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Bajaay npejacrasisior JI. Heycrpoesa, A.M. Paitropoackuii, O. B. Bypcuan, K. I1. Koxach

1 DBbazoBbie olpe/iejieHud

[Iycrs G = (V, E) — rpad 6e3 meresb, KparHbix pebep u opuentarmu. HazoBem kaukod B 5T0M rpade
7000t ero mostHbIH oarpad. OHa BepImHa U 0HO pebpo — 3To ToKe Kanukn. HazoBeM, jasee, kAukosovim
wucaom rpada G Besmunny w((G), paBHYIO MaKCHMaJbHOMY TakoMmy k, uro B rpade GG ecTh Kimka Ha k
BepmmHax. B TO ke BpeMst Ha30BEM HE3a6UCUMDIM MHOACECMBOM TaKOe MHOXKECTBO BepinuH rpada G, 9To
HU OJIHA TIapa BEPIIUH B HEM He obpasyeT pebpa. B cBoem posie 1o “antukimmka”’. OHa BepIInHA SBJISIETCS
HE TOJIbKO KJIUKON, HO W HE3aBUCUMBIM MHOXKeCTBOM BepIirH. COOTBETCTBEHHO, YUCAO HE3ABUCUMOCTIU,
rpadpa G — 5170 MakcuMmaJibHOe k, mpu KOTOpoM B (G €CTh HE3aBHCHMOE MHOMKECTBO BEPIITUH MOITHOCTH
k. Obosnauaercs sro uncio aG). Hakoner, xpomamuyeckoe wucao rpada G — 9170 MUHAMAJIBLHOE YUCIIO
X(G) 1BeTOB, B KOTOPBIE MOYKHO TaK IIOKPACUTH BCE BEPIIMHBI I'Pada, 4T0ObI KOHIIBI KayKJI0r0 pebpa MMeJH
pa3HbIE IBETA.

2 3ajaum g0 MPOMEXKYTOYHOTro (pUHUMIA

2.1 IlIpocTble ynpakHeHUd

Bamaua 1. [okaxkure, ato X(G) = w(G).
Bagada 2. [lokaxwure, uro x(G) = PR

Bamaua 3. I[lycrs A(G) — makcumasbHas crenenb Beprinnbl rpada G. Jokaxkure, aro x(G) < A(G)+1.

Teopema Bpykca (6e3 gokasaresibctBa). Fcau 2pad G ceazen u He ABAACMCA HU NOAHBM 2DaPHoMm,
HU NPOCMvLM (Hecamonepecekanuumcs) yukiom wewemnot daunn, mo X(G) < A(G).

2.2 Teopema Typana

Bagada 4. lIlycte G = (V, E) u |V| = n. Hokaxure, 1o ecian w(G) < 3 (nam, nHade roBops, B rpade
HeT TPEYTrOJIbHUKOB), TO 4ucio pebep B G He GoJiblie, deM \_gj . {%W Jlokaxkure TakxKe, 9TO 3Ta OIEHKA
HeyJTy qIIaeMa.

Bamaua 5. Jlokaxkure, 9T0 yTBepKjeHEE 33Ja49u 4 PaBHOCUJIbHO cieiyomemy: nycrtb G = (V, E) u
|V| = n; ecim o(G) < 3, 1o uncyo pebep B G He MeHbIIE, YeM
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1 3Ta OllcHKa HeyJlydllaeMa.

Baga4da 6 (teopema Typana). Ilycrs G = (V, E) u |V| = n. Jokaxure, aro ecin o(G) < k, 170 9nciio
pebep B (G He MeHbIIIE, YeM
(2] LG
2

k

?

1 9Ta OIleHKa HeyJIydIlaeMa.



2.3 wucrannmumoHHble rpadbl HA MJIOCKOCTH

Haszosem ducmanyuonnoim epagom na naockocmu (mimm epagom paccmosanudl Ha NA0CKOCTAU) TAKON
rpad, BepIIMHBI KOTOPOI'O — 9TO TOYKH IJIOCKOCTH, a pebpa — BCe Mmapbl TOYEK, PACCTOSTHUE MEXKYy KOTO-
pBIMHI paBHO 1.

Bagada 7. Jlokaxure, 9T0 B JucraHnnoHHoM rpade wer noarpados Ky (mosHbx rpados Ha 4-X BEp-
IITHAX ).

Banmaua 8. Jlokaxkure, 9T0 B JUCTAHIMOHHOM rpade HeT moarpados Ko 3 (MOIHBIX ABYI0IBHBIX TpadoB
¢ J0JIsMU pa3mepa 2 u 3).

Bamaua 9. /[lokaxkure, 9TO B JuCTaHIIMOHHOM T'pade HeT nojarpados W =

Bagada 10. /lucrannuonHbil rpad He CTOUT MyTaTh ¢ IIaHApHBIM rpadoM (rpadoM, KOTOPBIH MOKHO
TaK M300pasuTh Ha IJIOCKOCTH, YTOOBI pebpa Ha PUCYHKe MepeceKasich TOJIBKO Mo BepiimHaMm). [Ipuse-
JIATE TIPUMEpP HeIlJIaHAPHOTO I'pada paccTOosdAHUM U IJIaHAPHOTO I'pada, He SABJIAIONIErocs JTUCTAHIITHOHHBIM.
(Kpurepnit KyparoBckoro MoxKHO HCIIOJIB30BaTh 63 JI0Ka3aTe/IbeTBa. ¥l ero HAllOMHIO. )

2.4 Teopema Typana ajsa AUCTAHINOHHBIX TpadOB Ha MJIOCKOCTH

Bagada 11. Ilycrs B aucrannmonnom rpade G = (V) E) wa miockocru 4n sepris, a o(G) < n. Co-
riacio teopeme Typana |E| > 6n. lokaxkure, 9to B TekymieM ciydae (Korja rpad G aucTaHINOHHBII )
nMeer MecTo 6osiee cusbHas oreHKa |E| > Tn. Bocnonbayiitech pesynbraTom 3a1adn 7.

JanbHeiimas cepus 3aja4 MOCBSIIeHa YTOYHEHNIO pe3yiabTaTta 3aa4u 11. [Ipu sTom no-npexknemy mMbl
UCII0JIB3YEM TOJIBKO 3a/1ady 7.

Bagaua 12. [okaxure, aro ecau y rpada G = (V, E) (ue obgazare/bHO JUCTaHIMOHHOTO!) 4n BepInuH,
a(G) < n, w(G@) < 3 (rpad He comepxkuT Ky) U MunuMaAbHAA CTETEHb BepImuHb G He GOJIbIE TPEX,
TO 13 rpada MOKHO TaK yJaJIUTh He 60JIee YeThIpexX BEePIIUH CO BCEMHU MPHMBIKAIOIIIME K HIM peOpaMiu,
4100l B HOBOM rpade G = (V' E') 6pui0 o(G') < o(G) — 1, |E'| < |E| — 8 (ynamus e Gojiee deThIpex
BepIuH, u30aBUMCsI OT HE MeHee BOChMU pebep).

s pemmenns 3ajaqn 12 MOXKHO JeiicTBoBaTh Tak. Ilycth A — BeprimHa MUHUMAJILHOM CTEIEHU B
G. Paccmorpure no otnenbHocTu Bee 4 ciydas 3uadenus crernenu or 0 10 3. B mepBbIX Tpex ciydasx
yJajsiite Bepimuay A co BCeMU COCESIME U UCIOJIB3YHTE 3aady 2 B COUETAHUU ¢ TeopeMoil Bpykca jiist
JI0Ka3aTeJIbCTBa CYIEeCTBOBAHNS BEPIIMHBI OOJIBINON CTENeHN B ocTaroliemMmces rpade. B nmociaegaem cioydae
npoBeiuTe HEOOIbINOi mepedop BO3MOYKHBIX CUTYAITH.

Bagada 13. C momornbio HHIYKIMA BbIBeAUTe U3 3a1a49u 12 onerky |E| > 8n B yciaoBugx 3amaan 11.

Bamaua 14. [okaxure, uro st rpadoB (He 06s3aTeIbHO JUCTAHIIMOHHBIX!), Y KOTOPBIX 41 BEpINUH,
a(G) < nnw(G) < 3, onerka |E| > 8n Heyyurmaema.

N eme OosbIne yCuJIeHUS 3a CYET JOMOJTHUTEIBHBIX “3allpelIeHHbIX MOArpadoB.

Bamaga 15*. C moMmoIpo pe3yabTaToB 3aad 7, 8 u 9 JoKaxKuTe, IYTO eC/IM Y JUCTAHIIMOHHOTO rpada
na wiockocrn 4n sepumn u «(G) < n, 1o |E| = Ln.

Bagada 16 (oTkpbITasi mpobsiema). YiydriuTe OleHKy 3a1adn 15.



2.5 JlucranmmoHHBIe rpadbl B MPOCTPAHCTBAaX 0O0JIbINeil pa3MepHOCTHN

Ecymm Ber 3naere, 9To Takoe n-MepHOE TPOCTPAHCTBO, 0603HadaeMoe Tpaauimonto R™, To Bur mosioerr,
HO IPSIMO ceifiuac 3To 3HAHUE He sABJIIeTCs 00g3aTe/bHbIM. [103:Ke MBI Ja UM OIpeaeseHus], JOCTaTOYHbIe
JUI PelieHns COOTBETCTBYOMMX 3a1a4. OHaKko MoKa MOXKHO oboiTuch 6e3 ciioBa “npoctpanctso’. Pac-
emorpum rpad G(n,3,1). Ero sepumnamu ciyxkar Bee BosMozkHble C2 TpexXsieMeHTHbIE M0MHOKECTBA
muO)kecTBa {1,2,...,n}. A pebpaMu B HEM COEAMHSIOTCS T€ W TOJBKO T€ BEPIIUHBI, KOTOPHIM OTBEYAIOT
Tpex3JIEMeHTHbBIE TIOJIMHOYKECTBA, IIePECEKAIOIINEecs POBHO 110 OJHOMY djeMeHTy. Ha pucyrke 2 m300pazkeH
npumep rpada G(5,3,1).

