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PREFACE

No research of people could be named true science
if it is not supported by a mathematical proof.

Reliability of the assertions in different subjects is
problematic when application of any mathematical
domain is missing, i. e. when there is no connection
with mathematics.

Leonardo da Vinci

The present book is devoted to students of the last school grades, university
students, teachers, lecturers and all lovers of mathematics who want to enrich their
knowledge and skills in complex numbers and their numerous applications in Euclidean
Geometry. Few countries in the world include complex numbers in their secondary
school curriculum but even if included the volume of the corresponding content is quite
insufficient consisting of elementary operations and geometric representation at most. The
significance of the complex numbers is far from a real recognition in known textbooks
and scholar literature. The applications not only in mathematics but also in many other
subjects are considerable and the present book is a strong proof of such a statement.

Mainly, the book will be useful for outstanding students with high potentialities
in mathematics preparing themselves for successful participation in mathematical
competitions and Olympiads. Other target groups are not excluded, namely those, whose
representatives like to meet real challenges, connected with unexpected circumstances in
problem solving.

The material in the book is divided into four chapters. The first one contains
basic properties of the complex numbers, their algebraic notation, the notion of a
conjugate complex number, geometric, trigonometric and exponential presentations, also
interesting facts in connection with Reimann interpretation and the set C". The second
chapter includes various transformations of complex numbers in the Euclidean plane
like similarity, homothety, inversion and Mdbius transformation. The third chapter
is dedicated to the geometry of circle and triangle on the base of complex numbers.
Numerous theorems are proposed, namely: Menelau’s theorem, Pascal’s and Desargue’s
theorem, Ceva’s and Van Aubel’s theorem, Stewart’s theorem, Ptolemy’s theorem and
others. Exercises and problems are included in the Fourth chapter: 122 examples with
solutions and 161 solved problems pare proposed. Together with all the 138 theorems,
lemmas and corollaries accompanied by 64 examples and 88 figures, the book turns out
to be a rather exhaustive collection of the complex number applications in Euclidean
Geometry.



A high just appraisal of the book is due to the numerous non-standard problems
in it taken from the National Olympiads of Bulgaria, China, Iran, Japan, Korea, Poland,
Romania, Russia, Serbia, Turkey, Ukraine and others but also from Several International
and Balkan Mathematical Olympiads.

The authors express their sincere thanks to the Editorial House “Archimedes 2”
for the decision to accept the manuscript and to support the appearance of the present
book. Also, sincere thanks to the reviewers Prof. Dr. Lidia Ilievska and Assoc. Prof.
Dr. Veselin Nenkov for their helpful criticism, removal of mistakes and well-wishing
advices, which contributed to the final quality of the book. Of course, different lapses are
possible and we will be grateful to the readers in case they notice such and bring them to
the attention of the Editor.

February, 2015 The authors
Skopje and Sofia



CHAPTER1
COMPLEX NUMBERS

1. THE CONCEPT OF COMPLEX NUMBER,
BASIC PROPERTIES

1.1. Definition. Complex number z=(a,b) is the ordered pair of real numbers
a and b.

The set of complex numbers is denoted by C, i.e. C={(a,b)|a,be R}.

The complex numbers (0,0) and (1,0) are denoted by n and e, respectively.

The definition of a complex number directly implies that two complex numbers
z1=(ay,b)) and z, =(ay,by) are equal if a; =a, and b =b,.

1.2. Definition. Sum of two complex numbers z; =(ay,b;) and z, =(ay,b,) is
the complex number
zZ1tzy = (al +612,b1 +b2) .

1.3. Definition. Product of two complex numbers z; =(ay,b;) and z, =(a,,b,)
is the complex number

z1-z3 =(a1ay — Dby, a1by + azly) .

1.4. Theorem. The addition and multiplication of complex numbers, satisfy the
already known laws of arithmetic. Namely,:

i) z1+zy =2y + 21, commutative property of addition,

ii) (21 +2p)+ 23 =21 + (25 + 23), associative property of addition,

iii) 212 = z,2, commutative property of multiplication,

iv) (z122)z3 = z1(zy23) , associative property of multiplication, and

V) (271 +2y)z3 = 2123 + 2o 23, distributive property.
hold true for all complex numbers z;, z,, z3 .

Proof. i) Let z; =(ay,b)) and z, =(a,,b,) be any complex numbers. Thus,

(a,b) +(ay,by) = (a + ap,by + by) = (ay +ay,by +by) =(ay,by) + (a1, by)
1.e., Z1tzyp =2y t127.
The properties ii), iii), iv) and v) can be proven analogously. m

Let’s state that when proving Theorem 1.4 we explicitly used (by coordinates)
the commutative, associative and distributive properties of addition and multiplication of
real numbers.



1.5. Theorem. Any complex number z satisfies the following equalities:
z+n=z,z-n=n and z-e=z., where n denotes the additive identity, and e denotes the
multiplicative identity.

Proof. Indeed, if z=(a,b) is an arbitrary comblex number, then
z+n=(a,b)+(0,0)=(a+0,b+0)=(a,b)=2z,
z-n=(a,b)-(0,0)=(a-0-b-0,a-0+5-0)=(0,0)=n, and
z-e=(a,b)-(1,0)=(a-1-b-0,a-0+1-b)=(a,b)=z. m

1.6. Theorem. If z; +z3 =z, +z3, then z; =2,.

Proof. Let z; =(ay,b)), zp =(ay,by) and z3 =(a3,b3) be complex numbers.
Then,

z1+2z3 =(a;,b)) +(a3,b3) =(a; + a3,b; + b3) and

2y 23 =(ay,by) +(a3,b3) =(ay +a3,0, +b3).

Since the given equality z; +z3 =z, +z3 and the Definition 1.1 we get the fol-
lowing

ay+az=ay+az and b +b3 =by +b3.

Furthermore, the properties of real numbersimply that a; =a, and 5 =b,, and since
Definition 1.1. m

1.7. Theorem. For each complex number z there exists one and only one com-
plex number w, so that z+w=n.

Proof. Let z=(a,b) be an arbitrary complex number, and w be defined as
w=(—a,—b). We get,
z+w=(a,b)+(-a,-b)=(a+(-a),b+(-b))=(0,0)=n.
So, we proved the existence of a complex number w. The uniqueness is directly implied
by Theorem 1.6. m

In our further consideration, the complex number w, so that z+w=n, will be
denoted by w=—z, and w is called to bean opposite complex number of z.

Let z and w be arbitrary complex numbers. The complex number z+ (—w) is
called to be a substraction of the numbers z and w, and is denoted by z—w .

1.8. Theorem. For all complex numbers z; and z,, the equality
(—21)-zp =21 (~22) =—(z122) = (=€) (z122),
holds true and there is no ambiguity in the notation —z;z, .

Proof. Let z; =(ay,b)) and z, =(a,,b,) be arbitrary complex numbers So,
(_Zl) *Zp = (—al ,—bl) . (az ,bz) = (—a1a2 + ble ,—(llbz - blaz) =
=—(aay =biby,a1by +bay) =~(z23).



But, the commutativelaw of multiplication holds true, therefore the above equality im-
plies that
~(2122) =~(222)) = (-22)7 = 71 (=2)-
Finally, since the Theorem 1.5 and the already proved equalities we get that
(=e)(z122) ==(e(2122)) =~(z122) = (=21)z, = 21 (=2;) . ®

1.9. Definition. The absolute value of the complex number z = (a,b) is defined

|Z|=\/012+b2 .

Thus, the absolute value of each complex number z is a non-negative real number.

by

1.10. Theorem. a) If z#n,then |z|>0 and |n|=0.
b) |z;-z|=z || z|, for all complex numbers z and z; .

Proof. Let z=(a,b) and z; =(ay,b;) be any complex numbers

a) It is obvious that
In|=v0? +0% =0.

If z#n,then a#0 or b#0, i.e. a’>>0 or b2>0.Thus,

1zP=a?+b> >0
b) Since,

| 212 [*=| (aya — byb,ayb + bya) [P = (aja — byb)? + (ayb + bya)?
=afa® +b{b* +afb’ +ba’ = (af +b)a’ +67) =7 P2,

we getthat |z;-z|=|z || z|. m

1.11. Remark. Theorem 1.10. b) and the principle of mathematical induction
directly imply the following:

|z12p.zy 1=l 21 |- 29 | o] 2y | (1)

1.12. Theorem. If zw=n,then z=n or w=n.

Proof. If zw=n, then Theorem 1.10 implies
|z|-|w]=[zw|=[n|=0.
But, | z | and | w | are real numbers, and thus |z|=0 and |w|=0,i.e. z=n or w=n.m

1.13. Theorem. If z#n and zw=zw, then w=w;,.

Proof. The given condition zw = zw; implies that —zw=—zw; . So,
n=zw—zw =z(w—w).
Acording to Theorem 1.12, z# n implies that w—w; =n,ie. w=w;. m



1.14. Theorem. For each complex number z # n there exists one and only one
complex number w, denoted by f, so that zw=e holds.

