTOUIEH N-i CTeleHn
C panuoOHAJBLHBIMA KO3MPUIIMEHTaAMH , OAUH W3 KOPHEH KOTOPOTO He
SIBJIAETCS BEIECTBEHHO PaJIMKAIbHBIM.



(b) Cnpasenus aHasor yTBep:KaeHus 1. (&) ¢ 3AMEHOM CJIOB «O7MH
W3 KOpHel» Ha «Hu oiuH u3 Kopueit». (Ilpm sTom Kopuu nexomopwvix
ypaBHeHHIT BRICOKHX CTereneii (Hampuvep, £° = 2) BIOIHE MOTYT OBITH
BEIeCTBEHHO PATUKAJIbHBI. )

(¢) Tpucekius yryia HEBO3MOXKHA TIPU ITOMOITY BEIECTBEHHBIX Pa-
JIMKAJIOB, T.e. CyIIeCcTByer Takoe « (Hampumep, a = 27/3), 410 4ucI0
COS (¢ BEIIECTBEHHO PAJMKAJIBHO, & 9uca0 cos(a/3) — mer.

1.3 Hepa3spenmmMocTh B KOMIIJIEKCHBIX paanKajiax

KomrmrekcHoe 9ncsio Ha3bBaeTcst (KOMILIEKCHO) PAAUKAIbHBIM, €CJIH
€r0 MOXKHO TOJIYIUTH U3 YHCIa 1 TPU TOMOTIN CJI0XKEHWH, BHIYATAHNTI,
YMHOXKEHUH, neeHuil Ha HeHyJIeBble YUC/Ia W U3BJACUYCHUN KOpHel Iie-
JIBIX TTOJIOKHATENBHBIX cTemeneii. T.e. ec/im HEKOTOPOe MHOXKECTBO, €ro
coieprkaliee, MOXKHO MOJTYIUTh U3 MHOKecTBa {1}, ucnonsys onepa-
muu gobaBjienusd K y2Ke mMeroneMycd MHoKecTBy M, comepikarmemy
qucaa x, Yy,

wucesn T+ y,x —y,xry, umcaa xr/y upu y # 0

u moboro Takoro uncaa r € C, uro r’* = x gua mekoToporo meaoro n > 0.

1.3.1. (a) JIx0o60it (KOMILTEKCHBIH) KOPEHb KBaIPATHOTO YPABHEHUS
C paIMoHAJIBLHBIME KO DUITUEHTAME PATUKAIECH.

(b) Yucmo cos(27/9) pagukaabHo.

(c,d) To ke, uro u B 1. (a) /st MHOTOUIEHOB 3-#f n 4-if cremenn.

(e) Ecau nefictBurenbHast 1 MHUMAsS 9aCTH KOMILJIEKCHOTO YUC/IA, 2
BEIIECTBEHHO PAJUKAJIBHBL, TO UHCIO Z PAJIUKAJIBHO.

(f) O6parnoe yrBepKjenue K 1. (€) HEBEPHO.

AHajioru yTBEp:KICHUN IIII. (a,c,d) i ypaBHEHU 00Jiee BHICOKHAX
CTCIlCHell HEeBEPHBI.

Teopema 1.3.2 (Tamya). Cymecrsyer ypasHenue 5-if cTenenu ¢ pa-
IIIOHATBHBIME Koddduruentamu (ranpumep, r° —4x+2 = 0), au ogun
M3 KOPHEH KOTOPOTO He SIBJIAETCS PATUKAJIBHBIM.

SHaMEHUTY0 TPoLIeMy Pa3pPeruMOCTH YPABHEHU B PA,IHKAIAX Pe-
UK JOKA3aHHbIE HEMHOI'O paHee 6osiee ciraboie Teopembl Pydbdunu—
Abensi. Crporue dhopmynuposku stux reopem ciaoxuee [Sk21m, Teo-
pema Pydbdunn 8.2.2|, [Sk15, Sameganue 7|. Bosee mpocroit cmocob



PEIuTh TPOOIEMY Pa3PeNnTuMOCTH YPABHEHUH B pauKaIax MpejIosKeH
B [Sk21m, Teopema 8.1.13 u ee mokasarenbcTBo B §8.4.F|. 31ech Mbr
mpemaraeM APYroi KOPOTKuit crmocod: BbiBecTu Teopemy laaya 1.3.2
U3 CJIEIYIONIETO PE3YJIbTaTa.

Teopema 1.3.3 (Kponekep). Eciim MHOTOUIEH TTPOCTOl CTemeHn
¢ panmoHaJIbHBIME KO3 duimentamu HenpuboguMm Has Q, mmeer 60-
Jiee OJTHOI'O BEIECTBEHHOI'O KOPHS U XOTs Obl OJIUH HEBEIECTBEHHBI,
TO HU OJWH U3 €ro KOpHeil He ABJSeTCA PAJIUKATBHBIM.

DTa TeopeMa WHTEpPECHA W HETPUBMUAIbHA JaXKe JJIsi MHOTOUIEHA
maTOM cTenenn. Bbl cMOXKeTe H0KA3aTh 9TY TeOPeMy € IMTOMOIIBIO 331ad,
BBIIABAEMBIX IIOCJIE IPOMEKYTOUHOTO (DHUHUIIA.

1.4 PekomeHJanyyu y9acTHUKAM

YuactHuk (WK MpyOIa y9aCTHHKOB) KOH(MDEPEHINH, PeIaoinii 3a,/1a-
UM MPOEKTa, TMoJydaerT «000» 3a KaXkJoe 3alMCaHHOe PEIeHue, Olle-
HeHHOe B «+» wiu «+.». [onosauresbubie 600bI MOIYT BbIIABATHCH
3a KPaCUBbIE PEIICHUS], PEIIEHNs CJI0KHBbIX [1pobJieM, miu opopmIieHne
HEKOTOPHIX perennti B cucreme TEX. Y XKopu 0ECKOHEYHO MHOTO H0-
6oB. Permmennst M0OXKXHO ¢IaBaTh U YCTHO, OTAaBad OguH 6006 3a KarKIble
IIATH IIOIIBITOK (HeBa}KHO, VAQYHBIX WJIN HeT).

Ecan ycmosue 3aauu siByisiercsi (GOPMYJIUPOBKON YTBEPXK AEHUS, TO
B 3aj1aue Tpebyercst 3T0 yTBepKIeHNe T0Ka3aTh. 362a60K01 HA3BIBAETCS
He chOpPMYJIUPOBAHHBIN YETKO BOIPOC; 3/1€Ch HYKHO IIPUIYMaTh U YeT-
KYI0 (DOPMYIUPOBKY, U JIOKA3ATENBCTBO. KCjn 3a/1a9a BBIEIeHa, CIOBOM
«TeopeMay («JIeMMay, «CJIEJCTBUE» W T.]1.) U KUPHBIM MIPHDTOM, TO
eé yrepxenune Gosee Bazkuoe. Kak npasusio, Mbl NpuBOauM (B BHJIE
3a/1a4n) HOPMYAUPOSKY KPACHBOTO WM BAXKHOTO YTBEPKJCHUS neped
ero dokazameavcmeom. B Takux ciiydasix Js JOKa3aTeIbCTBA YTBEP-
KJEHUS MOTYT oTpeboBaThCd mocseayomme 3aga4un. Kcau Ber 3actps-
JIN Ha KaKO#-To Opyroil 3amade, Takxke NepedanTe K CICAYIONIUM, OHA
MoryT moMoub. Ilpurmamaem Bac obcyorcdams ¢ KiOpu BOZHUKAIOITHE
Borpockl. (Jco60 yCIIEINTHBIM PemaTeIaM Mbl BBLIAEM JONOAHUMEADHLE
360aMY% JJIst MCCIe0BAHUS.

Iloxkanyiicra, coobuure Ham, ecau Bol yKe 3HAETE pElIeHUs HECKOJIb-
KWX TIPEII0KEeHHBIX 33aa4. Kcin Bel moarBepawTe cBOM 3HAHHS, CO-



obIIIMB HaM PEIeHnsT HEeKOTOPLIX W3 HuX, Bam Oymer pasperieHo He
TOJTyYIaTh IUIIOCH] IO BCEM 3THUM 3a7JadaM, HO MOJbL30BATLCI UMHU MpH
PEIeHny OCTATbHBIX.

2 Jloka3zaTeJIibCTBAa HEPA3PENINMOCTHU B 33a/la9ax

B sroM TekcTe «MHOTOWIEH ¢ pAIMOHAJIBHBIMEU KO3 duimeHTaMus Ko-
POTKO Ha3bIiBaeTca MHOTOWIeHOM. Obo3HAMMM

gq :=cos(2m/q) +isin(27/q).

2.1 OpHo m3BJeYeHMe KBAAPATHOTO KOpHs (1-2)

2.1.1. TIpeacraBumo Jim CACAYIONIEE IUCTO B BUIE a4+ \/B, rie a,b €

(@) V3+2v2 () =Ls (0 V7453 (@) V2
(€) V2+V2 () V2+v2  (8) V2+V3+V5;  (h) cos(2m/9)?

Hng m. (g) Bam morpebytorces uaen us §2.4.

Q:

JIlemma 2.1.2 (o pacmmpennn). [IycTh 9uCI0 MOXKHO TTOJYIUTE 13
qucsaa 1 Tpu TOMOTIM HECKOJIBKUX ONMeparnuii CAOKEeHWH, BHIYMTAHUIM,
YMHOXKEHU, JeJIeHuil Ha HeHyJeBble YHCjia, U ONHON olepaluu U3BJie-
YCHUA KBaJAPATHOTIO KOPHA W3 IMOJOXKUTEJIBbHOTO YHUC/IA (T.e. qncJIo Be-
MECTBEHHO TOCTPOMUMO C M3BJIEUCHHEM KODHsI TOJBKO onuH pa3). Toraa
ono umeer sux a + Vb, rae a,b € Qu b > 0.

Jlemma 2.1.3. Iycrs 7 € R — Q u 72 € Q.

(a) O menpusoaumocTu. Muorouwren x2 —r? wenpusognm Ha Q.

(b) O nuneiinoii nezasucumocru. Ecmm a,b € Q u a + br = 0,
T0a=>b=0.

(c) Ecm mMuorounen P mmeer Kopenb r, To P mennres Ha 12 — 2.

(d) O conpsizkerun. Ecim MHOTOUIEH UMEET KOPEHD ', TO KOPHEM
9TOr0 MHOTOYJIEHA SIBJSETCS TAKKEe YUCIO0 —T.

(e) O conpsizkerun. Ecmu a,b € Q m MHOrO4YIEH NMEET KOPEHb
a + br, T0O KOpHEM 3TOT0 MHOTOUJIEHA SIBJISIETCST TAKXKe YUCJI0 a — br.

(f) Ecam a,b € Q u kybuueckuil MHOroO4JI€H nMeeT KOpeHb a + br,
TO OH MMEET PAIlMOHAILHBIN KOPEHb.



Teopema 2.1.4. Eciin MHOTOYJIEH CTEIIEHN BBITIE BTOPO HEITPUBO-
auM Hag Q, To HE OQMH W3 ero KopHeil He IMpeacTaBuM B Buie a + /b,
rae a,b € Q.

2.2 OpgHo U3BJeYeHNEe KOPHSA TpeTheil cTenmeHn

2.2.1. TlpeacraBumo Jin CJ/I€IyIONIEE YHUCJIO B BUJIE G + b2 + 0\3/1,
rie a, b, c € Q:
1
@) VE  (0) b (0 cos2n/9) (@) VB (o) U3
(f) mamboTbIIMl BeleCTBeHHbI KOpenh MHOrOuIeHa 15 — 41 + 2;
(8)* eMHCTBEHHDII BEMECTBEHHBIH KOPeHb MHOTOU/IeHa 2 — 62 — 6;
(h)* etuHCTBEHHbII BEIECTBEHHbI KOPeHh MHOrouIeHa 15 —97r—127

Jlemma 2.2.2. Tlycts r € R — Q u 72 € Q.

(a) O menpuogumocTu. Muorowren 23 — r3 menpusomum mag Q.

(b) O nuneiinoit HezaBucumoctn. Eciu a, b, c € Qu a+br+cr? =
0, toa=b=c=0.

(b") O nuueitnoii nezaBucumoctu Hazx Qles]. Eciu

k,l,m € Qles] :== {u+ veg: u,v € Q}

nk+lr+mr?=0,tok=1l=m=0.

(¢) Ecam MHOTOU/ICH UMeET KOPEHbB 7', TO 9TOT MHOTOUJICH JIETUTCS
Ha 5 — 73,

(d) O conpsizkennu. Ecsin MHOTOUIEH HMEET KOPEHb 1, TO KOPHAMHI
9TOTO MHOTOUJICHA SIBJISFOTCS TAKIKe WHCTIA €37 U 37

(e) O coupsxkennu. Eciun a,b, c € Q u MHOrO9IeH HMeeT KOPeHb
xo = a+ br + c7’2, TO KOPHAMHU 3TOT0 MHOT'OYICHA ABIAIOTCA TAKZKE

YUCJIa
o 2 2 o 2 2
x1:=a+besr +ce3r® u  xg:=a+ beyr + cear”.

(f) O panmonanbuocru. Ecmm a,b, ¢ € Q, To wmcio a + br + cr?
SIBJISIETCsl KODHEM HEKOTOPOI'O HEHYJIEBOI'O MHOI'OYJIEHA CTEleH: 3.

Teopema 2.2.3. [lycts muOrOUwIeH Henpuogum Hag Q u aubo ero
CTeleHb OTINYHA 0T 3 1 1, b0 oH nMeeT GoJiee OJHOrO BEITeCTBEHHOIO
KopH«. Torma HY OJUH U3 €10 KOPHEH He TIPe/ICTABUM B BUIE a—i—b7’+cr2,
rer € R—Qua,b,erdeqQ.



Jlemma 2.2.4 (o pacmmpenun). Yuca0, BEMECTBEHHO DAINKATbL-
HOE C M3BJICYEHIEM KOPHS TOJIBKO OJUH pa3, IPAYEM TPETheH CTEeIeH:,
umeer Bux a + br +cr?, tne r € Ru a,b, ¢, € Q.

2.3 OpgnHo u3BJAEUYEHUE KOPHA ONPOCTOii cTereHu

2.3.1. TlpeacraBumo Jid CAEIYIONIEE YUCIO B BUJIE
ao+a1\7f2+a2v722+...—|—a6v726,

rie ag, al,as, - .., a € Q7

(a) V3; (b)cos3T;  (¢) V3 (d) V/3;

() xKaxoii-HnbyIb W3 KOpHEH MHOTOUICH, 1 — 47 + 2.

Jlemma 2.3.2. [lycts g pocroe, 1 € R —Q u r? € Q.

(a) O menpuBogumoctu. Muorounen x? — r? senpusoanm wax Q.

(b) O smueiinoit He3aBucumocTu. Eciu A — MHOrOWIEH CTenenn
menbmre ¢ u A(r) =0, o A= 0.

(¢) O conpsizkennu. Eciu MHOTOWIEH MMeET KOPEHb 7', TO OH UMEeT
TaKKe KOPHUI rslg s Kaxkgoro k=1,2,3,...,q— 1.

(d) O paumonanbuoctu. Eciu A — muorounen, to ancio A(r) as-
JIIeTCA KOPHEM HEKOTOPOTO HEHYJIEBOTO MHOTOUJICHA, CTETICHN HE BBIIIE
q.

Ob6o3Ha9IM

Qleg] == {ao + a1eq4 + ageg +t aq_253_2 Doag,...,aq—2 € Q}.

2.3.3. Ilycrs ¢ mpocroe, r € C — Qgg] u r? € Qley].

(a) Muorowren x? — r? nenpusogum uag Qfe,].

(b), (¢) Jokaxkure ananoru myHkToB (b), (¢) npeapiayieit 3a1a<m
Juig MHOrOwIeHa ¢ Koaddunuentamu B Q[e,].

JIemma 2.3.4. * Tlycts ¢ npocroe, r € R — Q u r? € Q.

(a) O menpusogumocru Hax Qe,]. Muorounen x? — r¢ nHenpuso-
aum Hag Qley].

(b) O Jymmneiinoit nesasucumocru uHazn Qle,]. Ecim A — MuOro-
wieH crenenu MeHbine ¢ ¢ koadduunenramu B Qeg] u A(r) = 0, 1o

A=0.