Bamaua 17. Haiigure uuciio pebep B rpade G(n,3,1).
Bagada 18. Haiisure unciio rpeyronbaukos B rpade G(n,3,1).

Bagada 19. okaxure, ato o(G(n,3,1)) =n,n— 1 wm n — 2 B 3aBUCHMOCTH OT BEJIMYUHBI OCTATKA OT
neJeHnd ducsaa n Ha 4.

Bamaua 20. Haiigure w(G(n,3,1)).

V]l _ (n=1)(n=2)
a(G) 6 :

Bamaua 21*. Jloxaxkure, ato ecm n = 2%, 1o Y (G) =

Hamomunwm, ato jBe dpyHKInn f u g HATYPaJIbHOIO apryMeHTa 11, He TPUHUMATOIINE HYJIEBBIX 3HAYECHUI,
HA3BIBAIOTCS ACUMNMOMUYECKY, PASHbMU (T IKEUBAAEHMHBLML) , €CITH % — 1 pu n — oo. Hampuwmep,
acHMITOTHYecKH pasubl dynknun nt u nt + 100n2. Humyt f ~ g. Hamee, bynknua f 6eckoneuno mana

10 CPABHEHUIO C (, €CJIN % — 0 npu n — co. B arom ciywae numyr f = o(g). Hanpumep, n® = o(n?).

Bagaua 22. Ilycrs W, — npousBoJIbHOE MOJAMHOKECTBO MHOKecTBa Bepiud rpada G(n, 3, 1) (g kax-
JIOro n paccMaTpuBaeM cBoe MHOKecTBO W,,). O6osznaunm r(W),) quciio pebep, 0ba KOHIa KOTOPBIX IPUHA/I-
nexxar W,,. Ilycrs n = o(|W,,|) ipu n — oo. lokaxkure, aro obbranast reopema Typana rapanTupyer Torja,

Wal2 (W2

aro r(W,) = f(n), tae f — mexoropas (dbyHKIHsI, ACHMITOTUIECKN DaBHAsI BeJININHE T COe5T) o

Bor renepsb jaguMm (opMaibHOe onpejiesienrne npocTpacTBa R™. DT0O POCTO MHOMXKECTBO BCEX “TO-
yek” X, KaxKJlasd U3 KOTOPBIX €CThb II0CJIEI0BATEILHOCTD, COCTOAINAA U3 N JACHCTBUTEIHHBIX YUCE: X =
(x1,...,2,). Ilpu sTOM MeKy JIIOOBIME JIBYMsI TOYKAMU X = (T1,...,Z,) 1y = (Y1,...,Yn) MOKHO
[IOMEPHUTH PACCTOsiHKE 110 (hOpMYyJIe

|X_Y| = \/(331 _y1)2+"'+ (xn_yn)2'

B wactroctu, mpu n = 1 nojiydaem OOBIMHYIO HPSAMYIO, IPU N = 2 — OOBIMHYIO ILJIOCKOCTD, IIpU N = 3 —
0OBIYHOE TIPOCTPAHCTBO.
Hanee, ckajsipHoe TIPOU3BEJIEHNE BEKTOPOB X = (T1,...,%,), ¥ = (Y1,...,Yn) B R — 570 BbIpakenue

(X,y) =211 + ... + TpYn.

Herpyno mpoBeputsh, 4TO BCerja

x —y]*=(x,x) + (y,y) — 2(x,y).

Bamaua 23. [lokaxwure, uto rpad G(n,3,1) uzomopden cieyiomemy rpady B R™:
V=_{x=(x1,...,2,): z; €{0,1}, 2y +... 42, =3}, E={{xy}: (x,y) =1}

Taxum o6pazom, 3TOT rpad JUCTAHITMOHHBI, T.€. €r0 BEPIIMHBI — TOYKHU B IPOCTPAHCTBE, a pedpa — mapbl
TOYEK Ha 3aJJaHHOM Hallepe]l PACCTOSHUN.

Sagaua 24. Ilycrs K, ;. — TOJHBINR 7-10JBHBIH Tpad ¢ pasmepamu jpojeit [, ..., [,. Jokaxure, 1aTo
mucTannunonnbii rpad B R™ ne comepxutr B Kadecrse noarpada rpad K s ¢ guciaom goseit [n/2] + 1.



3 3ajaum mocJje MpoMexKyTOYHOro (PuHUIIA

Bamaua 25. Jlokaxkure, 9TO €CJIU B YCJOBHAX 3aJa9d 22 JONOJHATEIBHO MOTPEOGOBATDH BBIIOJIHEHUE
yenosus |[W,,| = o(n?), To onenka u3 3amaam 22 (T.e. 0OObIYHAS TYPAHOBCKAZ OINEHKA) aACHMIITOTHYECKH
ney tyumaeMa. VHbIME cioBamu, jyis Jio6oit byHnKiuu g, yaosiaeTsopstomieii yeaosusam g(n) = o(n?) u

W, 2
h = o0(g(n)) nmpu n — +o00, cymecrByer nocaeaoBareabnocts W, takas aro |W,| ~ g(n) u r(W,,) ~ ‘2—’;1'
Bamaua 26-27. Hasosem sepwunamu npasuavrozo cumnaexca B R™ moboit Habop u3 k ToUek, monapHbie
PACCTOSTHIS MEK/Ty KOTOPBhIME paBHbI 1. JlokakuTe, 9T0 TaKHe MHOXKECTBA CYIIECTBYIOT 1pu Beex k < n+1
(3amada 26) u He CYIIECTBYIOT HU IIPU Kakux k > n + 2 (3axada 27).

Bagaga 28. Ilycrs G, = (V,,, E,), n =1,2,..., — nucranmuonnbie rpadsl B R”. O6o3natunM ux dncia
HE3aBUCHMOCTH «v,. [Tycts W,, — mponsBosibHOE IO IMHOXKECTBO MHOKeCcTBa BepimH rpada G, (Kak 06brd-
HO, JIJIsI KayKJIOr0 n paccMarpuBaeM cBoe MHOxkecTBo W, ). O6o3naunm r(W,,) qucio pebep, oba KoHIA

KOTOpBIX nipuHayiexar W,. [Tycrs na,, = o |[W,]) npu n — oco. C nomornsio 3a1aun 26-27 JoKazKuTe, 9T0
r(W,) = f(n), tme f — Hexoropasi GyHKIHs, ACHMIITOTHIECKN DABHAST BEJINIIHE %

[Ipumenus yTBepxKierue 3ajgaquu 28 K 1mocienobarenbHoctu rpados G, = G(n,3,1) Mbl mosydnm
OIEHKY IPUMEpPHO B 2 pasa Jydlle, 4eM B 3ajadax 22 u 25 (BaBoe JiydIiasi TypaHOBCKOii). 37ech Her
[POTUBOPEYHsI, TOTOMY YTO B 3TUX 3a/a9aX chOPMYINPOBAHBI PasHble (IPAKTUIECKH TPOTHBOMOIOKHbIE)
TpeGoBanust K uuciy sepiuut |W,|: |W,| = o(n?) B samade 25 u (nposepsre!) n? = o(|W,]) B 3ama1e 28.
OxaseiBaercs, st rpados G(n, 3, 1), Kak HU CTPAHHO, MOYKHO TIOJIy9IHUTD erre 00Jiee CHIIbHBIE OIEHKHU TY-
PaAHOBCKOI'O THII&, BDEMEHHO OTKA3aBIINCH OT UCIOJIL30BAHUSA B HUX YUC/IA He3aBucumocTu. Vaeda cocrout
B TOM, 9TOOBI IIOCMOTPETH BEPIIUHBI, COJEPKAIINE TOT WM WHOI 1eMeHT MHOXKecTBa {1, ..., n}, oneHuTsh
COOTBETCTBYIOIIKE KOJHYECTBa pedep U BOCIOIb30BATHCA HEKOTOPBIMU CTAH/IAPTHBIMUA HEPABEHCTBAMU.

Bagada 29. Ilycrs W, — mpousBosibHOE TOJMHOKECTBO MHOXKecTBa BepinuH rpada G(n,3,1). Ilycts

n? = o(|W,,|) mpu n — oo. okaxure, uro r(W,) > f(n), tae f — mekoropas (hyHKIHUs, ACHIMITOTHICCKH
W, 2

paBHast BejmdauHe 4.5 - % NupiMur ciioBaMu, osrydaeTces IpuMepHo B 4.5 pasa jrydinas OIeHKa, 9eM B

zaj1aue 28!

Samaua 30. Jlokaxkure, 94TO OlEHKa U3 3aja49u 29 B CTaHIaPTHOM CMBIC/IE ACUMITOTHIECKH HEYJIydIlia-
eMma.

Camo obozuauenue “G(n, 3, 1)” mogckassiBaet, 910 y 910oro rpada ectb 0606meHue. 1o rpad G(n,r, s).
Y HEro BepIIMHAME CJIy’KaT BCE T-3JIeMEeHTHbIe MOJMHOXKeCTBa MHOXKecTBa {1,...,n}, a pebpamu cennHsi-
I0TCsl JIBe BEpIINHBI, €CJIM U TOJLKO eCJIH COOTBETCTBYIONIME MHOXKECTBA IIEPECEKalOTCs POBHO IO S 3JIe-
MeHTaM. VIHBIMEU cJIOBaMU, BEpIIMHBI — N-MepPHbIe TOYKK ¢ “KoopauHaTamu’ O wam 1, mpudeM B KazKI0i
TOYKe POBHO I €UHHUIL. PeOpo MpOBOINTCS TOTIA U TOJILKO TOIJIA, KOIJIa CKAJIAPHOE IIPOU3BEICHIE BEPIINH
pasuo s. I'padwr G(n,r, s) HaspBatoTcst epagamu locorncona, a WX 9acTHBIN caydait — rpader G(n,r,0)
— Ha3LIBAIOTCSA KHE3ePOGCKUMU 2padamu.