Proof. Firstly, we will prove the existence of the complex number w= f. Let
z=(a, b) #n be an arbitrary complex number . Let

a -b
w=|(=4,—>|>
(az+b2 a2 +b? )
So,
a+b?’ a*+b?

The uniqueness is implied immideately by Theorem 1.13. m

zw:(a,b)-( a_ _=b )=(1,0)=e.

1.15. Theorem. If z # n, then for each complex number w there exists one and
only one complex number u, so that zu =w holds.

Proof. By Theorem 1.14, for any complex number z # n there exists one and
only one complex number £, so that z-£=e¢ holds. Let u =£-w. Thus we get a unique
complex number u such that satisfies the following

zu:sz:w.l

2. ALGEBRAIC NOTATION OF A COMPLEX NUMBER

2.1. In the previous considerations we discussed the arithmetics of complex num-
bers, but the ususl symbol i was not presented, yet. Now, we will prove that the notation
(a,b) is equivalent to the usual notation for a complex number a +ib .

The proofs of the stataments in Theorem 2.2 are elementary therefore the ones
will not be done.

2.2. Theorem. For all real numbers a and b the following equalities are satis-
fied:

a) (a,0)+ (b, 0)=(a+b,0),

b) (a, 0)(b, 0)=(ab, 0),

¢) | (a, 0)|=|a|, where | a | is the absolute value of the real number a,

(a.0) _
d) &5 _(%,o), for b#0. m

2.3. The statements given in Theorem 2.2 immideately imply that the mapping
f:R —C defined by f(a)=(a,0) is abijection between R and 4 ={(a,0)|ac R} CC,
and such that inhire the operations. So, the set of real numbers R might be reviewed as a
subset of the set of complex numbers C.

10



According to this, the complex numbers e and n correspond to the notation 1 and
0, respectively. So, they will be used in our further consideration

2.4. Definition. The complex number i =(0,1) is called to be imaginary unit.
The imaginary unit satisfies the following equality
i =(0,1)-(0,1)=(0-0-1-1,0-1+0-1) =(-1,0) =-1.

2.5. The obvious equation
(0,1)-(h,0)=(0,b)
implies that
z=(a,b)=(a,0)+(0,b)=(a,0)+(0,1)- (b,0)=a+ib
holds true for any complex number z =(a,b).

Definition. The notation z=a+ib is called to be an algebraic notation of the
complex number z =(a,b).

The addition and multiplication of complex numbers, by using the algebraic no-
tations of complex numbers, are written as following:

(a1 +iby)+(ay +iby) = (ay +ay) +i(b +by),

(ay +iby)-(ag +iby) = (ayay = biby) +i(ayby + azby ).

2.6. Definition. The components a and b of a complex number z=a+ib are

called to be real and imaginary part of z, respectively, and we use the following notations
a=Rez and h=Imz to denote them.

3. ACONJUGATE COMPLEX NUMBER

3.1. Definition. The complex number a —ib is called to be the complex conju-
gate of z=a+ib and is denoted as z.

3.2. Theorem. a) z=z, for each complex number z.

b) z; + 2z, =z + 2z, , for all complex numbers z; and z,,
C) z1zy = z| - z5 , for all complex numbers z; and z,,
d) z+z=2Rez, for each complex number z,

e) z—z=2Imz, for each complex number z, and

f) z-z= a’ +b° = |z |2 >0, for each complex number z.

Proof. The definition of a conjugate complex number, also addition and multili-
cation of complex numbers directly imply the validity of the above theorem. m

11



3.3. Remark. The equality z-— z=2Imz directly implies that the complex
number z is a real number if and only if z==z.

3.4. Remark. The validity of the equality (1) can be proved since the equality

71Zy = Z_l . 2_2 holds and also by applying the principle of mathematical induction,

2129232 =21 " Z) et 2y (1)

for each ne N and any complex numbers z;,z,,...,z,. If z; =z for each k=1,2,...,n,

then (1) implies that z" =z "

3.5. Remark Theorem 3.2. f) and a) holds, therefore it is true that
|zP=z-z=z-z=[z],ie. |z|=|z].

Let z=x+iy. The equality |z |2 =zz=x+ y2 directly implies the inequalities
—|z|€Rez<|z| and —|z|SImz <[ z| 2)

3.6. Example. Let
P(z)=qapz" + alzn_1 +..ta, z+a,

be a real polynomial. If w is a root of P(z), then w is also a root of the same polynomial
P(2). Prove it!

Solution. Since w is a root of the polynomial P(z), P(w)=0. Further,

— —n —n —
Pw)y=ayw +aqw +..+a,wta,

=agw" + alwn_1 +..+ta, yw+a, =P(w)=0.

The latter means that w is also a root of the same polynomial P(z). m

3.7. Example. Let’s consider the polynomial
P(2)=apz" +az"  +..+a, z+a,, ay %0,
written as the following
P(z)=ay(z -z )z~ 23)..(z2~2,)

where z;, i=1,2,...,n are the roots of P(z).
The identity

ay(z—z1)(z—z2p).(z—z,) =apz" + alzn_l +..+ta, z+a,
implies that

a (z" —(z+ 2+t z) " (D) gzy..2, ) —ay" +a 2"+ ta, z+a,.

By equating the coefficients of the corresponding degrees we get the following formu-
lae:

12



itz +.tz, :—Z—é

Z1Z2p t...tz1Z, t Z2pz3 .t 2oz, F ot 2y 2, =5

1yF &

21202t 2 Zf 2y F et 2y 1 22y = (1)
—(_1\" G
212p..2, = (=1) 2

These formulae are known to be the Vieta s formulae. m

3.8. Remark. In Theorem 1.15 we proved that if z # n, then for each complex
number w there exists a unique complex number u so that zu =w holds. The complex
number u is called to be a quotient of the complex numbers w and z and is denoted by
u=%,

Hence, if z=a, +ib, and w=a; +ib;, then the quotient is expressed as the fol-
lowing

w _ wz _ (a+ib)(ay=iby) _ ajar+bby | . aybi—ajb,

Uu=—=—7——= - - =
z  zz  (aytib)ay=iby)  34p3 aj+b;

For the quotient of the complex numbers z; and z, (5—1) =ZL holds.
2 ¥}

Zl+22

is a real number.
1+2122

3.9. Example. If |z |=|z, |=1 and zz, #-1, then
Prove it!

Solution. By multiplying both the numerator and the denominator by the conju-
gate of 1+ 2z, we get
Zl+22 _ Zl+22 . 1+ZIZZ _ (Zl+22)(1+;lg)

l+ZIZ2 1+lez 1+Z|ZZ |1+2122|2
Zl+22+21;]5+;12222 Zl+;1 22+5
422, T zzf ezl
- - zZ1tz .
But both, z; +2z; and z, +z, are real numbers, therefore 11222 is also a real num-
122

ber. m

3.10. Example. Prove that if the absolute value of a complex number is 1, than

such a complex number can be expressed as < | where ¢ is a real number.
Solution. If |z| =1 and c=iZ% Z+1 ,then z= §+; and | S| =1, je.
cti | é =1
=i c+i

By reducing the last equality, we get that ¢ —¢=0. Hence, ce R and z= c—i’ ,

which actually was supposed to be proven. m

13



3.11. Theorem. All complex numbers z and w# 0 satisfy the equality

=l

Z|=
lwl

w

Proof. By applying the above stated we get the following,
2 :A.@zz.é:z_%:ﬁ
woAw wow o oww \w|2 ’

Z
w
2|kl

wl [

that 1s

3.12. Example. Determine all the complex numbers z such that satisfy the fol-
lowing equalities:

z—12
z—8i

=3
=3 and

=2=1,

Solution. Let z = x+1iy . Since the given condition we get that
2_|z12P _ (12407 _2s 4 |? _1z4P e
T8 482 9 281 T8 (x84
By reducing we get the following system of equations

{sz +2y2 +27x—50y+38=0

z—12
z—8i

x=6

whose solutions are x=6, y=17 and x=6, y =8. Hence, the required complex num-
bersare z=6+17i and z=6+8i.m

3.13. Example. If @, b and ¢ are complex numbers such that
la|=|b|=|c|=r, r>0
then
|ab+bc+ca|l=r|a+b+c]|.
Prove it!

l_a
i Analogously,

Solution. Since 72 = la |2= aa, we get that

1_ < . Therefore,
¢ r

ab+bc+ca=abe(L+Ll+l)=abc| L +Ly<c)=abc.s1ptc.
a b ¢ P2 202 2

B
The latter implies that,

|ab+bc+ca|=@|a+b+c|=r|a+b+c|
r

holds true, which actually was supposed to be proven. m

3.14. Theorem. All complex numbers z; and z, satisfy the following
2+ 2| S|z |+ 2 | and |7 -2 |2[12 ] =2 ].
Proof. Since Theorem 3.2, the following holds true for all complex numbers z
and z,:
|71+ 23 =5+ 22)(z +22) = 51 P +] 25 [ +2Rez 25 3)