Teopema 2.3.5. [lycts muOTOUWIeH HenpuBoauM Ha Q u aubo ero
CTeleHb OTJIMYHA OT IPOCTOTO ¢ U oT 1, mubo oH mMmeer Gojee OJHOTO
BEIEeCTBEHHOTO KOpHsI. Torma HU OInH 13 er0 KOPHe#l He MpeacTaBuM B
Bugie A(r) mis wekoropbix 7 € R — Q u muorownena A € Q[z], mpuuém
r? e Q.

JIemma 2.3.6 (0 pacmupenun). Gucsio, BEMECTBEHHO PAJINKAIBHOE
C W3BJIEYEHNEM KOPHS TOJBKO OMUH pa3, paBHo A(r) g HEKOTOPBIX
A€ Q[z] ur € R, npuuém r? € Q nys mekoTOpOro q € 7.

Taxum 06pazoM, ecjii MHOTOWIEH TPOCTO# crereHu, HOIbINeH 2,
HenpuBoAuM Ha Q m uMeer Gosiee OMHOTO BEIECTBEHHOTO KOPHSI, TO
HU OJIMH M3 9TUX KOPHEN He {BJISEeTCS BENIECTBEHHO DPAJIUKAJIBHBIM C
HU3BJICUCHUEM KOPHA TOJBKO OJWH Pa3.

2.4 HeckoJbK0O M3BJIEUEHUI KBaJAPaTHBIX KOPHEH

2.4.1. Cy1miecTByOT U pallMOHAIBHBIE UMCIa a, b, ¢, d, I KOTO-
PBHIX V/2 paBHO
a+ Vb

(a) a+bV2+ V24 dV/3; (b)c+\/5,
(d) a+ b+ e, (e) a+Vb+ e+ Vd?

2.4.2. (a) Yucio /2 He ABIAETCH BEMECTBEHHO DPAUKATBHBIM C
U3BJIeYeHIeM KOpHeil TOIbKO KBaJIPATHBIX U TOJBKO JBA Pa3a.

(b) Yucao cos(2m/9) He sABISETCS BEIECTBEHHO DAIMKATIBHBIM C
U3BJICUCHUEM KOPHEH TOJIbKO ABa pas3a.

() a+ Vb+ /5

Ecmm FCC,r € Cur? € F pisg HEKOTOPOro IEJIOr0 MOJI0KUATE b=
HOTO ¢, TO 0603HAYINM

Flr] = {ao + a1r +agr® + ...+ ag_17"' | ag,...,a4-1 € F}.

B sToM TekcTe moJieM Ha3bIBaeTCs MOAMHOXKecTBO MHOxKecTBa C, 3a-
MKHYTO€ OTHOCHTEJLHO OLEPAINil CJIOYKEHUS, YMHOYKEHUS, BEIYNTAHUSI
U JIeeHnsl Ha HeHy/Ieoe uucso. OOImenpuHATOe Ha3BaHHUE: YHCIOBOE
nosie (a nosem B MareMaTHKe HaszbiBaerTcs Gosee obmnii o6bexkT). DTo
HMOHSATHE IOJIe3HO JJId HaC TeM, 9TO TeopeMa JeJIEHIN ¢ OCTATKOM BepHa
JL7IST MHOTOUJIEHOB ¢ Ko dHUIMeHTaMn B ITOJIe.

JIemma 2.4.3 (o pagukanbrOM pacmupenun). Ecau uucao a € C
PAIUKAJIBLHO, TO HEKOTOPOE COJIEPZKAIIEe ero MoJIe MOXKHO IOy IUTh U3



Q crepyronuvu oneparusamu: 3ameruTs none Foua Flr| ans vekoro-
poro r € C takoro, uro r? € F' 19 HEKOTOPOTO IPOCTOTO (.

2.4.4. (a-d) Hdokazknure anangorn yrBepxaennii 2.3.2.(a-d) ¢ 3ame-
voit Q Ha npousBoJibHOE 1oJe B MHOro4wieHbl Haj Q Ha MHOIrOUYJIEHBI
HAJT 9TUM TIOJICM.

Jlemma 2.4.5. Ilycts g mpoctoe, FF C R—mnome, r e R— F ur? €
F. Ecnu muorounen ¢ koadgurmentamMu B F' crenenn 3 umeer TpH
BEIIECTBEHHBIX KOPHA, HU OAWH N3 KOTOPBHIX HE JICXKUT B F, TO HU OJUH
U3 ero KOopHeii He jexkutT B Fr].

2.5 K Teopeme Kponekepa

B strom nyukTe q¢ > 2 — npocmoe wucao, 1 € C — xomnaexcroe wucao,
F C C — none, codepoicawee € = €4 u 19, Ho e codeporcawyee 1.

Jlemma 2.5.1. (a) Henmpusogumoctsb. Muorounen t9 — r? € Ft]
HenpuBoguM Hag F.

(b) JInueitnasa meszaBucumoctb. Eciu P(r) = 0 s HeKOTOPOIO
muorodsena P € Ft] crenenn mensie ¢, To P = 0.

(¢) Conpsizkerue. Eciu P(r) = 0 ajisi HEKOTOPOTO MHOTOYJIEHA
P ¢ F[t], To P(re¥) = 0 gnsa mo6oro k=1,...,q — 1.

(d) IMapamerpuueckoe coupsizkernue. Eciiu P € Fx,t], npuuém
P(z,7) = 0 kag muorowten ot x, T0 P(x,re¥) = 0 xax muorowren or
x mpu jgobom k=0,1,...,q— 1.

(e) ParmonansaocTb. dns moboro H € F(z,t] Bepuo, uro

H(z,r)H(z,er)... H(zx, e 'r) € Flz].

(f) Bemecrsennoctb. Ilycrs F = I, a taxxke 7 € R wm |r|? €
F. Torna cpemn smauenmii A(re®) mmorounema A € F[t] mpu k =
0,1,...,qg — 1 1mbo He Gosee OFHO SBASIETCS BEIIECTBEHHBIM, OO BCe
9TU 3HAYEHUS BEIECTBEHHDI.

2.5.2. (a) lycts H € Flx,t| u H(x,r) nenpusoaum naz F[r]. Torga
mrst moGoro k = 0,1, ..., ¢—1 maorouanen H(z, re¥) raksxe menrpusoamu
uaz Flr].

(b) lycre H € Flx,t] w H(z,r) — nenpusommbiii aas F[r] maOXKNR-
tenb wan F[r] menpusogumoro max F' muoroanena G € Fx], mpuuem
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0 < deg H(z,7r) < degG. Torga G nemurca naya F Ha npoussemenme
H(z,r)H(z,er)... H(z,e7 7).

(¢) Eciu B yenosugx 1. (b) deg G mpocroe, TO CyIIeCTBYeT TakKoit
muorounen A € F[t], uro kopru muorounena G pasuel A(re®) npu
k=0,1,...,q— 1.

Jlemma 2.5.3 (o coxpanenuu nenpusoaumoctn). Ilycrs F = F, a
> € F, npuaem mmorounen G € F[t] mpocroit cre-
nenu umeer 6oJIee OJJHOTO BEMIECTBEHHOTO KOPHS W HE MEHEEe OJTHOTO He
BemecTBennoro. Ecim npu srom G Henpueonum waxg F, o G Henpuso-
M Hag F[r].

rakxke r € R win |r

Jlemma 2.5.4 (0 xurpom pajmkanbHOM pacimupenun). (a) FEcam
qucao a € C pagukaabHO, TO HEKOTOPOE COMEPIKAIIEE €r0 MOJIe MOXKHO
nosnyanth u3 Q ciaenyomuvu oneparusivu: 3amenuts nosie Foaa Fr]
st mexoroporo r € C, Takoro, uro r € R wm |r|? € F, npuaem 74 € F
JI HEKOTOPOT'O IMTPOCTOTO .

(b) To e, uro B n. (a), ¢ 3amenoii 1 € F ma rl,e € F.

B nokazaresnberse . (b) MOXKHO nCosb30BaTh 6€3 J0KA3ATEIHCTBA
CJIEJIYIONIUN Pe3y/IbTaT (€ro 3JeMeHTapHOe JI0KA3aTeJbLCTBO Ha OJIHOI
crpanure cM. B [ZSS, §5], [Sk21m, §8.4.D], [Sk21y]).

Teopema 2.5.5 (reopema laycca o nonmxkenun crenenn). Ecom ¢

IIPOCTOE, TO UHUCI0 € PATUKAJIBHO C UCIOJb30BaHHEM JINITL KOPHEN cTe-
mern q — 1.

2.6 Pemrenus 3aga4 40 NPOMEXKYTOYHOTO (pUHUIITA

2.1.1. Omsemuwi: (a), (b), (c¢) —ma, (d), (e), (), (g), (h) — ner.
(a), (¢) Mueem V/342v2 = V7452 =1+ 2.

(b) Meen =L = T05 — —745v/2,

(d) Iycrs wmcio +/2 npeacrasumo. Torma

2= (V2)® = (a® + 3ab) + (3a* + b)Vb.

Tak kak 3a2+ b # 0, o Vb € Q. Buaunt, /2 € Q — nporusopetne.
Jpyroit ciocob — aHaoruduo Teopeme 2.1.4.
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(e) Habpocok nepeozo pewenus. TIpeanonokum IPOTUBHOE W BO3-
3
BeJeM B KyO paBEHCTBO V2 =a+Vb—2.
Habpocox emopozo pewenus. JlokaxkeMm, 910

\Vi#a+p\/B+Q\/E+T\/% HHI JJ1d KaKHX a)bacup7Qar€Q'

JIIst 3TOTO HOCTATOYHO JOKA3ATH, UTO v/2 # U + U/C HE JIs KAKHX
amcen u,v,¢ € Q0] := {x + yVb: x,y € Q}. Unea noxazaresscrsa
cocront B ToM, uro uncia u3 Q[vb] (¢ duxcuposamEbM b) «HEUYTH
He XyZKe» PAIHOHAJBHBIX TUCEN, T. €. CyMMa, PAa3HOCTDh, TPOU3BEICHIE
u gacraoe uncen u3 Q[vD] roxe apnsrorcs wncaamu uz Qv (i,
rosopst Hayano, Q[vb] — wucioeoe nose). [109TOMY MOKHO JOKA3BIBATH
YTBED2K/ICHUE aHAJIOTMYHO yTBepKaeHuto (d).

Ha6pocox mpemuezo pewenua. Iycrs /24 /2 = a+ Vb a1t HEKo-
TopbiX a,b € Q. Dro umcno sABAsSETCsi KOpHEM MHOrowieHa P(x) :=
(z—v2)>—2)((x+v2)?—2) ¢ parmonamsieivu kosdbdurmentamu. TTo
JeMmme o conpstzkennn 2.1.3 (e) mst r = Vb, MHOTOUIEH P HMeeT KOpeHb
a—+/b. Tak xak Vb ¢ Q, To kopuu a+ Vb pazmmans. Ho Y MHOTOYJIEHA,
P ToMBKO JIBa BENIECTBEHHBIX KOPHH: \/5 + \‘7§ " —\/5 + \3/5 IToaTomy
a+Vb=vV2+V2ua—-Vb=—-vV2+ V2. Orcrona V2 = a € Q.
[IpoTmBOpeune.

(f) Habpocor nepeozo pewerus. TIPeanonoum MpOTUBHOE U BO3BE-
JleM B KBaIpaT paBeHCTBO V2 4+ V2 = a + Vb.

Habpocox emopozo pewenus. Kopusimu muorourtena P(z) 1= (z
2)2 — 2 gpasoTCH YeThIpe umncaa £1/2 & V2, rie 3Haku + u — He 00s-
BaTeJBHO COTJIACOBAHBI. Bee 3TW d9mca MpparnnoHa bHBL. 3HAYHUT, IO

2 _

Teopeme 2.1.4 mocTaTovyHO MO0KAa3aTh, YTO MHOTOWIEH P He pasnaraert-
Cd B IPOU3BEACHUE IBYX KBaJPATHBIX TPEXYJIECHOB C PallUOHAJIHLHBIMU
ko3 uimenTaMu. JTa HEPAJIOKUMOCTE CJIEIYET U3 TOTO, 9TO TPOU3-
BeJieHne JTI00BIX IBYX KOPHEH MHOTOU/IeHa P uppanmuoHa bHo.

(h) IIycre wucio cos(2m/9) npexcrasumo. Torga OHO ABJIAETCS KOD-
nem ypaprenns 42° — 3z = —1. Tlo coiencremo 2.1.3(f) sro ypapnenne
HMeeT PaIMoOHAILHBIN KopeHb. [Iporusopedane.

2.1.2. O6o3HaunM Uepes /¢ IuCI0, IOy YeHHOE TPY ¢THHCTBEHHOM
n3BIeYeHnN KOpHd, rie ¢ € Q. Jokaxkem, 9To BCe TOJTYyUEHHbIE THUCTA
umerot Buj a+by/c, rue a,b € Q. JToctaTouHO JOKA3aTh, YTO MHOKECTBO
qHCes TaKOr0 BUJA 3aMKHYTO OTHOCHTEIBLHO CJIOYKEHWs, BLIMUTAHWS,
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YMHOXKEHWS U JIeJIeHust. DTO HEOYEBUJHO TOJHKO B CIy9ae JeTeHNd,
TS KOTOPOTO OHO CleyeT m3 pasencTsa (a+by/c)(a—by/c) = a® —b?c.

2 _p2 npusoguM Han Q, To oH mMeeT

2.1.3. (a) Ecsim muOTOWIEH T
paruoHaLHBIN KOpeHb. [IpoTuBopeune.

(b) Eciiu b # 0, ro r = —a/b € Q, uro nesozmoxkuo. [losromy b = 0,
a suauuT, a = 0.

(c) Iomeaum MuOrOwTeH ¢ ocrarkom' ma 22 — r2:

P(z) = (2® — r?)Q(z) + mz + n.

[oncrasass © = r, o JeMMe o JnHEHHOH HesaBucuMocTd (cM. 1. (b))
oJIy4aeM, 4TO OCTATOK HYJIEeBOM.

(d) Uz . (¢) crenyer, aro ecin R? =7
YIIEHA.

2 1o R ecTb KOpeHb MHOIO-

(e) O6oznaunm uepes P Muorousen u3 ycjaosus, u nycrs G(t):=P(a+
bt). Torna G(r) = 0. Buauur, uo uyukry (d) nmeem G(—r) = 0.

(f) Ecm b = 0, To yTBEpXKAeHME J0KA3aHO. B MPOTMBHOM Cirydae
10 1. (€) MHOTOUJIEH UMeeT (Pa3IndHble) KOPHU @ £ br, 3HAYIUT TpeTHii
KODEHb PAIMOHAJIEH 110 Teopeme Buera.

2.1.4. TlycTh, HATPOTHUB, TAHHLIN MHOTOUWIEH P mMveeT KOpeHb Xg =
a+ Vb, tne Vb ¢ Q. Ilo nemme 2.1.3 () 0 CONPSIKEHUE U AHATOTHTHO
eif, KOpHEM MHOTOWIeHa P sBjseTca Tak:Ke 4ncjio r| = a F Vb. ITpn
b = 0 yreep:kaenne odesuano. Ilosromy cumraem, aro b # 0. Torma
xo # 1. 3naunr, P(z) geanrcsa na (v —a)? — b. Tax kak deg P > 2, 10
muorousiex P npusonum. [IporuBopeune.

2.2.1. Omsemu: (a), (c), (d), (e), (f), (h) —mer, (b), (g) — na.
O6ozHadnM 7 1= v/2.
(a) Ilycrs uncno v/3 mpeacrasumo.
Ilepsoe pewenue. Torma

3 = (a® + 4be) + (2ab + 2¢*) V2 + (2ac + b?) V4.

Tak Kak MHOTOWIEH Z° — 2 He mMeeT PaloOHAJIbLHBIX KOPHEH, TO OH

wenpusoguM Han Q. Buaunt, 2ab 4 2¢ = 2ac + b? = 0 (cp. ¢ zagaqeii

1STO JeJIeHre C OCTaTKOM — TO K€ CaMOe€, 9YTO «3aMeHa» I2 Ha 7’2.
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2.2.2(b)). Tlosromy b3 = —2abc = 2¢®. Torga mmbo b = ¢ = 0, jmbo
/2 = b/c. Oba cirydas HEBO3MOZKHDL.