Bagada 31. Haiinure uncio pebep B rpade G(n,r,s).
Bamaua 32. Haiijgure unciio Tpeyrosibaukos B rpade G(n,r, s).

Bamaga 33*. JlokaxKute, 9TO AaHAJIOTOM PE3yJIbTATOB U3 3a1a4 29 u 30 CIy?KUT ACUMIITOTHIECKU HEYJTy -

L WR|2 O
TaceMasd OIICHKa BCJIMYMHOUN 57N
ns 2-(r—s)!

B1ech Hag0 TpeboBaTh, YToGB ' = o(|W,]).

Crenyrommuit pe3yabTaT MOXKHO HCIIOJIb30BATh 663 T0Ka3aTeIbCTRA.

Teopema dpaema, Ko u Pago. ITycmv n > 2r. Tozda o(G(n,r,0)) = C 1.

n



Samaua 34. Jlokaxwure, uro eciu W,, — HIpOU3BOJbHOE IOAMHOXKECTBO MHOXKECTBa BEpIINH rpada

G(n,r,0) ul=|W,| > a(G(n,r,0)), o

Li- (G -Ci,))
- |

r(Wa) 2



Distance graphs and Turan’s theorem

A. Raigorodsky

The project is proposed by O. Bursian, K. Kokhas, L. Neustroeva, A. Raigorodsky

1 Definitions

Let G = (V, E) be a graph without loops, multiple edges and orientation. A cligue in G is any complete
subgraph. Single vertex or single edge are also cliques. The clique number of graph G denoted by w(G) is
the maximal integer k such that G contains a clique on k vertices. An independent set is a set of vertices
in GG such that no two of the vertices form an edge. It is an “anticlique” in a sense. Single vertex is not
only a clique but an independent set too. Accordingly, an independence number of graph G is the maximal
integer k£ such that G contains an independent set of k vertices. It is denoted by a(G). And finally, the
chromatic number of graph G is the minimal number y(G) of colors for which one can color vertices of
graph in these colors so that the endpoints of any edge have different colors.

2 Problems, 1

2.1 Exercises

Problem 1. Prove that x(G) > w(G).

Problem 2. Prove that x(G) > %

Problem 3. Let A(G) be the maximum degree of vertices of graph G. Prove that x(G) < A(G) + 1.

Brooks’ theorem (without proof). If connected graph G is neither a complete graph nor a simple
cycle (non self-intersecting) of odd length, then x(G) < A(G).

2.2 Turan’s theorem

Problem 4. Let G = (V, E)and |V| = n. Prove that if w(G) < 3 (in other words, the graph does not
contain triangles) then the number of edges in G is at most L%J . {%W Prove that this upper bound is
sharp (i.e. can not be increased).

Problem 5. Prove that problem 4 is equivalent to the following statement. Let G = (V, E) and |V| = n.
Prove that if «(G) < 3 then the number of edges in G is at least

<rigk

and this lower bound is sharp.

Problem 6 (Turan’s theorem). Let G = (V, E) and |V| = n. Prove that if a(G) < k then the number
of edges in G is at least
o [7] . LE+
k 2
and this lower bound is sharp.



2.3 Distance graphs in the palne

A distance graph on the plane or graph of distances on the plane is a graph such that its vertices are
some points of the plane and edges are all pairs of points at distance 1.

Problem 7. Prove that distance graphs do not contain subgraphs K, (complete graphs on 4 vertices).

Problem 8. Prove that distance graphs do not contain subgraphs Ks 3 (complete bipartite graphs with
parts of 2 and 3 vertices).

Problem 9. Prove that distance graphs do not contain subgraphs W = .@. :

Problem 10. Do note confuse distance graphs and planar graphs (the latter can be drawn on the plane
in such a way that its edges intersect only at their endpoints). Give examples of non-planar distance graph
and planar but non-distance graph. You may use Kuratowski’s criterion without proof.

2.4 Turan’s theorem for distance graphs on the plane

Problem 11. Let G = (V, E) have 4n vertices and a(G) < n. In this case |E| > 6n by Turdn’s theorem.
Prove that if G is a distance graph on the plane then the stronger inequality |E| > 7n holds. Use the result
of problem 7.

Next problems strengthen the inequality of problem 11 by applying the result of problem 7 only.

Problem 12. Let graph G = (V, E) (not necessarily being a distance graph) has 4n vertices. Assume
that a(G) < n, w(G) < 3 (that means G does not contain Kj) and mimimum vertex degree in G is at
most 3. Prove that it is possible to remove at most 4 vertices with all its edges from G in such a way that
in the new graph G’ = (V', E’) we have o(G") < a(G) — 1 and |E'| < |E| — 8 (by removing of at most 4
vertices we delete at least 8 edges).

You may use the following approach to problem 12. Let A be a vertex of minimal degree in G. The
possible the values of this degree are from 0 to 3. For the first three values apply problem 2 plus Brooks’
theorem in order to prove that the remaining graph has a vertex of big degree. For the last value investigate
possible cases.

Problem 13. Let G = (V, E) be a distance graphs on the plane, |V| = 4n and a(G) < n. Using induction
and problem 12 prove that |E| > 8n.

Problem 14. Let graph G = (V, E) (not necessarily being a distance graph) have 4n vertices, a(G) < n
and w(G) < 3. Prove that the estimation |F| > 8n can not be strengthened.

We can improve the bound better by using additional “forbidden” subgraphs.

Problem 15*. Applying results of problems 7, 8 and 9 prove that if a distance graph has 4n vertices
and a(G) < n, then |E| > Zn.

Problem 16 (open problem). Improve the bound of problem 15.



2.5 Distance graphs in high-dimensional spaces

If you already know what is n-dimensional space usually denoted by R", you are extremely smart,
but this knowledge is not obligatory right now. We will give all necessary definitions later. And now we
tend to avoid the word “’space”. Consider graph G(n, 3, 1). Its vertices are all 3-element subsets of the set
{1,2,...,n}, so it has (’;) vertices. And the edges correspond to the pairs of subsets which has 1-element
intersection. See example of graph G(5,3,1) in fig. 2.

Problem 17. Find the number of edges in graph G(n,3,1).
Problem 18. Find the number of triangles in graph G(n, 3, 1).
Problem 19. Prove that a(G(n,3,1)) =n, n — 1 or n — 2 depending on the remainder n mod 4.

Problem 20. Find w(G(n,3,1)).

Problem 21*. Prove that if n = 2%, then x(G) = OJZ/G',) = (nflic("*m.

Let f and g be two functions defined on the set of non negative integers and having no zero values. We
remind that f and g are called asymptotically equal (or equivalent) if % — 1 for n — oo. It is written as

f ~ g. For example n* ~ n* 4+ 100n2. Function f is said to be infinitesimal with respect to g if % — 0
for n — oco. It is denoted as f = o(g). For example n® = o(n?).

Problem 22. For each integer n > 3 let W,, be a subset of the set of vertices of graph G(n,3,1).
Denote by r(W,,) the number of edges with both endpoints in W,,. Let n = o(|W,|) for n — oco. Prove

that Turén’s theorem implies that r(W,) > f(n), where f is a function that is asymptotically equal to
[Wn|? W |?
20(G(n310) ~ 2n -

Now we will give a formal definition of the space R". It is just a set of “points” x, where each of points
is a sequence of n real numbers: x = (1, ..., x,). For any two points x = (x1,...,2,) andy = (y1, ..., Yn)
we define a distance between them by formula

x =yl = V(@ —y)2+ .+ (20— ya)2

In particular, for n = 1 this definition gives us the usual line, for n = 2 the usual plane and for n = 3 the
usual space.
Further, the scalar product of vectors x = (z1,...,2,) and y = (y1,...,¥,) in R" is the expression

(X,¥) =21y1 + ... + TpYn.
It easy to check that for all x,y € R”
x =y = (x,%) + (y,¥) - 2(x.y).
Problem 23. Prove that graph G(n, 3, 1) is isomorphic to graph (V, E)
V={x=(z1,...,2,): 2;€{0,1}, z1 +...+2, =3}, E={{xy}: (x,y) =1}

Thus, this is a distance graph in R"™: its vertices are points in R”, and edges are the pairs of points at
distance 2.

Problem 24. Let Kj, ; be the complete r-partite graphs, with parts of sizes ly,...,[,. Prove that
distance graphs in R™ do not contain subgraphs of the form K 3,...,3

[n/2]+1



3 Problems after intermediate finish

Problem 25. Prove that if in the statement of problem 22 to impose additionally the condition |W,,| =

o(n?), then the estimation of problem 22 (i. e. usual Turdn’s estimation) cannot be asymptotically improved.

In other words, for every function g such that g(n) = o(n?), h = o(g(n)) there exists sequence W,, such
‘2

that |W,| ~ g(n) and r(W,) ~ W#

Problem 26-27. We say that any k points in R" are the vertices of right simplex, if all the pairwise
distances between them are equal to 1. Prove such sets exist for all k£ < n 4 1 (problem 26) and do not
exist for all k£ > n + 2 (problem 27).

Problem 28. Let G, = (V,,, E,), n=1,2,... be unit distance graphs in R™. Denote their independence
numbers by «,. Let W,, be an arbitrary subset of the set of vertices of graph G, (as usual, for each n we
consider its own set W,,). Denote by r(W,,) the number of the edges, both ends of which belong to W,.
Let nay, = o(|W,|) as n — oco. With the help of problem 26-27 prove that r(W,,) > f(n), where f is some

function asymptotically equal to the value %

For sequence G,, = G(n, 3,1) problem 28 give the estimation that is approximately 2 times better than
the estimation in problems 22 and 25 (twise better than Turdn’s estimation). There are no contradiction
here, because these problems have different (in fact opposite) limitations for the number of vertices |W,,|:
in problem 25 |W,| = o(n?) and in problem 28 (check!) n?> = o(|W,]|). It turns out that for graphs
G(n,3,1) even stronger estimations of Turdn’s kind can be obtained, by temporary refuse of using the
independence number. The idea is to consider the vertices containing an element of set {1,...,n}, to
estimate the corresponding numbers of edges and to apply some standard inequalities.