14



|21 -2y P=(z1 —2))(z1 —29) =| 7 " +| z, F -2Rez 75 . “4)
tothe equalities (3) and (4), if we apply the first inequality in (2), imply the following
inequalities:

lz1+ 2y <z [+] 2| (5)
|21 =2 12|l 21| =] 22 1] (6)
The inequality (5) is known to be the triangle inequality. m

3.15. Corollary. For all complex numbers z;,zj,...,z, the following inequality
holds true:

n n
12z <Xz
i-1 i-1

Proof. The proof is directly implied by the inequality (5) and the principle of
mathematical induction. m

3.16. Example. For all complex numbers z; and z,
2 2 2 2
lz1+ 25| +|21_Zz|=2(|z1| +]zy | ) (7
holds true. Prove it!
Solution. If we summarize the equalities (3) and (4) as given in Theorem 3.14 (the

ones hold for all complex numbers z; and z, ) we get the required identity. This identity is
known to be the parallelogram identity. m

3.17. Example. Prove that all complex numbers z; and z, satisfy
2 2 2 2
=2z " |z =z =1+ 222 ) = (Iz |+ 22 ).

Solution. The identity zz= |z |2 , directly implies the following

— 5 _ — -
=212, [ =|z =2 == z120)(1 = 2125) = (21 = 22)(21 = 2)
=(=212)(1~22) = (71~ 22)(z1 — 22)
=1-212) 27 + 2317157 — 217 - 7 + 717 — 27
2 2 2
=1tz " =7 " =2 ["=
2 2
=(1+zz )" =(z |+]221)",

which was suppesed to be proven. m

3.18. Theorem. Let z;, w;, i=1,2,...,n be complex numbers. Thus,

& 2 2% 2
[ Dzw <Xz 7w 7. (®)
i=1

i=1 i=1

15



Proof. Let

n n 2 n 2
C=Xwz, A=X|z | and B=Y|w;|".
i=1 i=l =1
If A=0,then |z |=0,forall i=12,...,n.thatis, z; =0, forall i=12,...,n. So,
also C =0. Thus, the inequlity (8) is satisfied.
If A#0, then the inequality (8) is implied by the obvious equality
n J— n J— — J—
Y|z - aw, |2 = 3 (Cz; — Aw;)(Cz; — Aw;) = A(AB —|C )
i=l i=l

and the inequalities

— 2
Y|cz - aw | 20, 4>0.
i=1
The inequality (8) is known to be the Cauchy-Schwarz-Bunyakovsky inequality
for complex numbers. m

4. GEOMETRIC PRESENTATION
OF A COMPLEX NUMBER

The Eucledian plane with Cartesian coordinates is denoted by R?. Each com-
plex number z=x+iy is an ordered pair of real numbers (x,y). Since it exists a one-
to-one correspondence between the set of the ordered
pairs of real numbers (x,y) and R?, we get that to each
point Ae R? may be adjoined a complex number
y A(x,p) z=x+iy, and conversely (figure 1). The complex
number z such that it corresponds to the point 4 is
called to be the affix of the point A. This correspond-
ence between the complex numbers and the points of
the Euclidean plane is bijection. Thereby, the real part
of the complex numbers mapps onto the points of the
x-axis (abscissa), while the imaginary part of the com-
plex numbers mapps onto the points of the y-axis (ordi-
nate). So, the real numbers map onto the points onto the abscissa, and the pure imaginary
numbers map onto the points of the ordinate. Thus, the abscissa is called to be the real
axis, and the ordinate is called to be the imaginary axis. Thus, the Euclidean plane R? ,
is naturaly called to be the complex plane, and the complex numbers to be points in this
plane.

Imz §)

e
Y

X Rez

Figure 1

Clearly, the points z and —z are symmetric with respect to the origin, and z and
z are symmetric with respect to the real axis. Namely, if z=x+iy then

16



—z=(—x)+i(-y) and z=x+(-y)i.
Obviously, the complex number z corre-

P . Z\+z
sponds to the vector with tail in the origin V' 4 QT2
point O and head in the point z. Clearly,
this correspondence between the complex
numbers and the vectors in the complex
plane with tails in O is bijective. Thus,
the vector which determines a complex
number z, will be denoted by the same
letter z.

By using the vector interpretation
of the complex numbers we can demon- Figure 2
strate the addition and the subtraction of
complex numbers. Since 1.2 we get that
the number z; +2z, corresponds to the
vector obtained by adding the vectors z;
and z, (figure 2). The vector z; —z, is
constructed as the sum of the vectors z
and —z, (figure 3).

The already stated and also using
figure 3 implies that the distance between
the points z; and z, is equal to the length
of the vector z; —z,, i.e. it is equal to
| z; =z | . Clearly, the absolute value |z |
is equal to the length of the correspond-
ing vector of the point z If we consider
the triangles whose vertices are

=Y

)

=Y

Figure 3

O, 21, Zl+Z2 and O, 21, 21— 2y,

then the geometric sence of the inequalities (5) and (6) from paragraph 1 is obvious.

4.2. Dividing a line segment in a given ratio. Let 4 and B be given points
with affixes z; and,z, respectively, and C be a point on the line segment 4B, such
that C divides 4B in a given ratio A:p#—1, i.e. MR =ACB. Since AC = z—z; and

}"22 Uz If

CB= z, —z, we get that W(z—z;) =A(zy —z) . Hence, the affix of C is z = o

A:u=1 then z= ZZ—;Z‘ is an affix of C, the midpoint of the line segment AB.

Example A. Let a =1+ and b =3+ 5i be the affixes of the endpoints of the line
segment AB. Then

c= la+lb _ (1+0)+(3+5i0) —143
1+1 2

is the affix of C, the midpoint of the line segment 45. m
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Example B. Let ABCD be a quadrilateral and M, N, P, O, K, L be the midpoints
of the line segments 4B, BC, CD, DA, BD, CA, respectively. Show that the line segments
MN, NQ, KL concur at such a point 7 that bisects each of them.

Solution. Let the affixes of the points 4, B, C, D, M, N, P, O, K, L are denoted
by lowcase letters a, b, ¢, d, m, n, p, q, k, [, respectively, then

_atb _ btc _ ctd _atd _btd j_ atc
m_zﬂn_zzp_ zaq_ 2:k_ 291_2

The affixes of the midpoints of MP, NQ, KL are

t = atbtcetd 4 _ btctatd , _ btd+atc
4 s 4] 4 s L2 4

respectively and since =t =t,, we get that MP, NQ, KL are concurrent at the point
which bisects each of these segments. m

b

4.3. Example. a) The set of points z, such that satisfy the equation |z—z, | =R,
is a circle centered at z; and radius R. Namely, |z—z;| is the distance between the
points 4 and B with affixes z and z(, respectively.

b) The equation

||Z—Zl |—|z-2, ||=2a,
where
a<ilz-zl,
is a hyperbola, whose foci are at points whose affixes are z; and z, and a real semi-axis
whose length is a, (why?).
c) The set of points z, such that satisfy the equation
lz=z|=|z=2,],
is a set of points equidistanced form z; and z,. Thus,
|z=z|=]z=-2z,|
is an equation of the bisector of the segment, whose extremities have affixes z; and z,.
d) The set of points z, such that satisfy the equation
|z=z|+|z-23]=2a,
where a > % | z1 — 25 |, 1s an ellipse with focal points z;, z,, and major semi-axis a, there-

by |z—2z|+|z—2z;, | is the sum of the distances between the point M with affix z and the
points 4 and B with affixes z; and z,, respectively. m

4.4. Example. Determine the set of points, which corresponds to such complex
numbers z, that satisfy the following condition
12z|2[1+2%].
Solution. Let z=x+1iy . Thus,
‘1+22‘ =‘1+(x+iy)2‘=\/(1+x2 —yz)2 +4x2y2 )
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Hence,
4(x2 +y2)21+x4 +y4 +2x2 —2y2 —2x2y2 +4x2y2,

1+x4+y4—2x2—2y2+2x2y2—4y230, Y A
(x> +1y> -1 -4y? <0,
2 2 2 2
(X" +y =1=-2p)(x"+y " =14+2»)<0
or
(XZ+(y—1)2—2)(x2+(y+1)2—2)SO. 11
The last inequality is satisfied if and only if
x> +(y-1)%>-220 and 0 X
X +(y+1)*-2<0 14
or
x?+(y-1)>-2<0 and
X +(y+1)?2-220.
The required set of points is shown in figure 4. m Figure 4

5. EXTENDED COMPLEX PLANE. REIMANN INTERPRETA-
TION OF COMPLEX NUMBERS

5.1. Stereographic projection. In Euclidean space R? with Cartesian coordi-

nates &, n, , consider the sphere S which is centered at (0,0,%) and its radius is %:

& +n?+2-C=0. (1

The plane =0 coincides with the complex plane C, the real axis Imz=0 coincides
with the axis =0, {=0, and the imaginary axis Rez=0 coincides with the axis
£=0, &£=0.