Bmopoe pewenue. Ob6o3naunv P(x):=x? — 3. Tlo memme 2.2.2 (e)
0 conpsizkeHnn P umeeT Tpu KOpHS X, L1, T2, BBEIEHHBIX B (DOPMYJIH-
poBke jlemMbl. Tak Kak HU OJIMH W3 HUX HE PAIMOHAJIEH, TO PABEHCTBO
b = ¢ = 0 HeBO3MO2KHO. 3HAYUT, 110 JIEMME O JIMHENHO HE3ABUCUMOCTH
nag Qles] 2.2.2 (b') s1u kopuun pazamanst. [Iporusopedne.

(b) Nmeem (1+ 5V2+ V4)(3+ /2 —8V/4) = —T5. (910 paBeHCTBO
HECJIOKHO MOJYUYUTH METOJOM HEOTPEICTEHHBIX KO3 MDUINEHTOB WIn
pu oMorH anroputma Eskina st MEorowienos x® —2 uw 2 4+5x+1,
cM. pemenne 3agaqn 2.2.4.) [Tostomy

1 1
1+592+¢4 25

(¢) Tycre uucao cos(27/9) npeacrasumvo. OHO sBAAETCS KOPHEM
ypaewenns 42° — 3z = —1. Jlpa 1pyrux ero BemecTBeHHBIX KOPHS €CTH
cos(8m/9) u cos(4m/9).

IIpuvenny BTOpOe permenye myHKTa (a) ana P(r) := 8x3 — 6z — 1.
[Monyuanm, uro KOpHU X, T1, T2 padanydnbl. Tak Kak €3 = 6%, TO Ty =

1 3 8 3/3\2
— = 24 = (V2)2
75 \[+75 (\/)

x1. 3HAYUT, T3 U T] HE MOIYT OBITH BEIIECCTBEHHBIMU M DA3THIHBIMHU.
[Iporusopeune.
(f) JokazaresncTBO aHAJOrWIHO 1. (C).

2.2.2. (a) Eciu muorowren x® — r3 mpusomum mas Q, To on mmeer

pannoHaJbHBIH KOpeHb. IIpotnBopetne.

(b) TIpemamonoxum mporusnoe. Hogemam z3 — 13 na a + bz + cx?
¢ octatkoM. Ilo 1. (a) octaTox Hemymesoit. O6a MHOTOWIEHA T° 3
i a + br + cx? mMeror KopeHs T = 7. 3HAUNT, OCTATOK MMEeT KOPEHb
x = r. Ce0BaTeIbHO, OCTATOK MMEET HPPAHOHAIBHBIH KOpeHs. 11po-

- T

THUBOPEYHE C TeM, UTO CTENeHh OCTATKa paBHA 1.

(b’) PaccMoTpuTE BENECTBEHHYIO W MHUMYT) YACTH.

Sameuarue. ITO YTBEPK IEHIE PABHOCUIBLHO HEITPUBOIUMOCTH MHO-
rounena o3 — r3 mag Qes). Ecu muorounen x® — r3 menpusoaum Ha
Q[es], To muorouen k + lx + max? € Q[es][x] ne moxer umers Kopeb
r. Ecu muorowien o3 — 3 mpusomuym mas Q[e3], To oxuE U3 COMHOMKH-

Teseil maeT amHeitHyio 3aBucHMOcTDb wncen 1,7, r2 max Qles).
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3 3. Tloacrasnsas x = r,

(¢) Tlomes MM MHOTOUIEH C OCTATKOM HA T
o JleMMe O JimHeiHo# HezaBucuMmocTd 1. (b) mosywgaem, 9To 0CTATOK
HYJIeBOM.

(d) Io m. (c) momysaem, aro eciu R3 =7
ro4JicHa.

(e) O6oznaunm uepes P Muorousen u3 ycjaosus, u nycrs G(t):=P(a+
bt+ct?). Torga G(r) = 0. Buaunt, no 1. (d) umeem G(reg) = 0 = G(re3).

(f) Hepsoe doxasamesvcmeo. JlocTraTrodnHo TOKA3aTh YTBEPKICHIE
ana a = 0. s ancna t = br 4 cr? Bemosnseno pasencTso 2 = b33 +
38 + 3berdt.

UHBIME CJI0BAME, BBULY TOro, 4To u> + v3 4+ w? — 3uvw nesmrcs Ha
U+ v+ w, anciao a + br + cr? smisercs KOpHEM MHOTOYJ/ICHA

3 10 R ecTb KOpeHb MHO-

(x — a)® — 3berd(z — a) — bPr® — 3.

Bmopoe doxazamenvcmeo. O6o3madnM xg = a+ br 4 cr?. Paznoxum
qUCIIA :Ulg upu k= 0,1,2,3 110 creneHsM ducia 7

a:’é = ay, + bpr + cpr’.

JlocTaTouHO HAMTU 9UCTIA Ao, A1, A2, A3 € QQ, He Bce U3 KOTOPBIX paBHbI
HYJTIO, Y/IOBJETBOPAIONIAE YCTOBHIO Ao + Ao + Aexd + Asx = 0. s
9TOI'0 HY2KHO, LITO6]:)I 9TU YUCJIa YAOBJICTBOPAIN CUCTEME ypaBHeHI/Iﬁ

Aoag + ...+ Agag =0,
Aobg + ...+ Azbg =0,
Aoco + ...+ Azcz = 0.

Kak m3BecTHO, OfHOPO/IHAS (T. €. ¢ HYJEBLIMU MPABBIMU YACTIMHU) CH-
cTeMa JUHEHHBIX YPABHEHU C PAIMOHAIBHBIME KO3 MUImenTaMu, B KO-
TOPO# ypaBHEHUI MeHbIIle, YeM MEPEMEHHBIX, UMeeT HETPUBUATHLHOE Pa-
IMMHOHANBLHOE PETeHne. JHAUNT, TpedyeMble TUCIa HaM Ty TC.

IToyueHHBI MHOTOYIEH HMEET CTENeHb POBHO 3 BBUIY JieMM 2.2.2 (e,
b’).

Tpemve dokazamenvemso. Oboznaanm A(r) := a+bx+cx?. Ilpons-
Bejienne (v — A(tg))(z — A(t1))(x — A(t2)) aBasieTcs cuMMETPHYECKIM
MHOTOYJIEHOM OT tg,t1, 1. 3HAUNT, OHO SIBJIAETCA MHOTOWIEHOM OT X
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¥ OT 3JIeMEHTAPHBIX CUMMETPUYECKUX MHOTOUIEHOB OT tg, t1,te. 3Haue-
HUS 9TUX JIEMEHTAPHBIX CUMMETPUYIECKNX MHOTOYJIEHOB NIPH tf, = r6]§ ,

=0, 1, 2, paBubl kK03 DUIHEHTAM MHOIOWIEHA > — 15, KOTOPbIE PALli-
oHaJIbHBI. [I03TOMY paccMOTpeHHOEe MTPOU3BEAEHNE SABISIETCST HCKOMBIM

MHOI'OYJICHOM.

2.2.4. Tlyctb npwm m3BjAeUYeHUN KOPHSI TPETHEH CTEIEHU IOIYJHI0CH
qucsio r. Eemu |r| € Q, To yreepxkuenne ouesuano. Ecmu |r| € Q, To
muorouten 8 — r3 mernpusoauy maz Q.

HocraTodHo 10Ka3arh, 4To = h(r) a1 HEKOTOPOrO MHOTO-

usena h. [1o 1eMMe 0 HEIPUBOUMOCTH, MHOTOUIEH 5 — 13 HEIIPUBOIUM
waz Q. TTosTomy OH B3aMMHO TIPOCT € a4 b + cx?. BHAYNT, CYIECTBYIOT
MHOTOUJIEHbI g U h, ajs koTopwix h(z)(a+bx +cx?) +g(z)(2® —r3) = 1.

Torna h — MCKOMBIF MHOTOYJICH.

2.3.2. (a) Bce kopuu muorounena x4 — r¢ ecrs r, rsq,mg, el
[Iycte on npusoanm Haj Q. Mozy/b ¢BOGOJHOTO YIE€HA OJHOTO U3 YHU-
TAPHBIX COMHOXUTEJIEH PA3JIOKEHNs PAIMOHAJIEH ¥ PABEH [IPOU3Be/ie-
HITIO MOJYJTell HEKOTOPBIX k 13 9Tux Kopreii, 0 < k < . 3uaunr, r* € Q.
Taxk kak ¢ upocroe, To umeeM kx + qy = 1 1719 HEKOTOPBIX LEIbIX T, Y.
Torga r = (r*)*(r?)¥ € Q. IlpoTuBopeune.

(b) IIpeosnoxum nporusaoe. Pacemorpum muorownen A(z) nan-
MEHBIIIeHl CTereHu, JJis KOTOPOro JjieMMma He BbinosHsercs. [lomesnm
9 —r? na A(z) c ocrarkom R(z). Torpa deg R < deg A, R(r) =0 n o
. (a) muorowsen R(x) wenysepoii. [TpoTusopeune ¢ BBIGOPOM MHOTO-
wiena A.

(c) Jokazarenbcrro anasorndno 3agadam 2.1.3 (¢, d), 2.2.2 (d). Uec-
nosb3yiire 1. (b).

(d) JTokazarennCrBa TMOBTOPSIIOT BTOPOE M TPETHE JTOKA3ATENHCTBA
naemMbl 0 parmonaasHocTn 2.2.2 (f). Hykuo TOMBKO Be3nme 3amMeHnTh 3
Ha ¢ u 2 Ha ¢ — 1 (Haupumep, BO BTOPOI CTPOYKE BTOPOIO J0KA3ATE b
crea k=0,1,2,...,q).

2.7 Peuienusi ocTaJbHbIX 3aJa4

1.2.3. (a,c) dro creayer u3 Teopem 1.2.2.b,a, COOTBETCTBEHHO.
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1.3.1. (c,d) Ucnoassyiite memodve deav @Peppo u Peppapu [Sk21m,
§3].

2.2.1. (d) Eciu umcio v/3 IpeacTaBuMoO, TO 110 JIEMMe O PAIHOHAb-
Hoctu 2.2.2 (f) oHO sBJISIETCSI KODHEM HEKOTOPOI'O KyOGHYecKoro MHOIO-
wrera. [IpoTuBopedne ¢ HEMPHBOAMMOCTBIO MHOTOUTeHa o° — 3 Ha Q.

(e) Ananornygno 1. (a), (¢) noaydyaem, 9T0 KOMILIEKCHbIE KODHEI MHO-
rousiena r> — 3 ecTh HCTA T(, T1, T2, BBEISHHBIE B (POPMYTHPOBKE JTeM-
Mt 2.2.2 (e). Hostomy (a + br + cr?)el = a + bres + cr?e3 nna wexo-
roporo s € {1,2}. Orcioza 110 JeMMe O JUHEeHHOM He3aBUCUMOCTU HAJ|
Q[es] 2.2.2 (b") nomyuaem, aro a = 0 u be = 0. Mosromy mbo /3 = br,
6o /3 = cr?. TIpornsopeurne.

2.2.3. 1Ilo nemme o parmonansrocTn 2.2.2 (f) cymecTByeT MHOrOWIeH
CTeIeHY He BB 3 ¢ KopHeM a + br +cr?. 113 sToro bakTta u u3 Henpn-
BogumocTu Has Q mammoro muorowsiena P mosyaaem, uro deg P < 3.
[To smemme o compsizkennu 2.2.2 (e) MHOrOUWIEH P mMeeT TpH KODHS
g, T1, T2, BBEAEHHBIX B (DOPMYJUPOBKE JeMMbl. Tak Kak MHOTOUJIEH
P wenpusogmm wan Q, To Hu oauH U3 KOpHei He parmonaseH. [losTo-
My paBeHCTBO b = ¢ = () HEBO3MOKHO. 3HAYUT, IO JEMMe O JIMHEHHON
nezapucuvoctn mHag Qes] 2.2.2 (b') kopru zg, 21, x2 pasmuansl. Creno-
BarespHO, deg P = 3.

Tak Kak <€§ = agk, TO T2 = X1. SHAYNUT, T3 U L1 HE MOTYT OLITH BEIIE-
CTBeHHBIME ¥ pasjuubbivMu. CregoBarenbho, xo,x1 € C — R. Tlostomy
P mMeer poBHO OJMH BEIIECTBEHHBIH KOPEHD.

2.3.1. OGozmaunm 7 := v/2 u A(z) := ag + a1z + asx® + ... + agz’.

(a) HycTs wncao /3 npeacrasuvo. Torma Mo TeMMe 0 COMPSIKEHIT
2.3.2 (c) muorouwnen 22 — 3 mmeer xKopun A(rek) nna k=0,1,2,...,6.
Tak Kak 3TOT MHOTOUIEH HE MMEET PAITMOHAJIBHBIX KOPHEH, TO 10 JIeMMe
o ymmHefiHOl HezasucumocTr Hax Qley] 2.3.4 (b) sTH KopHE pasIUIHBL.
[TporuBopeuwe.

(b) O6o3naunm uepes P MHOTOUIEH, JIJIs KOTOPOTro cos 7z = P(cos ).
(Jokaxknre, 9T0 TAKOH MHOMOYJIEH CylIeCTBYeT!)

2

Ilepsoe pewenue. Ilycrs wmcno cos 5§ mpeacTaBuMoO. AHATOIHIHO
n. (a) panabii MEOrO4YIeH P uMeer monapHo pasjiuduHble KODHU Tf =
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A(rek) nna k=0,1,2,...,6. Tak kak P(0) > 0, P(1) <0 u P(2) >0,
TO MHOTOWIEH P mMeeT BEIeCTBEHHBI KOPEHb Tj, OTAHYHBLIA OT Zg.
Nmeem 5’7“ = s;k. IlosTomy z), = T, = x7—. [IpoTHBOpEUHE.

Bmopoe pewenue. Kopuamn muorounena 2P(x) + 1 assitorcs Be-

M mpu k =0,...,6. OgH0 U3 HUX,

MIECTBEHHBIE UUCIA Yj 1= COS
a UMEHHO Yo = —1/2, pauHOHaﬂbHo.

B creaybmiem ab3alie Mbl JOKazKeM, 9TO THCIO Yo UPPAIHOHATBHO.

(Nnave u3 paBeHCcTBA 5%1 —2ype21+1 = 0 caeayer, aTo €21 = a+ivb
7T HeKOoTophX a,b € Q. Toryma u 4meso e7 = £3; TOXKe HMeeT TaKoil
Buj. Ho 7 gB/isiercst KOpHEM HenpuBoguMOro? Muorowiena 1+x+. ..+
2%, uTo mporuBopeunT anasory Teopemsr 2.1.4 s Ynce Bua a—l—zxf b.)

WNrak, aucio yg uppammoHaibHO U SBASIETCS KOPHEM MHOT'OYJICHA
2P(z)+1
“5e11 crenenn 6. Torya no semmam o conpgamxennu 2.3.2 (c) u o -
Hejinoit HesaBucumocTH Hax Qle,] 2.3.4 (b) 9TOT MHOrOUIEH UMEET CeMb
IIOIMAPHO PA3JIMYHBIX KOpHeﬁ, YTO HEBO3MOZKHO.

(c) IIycrs uncio V3 mpexcrasumo. Tora 1o jeMMe 0 PaIHOHAb-
Hoctr 2.3.2 (d) cymecTByer HEHy/JEBOH MHOTOU/IEH CTETeHH He BBIIe 7
¢ kopHeM /3. IIpoTuBopedne ¢ HEIIPUBOIAMOCTHIO MHOTOUIeHA £ — 3
nag Q.

(d) Ilycrs umcno v/3 mpegcrasumo. Amajsormyso 1. (a) Bce KOM-
[UICKCHBIE KOPHE MHOTOWICHA T/ — 3 eCTb A(rs’?) mg k=0,1,2,...,6.
[Tosromy A(r)es = A(rer) nas nekoroporo s € {1,2,3,4,5,6}. Orcrona
10 J1eMMe O juHediHoi Hesasucumoctu Hag Qleg] 2.3.4 (b) ap = 0 ma
mo6oro k # s. Ilosromy v/3 = agr®. IpoTuBopedne.