Problem 29. Let W, be an arbitrary subset of the set vertices of graph G(n,3,1). Let n? = o(|WW,,|) as
n — oo. Prove that r(W,) > f(n), where f is some function asymptotically equal to the value 4.5 - %

By the other words, we have obtained the estimation, approximately 4.5 times better than in problem 28!

Problem 30. Prove that the estimation of problem 29 in the standard sense cannot be asymptotically
improved.

The notation “G(n, 3,1)” itself prompts that this graph has the generalization. It is graph G(n,r, s).
Its vertices are all r-element subsets of set {1,...,n}, and two vertices are connected by edge, if and only
if the intersection of the corresponding sets contains exactly s elements. In other words, the vertices are
n-dimensional points with “coordinates” 0 or 1, where the number of 1’s is exactly r. Edge is drawn if and
only if the scalar product of the vertices equals s. Graphs G(n,r,s) are called Johnson graphs, and the
particular case of them, graphs G(n,r,0), are called Kneser graph.

Problem 31. Find the number of the edges of graph G(n,r, s).
Problem 32. Find the number of the triangles of graph G(n,r, s).

Problem 33*. Prove that the analogue for the results from problems 29 and 30 is the estimation of the

Wal? . _C21 that asymptotically cannot be improved. Here we have to demand n™! = o(|W,l).

form ns 2-(r—s)!

The following result you can apply without proof.
Erdés—Ko—Rado theorem. Let n > 2r. Then o(G(n,r,0)) = C" 1.

n



Problem 34. Prove that if W, is an arbitrary subset of the set of vertices of graph G(n,r,0) and
[ = |W,| > a(G(n,r,0)), then
! (l B (CZ; B Cﬁ—r))

>
r(W,) = 5
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ON SETS OF DISTANCES OF n POINTS
P. ERDOUS, Stanford University

1. The function f(n). Let [P,] be the class of all planar subsets P, of n
points and denote by f(n#) the minimum number of different distances deter-
mined by its # points for P, an element of { P,}. Clearly, f(3) =1 (with the three
points forming the vertices of an equilateral triangle) f(4) =2, f(5) =2. The fol-
lowing theorem establishes rough bounds for arbitrary #. Though I have sought
to improve this result for many years, I have not been able to do so.

THEOREM 1. The minimum number f(n) of distances determined by n points
of a plane satisfies the inequalities

(n — 3/4)12 — 1/2 £ f(n) S on/(log n)l/2,

Proof. Let Py be an arbitrary vertex of the least convex polygon determined
by the # points, and denote by K the number of different distances occurring
among the distances P.P; (1=2, 3, - - -+, ). If N is.the maximum number of
times the same distance occurs, then clearly KN=#n—1.

If » is a distance that occurs NV times then there are N points on the circle
with center P; and radius 7, which all lie on the same semi-circle (since P, is a
vertex of the least convex polygon). Denoting these points by Qi, Qz, - - -, Qw,
we have Q1Q:<(1Q:< * » - <(Q1Qw, and these N —1 distances are pairwise dis-
tinct. Thus f(#) Zmax(N—1, (n—1)/N), which is a minimum when N(N—1)
=n—1. This yields the first part of the theorem.

Considering now the points (x, y) with integer coordinates for 0 Zx, y <n1/ 2
we obtain at least » points P; which pairwise have distances of the form
(u?+0v2)12, 0=u=n'% 0<v=n'% Now it is well-known that the number of
different integers not exceeding 2z which are of the form w242 is less than
cn/(log n)/?, and the proof is complete.*

For #- points in k-dimensional space the same method yields ¢inl/* <f(n)
< 62.”2/]3 .

2. Somg conjectures concerning f(n). Let us assume that our # points form
a convex polygon. Then I conjecture that f(z) = [#/2], with the equality sign
valid when the % points are vertices of a regular #-gon. I am unfortunately un-
able to prove this. The following conjecture is stronger: In every convex polygon
there is at least one vertex with the property that no three vertices of the poly-
gon are equally distant from it. If this is the case, then clearly we would obtain
[#/2] different distances by considering all the distances from such a vertex.

A still stronger conjecture is that on every convex curve there exists a point
P such that every circle with center P intersects the curve in at most 2 points.

3. The function g(n; r). Denoting by g(#; 7) the maximum number of times
a given distance 7 can occur among # points of a plane we establish

* Landau, Verteilung der Primzahlen, vol. 2.
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THEOREM 2. nite/loglar gy r) <nd2,

Proof. Assuming that there are x; points at distance » from P;, clearly
g(n;r)=max 3> 7. ,x:; We suppose that x;=x,2 - - - 2, Now the x; points

at distance 7 from P; can contain at most two points with distance 7 from P;.
Hence ‘

i
) 2 (w—2i+2)Sn for j=1,2,-++,m.

1=l

Put [nY%]=a, n/2—a=¢, 0<e<1. We have from (1)

a
x1+xz+---+xa§n+2(2>=2n—2m1/2+ez—-n‘/2+e

(2)
< 2n — 2ent!?
forn=4. Thus
1
3) %o < — (2n — 2enl/?) = 25102,
a

Hence from (2) and (3)

X % < 2 — 2enV? 4 (n — a)2n12 = 23/

=1
or
g(n; r) < ndl2,

By agzﬁn considering the set of points (x, y), 0=x, ¥ <a we easily obtain
(using well known theorems about the number of solutions of #%2-4-y2==m)*

g(n) > nl+c/log log n

which completes the proof.
It seems likely that g(n) <nl*e,

4. Maximum and minimum distances. If 7 is the diameter of the points P;,
it is well known that 7 can occur only % times.} This follows almost immediately
from the fact that if P,P,=r and P;P,=r the lines P,P, and PsP, must intersect,
for otherwise a simple argument shows that the diameter of PyP;PsP4 would be
greater than 7. Connect P; with P; if and only if their distance is ». We distin-
guish two cases. In Case 1, every P; is connected with at most two other P’s,
In this case the number of lines, 7.e., of pairs of points at distance 7 is clearly <.

* See e.g. P. Erdos, London Math. Soc. Journal, 1937, vol. 12, p. 133. The proof would depend
on the prime number theorem for primes of the form 4%2+1 (or on some weaker elementary result
concerning the distribution of primes of the form 4%21).

t Jahresbericht der Deutschen Math. Vereinigung, vol. 43, 1934, p. 114,
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If P; would be connected with three vertices say P,, P;, Py where P1P; is be-
tween P1P; and P1P4 then P; can not be connected with any other P;, since
P3P; would have to intersect both P,P;and PP, (the angle PoP; P, is of course
=w/3), and thus be greater than . Now we can just omit P; and since both the
number of points and the number of distances are reduced by 1, the proof can
be completed by induction.

It would be interesting to have an analogous result for # points in k dimen-
sional space. Vézsonyi* conjectured that in three-dimensional space the maxi-
mum distance can not occur more than 27 —2 times.

If one could prove that in k-dimensional space the maximum dlstance can
not occur more than kz times, the following conjecture of Borsuk would be es-
tablished: Each k-dimensional subset of diameter 1 can be decomposed into 241
summands each having diameter <1. )

Let now 7’ denote the minimal distance between any two P’s. First it is easy
to see that #’ can not occur more often than 3z times. This is immediately
clear from the fact that since 7’ was the minimal distance between any two P’s,
there can be no more than 6 P’s at distance #’ from any given P.

Connect P; with P; if and only if their distance is #’. A simple argument
shows that no two such lines P;P; and P; P, can intersect (otherwise there would
be two P’s at distance <7’). Thus the graph we obtain is planar, and from
Euler’s theorem it follows that the number of edges of such a graph is not
greater than 3z —6. Thus we have proved the following

THEOREM 3. Let the maximum and minimum distances determined by n points
in a plane be denoted by r and ', respectively. Then r can occur at most n times and
v’ at most 3n—6 times.

It is easy to give # points where the maximum distance occurs exactly »
times. By more complicated arguments we can prove that the minimal distance
7’ can occur not more than 3n—cn'/? times, where ¢ is a constant. On the other
hand the example of the triangular lattice shows that 7’ can occur 3#—cyn!/2
times. I did not succeed in determining exactly how often 7’ can occur.

One could try to generalize Theorem 3 to higher dimensions. But already
the case of three-dimensional space presents great difficulties. It would be of
some nterest to determine the maximum number of points on the unit sphere
of & dimensions such that the distance of any two is =1.

* Oral communication.



Turan type results for distance graphs®

L.E. Shabanov! A.M. Raigorodskiit

Abstract

The classical Turdan theorem determines the minimum number of edges in a graph on n vertices
with independence number a. We consider unit-distance graphs on the Euclidean plane, i.e., graphs
G = (V,E) withV c R?and E = {{x,y} : |x—y| = 1}, and show that the minimum number of edges
in a unit-distance graph on n vertices with independence number @ < An, A € [%, %], is bounded
from below by the quantity Wn, which is several times larger than the general Turdan bound and
is tight at least for A = %

Key words: Turan theorem, independence number, distance graphs.

1 Introduction

The classical Turdn theorem proved in [8] can be formulated as follows.

Theorem 1. The minimum number of edges in a graph on n wvertices with independence number « is
attained on a graph consisting of o pairwise disjoint cliques whose sizes differ at most by one.

One of the most important classes of graphs arising from combinatorial geometry is that consisting of
distance graphs G = (V, E), where

VcR", E={{xy}:|x—y|=1}

On the one hand, distance graphs are naturally related to the famous Nelson Hadwiger problem on
the chromatic numbers of spaces, and so their chromatic numbers and their independence numbers are
intensively studied (see [1], [6], [7]). On the other hand, multiple questions concerning the edge numbers
in distance graphs go back to Erdés (see [1], [3], [6]).