We draw a line through P(0,0,1),
such that it meets the sphere S at a point AG
M(Em,L), which differs from P. The in-
tersection of the line PM and the complex
plane is denoted by z=x+iy. The point
M(En,Q) is called to be the stereographic
projection of the complex number (point)
z onto the sphere S with pole P (figure 5).

The stereographic projection de-
fines a bijection between the points in the
complex plane C and the points on the
sphere S, except the pole P. Therefore,
each point of the sphere S, except the pole Figure 5

19



P, may be considered as a point in the complex plane. Such the interpretation of complex
numbers is called to be Reimann interpretation of complex numbers, and the sphere S is
called to be Reimann sphere.

The points P(0,0,1), M(&,n,C) and z are collinear, so

g_n_&!
x oy -1
or
_ & — T] _ &+in
R YT T 2)
Hence, |z |2_ il 42; . If we substitute in (1) we get |z| = LC ie.
Ef&
—_ — . 3
¢ 14z . 3)
If we substitute in (2) and also have on mind the fact that x = ZJZFZ ,y=5F we get
= —_z=z 4
&= 2(1+| | 2y’ n= 2i(1+z[%) 4)

The formulae (3) and (4) are known to be formulae of the stereographic projection.

5.2. Extended complex plane. In 5.1 we defined a bijection between the com-
plex plane and the Reimann sphere S without the pole P. If we add the “ideal complex
number” z =00 to the set of complex numbers C, and complete the complex plane by
adjoining the unique infinity point, denoted by oo, then it exists a bijection between the
Reimann sphere S and the set CU {eo}, whereby the pole P corresponds to the infinity
point oo,

The complex plane, together with the infinity point, is called to be an extended
complex plane and is denoted by C,., = C U {eo} . Let us state that the infinity point is not
involved in the algebraic operations with complex numbers.

5.3. Distance in the extended complex plane. In the complex plane C the dis-
tance between the points z and z' is defined by |z—=z'|. In C,, we define the distance
between the points z and z', d(z,z") as a distance between appropriate stereographic
projections of the points z and z'. Namely, if M({,n,() and M'(E',n',{") are the stere-
ographic projections of the points z # oo and z'# oo, respectively, then

d(z.z") = _en2 _aan2 _v2: |z=z]|
(2.2) =G-8 + (-1 +( L) NN

and if z'=o0, then

d(z,)= .
«/1+|z|

5.4. Theorem. Under the stereographic projection each circle in the complex
plane maps to a circle on the Reimann sphere,such that it does not pass through the pole,
and conversely.
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Proof. Let
2 +y?+Ax+By+C=0, 4,B,CeR (5)
be any circle in the complex plane xOy. Since (2) and (5) we get that
Pt A+ B +C=0, ie.
AE+Bn+(1-C)C+C=0. (6)
The equation (6) is the equation of a plane which does not pass through the pole P(0,0,1).
So, the coordinates &, 1, £ satisfy the equalities (1) and (6). Thus, the points (&,1,C) lie on
the sphere (1) and the plane (6), i.e. they create a circle on the Reimann sphere such that
it does not pass through the pole.
Conversely, each circle on the Reimann sphere (1) such that it does not pass
through the pole by the stereographic projection is mapped to a circle in the complex

plane,thereby, by using arbitrary numbers 4, B, C the equation of the intersecting plane
may be expressed as (6). m

5.5. Theorem. Each line in the complex plane under the stereographic projection
maps to a circle through the pole and vice versa.

Proof. Let

Ax+By+C=0, A4,B,CeR @)

be any line in the complex plane xOy. Since the identities (2) and (7), we get that
g n _

A+ Bn+-CL+C=0. (8)
The equation (8) is the equation of a plane such that it passes through the pole P(0,0,1).
Therefore, the coordinates &, 1, { satisfy the equalities (1) and (8). So, the points (,n,()
lie on the sphere (1) and in the plane (8), i.e. they create a circle on the Reimann sphere
which passes through the pole.

Conversely, each circle on the Reimann sphere (1) which passes through the
pole by the stereographic projection is mapped to a circle in the complex plane, thereby
the arbitrariness of numbers 4, B, C allows the equation of the intersecting plane to be
represented as (8). m

1.e.

5.6. Let / and g be two distinct curves on the Reimann sphere (1) such that they
meet at a point M. Through such a point it can be drawn tangents to the curves / and ¢.
Let a be the angle formed by the tangents. Let /', ¢' and M "' be the images of /, ¢ and
M, respectively, under the stereograph projectionon the complex plane. It is easy to prove
that the angle create by the tangents to the curves /' and ¢' through M' is congruent
to a.. The proof of this statement will not be elaborated, thereby, it is beyond our main
considerations.
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6. TRIGONOMETRIC ENTRY
OF A COMPLEX NUMBER

6.1. Argument of a complex number. The angle ¢ created by the positive part
of the real axis and the position vector of the point z, is called to be the argument of

the complex number z, and is denoted as

¢ = Arg z, (figure 6). The argument is either

positive or negative, depending on the orien-
z tation of the angle ¢. The argument is called
y to be positive if it is oriented from the posi-
@ tive direction of the real axis to the positive
0 o direction of the imaginary axis or negative if
the one is oriented from the positive direction
of the real axis to the negative direction of the
imaginary axis.

For z=0 the argument is not specified. So, in our further discussion about argu-
ments, we assume that z#0.

The position of the point z in the complex plane is uniquely determined by its
Cartesian coordinates x, y and by its polar coordinates » =|z| and @ = Argz. The rela-
tion between these two types of coordinates is given by the following formulae:

VA

HV

Figure 6

X=rcos@, y=rsin@. )
For a given point z, its absolute value is uniquely determined, while the argument
is determined by accuracy of up to a summand 2km, k£ =0,%1,+2,.... The value of the ar-
gument, such that it satisfies the condition 0 < Arg z <27 is called to be the main value
of the argument and is denoted by arg z. Most commonly, in our further considerations
we will use the main value of the argument.

6.2. Trigonometric entry of a complex number. Using formulae (1), which
refer to the Cartesian and polar coordinates of z, we get the so called trigonometric rep-
resentation of a complex number

z=|z|(cos(argz)+isin(argz)). )
By the notation (2) for the product of two complex numbers

z1=|z;|(cos@y +isin@;) and z, =]z, |(cos@, +isin@P,)

we get

2123 =| 21 || 25 | (cos(@) +@2) +isin(@; +¢3)). 3)
Further, by 1.10 and the definition for the argument of a complex numbers it is true that

712y = | 2125 | (cos (arg(zlzz )) +isin (arg(zlzz ))) .

The above statement implies that

arg(zyzp) =argz) +argz, +2km, k=0,+£1,+2,... “4)
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Analogously, by the equality z; = z,z3, for z, # 0, using 3.11 we get
argj—l =argz| —argz, +2km, k=0,+1,%2,...
2

6.3. De Moivre’s formula. Using mathematical induction, the formulaes (3) and
(4) could be easily generalized for a finite number of multiples z;,z,,....,z, . Namely,

arg(zyzy...z,) =argz +argzy +...+argz, + 2km, k=0,+£1,+2,... ®)]
Particularly, for z; =z, =...=z, we get
|z" |=|z|" and argz" =nargz+2km, f=0,+1,42,...
ie.
z" =|z|" (cos(nargz) +isin(nargz)). (6)

The formula (6) is known to be the De Moivre s formula.

6.4. Example. Compute the difference
9 9
(-1+i3) =(1+i/3) .
Solution. Since,

|—1+i\/§|=2 and arg(—1+i\/§)=23—“+2kn, k=0,t1,%2,...
we get

“1+if3=2 (cos 21 4 jsin 23”)

Using De Moivre’s formula, we obtain:
9
(—1+i\/§) =2° (cos%“-9+isin27“~9) =27,
Analogously,

(1+i\/§)9 =2 (cos93”+zs1n93") 27,

Hence,

(c1413) =(1443) =22 —(=2°) =21 u

6.5. Example. a) Find the exact value of the expression:

3
(1-i/3) a+9)'°.
_ (14 1=
ro=(5) +(3)
Determine the sum £(1990)+ £(1994) .
Solution. a) We have that:

—lf (COS——ZSIII

b) Let

3) and 1+i:\/5(cos%+isin%),

Therefore,
3
(l—i\/g) (1+i)10 =23(cosn—isinn)-25(cos%”+isin57”)
=28(=1-7-0)(0+1) =-256i.
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b) Since,

1 1=
AL =cosZ +jsin and =cost—jsinZ
N

ﬁ 4 4 4 4
we express the function fin terms of cos as follows
f(n)= 2cos%
Hence,
S(1990) + £(1994) = 2cos 1220 1 2.cos 19T = 2.cos 2R 1 205 2L =0 . m

6.6. Example. If z+-1 =1, then find the exact value of
V4
ZlS8 152 2

+ 122'

Solution. The given condition z + l =1 implies 22 -z+1=0 , 1.e.