(e) IlycTs Kakoil-HHOYIbL W3 KOpHEe( mpemcraBuM. J{aHHBIN MHOTO-
wien P He nMeeT pannoHaIbHBIX KOpHe#. Torma mo jemMmme 0 compsizke-
Huu 2.3.2.c U JleMMe O JuHeiHoil HesasucumocTn Hag Q] 2.3.4.b P
MMEET MOIMAPHO PA3INYHLIC KOPHU Xf = A(Tel?) mrg k=0,1,2,...,6.
Tak kax P(0) > 0, P(1) < 0u P(2) > 0, o P uMeeT BelecTBeHHbli Ko-

PeHb Tj, OTAUIHBIN 0T Xg. UMeem 6’? = E;k. [Mosromy x = T, = T7—k-

[IpoTuBOpeune.

QHEHpI/IBO,ZI;I/IMOCTb MHOTO4JICHa g(:L‘) =1+x+...4+ 25 moxno NOKa3aTb, Ha-
puMep, IPUMEHMUB IpU3HaK Difzennrreiina Kk muorowieny g(z + 1). Bupouewm, 31ech
JOCTATOYHO JO0KA3aTh, UYTO V HETO0 HET PAIMOHAJBHBIX Je/mTeneil crenenu 1 u 2.
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2.3.3. (a) [Mycrs muorounen npusogum. CBoGOHBIN HjIeH OJHOTO U3
m
q

as mexoroporo m. Hostomy 78 € Qle,]. Manee amamormuno jeme
2.3.2 (a) moyuaeM r € Q[e4]. IIporusopeane.

ITyukrsr (b) u (c) BBIBOAgTCS 13 11. (2) aHAJIOIUYHO COOTBETCTBYIO-
IMUM IIYHKTaM 3aja9d 2.3.2.

. k
YHHTApPHBIX COMHOMKUTeTel pa3ioxenns jexut B Q[e,] u pasen + "¢

2.3.5. llpenmnosioxkum riporuHoe. O603HAYUM JAHHBIA MHOIOYUJIEH Ye-
pe3 P. Ilpu g < deg P nosiygaem npoTUBOpPEUHRE ¢ JIEMMO# 0 paIruoHaIb-
uocru 2.3.2 (d). IIpu ¢ > deg P o iemme o conpszkenun 2.3.2 (¢) u reM-
Me o JuHeliHoi HesaBucumocTy Hal Qe,] 2.3.4 (b) MHOrOUNeH P nveer
ITOIAPHO PA3JNYHBIC KOPHA L) = A(rs’;) mak=0,1,2,...,q— 1. Ilpn
q > deg P nosyuaem mporupopeune. Ilpu ¢ = deg P u3 yciaosuit q # 2
U T = Tqgk % T} TOJy9aeM eUHCTBEHHOCTh BEIIECTBEHHOTO KOPHS.

2.4.1. Omeemw: sHer. JlokazaTenbCTBA aHAJOTHIHBI PEITIEHUAM 3a-
mada 2.1.1.(e,g). (a) Ilepsoe pewenue. Ilepermmimem ycaosue B Buje (a +

evV/2) + (b-+ dVDYE = 0. Tax xa b+ dv/3 # 0, 10 —V3 = 24072

A + B2 nna nekoropnix A, B € Q. Bo3Boast B KBaIpaT, HOIydaeM
A% 4+ 2B? = 0. IIporusopeune.
Bmopoe pewenue. PaccmarpuBas Bce KOMILJIEKCHBIE KOPHH MHOTO-

unena xt — 2, noxaskem ero mempmusomuMocts Hag Q. IlosTomy om He
MOYKET MMeTh OOIIHil KOPEHb ¢ MHOTOUIeHOM a4 bx +cx? +dx? we Goee
YyeM TpeThbell CTeneHu.

(b) JToMHOXKBTE Ha CONMPSIKEHHOE.

(c¢) IIpome mokasars cpasy, ato V2 # a 4+ pvb + gy/c + rvbe, toe
a,b,c,p,q,r € Q. JIjst 5TOTO ZOCTATOYHO JOKA3ATE, 9T0 V/2 # 1+ v4/C,
e u v - ancaa suga a5V, o, B € Q (¢ bukcuposasHEM b) "HETYTH
He XyxKe'paIrmoHabHBIX JHCeNT, T.€. CYMMa, Pa3HOCTb, [IPOU3BEICHUE
M 9aCTHOE IHCEST TAKOTO BUJIA TOXKE SIBJSIIOTCS IHCJTaMM TAKOTO BUIA
(nm, TOBOPS HAYYHO, TAKHE UUC/IA OyyT 00PAa30BBIBATL YUCAOBOE NO-
se). IloaTomy MOXKHO JTOKa3bIBATH yTBEpXK/IeHue anasorundno 2.1.1(e).

o 3
2.4.2 (a) Joxazxem GoJiee CUIBHBII (bAKT: IHCIO0 /2 He ABJISETCA pa-
ANKAJIbHBIM C U3BJICYCHUEM JTIO6OFO KOoJImHeCTBa KBa/JIPaTHBIX KOpHeﬁ.
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Torma cymecrByeT Takas OarrHg KBAIPATUIHBIX PACIITHPEHNN
Q=R ckhcFhcFc..F, 1 CF,CR,
uro /2 € Fy—F,_1. Ilockonbky v/2 ¢ Q, mosyaaem, 4to s > 2. 3HaunT,
V2=a+pva, e o,B,ac€F, 1, Va¢Fs 1 u B#0.
Orcrona
2= (V2)’ = (a® + 3af%a) + (3a°5 + f*a)Va = u +vy/a.
IMockoabky 2 € Q C Fs_1, mmeem 2 — u € Fs_1. I3 Toro, 4ro
nwa=2—-u u veF,_q,

clelyeT PaBeHCTBO
0=v=3a3+ Ba.

Tax kak 302 + B%a > 0, o B = 0. IIporuBopeune.

Perenus ocrasnbHbIX 3329 MOxKHO HaiiTu B [ZSS, §9.1, §9.4.5, §9.4.7]
(sT0 §5.1, §5.4.3, §5.4.4 GymaxkHoit Bepcun). B wacTHOCTH, HOKa3aTE b
crBa Teopem 1.2.2.a u 1.3.3 mpusesens! B |ZSS, §9.4.5, §9.4.7], coorBer-
CTBEHHO.
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And the leap is not — is not what I think you sometimes
see it as — as breaking, as acting. It’s something much
more like a quiet transition after a lot of patience and —
tension of thought, yes — but with that [enlightenment| as
its discipline, its orientation, its truth. Not confusion and
chaos and immolation and pulling the house down, not
something experienced as a great significant moment.

I. Murdoch, The Message to the Planet

1 Introduction and main results
1.1 Overview and motivation

This subsection is formally not used later.

We present a short exposition of Kronecker’s proof of the well-known
Galois theorem 1.3.2 on insolvability of algebraic equations in radicals.
This proof is interesting because it is presumably the shortest.

We do not use the terms ‘Galois group’ and even ‘group’. However,
our presentation is hopefully a nicely paved shortcut to the edge of
Galois theory. In the proof of the main result we introduce the idea of
conjugation. This is an important particular case of ‘field isomorphism’
sufficient for the main result. So this project provides a bridge (by
showing that there is no gap) between elementary mathematics and
Galois theory.

The project is accessible to students familiar with polynomials and
complex numbers (permutations are not involved).

We claim no novelty (except possibly expository novelty). The idea
of proof presented here is known [Do65, §25|, [Pr07, Ti03| and is pre-
sumably due to Kronecker. (A mistake in these expositions [Sk21m,
Remark 8.4.18b] is corrected in expositions [Sk08, PC19], [Sk21m, §8].)
Unfortunately, this proof is not well-known.

The proof presented is also interesting because it does not involve
permutations. Thus as the ‘reason’ for the insolvability we see not
that the group As of even permutations is not solvable, but that there
is a degree 5 polynomial with rational coefficients irreducible over Q,
having more than one real root and having at least one non-real root.
So this proof is different from other proofs of Galois and Abel theorems



presented in [Al04, Ay82, BelO, Be06, Br, Ed84, FT, Ha78, Lell, PC19,
Pe04, Ro95, St94, Sk15] (see comments and corrections of some mistakes
in [Sk15]).

1.2 Insolvability in real radicals

A real number is called expressible in real radicals if it can be
obtained using number 1 and operations of addition, subtraction, mul-
tiplication, division by a non-zero number, and taking the n-th root of
a positive number, where n is a positive integer. In other words, a real
number a is expressible in real radicals if some set containing this num-
ber can be obtained starting from the set {1} and using the following
operations. To a given set M C R containing numbers z,y € M one
can add

numbers x4+ y,z —y,xy, number x/y when y # 0,

and number {/z for x > 0 and integer n > 0.

1.2.1. (a) Any real root of a quadratic equation with rational coef-
ficients is expressible in real radicals.

(b) The equation 2° + 2 + 1 = 0 has exactly one real root which is
expressible in real radicals.

(c) The equation z* + 4z — 1 = 0 has two real roots; both of them
are expressible in real radicals.

Theorem 1.2.2. (a) The number cos(27/9) is not expressible in
real radicals.

(b) There exists a cubic polynomial with rational coefficients (for
example, 23 — 3z + 1) none of whose roots is expressible in real radicals.

You can prove part (b) of this theorem after solving the problems
before the semifinal. You can use without proof part (b) for other
problems (only) of §1.2.

1.2.3. (a) For any n > 3 there exists a polynomial of degree n
with rational coefficients, one of whose roots is not expressible in real
radicals.

(b)* The analogue of (a) with the words ‘one of the roots is not
expressible’ replaced by ‘none of the roots is expressible’ is correct. (At



the same time, the roots of some equations of high degrees, for example,
2% = 2, may well be expressible in real radicals.)

(c) The trisection of an angle is impossible in real radicals. That
is, there exists a number « (for example, « = 27/3) such that the
number cos « is expressible in real radicals and the number cos(a/3) is
not expressible in real radicals.

1.3 Insolvability in complex radicals

A complex number is called expressible in radicals if it can be ob-
tained using number 1 and operations of addition, subtraction, mul-
tiplication, division by a non-zero number and taking the n-th root,
where n is a positive integer. In other words, a complex number a is
expressible in radicals if some set containing this number can be ob-
tained starting from the set {1} and using the following operations. To
a given set M C C containing numbers z,y € M one can add

numbers x4+ y,z —y,xy, number x/y when y # 0,

and any number r € C such that " = x for some integer n > 0.

1.3.1. (a) Any (complex) root of a quadratic equation with rational
coeflicients is expressible in radicals.

(b) The number cos(27/9) is expressible in radicals.

(c,d) Same as (a) for equations of 3-rd and 4-th degree.

(e) If the real and the imaginary part of a complex number z are
expressible in real radicals, then z is expressible in radicals.

(f) The converse to (e) is incorrect.

Analogous assertions to (a,c,d) for equations of higher degrees do
not hold.

Theorem 1.3.2 (Galois). There exists an equation of 5-th degree
with rational coefficients (for example, 2° — 4z + 2 = 0) none of whose
roots is expressible in radicals.

The famous problem of solvability in radicals was solved by weaker
Ruffini-Abel theorems proved a little earlier. Their rigorous state-
ments are more complicated [Sk21m, Ruffini Theorem 8.2.2|, [Sk15,
Remark 7]. An easier way to solve the solvability problem is presented



in [Sk21m, Theorem 8.1.13 and its proof in §8.4.F|. Here we present
an alternative short way: deduction of Galois Theorem 1.3.2 from the
following result.

Theorem 1.3.3 (Kronecker). If a polynomial with rational coeffi-
cients is irreducible over Q and has prime degree, has more than one
real root and has at least one non-real root, then the polynomial has
no roots expressible in radicals.

This theorem is interesting and nontrivial even for polynomials of
degree 5. You can prove this theorem after solving the problems after
the semifinal.

1.4 Recommendations for participants

For every solution which has been written down and marked with ei-
ther ‘+’ or ‘+.” a student (or a group of students) get a ‘bean’. The jury
may also award extra beans for beautiful solutions, solutions of hard
problems, or solutions typeset in TEX. The jury has infinitely many
beans. One may submit a solution in oral form, but one loses a bean
with each 5 attempts (successful or not).

If a mathematical fact is formulated as a problem, then the objec-
tive is to prove this fact. (Open-ended questions are called challenges
or riddles; here one must come up with a clear wording, and a proof.)
If a problem is marked by bold and named ‘theorem’ (‘lemma’, ‘corol-
lary’, etc.), then this statement is important. Usually we provide (as
a problem) the formulation of beautiful or important statement before
its proof. In this case to prove this statement one possibly needs to
solve next problems. If you are stuck on a certain problem, try looking
at the next ones. They may turn out to be helpful. We advise all the
students working on the project to consult the jury on any questions
on the project. Students who successfully work on the project will get
interesting extra problems.

Please notify us if you already know solutions of several problems.
If you confirm your knowledge by presenting some of them, you will be
allowed not to receive plus-marks for their solutions, but to use them
in solutions of other problems.



2 Proofs as sequences of problems

In this text ‘polynomial with rational coefficients’ is called a ‘polyno-
mial’. Denote
gq := cos(2m/q) + isin(27/q).

2.1 Representations using only one square root

2.1.1. Can the following number be represented as a + v/b with
a,beqQ:

(a) V3+2v2 (b)) o (o) VT+5v2 (d) V2

@ VI+9Z () V2HVE  (8) VI+VE+VE  (h) cos(2n/9)?

Observe that for (g) you would need ideas from §2.4.

Lemma 2.1.2 (Extension). Suppose we can obtain a number using
number 1, several operations of addition, subtraction, multiplication,
division by a non-zero number and exactly one operation of taking the
square root of a positive number. Then the number can be represented
as a + /b, where a,b € Q and b > 0.

Lemma 2.1.3. Assume that 7 € R — Q and 72 € Q.

(a) Irreducibility. The polynomial 22 — 72 is irreducible over Q.

(b) Linear independence. If a,b € Q and a + br = 0, then
a=0b=0.

(c) If r is a root of a polynomial, then this polynomial is divisible
by 2% — 2.

(d) Conjugation. If r is a root of a polynomial, then —r is also its
root.

(e) Conjugation. If a,b € Q and a polynomial has a root a + br,
then a — br is also a root of this polynomial.

(f) If a,b € Q and a cubic polynomial has a root a + br, then this
polynomial has a rational root.

Theorem 2.1.4. If a polynomial of degree at least 3 is irreducible
over Q, then none of its roots equals to a £ /b for some a,b € Q.



2.2 Representations using only one cubic root

2.2.1. Can the following number be represented as a + b2 + /4
with a,b,c € Q:

() VB (b) oghogms (0) cos(2m/9): () VB () VB

(f) the maximal real root of 2® — 4z + 2 = 0;

(g)* the unique real root of 2% — 6x — 6 = 0;

(h)* the unique real root of 3 — 9 — 12 = 07

Lemma 2.2.2. Assume that 7 € R — Q and 7 € Q.

(a) Irreducibility. The polynomial 23 — 73 is irreducible over Q.

(b) Linear independence. If a + br + c¢r? = 0 with a,b,c € Q,
thena=0=c=0.

(b’) Linear independence over Q[es]. If

k. l,m € Qles] := {u+ves: u,v € Q}

and k+¢r + mr? =0, then k=0 =m =0.

(c) If r is a root of a polynomial, then this polynomial is divisible
by 23 — 3.

(d) Conjugation. If r is a root of a polynomial, then the numbers
egr and egr are also its roots.

(e) Conjugation. If a,b,c € Q and a polynomial has root zy :=
a + br + cr?, then the numbers

T1:=a+ besr + 0537’2 and z9:=a+ be%r + ceqr?

are also its roots.
(f) Rationality. If a,b,c € Q, then the number a + br + cr? is a
root of some cubic polynomial.

Theorem 2.2.3. Suppose an irreducible polynomial either has more
than one real root or its degree is not equal to 1 or 3. Then this poly-
nomial has no root a 4 br + cr? for any r €¢ R — Q, a, b, ¢,7® € Q.

Lemma 2.2.4 (Extension). A number expressible in real radicals
with only one extraction of a cubic root can be represented as a+br+cr?,
where 7 € R and a,b, ¢, € Q.