In this paper, we study distance graphs on the plane. Our main goal is to prove a Turan type result
for such graphs, that is to find a lower bound for the minimum number of edges in a distance graph in R?
given a number n of vertices and an independence number . Before stating our main result it is worth
noting that for distance graphs with n vertices, a cannot be arbitrary. It is definitely at least 0.2293n
(see [2], [4], [5]). Moreover, a strong belief is that it is greater than or equal to 0.25n. Anyway, given a
sequence of graphs with growing sets of vertices, the independence numbers of these graphs are quite far
from being constant: they are proportional to the numbers of vertices.

One of the main results of our paper is as follows.

*This work is done under the financial support of the following grants: the grant 15-01-00350 of Russian Foundation for
Basic Research, the grant NSh-2964.2014.1 supporting Leading scientific schools of Russia.

THigher School of Economics, Mathematics Faculty.

fMoscow State University, Mechanics and Mathematics Faculty, Department of Mathematical Statistics and Random
Processes; Moscow Institute of Physics and Technology, Faculty of Innovations and High Technology, Department of Data
Analysis; Buryat State University, Institute of Mathematics and Informatics.



Theorem 2. The minimum number of edges in a distance graph on n vertices with independence number
a<An, A€ H, %], s bounded from below by the quantity wn

The result of Theorem 2 is much stronger than that of Theorem 1. If, for example, A = i, then
Theorem 1 gives 1.5n edges. In the same case, Theorem 2 gives at least %n edges. If, in turn, A = %
and n is divisible by 7, then the classical bound is equal to %n, and our bound equals %77 Moreover, in
this case, our bound is tight, since one can take disjoint copies of the so-called Moser spindle, which has

7 vertices, 11 edges and independence number 2 (see fig. 1).

Figure 1: Moser’s spindle

Finally, for A >
graphs.

The paper is organized as follows. In Section 2, we give a more general setting of the problem and
formulate another main result of the paper. In Section 3, we prove a “key lemma”. In Section 4, we prove
both main theorems of the paper. In Section 5, we give some discussion.

%, Turdn’s bound is trivially tight, since cliques on at most 3 vertices are distance

2 More general setting

Consider a graph I' = (W, E)). We call the configuration of T' the vector (|W/|, «(T'),|E|) and we denote
it by Config(T").

Let V be a set of vectors (a, b, ¢) with non-negative integer coordinates a, b, c. Then we call an extension
of the set V' the set of vectors (a,b+n,c+ k), where (a,b,c) € V and n, k are again non-negative integers.

We say that a vector (a,b,c) is good, if it belongs to the extension of the set of all linear combinations
with non-negative integer coefficients of the following vectors: (1,1,0), (2,1,1), (3,1,3), (4,1,9), (5,1, 15),
(6,1,22), (7,2,11), (n+ 1,1, n(n — 1)), where n > 6.

Figure 2: Semi-star graph



We call the graph, which is drawn on Figure 2, semi-star graph with center X and top verter Y.
The following proposition is quite simple, and we omit its proof here.

Proposition 1. Any distance graph is free of K, (complete graphs with four vertices), Ko (complete
bipartite graphs with part sizes 2 and 3), and semi-star graphs.

We say that a graph is correct, if it does not contain either K, or K3 5, or a semi-star graph as subgraphs.
In particular, as we have just mentioned, every distance graph is correct. The second main result of our
paper is given below.

Theorem 3. The configuration of a correct graph is a good vector.

The proof of Theorem 3 is based on

Key Lemma. From any correct graph I', one can delete several vertices together with all the adjacent
edges in such a way that for the remaining graph T, the vector Config(T") — Config(T") is good.

In the next section, we prove Key Lemma. In Section 4, we deduce Theorems 2 and 3 from Key Lemma.

3 Proof of Key Lemma

3.1 Some preliminaries

We say that a vector v = (v, vy, v3) exceeds a vector w = (wy, wa, w3), if v1 = wy, v = Wy, v = w3,
and we denote this relation by v > w.

Proposition 2. If u,v are vectors of dimension 3 such that u = v and v is good, then u is also good.

The proposition is straightforward, and thus we prove Key Lemma, provided we show that the vector
Config(T") — Config(T"’), with an appropriate I'", exceeds some good vector.

Proposition 3. The vectors (1,1,0), (2,1,1), (3,1,3), (4,1,9), (5,1,15), (7,2,11), (8,2,18), (6,1,22),
(12,3,26), (6,2,9), (10,2,30), (4n,n,10n), (4m+1,m,10m+3), (k+1,1,k(k—1)) (n,m,k € Z; n,m > 3;
k> 6) are good.

Proof. The vectors
(1,1,0), (2,1,1), (3,1,3), (4,1,9), (5,1,15), (7,2,11), (6,1,22), (k+1,1,k(k—1)) for k > 6
are good by definition. Now, we briefly explain what happens with the other vectors:

e (8,2,18) =2(4,1,9);

12,3,26) = (5,1,15) + (7,2, 11);

6,2,9) = (6,2,6) = 2(3, 1, 3);

(
(
(
(10,2, 30) = 2(5,1,15);
(4n,n,10n) > (4n,n,9n) = n(4,1,9);
(

dm+1,m,10m+3) = (4dm+1,m,9m +6) = (m —1)(4,1,9) + (5,1,15) for m > 3.
U

Let A be a vertex of the minimum degree in I". Consider several cases depending on the value of deg A.



3.2 Case of degA =0
Remove the vertex A from I'. Since A had no neighbours, we get Config(I') — Config(I") = (1,1, 0).

3.3 Case ofdegA=1

Remove from I' the vertex A and its unique neighbour B. Obviously the independence number is
reduced by 1 and the number of edges is reduced at least by 1. Therefore, Config(I') —Config(I'") = (2,1, 1).

3.4 Case of deg A =2

Remove from I' the vertex A and both its neighbours B and C. Note that the number of edges is
reduced at least by 3, since AB, AC' are removed and also some edge adjacent to B and different from AB
is removed (2 is the minimum degree in this case). Now it is clear that Config(I") — Config(I'"") = (3,1, 3).

3.5 Case of degA =3

3.5.1 Preliminaries

Let B,C, D be the neighbours of A. Since G does not contain K, we may assume that the vertices B
and D are not adjacent. Below we consider several variants of subgraphs induced on A, B, C, D:

A A
A
D
B D B
D B
C C c
Figure 3: First variant Figure 4: Second variant Figure 5: Third variant

3.5.2 Graph from Figure 3

Let us calculate possible total numbers of edges adjacent to B or D. If the number of such edges is 6
or 7, then we remove the vertices B and D and all the vertices adjacent to them. Since the vertices B and
D are not adjacent and also they are not adjacent to any of the vertices of the remaining graph I", the
independence number is reduced at least by 2. Moreover, since I' is free of K3, the vertices B and D do
not have common neighbours different from A and C. Therefore, the number of vertices that have been
removed is 6 or 7. Finally, since the degree of each vertex is at least 3, the total number of edges adjacent
to the removed vertices is not less than 9 or 11, respectively. Thus, the vector Config(I') — Config(I")
exceeds the vectors (6,2,9), (7,2, 11), respectively.

If the number of edges adjacent to B or D is at least 8, then we remove the vertices A, B, C, D. The
independence number is reduced at least by 1, since the vertex A is not adjacent to any of the remaining
vertices. The number of edges is reduced, in turn, at least by 9, for at least 8 edges adjacent to B or D
are removed and also the edge AC is deleted. Thus, Config(I') — Config(I") = (4,1,9).



3.5.3 Graph from Figure 4

Let us look at possible total numbers of edges adjacent to B or D. If the number of such edges is
6, then we remove the vertices B and D and all the vertices adjacent to them. Since the vertices B and
D are not adjacent and also they are not adjacent to any of the vertices of the remaining graph I, the
independence number is reduced at least by 2. The number of vertices that have been removed is 6 or 7.
Since the degree of any vertex is at least 3, the total number of edges adjacent to the removed vertices is at
least 9 or 11, respectively. Thus, the vector Config(I') — Config(I") exceeds the vectors (6,2,9),(7,2,11),
respectively.

If the number of edges adjacent to B or D is 7 or larger, then we remove the vertices A, B,C, D. The
independence number is reduced at least by 1, since the vertex A is not adjacent to any of the remaining
vertices. The number of edges is reduced, in turn, at least by 9, for at least 7 edges adjacent to B or D
are removed and also at least two more edges adjacent to C are deleted. Thus, Config(I') — Config(I") >
(4,1,9).

3.5.4 Graph from Figure 5

Just remove the vertices A, B,C, D. Since the degree of each vertex B,C, D is at least 3 and these
vertices are pairwise non-adjacent, the number of removed edges is at least 9. As usual, the independence
number is reduced at least by 1, and therefore Config(I') — Config(I") = (4, 1,9).

3.6 Case of degA =4

3.6.1 Preliminaries

Let B,C, D, E be the vertices adjacent to A. Consider a subgraph induced on B, C, D, E. Note that it
cannot have a vertex of degree 3, since otherwise by adding the vertex A we get K34, which is forbidden.
Also, the absence of K3, yields that among B,C, D, E, there are no 4-cycles. Finally, the absence of
Ky yields, in turn, that among B,C, D, E, there are no 3-cycles (triangles). Thus, only the following 5
variants are possible for a graph on the vertices A, B, C, D, E (see fig. 6-10).

A o8 4 E
E
B
D
C c D

Figure 6: First variant Figure 7: Second variant Figure 8: Third variant

3.6.2 Graphs from Figures 6 and 7

Remove the vertices A, B,C, D, E. The independence number is reduced at least by 1. The number of
edges is reduced at least by 15, since any vertex among B, C, D, E is of degree at least 4 and at most 1
edge is calculated twice. Therefore, Config(I") — Config(I'") = (5, 1,15).