=gl on(a)n(e),
yti5-=cos|£3 +isin 3
Thus,
158 52 2 _ 1581t+ 1587 152n+ 1581 ( 122n+ 12275)
+ = s =08~ isin 3 +cos 3 isin 3 —2|—cos 3 isin 3
_ 21 4 jgip 2m 27 4 ;0 2W ( 2n 4 211:)
=cos = isin=* 5 teosS tisin<t 3 —2{—cos 3 isin 3

=4cos% =-2.m

7. ROOTS OF A COMPLEX NUMBER

7.1. Definition. Let z # 0 be given complex number and # be a positive integer.
The n-th root of z is defined as such a complex number w that
W=z, (D)
We denote w="2z .

Since applying the De Moivre formula
"=|z|" (cos(nargz)+isin(nargz))
and the trigonometric notations
z=|z|(cos(argz)+isin(argz)) and w=|w|(cos(argw)+isin(argw))
we get
|w|" (cosn(argw) +isinn(argw)) =| z| (cos(arg z) + isin(arg z) )

i.e.
|w["=|z| and n(argw) =argz+2km, k=0,+1,%2,... (2)
Therefore,
|w|=n,/|z|, argw @ k=0,i1,i2,...,
ie.

o _n argz+2km | . . argz+2k1r)
w—\/;—~/|z|(cos—n +isin—=—1, 3)
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By letting £ =0,1,2,...,n—1 in (3), we obtain n distinct complex numbers wy,wy,..., w,_;
as w for k£ =n, and also thereby the periodicity of the trigonometric functions we obtain
Wy, etc. Thus, the n-th root of the complex number z has exactly n distinct values, ob-
tained by the formula (3) for £ =0,1,2,...,n—1.

7.2. Example. Find 3274 .

Solution. Since,
id=i%i=i=cosE+isinZk

2 2
we get
2kn+2 2kn+2
\3/271'5 =327i =%/27(cos%+isin%) =3(cos Tz +isin Tz)
_ 3(COS (@kthm o (4k+1)n)
6 6 ?
for k=0,1,2. m

7.3. Example. Prove that all complex numbers « and b satisfy
2lal+|bl)=|a+b-2ab|+|a+b+2ab
where \/E denotes one of the two roots of ab.

b

Solution. Since,

21al+1bl)=2(|Va [ +[ V5 [)

we obtain

2(|a|+|b|):|JZ+JZ|2+|JZ—JE|2=

= \(Va +vB)’|+|(va -5
=|a+b+2\/E|+|a+b—2\/E|-

So, the required equality is proved. m

7.4. Example. Prove that all complex numbers a and b satisfy
la+b|+|a-b] :‘a+\/a2 ~b? ‘+‘a—\/a2—b2 \
where Va® —b* denotes one of the two roots of a® — b2 .
Solution. By example 3.16, we get

(‘a+\/a2—b2 ‘+‘a—\/a2—b2 ‘)2 =
=‘a+\/a2—b2 ‘2+‘a—\/a2—b2 ‘2+2‘a+\]a2—b2 Ha—\/az—bz ‘
=‘a+\/a2—b2 ‘2+‘a—\/a2—b2 ‘2+2‘a2—(a2—b2)‘
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of |2+ N2 =57 o2l =2l 2] 42 2] 2 -7

=la=bP +|a+b[*+2|a-b|-|a+b|=(a-b|+|a+b|)>

ie.
la+b|+|a—b| =‘a+\/a2 ~b? ‘+‘a—\/a2 ~b? \ .
7.5. Example. Solve the equation
(x+i)" +(x-i)" =0, neN, n>1.
Solution. Since, x # i, the given equation is equivalent to
A\
o 1
X—1

Therefore,

=-1="cosm+isinT =cos ’”ﬁkn +isin ”Jﬁkn, k=0,1,..n-1,

By using the last equation we get that

Xt _ | = cog TH2AT | jgipn BH2KT _ 1,
X—1 n n
2i _9jgin It2kn (COS n2kn 1o 1r+2kn)’
xX—i 2n 2n i n
X—i=— k 1 k k
sm’”zzn ”(cos’”r2 "+1s1n”'”r2 “)
cosinzznk” —i sinLﬁk"
X—1=
sin n+2km ’
2n
x —i = ctg THL=AT ’HZk“ —i.
that is,
x=ctg ™ALk =0,1,..n—1.m

7.6. The n-th roots of the unity. In 7.1 we discussed roots of complex numbers.
If z=1, then argz =0 and by using (3) the n different roots of the unity are expessed
as
ukzcosznﬂﬂ'sin%, k=0,1,2,...n—1. 4)
If
u=1u —cosz—”+zsm 2
then, since the DeMoivre’s formula

uy =uk, k=0,1,..,n—1.
Let us consider that in geometric terms, for n >3, the points in the of complex

plane with affixes the n-th roots of unity, form a regular n-gon inscribed in the unit circle
and one of the polygon’s vertices coincides to the point with affix z =1.
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n-1
7.8. Example. Let S, = kxou,f be the sum of the p-th exponents of the n-th
roots of the unity and ne N . Prove that
n, for n
S _{ |p

P o, for nfp.

Solution. Since,

uy =uk, k=0,1,..,n-1
and

u =cos27“+isin27“,
we get

Sp =1+uP +u?P + .+, Q)

If n| p and £=m, then
I — z(un)m =1" =1
and moreover, thereby (5) we deduce that S p=n
Let n/) p. Thus
u" =w")P =17 =1 holds.
Since n/ p, it follows that u” —1# 0. Therefore,

_ np_
S, =l+ul +u?? 4 4y =17 0,
uf-1

7.9. Example. Prove the following identities

2(n—1
a) cosz7”+cos47”+...+cos¥:—l, for n=2,3,... and

“”—}j”‘zo for n=2,3,...

b) sin27”+sint—n+...+sin
Solution. The equation z" —1=0 has 7 roots. The before stated roots are the
n-th roots of the unity

21

Y S _ — cos 2T 1 jgin 2T
up=u", k=0,1,.,n-1 and u = cos - Hisinst

Example 7.8 implies that their sum is equal to zero. Hence,
n-1

Y up =0,
_ k=0
1.C.
2n-Dm (. . . 2(n-l
COS277T‘+0054775+...+C0S¥+l($ln27n+smt—n+...+Sln¥)=—1.

The latter is equivalent to a) and b). So, the required identities are proven. m

7.10. Definition. The complex number u is called to be primitive n-th root of the

unity, if u" =1 and there is no any lower exponent of u, which is equal to 1.
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7.11. Example. Let
u = uk, k=0,1,..,n-1
be the n-th roots of the unity. Prove that u; is the primitive n-th root of unity if and only
if n and & are co-prime numbers.

Solution. Let # and k£ be co-prime numbers and let there exists » <n such that

satisfies u; =1. According to the De Moivre’s formula we get

l=uy —cosZk’”ﬂstkm

According to the last equality, we get

os% =1, sin

2krm =,
n
Hence, %e Z. and since, n and k are co-prime numbers, we get that n |, which is con-
tradiction, thereby » <n. Thus, u, is the primitive n-the root of the unity.
Conversely, let u;, be the primitive n-th root of the unity. Let assump the greatest
common divisor of nand kisd, d > 1. Let k=kd, n=md . Then

nl —(ul )i —ulnlk ulkldn1 =u1kln :(uln)kl =1k =1,

The latter contradlcts to the fact that u; is a primitive n-the root of unity, thereby
m<n.m

8. EXPONENTIAL ENTRY
OF A COMPLEX NUMBER

8.1. In our previous discussion we have presented the algebraic and trigonomet-
ric representations of complex numbers. In this section we will focus on the so called
exponential entry of complex numbers.

Theorem. Let the function f:R — C be defined by
f(o)=cosa+isina, for each ae R..
Then,
a) f(0)=1 and f(o)#0, foreach e R.
b) f(a+PB)=f()f(P), forall o,pe R.
c) f(-o) =ﬁ, for each ae R..