2.3 Representations using only one root of prime order

2.3.1. Can the following number be represented in the form
ap + a1 V2 + agV22 4 - + ag V26

with ag,a1,a9,...,a6 € Q:

(a) vV3;  (b)cos3; (c) V3 (d) V3

(e) some root of the polynomial 7 — 4x 4 27

Lemma 2.3.2. Let ¢ be a prime number, r € R — Q and r? € Q.

(a) Irreducibility. The polynomial 27 — r? is irreducible over Q.

(b) Linear independence. If r is a root of a polynomial A whose
degree is less than ¢, then A = 0.

(c) Conjugation. If r is a root of a polynomial, then all the num-
bers 7’52, k=1,2,3,...,g— 1, are also roots of this polynomial.

(d) Rationality. If A is a polynomial, then the number A(r) is a
root of some nonzero polynomial which degree is at most q.

Denote
Qleq) := {ao + a1e4 + agag + ...+ aq_gsg*Q tag,...,aq-2 € Q}.

2.3.3. Let ¢ be a prime number, r € C — Q[g,] and r? € Q[g,].

(a) The polynomial z¢ — r? is irreducible over Qg,].

(b), (¢) Prove the analogues of parts (b,c) of the previous problem
for a polynomial with coefficients in Q[g,].

Lemma 2.3.4. * Let ¢ be a prime number, r € R — Q and r? € Q.

(a) Irreducibility over Q[e,]. The polynomial 29—r is irreducible
over Q[e,].

(b) Linear independence over Q[g,]. If A is a polynomial of
degree less than ¢ with coefficients in Q[e,] and A(r) =0, then A = 0.

Theorem 2.3.5. Let ¢ be a prime. Suppose an irreducible over Q
polynomial P either has more than one real root or its degree is not
equal to 1 or ¢. Then there are no polynomial A € Q[z] and number
r € R — Q such that 7?7 € Q and A(r) is a root of P.

Lemma 2.3.6 (Extension). Any number expressible in real radicals
with only one root extraction is equal to A(r) for some r € R, ¢ € Z
and A € Q[z], with 7?7 € Q.



Thus if a polynomial of prime degree g > 2 is irreducible over Q and
has more than one real roots, then none of these roots is expressible in
radicals with only one root extraction.

2.4 Multiple root extractions

2.4.1. Are there rational numbers a, b, ¢, d for which /2 is equal to

b
(a) a+bv2+cvV2+dV3;  (b) “i\‘/ﬁ;; (c) a+ Vb + /e
c

(d) a+ b+ e (e) at+ Vb+ e+ Vd?

2.4.2. (a) The number /2 is not expressible in radicals with only
two extractions of square roots.

(b) The number cos(27/9) is not expressible in radicals with only
two root extractions.

If FCC,reCandr?e F for some positive integer ¢, then let
Flr] = {ao +a1r +agr? + -+ +ag_177' | ag,...,a4-1 € F}.

In this text a field is a subset of C which is closed under summation,
subtraction, multiplication and division by a non-zero number. The
conventional name is ‘number field’ (the technical term ‘field” in math-
ematics refers to a more general object). This notion is useful for us
because the Polynomial Remainder Theorem holds for polynomials with
coefficients in a field.

Lemma 2.4.3 (Simple Radical Extension). If a number a € C is
expressible in radicals, then some field containing a can be obtained
from Q using only the following operations: replace a field F' by F|[r]
for r € C and a prime ¢ such that r¢ € F'.

2.4.4. (a—d) Prove the analogues of Assertions 2.3.2.(a—d) with Q
replaced by a field, and with polynomials over Q replaced by polyno-
mials over the field.

Lemma 2.4.5. Let ¢ be a prime, F' C R a field, » € R — F' and
r? € F. If a polynomial with coefficients in I’ has degree 3, has three
real roots none of which lies in F', then none of the roots lies in F[r].



2.5 Towards the proof of Kronecker’s theorem

In this subsection ¢ > 2 is a prime, » € C a number, e = ¢4 and FF C C
a field containing r?,e but not r.

Lemma 2.5.1. (a) Irreducibility. The polynomial t? — r¢ € F'[t]
is irreducible over F.

(b) Linear independence. If P(r) = 0 for some polynomial P €
F[t] of degree less than ¢, then P = 0.

(c) Conjugation. If P(r) = 0 for some polynomial P € Ft], then
P(re¥) =0 for every k =1,...,¢— 1.

(d) Parametric conjugation. If P € Fz,t] and P(z,r) = 0 as
a polynomial in z, then P(z,re*) = 0 as a polynomial in z for every
k=0,1,...,q—1.

(e) Rationality. For any H € F|x,t| we have

H(z,r)H(z,er)... H(z, e 'r) € Flz].

(f) Reality. If F = F and either r € R or |[r|*> € F, then either
among the values A(re*), k=0,1,...,q — 1, of a polynomial A € FJ[t]
at most one is real, or all these values are real.

2.5.2. (a) Suppose that H € Flz,t] is a polynomial such that
H(x,r) is irreducible over F[r]. Then for any k = 0,1,...,q — 1 the
polynomial H(z,7e") is irreducible over F[r] as well.

(b) Let G € F[z] be an irreducible over F' polynomial. Suppose that
H € F[z,t] is a polynomial such that 0 < deg H < deg G and H(x,r)
is an irreducible over F'[r] factor of G. Then G is divisible in F' by the
product

H(z,r)H(z,er)... H(z,e7 tr).

(c) If in addition to the assumptions of (b) deg G is a prime, then
there is a polynomial A € F[t] such that the roots of G are A(re*) for
k=0,1,...,q—1.

Lemma 2.5.3 (Keeping Irreducibility). Let » € C be a number.
Suppose that F' = F and either » € R or |r|?> € F. Take a polynomial
G € Ft] of prime degree which has more than one real root and has at
least one non-real root. If GG is irreducible over F', then G is irreducible
over Fr].
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Lemma 2.5.4 (Hard Radical Extension). (a) If a number a € R
is expressible in radicals, then some field containing a can be obtained
from Q using only the following operations: replace a field F' by F[r]
for r € C such that either r € R or |r|*> € F, and ¢ € F for a prime q.

(b) Same as (a) with r? € F replaced by r?,e € F.

In 2.5.4(b) you can use the following result without proof. For an
elementary one-page proof see [Sk21m, §8.4.D].

Theorem 2.5.5 (Gauss Lowering Degree Theorem). If ¢ is a prime,
then the number ¢ is expressible in radicals using only roots of degree
q— 1.

2.6 Solutions of some problems before the semifinal

1.2.2. (a) Apply the triple-angle formula for cosine. We see that the
numbers cos(27/9), cos(87/9), cos(147/9) are the roots of the equation
8y2 — 6y +1 = 0. By (b) none of these numbers is expressible in real
radicals.

1.2.3. (a,c) This follows from Theorems 1.2.2.b,a, respectively.

1.3.1. (c,d) Use del Ferro and Ferrari methods [Sk21m, §3|.

2.1.2. It would suffice to prove that the set of all numbers of the
form a £+ v/b is closed under operations of addition, subtraction, mul-
tiplication and division. This is obviously false: (1 + v/2) + (1 + /3)
cannot be represented as a + v/b, where a,b € Q (prove this!).

2.1.1. Answers: (a), (b), (c) — yes, (d), (e), (f), (g) — no.

(a), (c) We have V/3+2v2 = V/7+5V/2=1+2.

1 7—5V2
(b) We have T T2 7+ 5V2.
(d) Assume that /2 is representable in this form. Then

2= (V2)% = (a® + 3ab) + (3a® + b)Vb.

Since 3a? 4+ b # 0, we have Vb € Q. Thus V/2 € Q, which is a contra-
diction.

(e) Sketch of the first solution. It is easier to prove the stronger
assertion:

V2 # a+pVb+ g+ rVbe for any a,b,c,p,q,r € Q.

11



It suffices to show that /2 # u + vy/c for any u,v,c € Q[Vb] =
{z+yvb: 2,y € Q}. The idea of our proof is that numbers from Q[v/]
(with b fixed) are ‘as good as’ rational numbers. That is, the sum, the
difference, the product and the quotient of the numbers from Q[v/d]
are also the numbers from Q[v/5] (the common terminology: Q[v/d] is
a number field). Then we can prove the assertion similarly to (d).

Sketch of the second solution. Assume that V2+ Y2 =a+ Vb
for some a,b € Q. This number is a root of the polynomial P(z) =
((x — v2)? — 2)((z + v/2)® — 2) having rational coefficients. We have
V2 + /2 ¢ Q (prove this!). Hence vb ¢ Q. By the Conjugation
Lemma 2.1.3 (e) for r = v/b we have P(a — v/b) = 0. Since Vb ¢ Q,
then roots a + /b are different. The polynomial P has only two real
roots, namely V2 4+ /2 and —v/2 + /2. Thus a + vb = V2 + /2 and
a— Vb= —/2+ /2. Therefore v/2 =a € Q. This is a contradiction.

(f) The roots of the polynomial P(x) = (2% — 2)? — 2 are four
numbers of the form £1/2 4 v/2, where the signs need not agree. All
these numbers are irrational. From Theorem 2.1.4 it follows that it
is sufficient to prove that the polynomial P cannot be written as a
product of two quadratic polynomials with rational coefficients. This
irreducibility follows from the fact that the product of any two roots of
P is irrational.

(g) See [Sk21m, Problem 8.3.1(g)].

(h) See [Sk21m, Problem 8.3.3(n = 9)].

2.1.2. It would suffice to prove that the set of all numbers of the
form a + v/b is closed under operations of addition, subtraction, mul-
tiplication and division. This is obviously false: (1 + v/2) + (1 + /3)
cannot be represented as a &+ v/b, where a,b € Q (prove this!).

2

2.1.3. (a) If the polynomial 22 — 72 is reducible over Q, then it has

a rational root. This is a contradiction.

(b) If b # 0, then r = —a/b € Q, which is impossible. Hence b = 0,
thus a = 0.

(c) Divide our polynomial with a remainder! by x? — r2:

P(z) = (z* — r?)Q(x) + mx + n.

!The division with a reminder is equivalent to ‘replacing’ z* by 2.

12



Substitute x = r. By the Linear Independence Lemma (see (b)) the
remainder is zero.

(d) By (c) if R? = r?, then R is a root of the polynomial.

(e) Let P be given polynomial, and set G(t) := P(a + bt). Then
G(r) = 0. Hence by (d) we obtain G(—r) = 0.

(f) If b = 0 the assertion is proved. Otherwise by (e) the polynomial
has the roots a & br. These roots are distinct. Hence the third root is
rational by the Vieta Theorem.

2.1.4. Suppose to the contrary that the given polynomial P has a
root o = a+ Vb, where b ¢ Q. By the Conjugation Lemma 2.1.3.e and
analogously to it, the number 2; = a F v/b is also a root of P. Since
Vb & Q, we have b # 0. Then zy # 1. Therefore P is divisible by
(x —a)? — b. Since deg P > 2, the polynomial P is reducible. This is a
contradiction.

2.2.1. Answers: (a), (c), (d), (e), (f), (h) — no, (b), (g) — yes.

Denote r := /2.

(a) Assume that v/3 is representable in this form.
First solution. Then

3 = (a® + 4bc) + (2ab + 2¢*) V2 + (2ac + b?) V4.

Since the polynomial z3 — 2 has no rational roots, it is irreducible
over Q. Thus, 2ab + 2¢? = 2ac +b*> = 0 (cf. 2.2.2.b). So we have
b = —2abc = 2¢®. Hence either b = ¢ = 0 or v/2 = b/c. Both cases are
impossible.

Second solution. Denote P(z) := x?> — 3. By the Conjugation
Lemma 2.2.2 (e), P has three roots xg, x1, z2 defined in the statement of
the lemma. Since none of them is rational, the equality b = ¢ = 0 does
not hold. So by the Linear Independence Lemma over Q[es] 2.2.2 (b')
the three roots are distinct. This is a contradiction.

(b) We have (1+5+/2+/4)(3++/2—8+/4) = —75. (This equality can
be easily obtained by the undetermined coefficients method or applying
Euclid algorithm to 2® — 2 and 2? + 5z + 1, see solution of 2.2.4.)
Therefore,

1 1

b b s S ey
11592+ 91 25 75 Va4 (V2)
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(c) Assume that cos(27/9) is representable in this form. This num-
ber is a root of the equation 423 — 3z = —%. Its other two real roots

are cos(87/9) and cos(47/9).

2.2.2. (a) Suppose that 2% — r3 is reducible over Q. Then it has a
rational root. This is a contradiction.

(b) Assume the contrary. Divide 22 — 73 by a + bx + cx? with a
remainder. By (a), the remainder is nonzero. Both polynomials 2% — 3
and a + bx + cz? have a root = r. Hence the remainder has the root
x = r. Thus, the remainder has an irrational root. This is impossible
because the remainder has degree 1.

(b’) Consider the real and the imaginary parts separately.

(c) Divide our polynomial by x® — 73 with a remainder. Taking
x = r and applying Linear Independence Lemma (b), we get that the
remainder is zero.

(d) By (c), if R? =73, then R is a root of our polynomial.

(e) Let P be the given polynomial, and set G(t) := P(a + bt + ct?).
Then G(r) = 0. Hence by (d) we have G(re3) = 0 = G(re2).

(f) First solution. Taking x = y + a we see that it suffices to
prove the assertion for a = 0. The number t = br + ¢r? satisfies t3 =
b33 + 31 + 3berit.

In other words, since u? 4+ v + w3 — 3uvw is divisible by u + v + w,
the number a + br + ¢r? is a root of the polynomial

(z —a)® — 3berd(z — a) — b33 — 3P,

Second solution. Denote xy := a + br + cr?. Expand the numbers
:clg, k=0,1,2,3, as polynomials in 7:

a:’of = ay, + bpr + cpr.

It suffices to find numbers Ay, A1, A2, A3 € Q, not all zeros, such that
Ao+ A120+ Aoxd + A3x3 = 0. So, these numbers must satisfy the system
of equations

Aoag + ...+ Azaz =0,

Aobo + ...+ A3b3 =0,

Aoco + ...+ Aze3 = 0.

14



It is known that a homogeneous (i.e. with zero right-hand parts) sys-
tem of linear equations with rational coefficients, where the number
of equations is smaller than the number of variables, has a nontrivial
rational solution. Hence, the required numbers exist.

The obtained polynomial has degree exactly 3 by lemmas 2.2.2 (e,
b’).
Third solution. Denote A(z) := a + bx + cx?. The product (z —
A(to))(x — A(t1))(z — A(t2)) is a symmetric polynomial in tg, ¢, to.
Hence this product is a polynomial in  and the elementary symmet-
ric polynomials in %g,t1,t2. The values of these elementary symmetric
polynomials at t;, = r€§ (k=0,1,2) are the coefficients of the polyno-
mial 22 — 73, and hence are rational. So the considered product is the
required polynomial.

2.2.4. Assume that after extracting the third root we get number

r. If |r| € Q, the statement is trivial. If |r| ¢ @, then the polynomial

2% — r3 is irreducible over Q.

It suffices to prove that = h(r) for some polynomial h. By

3

1
a+br+cr?
the Irreducibility Lemma, the polynomial 2 — 73 is irreducible over Q.

Hence it is coprime with a + bz + cz?. Therefore, there exist polynomi-
als g and h such that h(z)(a + bx + cx?) + g(z)(2® — r3) = 1. Then h
is the required polynomial.
2.3.1. Answers: no. The arguments are similar to those in the
solutions of problems 2.2.1. Use lemmas stated below the problem.
2.3.5. The proof is analogous to the proofs of Theorems 2.1.4, 2.2.3
and to the solutions of 2.3.1 (abc).

2.3.6. The proof is similar to the proof of the Extension Lemma
2.2.4.

2.7 Solutions of other problems

2.1.2. Let \/c be the number we obtain with only one extraction of the
root, where ¢ € Q. Prove that all the obtained numbers have the form
a + by/c with a,b € Q.

2.2.1. (d) Assume that /3 is representable in this form. By the
Rationality Lemma 2.2.2 (f), v/3 is a root of a cubic polynomial. This
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contradicts to the irreducibility of the polynomial 2% — 3 over Q.

Repeat the second solution of (a) for P(x) := x® — 3 has three roots
x1, %2, x3. all three roots are distinct. Therefore, 2° — 3 is divisible by
(x —x1)(x — 22)(x — x3).