B A B E
A
E
C D C D
Figure 9: Fourth variant Figure 10: Fifth variant

3.6.3 Graph from Figure 8

Figure 11: Figure 12: Figure 13:

First, assume that the vertices B, D are both of degree 4. Denote by F, G the vertices adjacent to B
and different from A and C. Also, denote by H the fourth vertex adjacent to D. The vertex H does not
coincide either with F' or with G, since otherwise B and D share three neighbours and we obtain a Kj .
Remove the 8 vertices A,B,C,D,E F ,G,H (see fig. 11). The independence number is reduced at least by
2, since the vertices B and D are neither adjacent one to the other, nor adjacent to any of the remaining
vertices.

Let us prove that the number of removed edges is greater than or equal to 18. The sum of the degrees
of the vertices A,B,C,D,E,F,G,H is at least 32. If we show that the number of edges in a subgraph on
the vertices A,B,C,D.E,F .G ,H is at most 14, then we are done.

Some 10 edges are drawn on fig. 11. Moreover, all the edges adjacent to A, B, D are indicated there.
Let us prove that among the vertices C, E, F, G, H, there are at most 4 edges. Since the vertices B,
have no more than 2 common neighbours, the edges CF, CG cannot appear simultaneously. Without loss
of generality, assume that there is no CG.

Since C' and E have at most 2 common neighbours, the edges CH and FH cannot appear simultane-
ously.

If the edge EF(EG) is present as on fig. 12, then the vertices A, B,C, D, E, F(G) form a semi-star
graph with center A and top vertex F(G). Therefore, the graph I' does not have edges EF and EG.

If in T, the edges C'F and F'H appear simultaneously (see fig. 13), then the vertices A, B,C, D, F, H
form a semi-star graph with center C and top vertex H.

The edge C'E is absent due to the construction of the subgraph on the vertices A, B,C, D, .. So only
the pairs of vertices (F, G), (G, H) remain, which can form the third and the fourth edges of the subgraph



on the vertices C, F, F, G, H. Thus, we really get the bound 14 for the number of edges in the subgraph
on the vertices A, B,C, D, E, F,G, H, and we eventually have that Config(I') — Config(I") > (8,2, 18).

Recall that we assumed that the vertices B, D were both of degree 4. Of course, if the same is true for
C, E, then again Config(I") — Config(I") > (8, 2, 18).

Thus, assume that there exists a vertex of degree at least 5 both among B, D and C, E. In this case,
remove the vertices A, B,C, D, E. The independence number is reduced at least by 1. The number of
edges is, in turn, reduced at least by 15, since the sum of the degrees of the vertices B,C, D, F is at least
18 and there are only 3 edges between these vertices. Finally, Config(T") — Config(I'") = (5,1, 15).

3.6.4 Graph from Figure 9

Divide the argument into two parts roughly in the same way as it was done in the previous case.
Namely, either the degrees of both B and D equal 4, or at least one among B, D has at least 5 neighbours.
The second situation is much simpler, as before, so let us start here with it. Indeed, remove the vertices
A, B,C, D, E. The independence number is reduced at least by 1. The number of edges is, in turn, reduced
at least by 15, since the total number of edges adjacent to the vertices B, C, D, E is not less than 17 and
only 2 of them were calculated twice. Thus, Config(T") — Config(I"") = (5,1, 15).

Now, assume that both B, D are of degree 4. We proceed like in Subsection 3.6.3. Since the vertices B
and D cannot have 3 common neighbours (due to the absence of Kj5), they have exactly 2 such neighbours
— A and C. So we can denote by F, G the two other vertices adjacent to B and by H, I — the two other
vertices adjacent to D (see fig. 14).

Figure 14:

Let us prove, as in Subsection 3.6.3, that removing some 8 vertices (namely, A, B,C, D, F,G,H,I)
gives us the bound Config(I') — Config(I") > (8,2, 18). Of course, we just need to show that here again the
number of edges is reduced at least by 18, and to this end we need to analize the structure of a subgraph
on the vertices A, B,C, D, F,G, H, I and to see that the number of edges in this subgraph is at most 14.
This seems to be very similar to what was done earlier. However, there are important subtleties: actually,
either that is true, or we come back to a previously considered situation.

Since the graph I is free of K35, among CF,CG as well as among CH, C1I, at most one edge is present
in I'. Without loss of generality, assume that the edges C'G, C'I are absent.

If among C'F, F'G both edges are drawn, then we come back to the situation from fig. 8 with the vertices
B, A,C, F,G. Analogously, if among CH, HI both edges are drawn, then we come back to the situation
from fig. 8 with the vertices D, A,C, H, I. Therefore, we may assume that among C'F, FG,CH, HI at
most two edges are present.

Furthermore, I' is free of K39 and thus among F'H, F'I, GH,GI we have at most 3 edges.

Summing up all the above inequalities, we see that a subgraph on the vertices C, F, G, H, [ has at most
5 edges, which means that we do really have the bound by 14 for the number of edges in a subgraph on
the vertices A, B,C, D, F,G, H, I. The case is complete.
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3.6.5 Graph from Figure 10

If the degree of a vertex among B,C, D, E is at least 5, then we remove A, B,C, D, E. It is already
clear that Config(T") — Config(I'"") = (5,1, 15). Let us discuss the opposite case.

We need some new definitions. Let a vertex of a graph satisfy the three following conditions: it is of
degree 4; each of its neighbours is of degree 4; the configuration of the neighbours is the same as the one
of the vertex A on fig. 10. We call such vertex a key vertex. If all the vertices of a graph are key vertices,
then we call key graph the graph itself.

Proposition 4. If in a connected graph, there is a vertex of degree 4 and all the vertices of degree 4 are
key ones, then the graph is key.

All the cases, in which a graph I' has a non-key vertex of degree 4, are already considered. Thus, it
remains to analize the case of a key graph.

Lemma 1. Any key graph contains a cycle of length at least 4.

Proof. Take a vertex A in a key graph and suspend the graph on A. Let the level of A be 0. Let U be a
vertex of the maximum level and V' be a vertex of the previous level adjacent to U. Let W be a common
neighbour of U and V. Let X be a vertex adjacent to V and different from U and W. Consider paths from
U to A and from X to A, in which the level of any vertex is by 1 smaller than the level of the preceeding
vertex. Since obviously the level of V' is greater than 1, the vertices U and X do not coincide with A. Let
B be the first common point of the paths UA, X A. Then since U and X are not adjacent and their levels
differ at most by 1, they do not coincide with B. Therefore, the cycle UBXV (UB, BX denote paths,
whereas UV, VX denote edges) consists of at least 4 edges, which completes the proof. O

Take a key graph I'. Consider its shortest cycle of length greater than 3. Note that if two vertices in
the cycle are not consecutive, then they cannot be adjacent. Indeed, otherwise, if the length of the cycle
exceeds 4, then we would get a cycle, which is shorter than the initial one, although its length would be
still greater than 3; if the length of the initial cycle is, in turn, exactly 4, then the existence of an edge
inside the cycle would contradict our assumption that all the vertices are key ones.

Figure 15: A minimum cycle of length greater than 3 in a key graph

Let us analize the vertices, which are adjacent to the cycle. Let P be a vertex of the cycle. Denote by
@ and R its neighbours in the cycle. Let S, T be the two other neighbours of P. Clearly among @, R, S,T
we have two pairs of adjacent vertices and they are not among (Q, R), (S,T). Without loss of generality,
we assume that they are (Q,S), (R, T). Now, consider the vertices adjacent to (). These are of course
P, S and two more vertices that are also adjacent one to the other, but not adjacent to P, S: one of these
vertices belongs to the cycle. Taking the next vertex of the cycle and proceeding the same way we see that
all the edges coming out from the vertices of the cycle look like on fig, 15 (an example with 8 vertices).
Here any two vertices adjacent to some two different vertices of the cycle do not coincide, since otherwise
either they are not key ones, or there is a shorter cycle of lenght exceeding 3.

Consider different cases as on fig. 16-19.



D C'
G E
A B
F
Figure 16: Figure 17: Figure 18: Figure 19:

Cycle of length 4 (fig. 16) Among the edges, which are not drawn on the picture, only the edges
EG and FH might belong to the graph I'. Therefore, the number of edges in a subgraph on the vertices
A, B,C,D,E,F,G, H is at most 14. Remove the vertices A, B,C, D, E, F, G, H. The number of edges is
reduced at least by 18, since, as usual, the total number of edges adjacent to the removed vertices is 32
and at most 14 edges are counted twice. The independence number is reduced at least by 2, since the
vertices A and C' are not adjacent one to the other as well as they are not adjacent to any of the remaining
vertices. Thus, Config(I") — Config(I") = (8,2, 18).

Cycle of length 5 (fig. 17) Among the edges, which are not drawn on the picture, only some two
edges from K and some two edges from L may belong to the graph, since otherwise a cycle of length 4
appears. Remove the 12 vertices A, B,C, D, E, F,G, H, I, .J, K, L. The number of removed edges is at least
48 — 22 = 26. The independence number is reduced at least by three due to the vertices A, C,.J. Thus,
Config(I") — Config(I"’) = (12, 3, 26).

Cycle of length 2n, n > 3 (fig. 18) Let the cycle consist of vertices Ay, ..., Ag,, and let By, ..., By,
be the vertices outside the cycle adjacent to the vertices of the cycle. Note that all possible edges are
drawn on the picture, since otherwise there is a cycle of length strictly greater than 3, but strictly smaller
than 2n. Remove the vertices Ay, ..., As,, By, ..., By,. The independence number is reduced at least by
n due to the vertices Ay, A4, ..., As,. The number of edges is reduced at least by 16n — 6n = 10n. Thus,
Config(I") — Config(I'’) = (4n,n, 10n).

Cycle of length 2n + 1, n > 3 (fig. 19) Let the cycle consist of vertices Aq,..., Agyi1, and let
By, ..., By,y1 be the vertices outside the cycle adjacent to the vertices of the cycle. Note that, as in the
previous case, all possible edges are drawn on the picture. Remove the vertices A;,...,A9,41,B1,...,Bo,.