Proof. a) Clearly, f(0)=cosO+isin0=1. Let there exist o€ R, such that
f(a)=0. Thus, it exists a.e R, so that cosot+isina=0, i.e. coso.=sino =0, which
contradicts to the basic trigonometric identity

cos? o +sin o =1.
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b) For all o,,fe R
f(a+P)=cos(o+ ) +isin(a+ )
=cosocosf —sinasin P +i(sinocosP + cosasinB)
=(cosa +isina)(cosP+isinP) = f (o) f(B).
c) For each ae R
f(—a) =cos(—) +isin(—0) = cos L —isin o

_ (coso—isina)(coso+isino) 1 1 -
coso+Hisin o coso+isinoe  f(o)

8.2. In the previous theorem we proved that the function f satisfies the ordi-
nary properties of the exponential function, so it is natural to introduce the notation
f(o)= ¢, for each a.e R . Therefore, the properties b) and c) of the theorem could be
stated as the following:

eioceiB _ ei(oc+B) (1)
=L 2)

By using the identities (1) and (2) and also the principle of mathematical induction, we
obtain that

(e’a)n =" for n=0,%1,42,.... 3)

8.3. Euler’s formulae. The above stated, implies that each complex number z,
such that |z| =1 and @ =argz may be denoted as
z=cos@Q+ising=e? . 4)

T 3mi

Thus, 2™ =1, ™ =—1, 2 =i, e 2 =—i.If we change ¢ by —¢ we obtain that

cos(p—isin(p=e_i(p. ®)]
By using the dentities (4) and (5) we obtain the well known Euler s formulae:
cosQ = ei%’ze_iq) , sinQ= ei(P'ze_“p ) 6)

These formulae allow the trigonometric functions cos and sin to be expessed in terms of
the exponential function.

At the present moment we shall state that in Theorem 1 we did not give the proof
of the formula (4)., we only gave its “acceptable” explanation.

8.4. The formula (4) and the trigonometric form of complex numbers imply that
each complex number z # 0 may be written as
z=re'?, @)
where »=|z| and @ =argz . The notation (7) of a complex number z # 0 is called to be
exponential representation of z.
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Using formulae (1) and (2), we obtain the exponential forms of the formulae for
multiplication and division of complex numbers, i.e.
212y = rlei(pl rzei(Pz — ,,lrzei(q’lﬂpz) , (8)

7 _ re'l

— N1 Li(9—93)
I pe'®2 n ¢ ' ©)
Let z =re'®. Since (4) and (5) the expression for Z__is the following z=re .
Hence, if ¢ =argz, then —p=argz.

8.5. Example. Find the sums:
a) A=cosx+cos(x+a)+cos(x+20)+...+cos(x +nra), and
b) B=sinx+sin(x+ o) +sin(x+2a) +...+sin(x + nat) .

Solution. Let S=A4+iB . Thus
S:eix +ei(x+0c) +ei(x+20c) +m+ei(x+n0c)

= (146 462 4 ) = —eix(ei(izﬂiu_l) :
o

Since, A=ReS and B=ImS . by applying the last formula we express 4 and B. If the

o
numerator and the denominator be divided by 2, then thereby the Euler’s formulae we

get that the denominator is 2i sin% , and the numerator is
cos(x+(n +%)oc)—cos(x—%)+i(sin(x+(n +%)oc)—sin(x—ﬂ)) =

= 2sinw(—sin(x+ﬂ)+icos(x+ﬂ)).

2 2 2
Hence,
sin@cos()ﬁ%) sin@sin(;ﬁ%)
A= . and B= — .;
sm% sino:

8.6. Remark. If x =0 in example 8.5 we get

. (n+h)o n+o
SIHTCOST
1+ cosa+cos20+...+cosno.=—-=—=—_ and
s1n%
Gin DG G nta
sino+sin 20l + ...+ sin no. = Z I m
sin¢

2

8.7. Let E be the point with affix 1. Consider the points 4 and A' with affixes

azpeie and a'=p'eie ,

respectively (figure 7). The product b=aa' corresponds to a point B, obtained as the
third vertex of the triangle OA'B, if this triangle is constructed as a similar one to the
triangle OEA.
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Figure 7

1
Figure 8

Indeed, the similarity ofthesetrianglesimplies ZEOA = ZA4'OB ,i.e. argh=0+6'
. For the same reason p:1=|b|:p" holds, i.e. b=pp' holds. Therefore, b =aa".

The point Z whose affix is the

complex number z= %' is obtained by

construction the triangle OZA4' similar
to the triangle OEA.

Indeed, the similarity of these
triangles implies az=a'. Therefore,
z= % (figure 8).

Byusingtherelation a” =a"a

and consecutively applying the proce-
dures for constructing the affixes of the
product and the quotient of two complex
numbers, we obtain the points

...,A_3,A_2,A_I,E,AI,AQ,A3,...

whose affixes are the complex numbers

-3 -2 -1 0 1 2 3
wna ~,a “,a ,a ,a,a%,a’,...,

respectively.
Letbe r>1 and O<a <. The

points A4, As,... (figure 9), with affixes

a? ,a3 ,... are obtained by a consecutive

construction of the similar triangles
OEA4,,041 4,04, 4;,... .
Constructing the similar triangles
OFEA4,04_E,04_yA_{,04.54_,,...

Figure 9
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by applying the same procedure, but in the opposite direction, we get the points

A, A5, A 5,...
with affixes
a_l,a_z,a_3,...-
For p=r", 0=no and after eliminating n in the above equations we obtain that
L]
p=r®. Thus, each powers a” lie on the curve, which is presented in polar form by the

previous relation. This curve is known to be the logarithmic (Bernoulli) spiral. Clearly,
in the previous considerations the absolute values of the powers increase or decrease like
a geometric progression, while the arguments — like an arithmetic progression.

Obviously, for r<1 and O<a<m, or »>1 and —mt<a <0, the logarithmic
spiral is in opposite direction of the spiral given in figure 9 and it wraps around the origin
when 0 decreases. Likewise if » <1 and —nt <o <0, then the logarithmic spiral has the
same appearance as shown in figure 9.

9. THE SET C”"

9.1. Definition. The notation a=(ay,a,,...,a,), for ;€ C, and i=1,2,...,n is
called to be an ordered n-tuple of complex numbers.
Thereby, we accept the notation

C" ={(a,a3,...,a,)|a;€ C,i=1,2,...,n} -

9.2. Definition. Let a=(qy,a,,...,a,) and b=(b,b,,...,b,) be two ordered n-

tuples of complex numbers, i.e. a,be C". The sum of a and b is the ordered n-tuple
c= (Cll +b1,a2 +b2,...,an +bn) .
Thereby, we accept the notation c=a+b.

9.3. Theorem. a) a+b=b+a, forall a,be C".

b) (a+b)+e=a+(b+c), forall a,b,ce C".

c) There exists o€ C" such that a+o=a, for each ac C".

d) For each ae C" there exists be C" sothat a+b=o0.

Proof. a) Let a=(ay,ay,...,a,) and b=(b,b,,...,b,) . By applying the com-
mutative and the associative lows of the addition of complex numbers, the definition 9.2
implies

a+b= (a1 +b1,612 +b2,...,an +bn)
= (bl + al,bz + a2,...,bn + an)
=b +a.
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b) The proof is analogical to the previous one. We should use the associative law
of addition of complex numbers.
¢) For an ordered n-tuple 0 =(0,0,...,0) and for each ae C"
ato=(a,a,,..,a,)+(0,0,...,0)
=(a; +0,ay +0,...,a, +0)
=(a1,ay,...,a,)=Aa.
holds true.
d) Let a=(qq,ay,...,a,) be a given ordered n-tuple. By letting
b=(-a,~a,,...,—a,), we get
at+b=(aq —a,a,—ay,....a, —a,)
=(0,0,...,0)=o0.
Hence, for each ac C" ther exists be C” so that a+b =0 . Moreover, the ordered n-
tuple b is called to be an opposite n-tuple of a and is denoted by b=-a. m

9.4. Definition. Let be an ordered n-tuple and A€ C . The product of the ordered
n-tuple a and the complex number A is the ordered n-tuple ¢ =(Aay,Aay,...,Aa,) .
Therefore we accept the notation ¢=Aa.

9.5. Theorem. a) A(a+b)=XAa+Ab, forall a,be C" and Ae C.
b) (A\+w)a=Aa+pa, forall A,ue C and aec C".

¢) (Aw)a=A(ua), forall A,ue C and ac C".

d) 1-a=a foreach ac C".

Proof. a) Let a=(qy,a,,...,a,), b=(b,b,,...,b,) and Ae C. Since the defini-
tion 9.4 and by applying the distributive laws of addition and the multiplication to the
coordinates it follows that

AMa+b)= K((al,az,...,a,,) + (bl,bz,...,bn))

=May +b,ay +by,...,a, +b,)

= (k(al +b),May +by),....Ma, + bn))

= (Aay + Abj, hay +Ab,,...,Aa, +A\b,)

=(Aay,Aay,...,Aa,) + (Aby,Ab,,...,Ab,))

=May,ay,....a,) +M(by,by,....,b,) =ha+Ab.