First solution. Expand the numbers 1, 31/5, 32/5 and 3%/° as poly-
nomials in 7. We get that these four numbers are linearly dependent
This shows that there exists a nonzero polynomial of degree at most 3
having a root 3'/%. This contradicts the irreducibility of z° — 3 over Q.

(e) Analogously to (a) and (c), by the Conjugation Lemma 2.2.2 (e)
it follows that the polynomial 23 — 3 has three roots xg, 1, x2 defined in
the statement of the lemma. Thus, (a + br + cr?)e§ = a + breg + cr?e3
for some s € {1,2}. By the Linear Independence Lemma over Q[es]
2.2.2 (b’) we have a = 0 and bc = 0. Hence either /3 =bror V/3 = cr?.
This is a contradiction.

(f) The proof is analogous to (c).

(g) This equation has a root /2 + V/4.

(h) The only real root of this equation is /3 + /9. Assume that
this number is representable in the required form. Repeat the second
solution of (a) for P(x) := 23 — 9z — 12. We obtain that zg, x1, 2 are
all roots of P. On the other hand, by the del Ferro theorem all roots
of P are

yo = V3+ V9, yp =33+ \3[95:21,7 Y2 1= \3/553 + V93

Since P has exactly one real root, x9p = yo. Then either z; = yi,
T2 = Y2, Or T2 = Y1, T1 = Y2.

Denote R(z) := 3z + V922 and let S(z) := a + brz + cr’x? or
S(z) := a+braz? +cr’x in the first and second case, respectively. Then
the polynomial R(z) — S(z) has three distinct roots 1, 3, and 5. But
the degree of this polynomial is at most 2. Thus R = S. Hence either
V3 =br or /3 =cr?. A contradiction.

2.2.3. By the Rationality Lemma 2.2.2 (f) there exists a cubic poly-
nomial having a + br + ¢r? as a root. Since the given polynomial P is
irreducible over Q and has the same root, we conclude that deg P < 3.
By the Conjugation Lemma 2.2.2 (¢), P has three roots g, z1,z2 de-
fined in the statement of the lemma. Since P is irreducible over Q,
none of its roots is rational. So the equality b = ¢ = 0 is impossible.
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By the Linear Independence Lemma over Q[es] 2.2.2 (b'), xq, z1, z2 are

distinct. Hence deg P = 3.
k _ —k

Since €5 = €5, we have T3 = x1. Hence z3 and x1 cannot be real
and distinct. So x3, 21 € C —R. Then P has a unique real root.

2.3.3. See [Sk21m, Problem 8.3.23].

2.3.4. See [Sk21m, Problem 8.3.24].

2.4.1. See [Sk21m, Problem 8.3.9].

2.4.2. (a) See [Sk21m, Theorem 8.1.2].
(b) See [Sk21m, Theorem 8.1.5].

2.4.3. See [Sk21m, Lemma 8.4.1b].

2.4.4. (a,b,c) See [Sk21m, Lemma 8.4.14].
(d) See [Sk21m, Lemma 8.4.17].

2.4.5. See [Sk21m, Lemma 8.4.11a).

For solutions of the remaining problems see [Sk21m, Lemma 8.4.14,
§8.4.E,G|. In particular, proofs of Theorems 1.2.2.a and 1.3.3 are pre-
sented in [Sk21m, §8.4.E,G]|, respectively.
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Beenenue

K OCHTPAJIBHBIM ITOHATUAM BCceli MaTeMaTUKMN OTHOCATCA UCTHMHHOCTHL U JA0Ka3yeMOCTbh. HO Hapanay C
TeoOpeMaMH M TUIIOTE3aMi B MaTE€MaTHUKE BCTPCYAIOTCA TaKzKe OIIpedc/ieHUd OAHUX MOHATHUNA qepe3 aApy-
rue. Hanpumep, uepes npousseienne ducest £y = z, MOKHO OIPEETUTh JIeJIUMOCTD |y u CBOWCTBO «OBITH
npoCThIM drcaoMy». Mbl OyjiemM 3aHUMATBCST meopueli onpedesumocmu, B KOTOPOH CerojHs nMeercst 60Jib-
10€ KOJIMYECTBO HEPEIIEHHbIX 33124 C SICHBIMU ¥ HPOCTHIMEU (DOPMYJINPOBKAMHU, T0xKaIy, O0JIbIle, YeM B
TEOPHUH JOKA3ATEILCTB U TEOPUH Modeseil. Takue HepellneHHbIe 3a0a49n MBI OyaeM 00CYKIATh U MBITATHCS
peIuTh BO BTOPOIi YacTh mpoekTa. B mepBoii yactu GyayT Kak COBCEM MPOCThIE 3a1aun (YIParKHEHUs),
TaK W 3aJJaUM MOCTOXKHEE, U COBCEM CJIOYKHBIE, KOTOPBIE MOTYT HE MOJYUUTHCS, HO TTPOJABUKEHUE B HUX
7 obcyXKIaeHne — MOJe3Hbl. Takue 3a7adn oTMedeHbl 3Be31049koil. HekoTopble 3 3amgad — 0COOEHHO BO
BTOPO# HacTu — OyayT O0JIbIIe MOX0KN He Ha OJIMMIINAIHEBIE, & Ha UCCIEI0BATEIbCKIE, B HIX TOTpedyeTcs
VTOYHHTDH YCJIOBHUE W CAMOCTOSTENHHO CILIAHUPOBATEL CBOE MCCIETOBAHME.

Mur Gymem m3yvath onpedesenus cgoticme W HAUHEM C HEMATEMATHIeCKOTO mpumepa. Ompemenenme:
«/leBeps — 310 Opar My:xkas. Bosiee pazBepHyTO, 6€3 COKpAIIEHUH PYCCKOI'O “A3bIKA!

«aenoBek A — meBeph denoBeka C'» MO OMPENETEHIIO 03HAYAET, 9TO CYIIECTBYET TAKOW demoBek B, 910
B — wyx genoseka C' mw A — 6par gesoBeka B.

Mo onpegenunn deyzmecmuoe csoticmeo D(A,C) «bbith nesepem» uepes csoiicrso H(C, B) «ObiTh
myzkem» u cBofictBo F'(A, B) «Obrth 6paTomy». cnop3yst si3blK MATEMATHKU, MOXKHO 3aIMCAT:

D(A,C) = (3B)(H(C, B) A F(A, B)).

3/1eChb = YUTAETCH «ECTb 110 OIPEJIEJIEHUIOY, CJIEBA OT STOI0 3HAKA Mbl YKA3bIBAEM UM CBOMCTBA, KOTOPOE
ompeiesisieM, CIipaBa — ero OmpejieeHne Yepe3 3a/JaHnble CBoiicTBa; (IB) unraercs «cyimecTsyer B, Takoe
9TO»; /\ YATACTCA «U».

Bot eme npumep: «Tounbrit KkBaapaT — 9TO MTPOU3BEIEHIE KAKOTO-TO IIEI0TO UUC/Ia, Ha cebsa»

Bonee pazsepuyTo: Ilesoe uncyiio & — TOUHBIN KBaAPaT, €CIU CYIIECTBYET IEI0€ YKUCJIO0 Y TaKOe, UTO
T =y -y. MbI onpenesiman OJHOMECTHOE CBOHCTBO «OBITH KBAAPATOMY Hepe3 TPEXMECTHOE: «T €CTh IPO-
W3BEJIEHNE Y HA 2.

Ha maTemMaTuaeckoM s3bIKe: «T — TOYHBIN KBagpars = (Jy)(x =y - y)

B namnom mpoekTe Mbl OrpaHuvuMBaeM BO3MOXKHBIN By onpejeaeHuti. Bee BoimenpuseneHubie ompeie-
JIEHMS LIOAXOJT, & BOT OlLpeie/ieHne: «dejoBek A — pejok dejioBeka B, eciii eCTb HOCIe10BaTe/IbHOCTD
Jofell, HaunHAOWIAsICI ¢ A U 3aKaHYMBaIomasacs B, rae KasKIblil ClIeIyomuil — pOIUTEeIb IpeablayIne-
ro» He MOJXOIUT. B ompeneneHnsax He pa3periaeTcs TOBOPUTb 0 MHOXKECTBAX WM TOCJETOBATETHHOCTIX,
a TOJIBKO 00 37eMeHTaxX, KaK IpaBmio — O ducaax. JIpyruMmu caoBaMmu, HeJIb3si TOBOPUTE «IJIsd JIIOOOTO
MHO>KECTBa, UHCEJ», WIA «CYIIECTBYET MHOMKECTBO UHCET», HO MOXKHO TOBOPHUTDL «JJIsI JIFOOOTO HUHCIa»,
«CYIIECTBYET UHUCI0», «IUCA0 T PaBHO ducay y. anbime Mbl Bcerma OyaeM CIMTATh, 9TO ABYXMECTHOE
CBOMCTBO PaBEHCTBA T = Y MOXKHO HCIOJL30BATH B ONPEIEIEHUIX BCETIA.

A. BBOJHBIA UKJI

A1 OmpegenuTs depe3 TPEXMECTHOE CBOWCTBO HATYPAIbHBIX YUCENT «ITPOU3BEIEHNEs TY = Z:
a) IByXMeCTHOE CBOWCTBO «JIeJIUTHCS HAY;
b) OTHOMECTHOE CBOUCTBO «OBITH €IMHUIIEH > ;
C) OZIHOMECTHOE CBOHCTBO «OBITH TPOCTBIM UUCIOM ».
1



A2 OmpeeuTh Uepe3 TPEeXMECTHBIE CBOMCTBA, «IPOU3BEIEHUEY U «CyMMay HATYPAJbHBIX UHCEJ:
a) OgHOMeCTHBIE CBOWCTBA «OBITH 2%, «OBITH 3% ;
b) OgrOMECTHBIE CBOHCTBA «OBITH CTENEHBIO 2%, «OBITH CTEMEHBIO 45 ;
A3 (*) Onpenenmurh 9epe3 TPEXMECTHBIE CBOMCTBA «IIPOU3BEJIEHUEY N «CYyMMay HATYDATBHBIX THUCET O
HOMECTHOE CBOMCTBO «OBITH CTEIEHBIO 63
A4 OmpegennTh depe3 TPEXMECTHOE CBOMCTBO «CyMMay HATYPAJbHBIX YHCEJT W OJHOMECTHOE CBOWCTBO
«OBITH KBA/[PATOM HATYPAJbHOI'O YMCJA» TPEXMECTHOE CBOMCTBO «IIPOU3BE/IEHNEY HATYPAJIbHBIX Y-
cel.
A5 Onpegennts uepes CBOWCTBO «MEHbIIE» ( «IMOPSIFOK», <) sl PAMOHAIBHBIX YHCEI:
a) CroiicTBo «60JbINe MM PABHOY, CBOMCTBO «BOJIBINEY ;
b) TpexmecTHOEe CBOMCTBO «JI€2KATH MEZKJLY».

B. 9KBUBAJEHTHOCTL CBOWCTB

Ba cpoiicTBa sK68UBAAEHMHDL, €CIU TIEPBOE MOYKHO OIPENIEINTEH Yepe3 BTOPOe, W HA0bOpOT — BTOPOE
qepe3 IepBoe.

B1 Haitante manbobiiiee KOMMIECTBO HEIKBUBAJIEHTHRIX CPEIN CBOMCTB, OTPEIEINMBIX Uepe3 TOPSI0K
AJIA PAITUOHAJIBHBIX IUCEJI. HOHpO6yI>’IT€ X VUCKATh CpEeJIN OJHOMECTHBIX, IBYXMECTHBIX, TPEXMECTHBIX
"W T.JI. CBOWCTB.

B2 (*) JlokaxkuTe, 4TO [ BCAKOIO N CYIIECTBYET TOJBKO KOHEYHOE KOJINYeCTBO HEIKBUBAJIEHTHBIX 7-
MECTHBIX CBOMCTB AJId TIOPAAKA PallnOHAJIBHBIX YHMCEJI.

B3 Haiinqure naunbosbiiee KOIUIeCTBO HEOKBUBAIEHTHBIX CPEN CBOMCTB, OMPEASINMBIX 9ePe3 JBYXMeCT-
HOE CBONCTBO «CJIJIOBAHUEY Y = T + 1 JJId 1EJIbIX YUCEJI.

C. IIPEOBPA3OBAHUA U UHBAPUAHTHI

Ipeobpasosanue — 9TO B3aMMHO OJHO3HAUHOE O0TOOPAYKEHUE KAaKOTO-TO MHOXKeCcTBa S Ha cebs. Bymem
TOBOPUTE, 9TO TPEOOPA3OBAHNE COLPAHACM CBONCTBO, €CIN BHITIOJHEHHOCTh CBOMCTBA JJIsl TPOU3BOJIBHBIX
3JIEMEHTOB S PABHOCHJIbHA €0 BBITIOJHEHHOCTH JjIs X 00pas30s. Takike roBOpST, 9TO CBOMCTBO — UHGA-
puarm TpeodbpazoBAHMS.

CoOBOKYITHOCTE BCEX Mpeobpas3oBanuil, COXPAHAIOMNX JAHHOE CBOWCTBO, HA3BIBAETCS 2pynnol npeobpa-
sosanull ITOTO ceolicmea. AHAIOTUYIHO [ CeMEeHCTBa CBOWMCTB.

B creayromux 3aja4uax Mbl pacCMaTPUBAEM TOJBKO CBOMCTBA, OIIPeie/InMble YePe3 [OPsI0K JIJIsi PAlli-
OHAJIbHBIX YHCE.

C1 Ilocrpoiite rpyrny npeobpa3oBaHnii Jijisi KayKI0T0 U3 HAWIEHHBIX CBOUCTB, KOTOPbIE MOT'YT OKa3aThCst
HE3KBUBAJICHTHBIMU.

C2 Haiigure miist 00bIX JIBYX HESKBUBAJEHTHBIX CBOUCTB IIpeobpa3oBaHue, KOTOPOE OJIHO U3 HUX COXPa-
HSET, & ApyTroe — HeT.

C3 (*) Hdokaxmure, 9TO CyIIECTBYET TOJBKO KOHEUHOE KOJUIECTBO HE IKBUBAJEHTHBIX cBoiicTs. [locra-
paiiTech HaTHU UX BCe.

B crenmyromeit 3amate pedb UAET O CIETOBAHUN IETBIX THUCET

C4 (*) IlompiTaiiTech CO31aTh IJIAH [ONCKA HE SKBUBAJIEHTHBIX CBONCTB W MOCTPOCHUS JJisi HUX TPYIII

Ipeobpa30oBaHMIL.

D. HECTAHJAPTHBIE MOJEJIN

D1 (*) Tlycrs S — MHOMXKECTBO CBOWCTB, OIMPEJEIUMbIX YEDE3 «CJeJ0BaHue» Y = & + 1 jyIs meapx au-
cen. Moxker okazarThbcs, 9TO B S MMEOTCA JIBA CBONCTBA, MPO KOTOPBIE MBI XOTHUM JIOKA3aTh, 9TO
OHM He KBUBAJEHTHBI, HO TOCTPOUTH mpeobpazosanne "ux paznnuaroriee'wne yaaercs. [lompobyiiTe
TAK PACHIMPUTH MHOYKECTBO NEJIBbIX 9ncesn (Hanpumep, 106aButh eme ogny "konuro''menbx u onpe-
JeuTh Ha 00beuHernn aByX 'Konwii' cBORCTBO ciienoBaHus), 9TOOBI B 9TOM PACIIMPEHUN HAILIOCH

npeobpazoBanue, Pa3/IMIAIONIee T CBONCTBA.



TEOPUA OIIPEJEJINMMOCTU

ILOHO.HHI/ITE.HBHBIE SAJAYN

B4. Bce cBoiicTBa, ompeaenMbie Yepe3 CyMMY U IPOU3BeIeHNe, Ha3bIBalOTC apudmerndeckumu. Kak
BBI JIyMaeTe, ObIBAIOT JIU He apudpMeTUIeCKre CBOMCTBa HATYpaIbHbIX uncesi! Kak MOXKHO ObLIO ObI TAKOe
CBOMCTBO TIOCTPOUTH?