The independence number is reduced at least by n due to the vertices Ay, Ay, ..., As,. The number of edges
is reduced at least by (16n+4) — (6n+ 1) = 10n + 3. Thus, Config(I") — Config(I'") = (4n+ 1,n,10n + 3).

3.7 Case of degA =5

Let B,C, D, E, F be the vertices adjacent to A. If a subgraph on the vertices B, C, D, E, F' contains a
3-cycle, then, with the addition of the vertex A, a K4 appears. In case of a 4-cycle, we get a K35. Finally,
with a 5-cycle, we obtain a semi-star graph. Therefore, there are no cycles on the vertices B,C, D, E, F,
which means that the number of edges in this subgraph is at most 4. Also, the absence of K3, yields
that in the subgraph on the vertices B, C, D, E, F' there are no vertices of degree 3. Thus, 4 edges can be
drawn only as on fig. 20.

If the number of edges in a graph on the vertices B,C, D, E, F' is bounded by 3, then the subgraph
on the vertices A, B,C, D, E, F has at most 8 edges. Remove these vertices. As usual, the number of the
removed edges is at least 30 — 8 = 22. Thus, Config(I") — Config(I'") = (6,1, 22).
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Figure 20:

If the number of edges in a graph on the vertices B,C, D, E, F' is exactly 4, then the subgraph on the
vertices A, B,C, D, E, F has 9 edges (see fig. 20). Call the vertex A a support vertez, if each of the vertices
B,C, D, E, F is of degree 5.

If A is not a support vertex, then remove the vertices A, B,C, D, E, F. Clearly in this case, the sum
of the degrees of the removed vertices is at least 31. Thus, the number of the removed edges is not less
than 22 and we have Config(I") — Config(I") = (6, 1, 22).

Let A be support. Since I' is K3 o-free, the vertices C' and E have no other common neighbours than
A and D. Since the vertices C, E are of degree 5, let G, H be the vertices adjacent to C' and let I,.J be
the vertices adjacent to E (see fig. 21).

Figure 21:

Let us prove that the number of edges in a subgraph on the vertices on fig. 21 does not exceed 20.

On Figure 21, 13 edges are drawn. Moreover, for the vertices A,C, E, all the adjacent edges are
indicated there. So it remains to show that a subgraph on the vertices B, D, F,G, H, I, .J has at most 7
edges.

Since in the graph on fig. 20 all the edges between the vertices A, B,C, D, E, F are present, the edges
BD, BF, DF do not belong to I'. Furthermore, since I' does not contain a semi-star, it does not have any
of the edges BI, BJ, FG, FH. Also I' is K3 o-free, which means, in particular, that I' cannot contain more
than one edge in each of the following pairs: (BG,BH),(DG,DH),(DI,DJ),(FI,F.J). Since the edges
BG, DG cannot be present in I' simaltaneously, we may assume without loss of generality that I' does not
contain the edges BH and DG. Similarly, let us assume that I' does not contain the edges DJ and FI.

N

a c E J

H 1

Figure 22:

Only 10 edges remain that are colored red on fig. 22. Suppose that, in contrast to what we want to
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prove, one can keep some 8 red edges in such a way that the subgraph on the vertices
A B,C,D,E,F,G,H,I,J]

stay correct. Since I' does not contain a semi-star graph, among the edges BG,GH, DH, only at most 2
can be drawn. Also, at most 2 edges are among DI, I.J, F'J. Therefore, if among the red edges, at least 8
are in I', then ' contains the edge HI. If I' contains the edge DH, then the vertices A,C, D, E, H, I form
a semi-star graph with center D and top vertex I. Similarly, the edge DI is not in I'. Once again, since
we have at least 8 edges in I', we have in ' the edges GH,GI,G.J, HJ,I.J. This eventually gives us a K,
on the vertices G, H, I, J leading to a contradiction.

Thus, we have finally shown that the number of edges on the vertices A, B,C,D,E,F,G,H,1,.J is
at most 20. Remove these vertices. The number of the removed edges is at least 50 — 20 = 30. The

independence number is reduced at least by 2, since the vertices C', ' are not adjacent one to the other.
So Config(T") — Config(I") »= (10, 2, 30).

3.8 CaseofdegA=n=>6

Let By,...,B, be the vertices adjacent to A. If in a subgraph on the vertices By, ..., B,, there is a
vertex of degree at least 3, then we obtain a Kj5. Therefore, the maximum degree of a vertex in this
subgraph is bounded by 2. So this subgraph has at most n edges. Then the number of edges in the
subgraph on the vertices A, By, ..., B, does not exceed 2n.

Remove the vertices A, By,...,B,. Clearly the independence number is reduced at least by 1 and
the number of edges is reduced at least by (n + 1)n — 2n = n(n — 1). Thus, Config(I") — Config(I"') >
(n+1,1,n(n —1)).

4 Proofs of the two main theorems

4.1 Proof of Theorem 3

Let us proceed by induction in the number of vertices.

Base of induction. Note that in cases 3.6-3.8 of Key Lemma definitely not all the vertices were being
removed from the corresponding graphs I'. And in cases 3.2 3.5 at most 7 vertices were being removed.
So we may consider here all the graphs on at most 7 vertices.

Let us call the graph from Theorem 1 the «, n-Turdan graph. Note that for a > %n, the «, n-Turan
graph is the disjoint union of K3, K, and K, and so it is correct and its configuration is good.

Consider all possible pairs (a,n), where a < n < 7. For all such pairs, but
(1,4),(1,5), (1,6), (1,7),(2,7),

we have a > n/3, which has been just discussed. For the pairs (1,4), (1,5),(1,6), (1,7), the only corre-
sponding graphs are the complete graphs on 4,5,6,7 vertices. They are of course not correct.

Only one case of @ = 2,n = 7 remains. Consider a vertex of the minimum degree in any such correct
graph. Remove it and all its neighbours. The new graph is correct, and its independence number is at
most 1. Therefore, it has no more than 3 vertices. This means that at least 4 vertices were removed,
and so the above-considered vertex had at least 3 neighbours. Thus, each vertex in the graph has degree
greater than or equal to 3, and consequently the number of edges is bounded from below by 72;3, that is,
it is at least 11.

The base of induction is proved.
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Inductive step. Apply Key Lemma and remove from graph I' some of its vertices in such a way that the
vector Config(I") — Config(I"”) is good. Then by the induction hypothesis, the vector Config(I") is good.
Since the sum of good vectors is good, the vector Config(I') = (Config(I') — Config(I'")) + Config(I"”) is
good, too. O

4.2 Proof of Theorem 2

Lemma 2. If a vector (u,v,w) is good, then it exceeds the vector (u,v, %u — 53—01))

Proof. Let us check the lemma for the “basis” vectors:
(1,1,0) = (1,1,-31/3),(2,1,1) = (2,1,-12/3),(3,1,3) = (3,1,7/3),

(4,1,9) = (4,1,26/3), (5,1,15) = (5,1,15), (6,1,22) = (6,1,64/3),
(7,2,11) = (7,2,11), (n+ 1,1, n(n — 1)) = (n+1,1,19/3n — 31/3), n > 6.

The last series of inequalities holds true, since for n = 6, we have (7,1,30) = (7,1,83/3) and if n increases
by 1, then the third coordinate in the left-hand side increases by 2n and the third coordinate in the
right-hand side increases by 19/3.

Suppose the lemma is true for some vectors u, v. Of course the relations a = ¢, b > d yield the relation
a+0b > c+d. Then for u + v, the lemma is also true. The same type of argument can be used for any
Au, where A is a positive constant. Finally, the relation “>” is transitive. Thus, the lemma is true for all
good vectors. O

It follows from the lemma that the configuration of our graph I' exceeds the vector (n, An,
and, therefore, the number of edges in our graph is really greater than or equal to @n.

]9—350)\77/)’

5 Some comments

In order to prove the main results, we used the fact that in any distance graph on the plane, there
are no Ky, K3, and semi-stars. A natural question arises: maybe one could use only one or two of these
forbidden graphs and get the same result?

First, assume that only K, and semi-stars are forbidden. In this case, one can prove the following
result.

Theorem 4. The minimum number of edges in a graph on n vertices with independence number o < An,
A€ [i, %] , and without K, and semi-stars is bounded from below by the quantity @n

This result is a bit worse than the one of Theorem 2. For example, if A = %, then Theorem 4 gives the
bound by %n instead of %n following from Theorem 2.

The proof of Theorem 4 is very close to the proof of Theorem 2. We do not present it in this paper
because of its complete similarity to the above-given argument. We only list here a set of “good” vectors,
which plays, in a proof, the same role as it was in Proposition 3:

3 2
(1,1,0), (2,1,1),(3,1,3), (4, 1,9), (5.1, 14), (6, 1,20), (7. 2,11), (8,2, 17), (n+ 1, 1, %), n> 6,

(5,2,8),(6,2,9), (6,2,12), (7,2,14), (7,3,14), (8,3,16), (9, 3, 18), (10, 3, 20), (11, 3, 22).

Note that we do not claim that Theorem 4 cannot be improved further. However, for our proofs, K3,
appears to be important.
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Now, assume that only K is exluded. For simplicity, consider again the illustrative case of o < n/4.
We claim that in this case, the bound for the number of edges is 2n and this bound is tight for n = 0
(mod 4). If we are right, then of course semi-stars appear to be important as well: 2n is smaller than 2 —77
So let us prove the claim. On the one hand, the graphs on fig. 23 show that 2n is the best possible bound
under the current conditions.

Figure 23: Graphs for the 2n bound

It is worth noting that the graphs on fig. 23 are not only Ky-free, but also Kjo-free. Thus, K3 is
important only together with both K, and the semi-star graph. Of course, we see a semi-star graph on
fig. 23.