The proofs for the other statements are analogous. While proving them it is nec-

essary to apply the distributive and the associative lows and also the fact that 1.z =z, for
each ze C. m
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9.6. Definition. Scalar (inner) product of an ordered n-tuples a=(qy,a,,...,a,)
and b=(b,,b,,....b,) is the complex number
f=a1171+a2b_2+...+anlz.
Therefore we accept the notation f =(a,b)=a-b.
9.7. Theorem. a) (a,a)e R* for each ac C".
b) (a,b)=(b,a), forall a,be C".
¢) (a+b,e)=(a,c)+(b,c) forall a,b,ce C".
d) (a,b+c¢)=(a,b)+(a,c) forall a,b,ce C".
e) (Aa,b)=A(a,b) and (a,Ab) =X(a,b) forall a,be C" and AeC.

Proof. a) Let a=(qy,a,,...,a,) . Then
(a,a) = ala+azz+...+ ana_n = q |2 +lay |2 +..+]a, |2E R*.
b) By using the properties of conjugate complex numbers we obtain

(a,b)= alb_l+a2b_2+...+anl;

= ayby + ayby +...+a,b, = (b,a).

The proofs of the other statements are direct implications of the scalar product
definition, the distributive and the associative laws of the operations in the set of comlex
numbers and the statement b). m

9.8. Remark. The sum of ordered n-tuples and also the product of an ordered n-
tuple and real numbers are ordered n-tuples. On the other hand the scalar product of two
ordered n-tupes is a complex number.

9.9. We define the mapping 7: C" — C" by
Ta=(ay,a,...,a,,ay), for each a=(ay,a,,...,a,) .
By induction we determine T™a =TT" 'a, for m>2 . For example,
T?a= T(ay,as,...,a,,a1) =(az,a4,...,a,,a1,ay) .

We define a mapping 7; from C”" to C", such that each ordered n-tu-
ple a=(aj,a,,...,a,) maps to an ordered n-tuple Tja=(a,,q,...,a,_;). Obviously,
TiTa=TTia=a, for each ac C", i.e. the mappings T'and 7, are inverse to each other.
Therefore, T} =T ! and by induction we determine

T™™a=7"'77(" Vg for m>2.

9.10. Theorem. a) T(a+b)=Ta+7b forall a,be C".

b) T(Aa)=ATa for each and each Ae C.
c)If a=(a,q,...,a), e C,then Ta=a.
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d) T"a=T"a=a, for each ac C", (or more generally 7" a=T"" a=a for
each ac C" and each ke N).
e) (T"™a,T°b) = (T *a, 7+ b) for all a,be C" and all m,k,se N .
Proof a) Let a=(qay,a5,...,a,) and b=(b;,b,,...,b,) be arbitrary elements of
C”" . Then,
T(a+b)=T((ay,ay,....a,)+ (b, by,....b,))
=T(ay +b,ay +by,...,a, +b,)
=(ap +by,a3+bs,...,a, +b,,a; + b))
=(ay,a3,....a,,ay) +(by,bs,....,b,,b)
=Ta+Th.

The other statements can by proved analogously, by applying the definition of the map-
ping T and the properties of the arithmetic operations in C". m

9.11. Corollary. For each ac C"
(Ta,a)=(T?a,Ta)=... holds.

Proof. The proof is directly implied by Theorem 9.10. ¢). m
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CHAPTER 11
TRANSFORMATION IN EUCLEDIAN PLANE

In this chapter we will firstly discuss few elementary transformations in the complex
plane.Special attention will be paid to the similarities, their group propertiesand classification.
Furthermore, the inversion and the Mobius transformation, treated as the most important
elementary transformation of the complex plane, will be elaborated in separate paragraphs.

1. LINE EQUATION. PARALLEL
AND PERPEDNICULAR LINES

1.1. Let the line (p) do not pass through the origin and let the point 4, with affix
a, be symmetric to the origin O with respect to (p). Then, a point B, with affix z, is on the

line (p) if and only if OB=AB , i.c. |z|=|z—a]|, that is
zz=(z-a)z—-a).
The last equality may be transformed and rewritten as the following
az+az=aa. (D)
If (p) passes through the origin and the points 4 and A', with affixes @ and a',

respectively, are symmetric to each other with respect to the origin O and to the line (p),
then any arbitrary point B with affix z, such that B lies on (p) satisfies the following rela-

tion AB=A'B,i.e. |z+a|=|z—a],thatis
(z+a)z+a)=(z—a)z-a).

The last equality may be transformed and rewritten as the following

az+az=0. )

If a=re®, then a=re ™®. Hence, if we divide the equalities (1) and (2) by a

we obtain the following equations

z=NMz+a 3)
and

z="mz, 4
where n=-4= —*®  The number n is called to be complex gradient of the line (p), and
the point 4 ig called to be mirror point of the line (p). Obviously, each line (p), which
does not pass through the origin, is determined by the mirror point 4, with affix a = re'®

and the complex gradient 1= —*  Each line (p), which passes through the origin, is
uniquely determined by its complex gradient. It is easy to prove that in both cases, the

angle between the line (p) and the positive part of the real axis is ot =@ —% .
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The above stated implies the validity of the following theorem.

Theorem. If 4, with affix g, is a symmetric point to the origin with respect to a
given line (p), such that it does not pass through the origin and if ¢ is the oriented (directed)
angle between the real axis and the line through the origin and perpendicular to (p), then

the equation of (p) is given by (3), where 1= —* 1f (p) passes through the origin, then
its equation is given by (4). m

1.2. Theorem. The equation of a line (p), which passes through two distinct
points 4 and B with affixes z, and zj, respectively, is

Z1—Z, - -
z—zyg=21L(z—-zp) (35
21720
and its complex gradient is
S 6
. (6)

Proof. Let z; and z be the affixes of 4 and B, respectively. By substituting

these affixes into the equation (3) we get that zj = nz_o +a and z; = nz_l + a . Further, by
subtracting the last two equalities we obtain the complex gradient of the line as following

=272 je. the equality (6) holds true. If the so obtained expression for complex
21720 o
gradient 1 is substitute zy =Nz, +a we obtain the following :
2172 -
a=zyg—=—=—2p,
Z] _ZO

Moreover, if the above determined values for 1 and a, we substitute into the equation (3)
we get the equation (5). m

1.3. Corollary. The points z;, z; and z, are collinear if and only if
P 7
21720 717z )
Proof. According to Theorem 1.2, the equation of a line (p), such that it passes
through z,y and z;, is given by (5). The points z;, z; and z, are collinear if and only if

z, satisfies the equality (5), that is if and only if the equality which is equivalent to (7).

-2 — —
2y — 2 221 i(zz—zo),

is satisfied. m

1.4. Corollary. The points z,, z; and z, are collinear if and only if % isa
real number. i

Proof. The proofis directly implicated by Corollary 1.3 and the properties of the
complex numbers.m
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217 %

1

z=zp=N(z~-2), [n|=1 ®)
Conversely, each equation of type (8) is a line equation.
Indeed, thereby | 1| =1, it follows that it exists @€ [0,7) so that 1= 2. Thus, the
equation of the line through z, and z; =z + ¢, shall be as (8).

1.5. Remark. Since [n|= , the equation (5) can be rewritten as

1.6. Remark. According to theorem 1.1 the equation of a line which passes
through the origin and the point zy # 0 is the following

z=mz, n=2=¢%° ©9)

20
The line (9) passes through points whose affixes are the square roots of the complex
gradient n.
Indeed, by substituting one of the two values of the square root of 1 into (9) we
obtain the following

= =l =i

i.e. the points with affixes \/ﬁ satisfy the equation (9).

1.7. Theorem. The oriented angle ¢ between the lines (p) and (¢) with complex
gradients m; = —*® and n, = —e%i , respectively, is given by the formula 0 = n—; .

Proof. Let (p') and (¢") be perpendicular to (p) and (g), respectively. Then, ac-
cording to theorem 1.1 the lines (p') and (¢') and the positive part of the real axis create
oriented angles @; and @, , respectively. Thus, the oriented angle of the above lines is
¢ =0, —@; and it is congruent to the angle of (p) and (¢g) (as angles with perpendicular
rays). Thus, the statement given in the theorem is implicated by the relation

M =0 2i0=9) _ 200 g
Ny ke '
1.8. The equality ¢ =0 is equivalent to the equality m; =1, ,and ¢ = % is equiv-

alent to 1My =-mn),. Hence, the following corollary holds true.