C5. Ilpasma ju, 9T0 ecu CBOHCTBO R OpeiesinMo depe3 CBOMCTBO (), TO MHOXKECTBO Mpeobpa30BaHumit
I'g , coxpaHSIOMUX CBOICTBO () SIBJIAETCS MOAMHOKECTBOM MHOXKECTBA IIPe0OPa30BaHuMil (COXpaHAOIIHX)
I'r?

B5. PaccMorpum MHOXKECTBO TOYeK Ha miiockocTu. Onpeesumo jim csoiicrso C(z, y, 2) -- TOYKA X, Y, 2
JIezKaT Ha OJIHON MpsiMOii, Yepe3 cBoiictBo D(z,y, 2,v) = d(z,y) = d(z,v)?

C6. Ha nesbix yucnax: Z, 3agano csoiicreo R(z,y, z) = z = x +y; Ounmmumre rpynmny npeobpa3oBanuii
sroro cBoiictBa. Omupemesmmbl ju 4epe3 R ogHOoMecTHBIe cBolicTBa ¢ = (; = 1, AByXMECTHOE CBOWCTBO
x <y?

D2. Hanummre dopMyity, 03HAYAIONIYIO0, YTO OTHOIIEHNE < HE MMEET HAMMEHBINErO W HAUOOJIbIIEro
3JIEMEHTa U (DOPMYJTY, O3HATAIONLYIO, YTO MEKTY JIFOOBIMU JIBYMSI PA3JIUIHBIMU SJIEMEHTAMU HAWIETCH OT-
JINYHBIA OT HUX TPETUii. BBITOJTHEHBI T 9TU yTBEPXKACHUS JIJI PAIIMOHAJBHBIX, IEJIBIX, JIeHCTBUTELHBIX
qnces?

ITonpobyiiTe m0Ka3aTh, YTO CYIIECTBYET B3aUMHO OJIHO3HAYHOE, COXPAHSIOIIEE MOPAIOK COOTBECTBUE
MEXK/Ty JIIOObIM TAKUM CYETHBIM MHOXKECTBOM U PAIMOHAJIHHBIMU YUCTIAMU.

HoBAsI CcTPYKTYPA: CJIOXKEHUE PAIIMOHAJIbHDBIX

B6. Hambr parmonasibabie uncia Q co cBOMCTBOM CyMMBI
S(r,y,2) = (z=2z+y).

Crenyiomue 3a0a491 OTHOCATCA K yKA3AHHOMY MHOXKECTBY M CBOMCTBY.
(a) Ommmmre rpymmy npeodpa3oBaHuii JAHHOTO CBOWCTBA.
(6) Ompegenmumo s depe3 S IByXMECTHOE CBOHMCTBO

M(z,y) = (y=3xx)?

Bepuo 1 obparroe? Omnuinure rpyiiny npeobpasoBaHuii ceoiicrsa M.
(B) IonbiTaiiTech HANTH MAKCUMAJILHYIO CHCTEMY ITIONAPHO HE SKBUBAJIEHTHBIX CEMEHCTB CBOMCTB.

IIuks E: IIPOBIEMBI I NUCCJIETOBAHUS

ITukn E comepkuT OCHOBHBIE UCCIEIOBATE/ILCKIAE 33491 MPOEKTA, OHU MIPEICTABIEHbI B TAOJIUIEC HU-
’Ke. BOJIBIIMHCTBO U3 HUX HpeJicTaBisgeT coboii OTKpBITHIE (IIOKA HUKEM He pelleHHble) mpobsembl. Te
U3 HUX, KOTOPbIE HE YIACTCd 0 KOHIA PEIUTh B OJIMKANINME JTHU, MBI IPOJIOXKAM BMECTE PEHIUTb B
IIOCJIEIYIOIIE MECHIIbl U Pe3Y/ILTATHI OIYOJIUKYeM .

Otnomenust/MuoxkectBa | Q |Z | N

(x <y) El1|E2|E3
(y=x+1) E4 | E5 | E6
(z=z+y) E7 | E8 | E9

IToMuMO YHCTOBBIX CTPYKTYP M3 TAaOJIUIIBI MBI IIpEIJIAraeM HCCJIEI0BATD eIlle OJIHY .
E10. Beckoneunblii HeopueHTUpOBaHHBI rpad 6e3 IUKIOB (JepeBo), Ije Kaxkjas BEepIINHA HUMeeT
cTeleHb Tpu; cBOcTBO "ObITh coceaunmu BepinaaMmu". "Berssuecs nenie".

Koro-To moxker 3amHTepecoBaTh u Takad CTPYKTypa:
E11. Tlopsamok HEOTPHUIATEIbHBIX PAIIMOHAILHBIX THCE.

Date: 5 asrycra 2021.



MbI BbLiesisieM B UCCIIEJ0BAHUU TPOOJIEMBI ONPEIEIUMOCTH Jisl KaxXK/0il CTPYKTYpbl (MHOXKECTBa C
UCXOJIHBIM CeMEHCTBOM CBONCTB Ha HEM ) CJIEJYIOIIe OCHOBHBIE CTYIIEHH (KOTOPBIE MOTYT II€PEMEIINBATHCS
B HAIIIUX MCCJIEJOBAHUSIX ):

I. Tlouck cBoiicTB (ceMeﬁCTB CBOICTB, 4aCTO CEMENCTB U3 OJHOTO SJIeMeHTa), OIIPEJICJIUMBIX Yepe3 3a-
JAHHOE MUCXOTHOE CeMEeiCcTBO. BhInBuKeHne TumoTe3bl, ITO Mbl HAILIA MaKCUMAJIbHYIO CUCTEMY CBOMCTB,
U 9TO HaiiJleHHble CBOWCTBA (ceMeificTBa) HE SKBUBAJIEHTHBI.

II. Tloctpoenme ajisi KaKJIOr0 CBOMCTBA €ro IPYIIBLI IIpeobpa3oBanwmii. Boo3MOXKHO, J/Isi 9TOTO HAM
IIPUJIETC TIOCTPOUTH PACHINPEHUE MCXOJHOIO MHOXKECTBA U OIIPEJIEJINTh CBOICTBa Ha paciipennn. /loka-
3aTEJIbCTBO C IMOMOIIBIO I'PYIIIL TOrO, YTO Hal/ICHHbIC CBOMCTBA HE 3KBUBAJICHTHI.

ITI. JokazaTesbCcTBO TOTO, YTO MBI HAIIN MAaKCUMAJIbHOE CEMENCTBO HE SKBUBAJIEHTHBIX CBOWCTB.

IV. s Bcex HailIeHHBIX CBOMCTB (CceMeicTB CBOWCTB) HaiiTh ux TBr u THr. Oupe/esenue

Tounoit BepxHeil rpanbio (TBr, Sup) ceMmeiicTB cBOHCTB A u B Ha3bIBAaeTCsl CEMEHCTBO CBOWCTB,
OTIPeIeTUMBbIX Yepe3 CBOUCTBA U3 00beanHeHus: cemeiicts A u B.

Tounoit Hu>kenii rpanbio (THr, inf) cemeiicTs cBoiictB A u B Ha3bIBaeTCs CEMENHCTBO CBOWCTB,
OTIPEJIEIMMBIX W Yepe3 CBOWCTBA U3 ceMelicTBa A m depes cBoiicTBa u3 cemelicrsa B.
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[Tpumep 3agaym No Teopuy ONpPeseMMOCTH

3afaya: onpeaennTb OfHOMECTHOE CBOWCTBO «ObITb CTeneHblo 6» Yepes
OTHOLLEHUNS C/IOXKEHUSI U YMHOXEHMNS! HAa MHOXECTBE HATypasibHbIX YuMce.
JTa npobnema MoXeT ObiTh pelweHa (1 Obina peleHa yHacTHUKaMM
MPOEKTa) C MOMOLLBIO K TEXHWUKM apuMETN3ALMN Y, aHANOMMYHOIA
JokasaTenbcTBy [€nens ero TeopeMbl O HEMOMHOTE. YUYaCTHUK MPOEKTa
Banepuii KoxxypkuH npeaioxxun gpyroe KOpOTKOE peLIeHME:

Mycts 65 = 223 Haiigém 22 and 3° kak makcumanbHblie cTenenn 2 u 3
KoTopble aenst 6.

MycTb p — NPOCTOe YUCA0, Takoe 4To p > 6K.

MuHUMaNbHBbIE PELLIEHNS CPAaBHEHNIA

p"+2°=0 mod (p+2)

and p" +3=0 mod (p +3)

0N HeYETHbIX k 3To m=awu n = b.

Ecnn a n b 4€THble, Mbl MOXEM YMHOXUTb Ha 6 4TODbLI paboTaTh ¢
HEYETHLIMUN MOKA3aATENSAMU.

A.Semenov, S.Soprunov 2 asrycTa 2021 2/11



B Hawem npoekTe nog npobnemoli onpeaeanMocTn Mbl NOHUMaEM
onucaHune peLLeTKN ONpeaesIMMOCT AaHHON CTPYKTypbl. Pelerune
npobaeMbl MOXKHO pa3genunTb Ha 4 3Tana.

@ Haiit Kak MOXHO BoJible HESKBUBANEHTHbLIX OTHOLWEHWI. B kakoli-To
MOMEHT BO3HUKAET NPEANOAOKEHNE, YTO HUYErO HOBOMO MOJTYYUTh
HEMb3A.

@ [ns KaxxAoro oTHOLWEHMsI onucaTb rpynny npeobpasoBaHuii, KoTopble
ero coxpaHsitoT. PaccmoTperune sTux rpynn no3sonsieT Ham ob6bACHUTD,
NOYeMy OfHWN OTHOLLEHUS He MOTYT BbITb ONpeaesieHbl Yepes Apyrue.

© [okasaTb, 4TO APYruXx HESKBUBANEHTHLIX OTHOLWIEHWN HET. DTO camas
CIOXKHast YacTb npoekTa. [Jo cux nop y Hac HeT obuiero cnocoba
coenatb 3TO, NOSTOMY Mbl [OJIXKHbI N306peTaTh YTO-TO KOHKPETHOE
ANs Kaxgoro ciyvasi. B bonblwimHcTBe ciyyaes nonesHo rpynnosoe
obcyxaeHue.

Q [ns Kax[oii napbl OTHOLWEHWI yKa3aTb UX CynpemyM (COKp. sup)
HanMeHbluasi BepxHsist rpaHuua v infimum (cokp. inf) nx Hanbonbluas
HUXKHSAA FpaHnLa. DTO pelleToYHbIE ONEpaLnn Hag 3aMblKaHUAMU

OTHOLLUEHWIA.
A.Semenov, S.Soprunov 2 asrycTa 2021 3/11



PaunonansHble Yncna ¢ nopsigkom (1 atan)

Q (x<y)

Q B(x,y,z) s (x<y<z)V(z<y<x)

Q@ C(x,y,2)sS(x<y<z)V(y<z<x)V(z<x<y)

Q S(x,y,z,u): untepsansl (x,y) u (z, u) nepecekatoTcsi, HO He
coaepxxaTcs Apyr B Apyre (3auennsitorcs).

QO (x=y)

A.Semenov, S.Soprunov 2 asrycTa 2021 4/11



PaunonansHble Yncna ¢ nopsigkom (2 atan)

Onpegennm rpynnbl npecbpasoBaHuli B KaXxaoM Ciay4dae

© [ cocToUT M3 MOHOTOHHO BO3PACTaIOLLMX HEMPEPbIBHLIX
npeobpasoeaHunii. Bce rpynnbl Huxe copepxxaT nogobHble
npeobpasoBaHsi, Tak YTO Mbl He Bygem ynoMmHaTb Ux gasnee.

@ g CoaepXXUT MOHOTOHHO YObLIBAOLLUX HEMPEPLIBHBIX
npeobpasoBaHuii.

© [ coaepXuT TPaAHCNO3ULUMK. DTO Takne nNpeobpasosaHus C AByMs
NPPaLMOHaIbHBIMU NapaMeTpamMu s, t, KoTopble oTobpaxatoT
nuTepsanbl (—oo,s) n (s, +00) B (t, +00) n (—00, t) COOTBETCTBEHHO,
MNPy 3TOM COXPaHsisi OTHOLLEHME MOPSIAKA HA KaXXAOM U3 HUX.

@ ['s copepxunT BCe npeobpasosanusi us g u ¢ n ux komnosnymu.

© Sym(Q) — rpynna Bcex npeobpasosaHuii payunoHanbHbix HYucen. OHu
COXPaHSOT OTHOLLEHWE PAaBEHCTBA.

A.Semenov, S.Soprunov 2 asrycTa 2021 5/11



PaunonansHble Yncna ¢ nopsigkom (3 atan)

Onvwem naeto fOKa3aTeNbLCTBA OTCYTCTBUS 4PYIUX HESKBUBAEHTHbBIX
cooTHoweHnii. Jns 3Toro HaMm noTpebyeTcst TEOPETUKO-TPYNNOBOE MOHSATME
k -TpaH3UTUBHOCTM.

lpynna G Ha3sbiBaeTcs k-TpaH3MTUMBHOIA, ecnn ans nobbix AByx k-Habopos
(a1, ...,ak); (b1,...,bk); ai # aj; bi # b; cywecTByeT npeobpasosaHue
g € G Takoe, uto V(i < k) (g(a;) = by).

Hanpumep, rpynna [ 1-TpaH3uTueHa, HO He 2-TpaH3uTueHa. A g
2-TpaH3UTUBHA, HO He 3-TpaH3UTNBHA.

Onuwewm Bce rpynnel, Bkatodatowme . [1ns storo mbl byaem
paccMaTpuBaTb BCe k-TpaH3uTusHble, HO He (k + 1) - TpaH3MTMBHbIE
rpynnbl A4S KaXKAoro HaTypanbHoro k. OkasbiBaeTcs, Mbl He MONyYUM
HUKaKMX FPYMm, KPOME MSTW FPynm, ONMCaHHbIX Bbllle. DTO PeLLatoLuii
ar B A0Ka3aTeNbCTBE OTCYTCTBUSI APYruX OTHOLWeHWiA. [JokasaTenbcTBo
CNIOXXHOE, HO MPsiMOJIMHeRHOe. HekoTopbIM yYacTHUKaM MpPoeKTa yAasnoch

€ro npnavmaThb.
A.Semenov, S.Soprunov 2 asrycTa 2021 6/11



PaunonansHble Yncna ¢ nopsigkom (4 atan)

MNpeacTaBuM nosyyeHHble paHee pe3yibTaTbl B BUAE OPUEHTUPOBAHHOIO
rpadpa. Ero BepwimHamm byayT cuMBONbI OTHOLIEHMIA, a HanpaBieHue pebep
ByaeT ykasblBaTb Ha ONPeaeMMOCTb OLHUX OTHOLLEHWIA Yepes Apyrue.
Tak)Ke BCMOMHUM [Ba OMpPEeAEseHsl, O KOTOPbIX FOBOPWIN paHee.

TouHoW BepxHei rpaHbto (TBr, sup) cemeiicTe csoiicte A n B
Ha3blBAeTCA CEMENCTBO CBOWCTB, ONpeAe/iMbIX Yepe3 CBOWCTBa U3
obvegnHeHus cemelicts A n B.

TouHoi HuxHel rpaHbto (THr, inf) cemeiicts ceoiicte A n B
Ha3bIBAETCHA CEMEICTBO CBOWCTB, ONpedenMbIX U Yepe3 CBONCTBA U3
ceMeiicTBa A, 1 Yepes cBoiicTBa U3 cemeiicTea B.