On the other hand, let us show that the lower bound for the number of edges in a K,-free graph with
independence number at most one fourth of the number n of vertices is indeed 2n. For more transparence,
let us switch to the case when the number of vertices is 4n and the independence number is at most n. In
this notation, we have to show that the number of edges is at least 8n. As usual, we proceed by induction
on n.

The case of n = 1 is obviously impossible: there are no graphs on 4 vertices without K, but with
a = 1. So let n = 2. Either each of the 8 vertices of a given graph is of degree at least 4, in which case
the number of edges is indeed at least 16 (and thus the base of induction is proved), or there is a vertex
of degree at most 3, and we will show below that in this case, one can remove 4 vertices from the graph
reducing the independence number at least by 1 and the number of edges at least by 8: for n = 2, that
is impossible, as we would again obtain a graph on 4 vertices without K, but with independence number
1. Therefore, we get the base of induction. To make this argument complete and to provide the induction
step, we need the following lemma.

Lemma 3. Let I be a graph with 4n vertices (n > 2), without K4 and with «(T') < n. Let A be a vertex
of the minimum degree in I'. Suppose deg A < 3. Then one can remove 4 vertices from the graph reducing
the independence number at least by 1 and the number of edges at least by 8.

The induction step is obvious, so that it remains to prove the lemma.

Proof. Let us consider all possible values of deg A.

Case of deg A = 0. Remove the vertex A from I". Obviously in the new graph I the independence
number is smaller. However, we have not yet removed 8 or more edges. Consider ['. Tt has 4n — 1 vertices
and a(I") < n — 1. Consequently, the chromatic number x(I") is bounded from below by 2=l > 4. In
other words, x(I'") > 5. Of course this means that the maximum degree of a vertex in ' is greater than
3. Tt cannot be exactly equal to 4, since by Brook’s theorem (we do not forget that I is K,-free) the
chromatic number would be bounded by 4 from above. Thus, we have a vertex B of degree at least 5 in
['. Remove it. In the new graph I'”, the number of vertices is 4n — 2, the independence number is at most
n — 1, and the number of edges is by at least 5 smaller than in the initial graph I'. Since 4: 2 > 4, we
apply once again the above argument and find a vertex C' of degree at least 5. Removing C', we already
get even more than we needed: the number of vertices is reduced by 3 (we promised 4). The number of
edges is reduced by 10 (we promised 8). The independence number is reduced by 1 or more. The case is

complete.
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Cases of deg A € {1,2}. Here the same procedure as in the first case applies. Let us consider only the

case of degree 2. Remove the vertex A and both its neighbours B, C'. We removed 3 vertices and at least

3 edges (2 is the minimum degree of a vertex). The independence number is already reduced. In the new
4n—3

graph, we have 4n — 3 vertices, and since “'=* > 4, we find a vertex D of degree 5. We remove it, and we

are done.

Case of deg A = 3. Let B,C, D be the neighbours of A. We do not forget that the degrees of these
vertices are at least 3 each. Since K} is forbidden, we may assume that BD is not in our graph. One can
easily check that if in addition some of the edges BC,CD is absent or the degree of at least one vertex
among B, C, D is strictly greater than 3, then the total amount of edges adjacent to A, B, C, D is at least
8. Thus, it suffices to remove the vertices A, B, C, D.

It remains to consider the case when the degrees of the vertices B, C, D are all exactly equal to 3 and
both edges BC and C'D are in the graph. In this case, the vertex B has one more neighbour E. Remove

from the graph the vertices A, B,C, E, and we are done.
O
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HexkoTopsbie cBoiicTBa KOHCTpyKIuii Mukess.

MpoekT npeactaBnaeT KOHCTaHTMH VIBaHOB npu gesatenbHOM ydyactun lBaHa dposioBa. aea: Nasen
[onrnpes. OTaensHaa 6narogapHocTe AnekcaHapy CKyTuHY 3a popmynmnpoBky 3agay 20-23.
Mpu noppepxke Anekcea n Onera 3acnaBckux, a Takke Nasna KoxeBHUKOBA.

3HaukoM 0603HaYEHbI HEKOTOPbIE 06LLEN3BECTHLIE (DAKThl, 63 KOTOPLIX, OAHAKO, pelleHe AasbHel-
lWMX 3a4a4 6yaeT 3aTpyaHUTeNIbHO. 3BE3/104K0M0603HaUEHbI NPEANONIOKITENLHO C/IOXHbIE 3aAa4N.

Yacrs 1

1 (O&idéia 1eédéy) B TpeyronbHuke ABC Ha ctopoHaxAB;BC;CA B3sATbl Touku Cq;Aq; B
COOTBETCTBEHHO. [loKaXkuTe, YTO OKPYXHOCTU, onucaHHble okond AB.C,;4 A.BC,;4 A.B;.C, nmetot
0OLLYIO TOUKY.

2 (Ediia T aistauyd)  Mad yron ABC. Mo npambiv AB;BC nepemeLlaloTcsi ¢ NoCTOAHHbIMbI
(HeobsiI3aTeNbHO paBHbIMKN) CKOPOCTAMM TOUKKC1; A1 COOTBETCTBEHHO. [JOKaXMTE, YTO BCE OKPY>XXHOCTU
BC;A; NpoxoadaT yepes Apyryk TOUKY, OTIMYHYIO OTB. B KakoM c/lyyae 3TO HEBEPHO?

3 (O&idaia x&an a 6i6ia fieionia) B TpeyronbHuke ABC Ha cTopoHaxAB; BC; CA B3ATbl TOUKM
Cy;Aq; B, cooTBeTcTBEHHO. oKaxnTte, 4To npsamMbiAA 1; BB 1; CC, nepecekatoTcs B OAHON TOYKE UK BCE

TpW napasifiesibHbl TOrga 1 TOJIbKO TorAaa, Korga

| | |
sin Z.ABB 1 sin AIBCCl sin A:CAAl
sin /B;BC sin /C,CA sin ZA;AB

4 (Oi+éa leéadey) MycTb AaHbl YeTbipe NPAMbIE OBLLETO NOMOXEHUS. VICKOUEHNEM OHON NPSAMO
MOXHO NONYy4YnTb TPW NPSIMble, 06Pa3yHoLLNE TPEYrosIbHUK, BCErO YeTbipe TpeyrosibHuka. [Jokaxute, 4to
ONMCaHHbIE OKPY>XHOCTU 3TUX YETbIPEX TPEYrosIbHUKOB NepecekatTcs B OO4HOW TOUKe.

5 (1edoeeiifiol 1@eaey) MycTb AaHbl 5 NpsiMbIX 0OLLEr0 MONOXEHUA. [JOKaXMTE, YTO TOYKU
Mukens Bcex NATU BO3MOXHbIX YETBEPOK NPSAMbIX SieXaT Ha OAHOM OKPYXXHOCTW.

6 [aHbl aBe okpyXHocTn A; B. JokaxuTte, yto 'MT Touek X Takux, 4To

cTeneHb X OTHOCUTENbH®A

= const
cTeneHb X OTHOCUTEsSIbHE

ABNAETCA OKPYXHOCTbLIO, B Cnyyae
a) korga A;B nepecekatoTcs
b) A58 NPON3BONLHOIO NOMOXEHUsA 1 B .

7 B TpeyronbHuke ABC nepanbHble OKPYXXHOCTU ABYX TOYeK coBnafatoT. [lokaxute, YTo TOUKU
n3oroHanbHO conpsxeHbl B4 ABC.

8. BHyTpu TpeyronbHuka ABC BblbpaHa Touka M, a Ha cTtopoHaxAB;BC; CA B34Tbl TOYKM
Ci1;A1;B; cooTtBeTcTBEeHHO. [MpambieAM; BM; CM nepecekaroT OKPY)XHOCTWU, ONMUCaHHblIe OKOM0 Tpe-
yronsHukos AB,C,, A;BC,, A;B,C B Toukax M,; My, M. coOTBETCTBEHHO. [lOKaXKUTE, YTO TOUKUM,;
Ma; Mp; M nexaT Ha O4HOM OKPY>XHOCTU (B AasibHenweM OyaeM HasbiBaTb €€ OKPYXXHOCTHW).

9. [ycTb B 0603HaYEHUSAX NpeablayLlel 3agad — Touka nepeceyveHuns okpyxxHocteldB ,C,, A1BCy,
A;B.C. MycTb npssmas P A; nepecekae™ B Touke A°. [lokaxute, uto MACk BC.

10. [Jokaxute, uTo npsmMbie M,A% MpB° M C°nepecekatoTca B OA4HOW TOUKE WX NapasiiesibHbl.

117 [lokaxkuTe, YTO OKPYXKHOCTM, OMUCaHHbIE OKOJI0 TPeyronbHUKOBAM ;A% BM ,B% CM C° cooCHb!.

127 TlyCTb €CTb YeTbipe NPAMbIE; b; ¢; dOBLLErO NONIOKEHUS U UX TOUKU NepeceueHN 4, X ac, Xad,
Xber Xbdy Xcd- ECTb OKPYXXHOCTb K € BblgeneHHon ToukoK Ha Hel. IMycTbY; — Touka nepeceveHmsK K
¢ K. dokaxuTe, uTo NpsiMbI€ YapYeqd; Yac Yod; Yad Yoc MEPECEKAIOTCA B OAHOIN TOYKE WA NapasiesbHbl.

13. B TpeyronbHuke ABC BbIGMpaoTCa NPOn3BOSIbLHO TOYKUC,; C, Ha CTOPOHEAB , Toukn Aq; A, Ha
cTopoHeBC, Toukn Bq; B, Ha ctopoHeCA. MNapa npambixA1B1 n A,B, nepecekaeTca B TOUKe ., TOUKM
La; Ly onpegenstoTca aHanornyHo. OKPY>XHOCTU, onncaHHble oko A1AL. 1 4 B,B,L . nepecekatotcsa
B TOUkKax L. U N, Toukn Ny, 1 N, onpeaensTca aHa/10rMyHo.
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