TouHble BEPXHIOID N HVXKHIOKO TPaHK ABYX CEMENCTB MOXHO OMpPeAennThb
bnarogapst nocTpoeHHoMy rpady.
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[pach oTHOLIEH WA
I (mopsmok)

B (mexny) K (uyxo)
S (3auenneHHoCTD)

O (paBeHcTBO)

MoMnmo rpacha OTHOLIEHUI Mbl MOXEM MPEACTABUTL HalW PE3y/bTaThbl B
BuAe rpadpa rpynn, rae BMECTO OTHOLWIEHWU Mbl MULIEM UX TPynbl
npeobpasosanuii. HanpaeneHne pébep 03Ha4aTb OTHOLLEHNE BKIOYEHUS
MeXAy rpynnamu.
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Llensie co cnegosanuem (1 atan)
QO Alx,y)=y=x+n

@ Bi(x,y,z,u) = (Ix—yl=nAN(x—y=2z—u)
o Cn(va)l:”X_y|:n

A.Semenov, S.Soprunov 2 asrycTa 2021 9/11



Llensie co cnegosanuem (2 atan)

Onpeaennum oCHOBHbIE TNkl NpeobpasosaHuii. [lna Havana, pa3obbém
Uuenblie 4ncaa Ha n KnacCcoB B 3aBUCUMOCTU OT UX OCTATKOB Npu AeNneHun
Ha n: r+nZ,0 < r < n. MHOXeCTBO, COCTOsILLLEE U3 TaKUX KIaccos bymeT
obosHayvaTh 3a Z/nZ.

o Cpasur knacca r + nZ Ha BennumnHy k — 3To npeobpasosaHue o Buaa
o(r+n-S)=r+n-(S+k).
e lMepecTtaHoBka o € S, knaccos — 3710 npeobpasosaHue o,
AeiicTaytoLee cneaytowum obpasom o(r +n-S) =o(r)+n-S.
e PasBopor knacca r + n’Z — npeobpasosaHue Buga
o(r+n-S)=r+n-(=5).
Torpa
© T[4, COCTONT U3 CABMIOB 1 MEPECTAHOBOK KJ1accoB u3 Z/nZ.
@ [, cocTonT U3 CABMIOB, NMEPECTAHOBOK U Pa3BOPOTOB KJIACCOB U3
Z/nZ.
© [, cocTonT N3 cABUroB, NEPECTAaHOBOK KJ1AaCCOB U OGHOBPEMEHHOTO
pa3BOPOTOB BCEX KylaccoB u3 Z/nZ.
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OTKpbITble Mpobiemsi

OtHowenusi/MHOoXecTBa | Q Z N

(x <y) pelleHa HEe peLleHa | He peLueHa
(y=x+1) BbIM NonbITKN | pelueHa BbiIn nonbITKN
(z=x+y) B npouecce TsKEnas TshHkénas

N ewé aee npobnembl, KOTOPbIE TaKXKe B NPOLIECCE PELLEHUS:

1. BeckoHeuHbIl HeOpMeHTMpOBaHHbIN rpad 6e3 uuknos (beckoHeuHoe
[EPEBO), FAe KaXXAasi BEPLUMHA VMEET CTeMeHb TPU; CBOWCTBO "ObiTb
cocegrumu BepumHamu". ("Betssiwmecs uenbie.)

2. MNopsgok Ha HEOTPULIATENbHBIX PALMOHANBHBIX YMCIaX.

A.Semenov, S.Soprunov 2 aBrycta 2021 11/11



Theory of definability: Logic. Algebra. Geometry
A_L. Semyonov, S.F. Soprunov

The jury of the project: A.Kanel-Belov, I.Ivanov-Pogodayev, R.Isayev,
V.Kondratyev, A.Semyonov, S.Soprunov, B.Frenkin.

Introduction

Truth and provability belong to central concepts of mathematics. But mathematics includes not only
theorems and conjectures but also definitions. For instance, using the ternary relation of product zy = z
we can define the binary relation of divisibility x|y and the unary relation «to be a prime» Prime(z).
We will deal with the definability theory which now has perhaps more unsolved problems with simple and
clear formulation than the proof theory and the model theory. We will consider and try to solve these
open problems in the second part of the project. The first part contains some quite simple problems
(exercises) as well as more difficult problem such that you may fail in solving them but any advancement
and discussion would be useful. These problems are starred. Some problems, especially in the second
part, are more similar not to olympiad but to research problems: you have to specify the condition and
construct your own plan of research.

We will study definitions of relations starting with some non-mathematical example.

Here is the first example: «A brother in law is a brother of the husband.» [In English a brother in law
may also mean a brother of the wife but we don’t consider this case here.| In more detail, without any
abbreviations:

By definition, «a person A is a brother in law of a person C'» means that there exists a person B such
that B is the husband of the person C and A is a brother of the person B.

We have defined the binary relation D(A, C) «to be a brother in law» via the relation H(C, B) «to be
the husband» and the relation F(A, B) «to be a brothers. Using the language of mathematics we write:

D(A,C) = (3B)(H(C, B) A F(A, B)).

Here = is read "is by definition"; to the left from this sign we indicate the name of the relation that is
defined, and to the right we indicate its definition via given relations; (3B) is read «there exists B such
thats; A is read «and».

A further example: «A perfect square is the product of some integer by itself.»

In more detail: «An integer x is a perfect square if there exists an integer y such that x = y - y.» We
have defined the unary relation «to be a perfect squares via the ternary relation «x is the product of y
by 2».

In the mathematical language: «x is a perfect square» = (Jy)(z =y - y).

In this project we restrict the possible form of definitions. All the above definitions do fit but this is
not the case with the definitions of the form «a person A is an ancestor of a person B if there exists a
sequence of persons which starts by A and finishes by B and such that each subsequent person is a parent
of the preceding ones. In the definitions, it is allowed to mention not sets or sequences but only elements,
usually numbers. In other words, in a definition it is forbidden to say «for any set of numbers» or «there
exists a set of numbers» but it is allowed to say «for any number», «there exists a number», «the number
 equals the number y». In the sequel, we assume that the binary relation of equality «x=y» is always
admissible.

A. INTRODUCTORY CYCLE

A1 Define the following relations via the ternary relation of positive integers «product» zy = z:
a) the binary relation «to be divisible by»;
b) the unary relation «to be the unity;
c¢) the unary relation «to be a prime».
A2 Define the following relations via the ternary relations «product» and «sums of positive integers:
a) the unary relations «to be 2», «to be 3»;
b) the unary relations «to be a power of 2», «to be a power of 4».
A3 (*) Define the unary relation «to be a power of 6» via the ternary relations «product» and «sums of
positive integers.



A4 Define the ternary relation «products of positive integers via the ternary relation «sum» of positive
integers and the unary relation «to be the square of a positive integers.
A5 Define the following relations via the relation «less» («orders, <) of rationals:
a) the binary relations «greater or equaly, «greaters;
b) the ternary relation «to lie between».

B. EQUIVALENCE OF RELATIONS

Two relations are equivalent if the first of them is definable through the second one, and conversely,
the second of them is definable through the first one.

B1 For the relations definable via the order of rationals, try to find the maximum possible set of non-
equivalent relations; for this, consider unary, binary, ternary etc. relations.

B2 (*) Prove that for each n there exists only a finite number of non-equivalent n-ary relations for the
order of rationals.

B3 Among the relations definable via the binary relation «consecutions y = x + 1 for integers, find the
maximum possible set of non-equivalent ones.

C. TRANSFORMATIONS AND INVARIANTS

A transformation is a one-to-one mapping of a set We say that a transformation preserves a relation
if fulfilment of the relation for arbitrary elements of the domain is equivalent to its fulfilment for their
images. In other words, the relation is an invariant of the transformation.

The collection of all transformations preserving a given relation is called the transformation group of
this relation. Similarly for a family of relations.

In the problems below we consider only relations definable via the order of rationals.

C1 Construct the transformation group for each of the relations found above which may occur non-
equivalent.

C2 For any two non-equivalent relations find a transformation which preserves one of these and doesn’t
preserve the other one.

C3 (*) Prove that there exists only a finite number of non-equivalent relations. Try to find all of these.

C4 (*) Try to construct a plan for search for non-equivalent relations and for constructing their transformation
groups.

D. NON-STANDARD MODELS

D1 Let S is the set of relations definable via «consecution» y = x + 1 for integers. Suppose S contains
two relations for which we want to prove non-equivalence but we fail to construct a transformation
which «distinguishes» them. Try to extend the set of integers (for instance, add one more «copy» of
integers and define the relation of consecution on the joint of two «copies») in such a way that the
extension possesses a transformation which distinguishes these relations.



DEFINABILITY THEORY

FURTHER PROBLEMS

B4. All relations definable via sum and product are called arithmetical. In your opinion, do there exist
non-arithmetical relations of positive integers? What is a possible way to construct such relations?

C5. Is it true that if a relation R is definable via a relation ) then the set I'g of transformations
preserving () is a subset of the set I'g of transformations preserving R?

B5. Consider the set of points of the plane. Is it possible to define the relation C(x,y,z): " points
x,y, z are collinear" via the relation D(z,y, z,v) = d(z,y) = d(z,v)?

C6. The relation R(z,y, z) = z = z+y is defined on the set of integers Z. Describe the transformation
group of this relation. Are the following relations definable via R: the unary relations x = 0;z = 1; the
binary relation x < y?

D2. Present the formula which means that the relation < has no least and greatest elements, and the
formula which means that among any two distinct elements there exists an element distinct from these.
Are these statements fulfilled for rationals, integers, reals?

Try to prove that there exists an order-preserving bijection between rationals and any countable set
with the above properties.

A NEW STRUCTURE: ADDITION OF RATIONALS
B6. Given the set of rationals Q with the relation of sum
S(z,y,2) = (2 =z +y).

In the following problems, we consider this set and this relation.
(a) Describe the transformation group of the above relation.
(b) Is it possible to define via S the binary relation

M(z,y) = (y=3*x)?
Is the converse true? Describe the transformation group for M.
(¢) Try to determine the maximal system of pairwise non-equivalent families of relations.
CYCLE E: PROBLEMS FOR RESEARCH

The cycle E contains the main research problems of the project, they are presented in the table below.
Most of them are open (up to now, unsolved) problems. If some of these won't be solved in a few days
then we will proceed to collaborate on these problems and will publicate the results.

Relations/sets | Q |Z |N

(x <) E1|E2 | E3
(y=x+1) E4 | E5 | E6
(z=xz+y) E7 | E8 | E9

Besides the number structures from the table, we suggest to investigate one more.
E10. * " Branching integers:" an infinite non-oriented graph without cycles (an infinite tree) such that
every vertex is of degree 3; the relation " “to be neighboring vertices''.

Perhaps some of you would be interested in the following structure:

E11. The order on non-negative rationals.

Investigating the issue of definability for every structure (a set with a family of basic relations on it)
we distinguish the following stages of research (which in fact may overlap):

Date: August 5, 2021.



I. The search for relations (families of relations but often consisting of a single element) which are
definable via a given basic relation. Proposal of the conjecture that the family of relations is the maximal
one, and that these (families of) relations are non-equivalent.

II. For each relation, construction of its transformation group. Perhaps we would have to extend the
basic set and to define the relations on the extension. Proof of non-equivalence of the relations found.

III. Proof that the the found family of non-equivalent relations is maximal.

IV. For all (families of) relations found, determine their least upper bound and greatest lower bound.
Definitions:

The least upper bound (the supremum, sup) of families of relations A and B is the family of
relations definable via the relations from the union of families A and B.

The greatest lower bound (the infimum, inf) of families of relations A and B is the family of
relations that are definable both via the relations from A and via the relations from B.
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An example of definability problem

Problem: to define the unary relation "to be a power of 6"via addition and
multiplication relations on the set of natural numbers.

This problem can be solved (and was solved by members of the Project) by
'Arithmetization technique’ similar to the Goedel proof of his
Incompleteness Theorem. A participant of the project Valery Kozhurkin
proposed a different and short solution:

Let 6K =223P_ It is easy to find 22 and 3® as the maximal exponents of 2
and 3 that divide 6.

Let p be a prime number such that p > 6%.

The minimal solutions for the congruences

p"+2°=0 mod (p+2)

and p" +3=0 mod (p +3)

for odd k are m = a and n = b.

If 2 and b are even, we can multiply by 6 in order to work with odd
exponents.
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In out project by definability problem we mean describing the definability
lattice of a given structure. A solution for the problem can be divided in 4
stages.

@ Find as many non-equivalent relations as possible. At some moment
you see that nothing new can be obtained. Then you pass to the next
stage.

@ For each relation, describe the group of transformations which
preserve it. Consideration of these groups enables us to explain why
some relations are not definable via others.

© Prove that there are no other non-equivalent relations. This is the
most difficult part of the project for the given structure. Up to now,
we have no general way to do it, so we have to invent something
specific for each case. In most cases group considerations are helpful.

@ For each pair of relations, indicate their supremum (abbr. sup) least
upper bound and infimum (abbr. inf) their greatest lower bound.
These are the lattice operations on the closures of relations. .
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Rationals with the order (I stage)

Q (x<y)

Q B(x,y,z) s (x<y<z)V(z<y<x)

Q@ C(x,y,2)sS(x<y<z)V(y<z<x)V(z<x<y)

© S(x,y,z,u): open intervals (x,y) and (z, u) intersect and do not
contain in each other (they are 'linked").

QO (x=y)

A.Semenov, S.Soprunov August 10, 2021 4/11



Rationals with the order (Il stage)

Let us indicate the transformation groups for each case.

O T consists of all increasing continuous transformations. All the groups
below contain these transformations, so these will not be mentioned
explicitly.

@ [ consists of all continuous decreasing transformations.

© [ ¢ contains transpositions. Here we use the term «transposition»
for a transformation with irrational parameters s, t which maps the
intervals (—oo, s) and (s, +00) onto (t, +0o0) and (—oo, t)
respectively and preserves the order of rationals in both cases.

@ [Is contains all transformations from the groups g and 'c.

@ Sym(Q) is the group of all transformations of rationals. They preserve
the identity relation.
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Rationals with the order (Ill stage)

Let us describe the idea of the proof that there are no other non-equivalent
relations. For this we require the group-theoretic notion of k-transitivity.

A group G is called k-transitive if for every two k-tuples
(a1, ..-,ak); (b1, ..., bi); ai # aj; bi # b; there exists a transformation
g € G such that V(i < k) (g(a;) = bi).

For instance, the group I is 1-transitive but not 2-transitive. And g is
2-transitive but not 3-transitive.

We will describe all groups including I (its supergroups). For this, we will
consider all k-transitive but not (k + 1)-transitive groups for every natural
k. It occurs that we will obtain no groups besides the five groups described
above. This is the crucial step in the proof for absence of other relations.
The proof is difficult but straightforward. Some members of the project
succeeded in it
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Rationals with the order (IV stage)

Let us represent the above results in the form of an oriented graph. Its
vertices are the symbols of relations, and the directed edges indicate
definability of some relations via others. Let us recall two notions.

Supremum of the families of relations A and B is the family of relations
definable via the relations from the union of A and B.

Infimum of the families of relations A and B is the family of relations
definable both via the relations from A and via the relations from B.

On this graph the infimum for families A and B, for instance, is the family
of all relations such that from each of them there exists directed paths to A
and B.

We can represent the results not only as the graph of relations but also as
the graph of transformation groups. Its vertices are the transformation
groups of relations, and the direction of edges corresponds to the inclusion

relation between the groups.
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Graph of relations

The lattice for (Q. <) looks as follows:

(Q.<)
oo / \2
(Q,cyc) (Q, betw) = (Q, betw)’ = (Q, <)’
2\ / 00
(Q.sep)= (Q,sep)’ = (Q,cyc)
| o0
(Q.0)
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Integers with successor (I stage)
QO Alx,y)=y=x+n

@ Bi(x,y,z,u) = (Ix—yl=nAN(x—y=2z—u)
o Cn(va)l:”X_y|:n

A.Semenov, S.Soprunov
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Integers with successor (Il stage)

Let us define the basic sorts of transformations. To begin with, divide the
integers into n classes respective to their remainders modulo n:
r+n7Z,0 < r < n. The set consisting of n these classes will be denoted
Z/nZ.
@ A shift of a class r + nZ by a value k is a transformation o of the
formo(r+n-S)=r+n-(S+k).
@ A permutation o € S, of clases is a transformation o of the form
o(r+n-S)=0o(r)+n-S.
@ U-turn of a class r + nZ is a transformation o of the form
o(r+n-S)=r+n-(=5).
Then
© I 4, consists of the shifts and the permutations of the classes Z/nZ.
@ [, consists of the shifts, the permutations and the U-turns of the
classes Z/nZ.
© T, consists of the shifts, the permutations and the simultaneous
U-turn of all the classes Z/nZ.
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Unsolved at ToT and Open Problems

Here are some natural problems for usual number sets.

Relations/sets | Q Z N

(x <y) solved unsolved | unsolved
(y=x+1) try solved try
(z=x+y) in process | hard hard

Two more (from many):
1. “Branching integers:" an infinite non-oriented graph without cycles (an

infinite tree) such that every vertex is of degree 3; the relation “to be

neighboring vertices".

2. The order on non-negative rationals.

A.Semenov, S.Soprunov
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