Corollary A. a) Two lines are parallel if and only if their complex gradients are
equal.

b) Two lines are perpendicular if and only if their complex gradients are opposite
numbers. m
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Corollary B. a) Let the points M;, i=1,2,3,4 have affixes z;, i=1,2,3,4. The
lines MM, and M3;M, are perpendicular to each other if and only if = ZZ € iR*,

where R*=R\{0} .
b) The lines M{M, and M;M, are perpendicular to each other if and only if

722 ¢ jR*
3=z, ’

—2z5

Proof. a) The complex gradients of the lines MM, and M;M, are =il and

a7
3724 respectively. Since Corollary A, the lines MM, and M3M, are perpendicular
Z3—Z4
to each other if and only if 2=22 =324 je. if and only if 2—2 =222 that is if
2172y Z3—Z4 V4 _Z4 23— 2y

. Z1—Z .
and only if -L—2¢€ jR*.
Z37Zy

b) The proof'is a direct implication of the statement a). m

Corollary C. a) The equation of a line (p") through a point M with affix m and
is such that it is parallel to (p): z= n; +a is the following z—m = n(E - %) .

b) The equation of a line (p') through a point M with affix m and is such that it
is perpendicular to (p): z= n; +a is the following z—m = —T](; - E) .

Proof. The proofis a direct implication of Remark 1.5 and Corollary A. m

1.9. Example. Let 4 and B be two distinct points in the complex plane with
affixes z; and z,, respectively. Determine the affix p' of the point P', symmetric to P
with affix p, with respect to the line 4B.

Solution. Through the point P we draw the line /, perpendicular to the line 4B and
we find A, the point of intersection () of land AB. Thus, F(p;) is the midpoint of the line
segment PP',ie. p;=+=— thatis p'=2p; — p, and the point B is the projection of P

onto the line AB.
The equation of the line through the points 4 and B is the following

z—7 =22 (z-7). (10)
|
The complex gradient of the line /is 1, = . Thus, its equation is
22—21
z-p=-ZZ(z-p). (1)
274
If we add the last two equations (10) and (11) we obtain the affix p; of the point A :
(p- Z) )(Zz 21)+(22_Zl )(P+Zl) 12
P = 2o (12)
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By substituting the so obtained expression for p; in p'=2p; — p, we find the affix p'
of the point P': B B _
= PBma)tnnTnn o

ZZ_ZI )

p

1.10. Example. Determine the locus of the points which are equidistant from two
given points 4 and B.

Solution. Let a and b be the affixes of the points 4 and B, respectively, and let
the point M with affix z belong to the required locus. Then |z —a |2= |z—=b |2 thereby
MA = MB . The last equation is equivalent to

_a_%:_b;a(;_ﬁ)
2 b-a 2 )

Thus, the required locus is a line which passes through the midpoint of the line segment
AB and is perpendicular to AB. m

y4

1.11. Example. Let ABC be a given triangle and let K and H be such points on the
sides AB and AC, that AK = %A_B and AH = ﬁ% , respectively. Prove the following
statement: for each p, p > 0 the lines KH passthrough a unique point.

Solution. Let 0, b, ¢, k, h be the affixes of 4, B, C, K, H, respectively. Then

, h= ﬁ . Since Corollary 1.4, the point M with affix z lies on the line KH if and only

k
if 7= =t€ R Hence,

ENASESS

bl

z=L(b+5((c=bp=b)).

If t=p+1, then we get that z =c—b. Therefore, each line KH consists of the point X
with affix c—b. m

2. DISTANCE FROM A POINT TO A LINE

2.1. Lemma. The line equation
22y =270 (z-zy)
21720
can be written as
Az+Bz+C=0, where CER and B=4#0, (1)

Conversely, each equation as (1) is a line equation.

Proof. Let be given the equation
z—zy= i_Zi)(;—g) .
Zl —ZO
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So,
2(z1 —29) ~2(z1 —20) + 2071 ~ 297 =0.
If we multiply the latter by i, we get that
(71— 20)z (2 = 29)z +i(z7 — 297) =0.
Let
A=z =z20), B==i(z =), C=i(27~27),

the equation of a line through the points M and N with affixes z; and z;, respectively is
as (1).

Conversely, let the equation (1) be given. If (1) is divided by 4 and and then set

that n = —ﬁ, a=-£ , we obtain the equation as z=1mz +a, =1. Since Theorem 1.1,
A q n

the letter is a line equation. m

2.2. Definition.The line equation (1) is called to be a self-conjugate line equa-
tion.

2.3. Let line (p) be given by its self-conjugated equation (1) and the point z;. If
(1) is rewritten as

__B__C
ITTUAET o

then the complex gradient of an arbitrary line perpendicular to (p) is n'= %. Thus, the
equation of (¢) such that it passes through the point z, and is perpendicular to (p) is the
following
z-z=2(z-7),
ie.
Az~ Bz—zyA+2yB=0. )
By adding the equations (1) and (2), we obtain that 24z"'= Az, — B% —C is the intersec-
tion of (p) and (g), i.e. the projection z, of onto the line (p), that is
1 Azg=Bzp—C

24
Thus,

Azy+Bzy+C
24 ’

so, the distance from a point z;, to a line (p), given by its self-conjugate equation (1) is

zg—z'=

| Azy+Bzy+C|

d(zoa(p))_ 124
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3. CIRCLE EQUATION

3.1. As already stated, | z—zy | =R is the equation of a circle centered at S (with
affix z;) and radius R. In this section we will discuss circles in the complex plane.

3.2. Example. Let A and P, be arbitrary points in the complex plane with
affixes z; and z,, respectively. Prove that the circumcircle of the line segment A5,
viewed as its diameter, has the following equation

12z-z1 -z | =]z~ 2z]|. (D

Solution. Since, the radius of a circumscircle of the line segment A5,

viewed as its diameter, is R =@ and F, (the midpoint of the line segment A A,

with affix zy; = Zl+—22) is its center, we get that the equation of the considered circle is

1tz Z1—Z2
\Z_l 2|~ ozl

2
which is equivalent to the latter, that is we obtain the equation (1). m

. If we multiply the last equation by 2, then we obtain the equation

3.3. Example. Let 4, B and C be three distinct points in a plane. Determine the
locus of the points equidistant to points 4, B and C.

Solution. Let a, b and ¢ be the affixes of the points 4, B and C, respectively. Since
Example 1.10, the locus of the points equidistant to the points 4 and B, B and C, 4 and C,
are the bisectors of the line segments 4B, BC and CA and their equations are

_atb __b-a( _ath

) b_a(z 2) )

_b+c _ _b-c(7 _btc

z-5E=- g_;(z zc) )
+e _ ~_a+c

2o = —gze(z o) @

respectively. We will discuss two cases:

a) If the points 4, B and C are collinear, then Corollary 1.3 implies that the bisec-
tors of the line segments AB, BC and CA have equal complex gradients, and since Corollary
1.8 it implies that the lines are parallel. But, the fact that the points 4, B and C differ from
each other, implies that the midpoints of the line segments 4B, BC and CA4, also differ from
each other. The latter means that it does not exist any point such that it satisfies the given
conditions.

b) If the points 4, B and C are non-collinear, then the bisectors of the line segments
AB, BC and CA parwise intersect . If we subtract the equations (3) from (2), we obtain the
affix o of O, the point of intersection of the bisectors of the segments AB and BC,

aa(c—b)+bb(a c)+cc(b a)
ab+bc+ca—ab—be—ca

By direct checking we prove that the point O lies on the line CA. Therefore, the required
locus is the point O with affix 0. m
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3.4. Remark. In the previous example, we actually proved that through three dis-
tinct non-collinear points A4, B and C it passes exactly one i.e. a unique circle which is cen-
tered at O and whose radius is R =|a —o|. That is we proved that for each triangle there
exists a unique circumecircle, and the center of the such circle is the point of intersection of
the side bisectors of the given triangle.

3.5. Example. Prove that all complex numbers so that |z—1|=2]|z+1] is satis-
fied, liec on a same circle. Determine the centre and the radius of that circle.

Solution. For any complex number z=x+1iy, its absolute value is given by
2 2
|z[Fyx™+y7 .
This fact applied to the given identity |z—1|=2]|z 41| implies that
\/(x—l)2 +y2 =2\/(x+1)2 +y2 .

2 2
After reducing, we obtain the following expression: (x+§) + y2 = (%) , which obvi-

ously is the equation of a circle centred at (—%, O) and whose radius is % . u

3.6. As above stated, the equation of a circle with centre z; and radius R is
|z—zy|=R. But, it is useful also to emphasize the circle equation similar to the self-
conjugate line equation. Therefore, we will show that

zz+Az+ Az+B=0, BER, AeC, |A? -B>0 (5)

is a circle equation.

Indeed, if

zo=—A and R® =zyzy—B=| A -B>0,
and we substitute in (5) we obtain the following
- . - —_p2
zz—zyz—zzy+2z9z9 =R",

i.e. the equation |z -z | =R, which is the equation of a circle with centre z; and ra-
dius R. Hence, the equation (5) is the equation of a circle with centre z; and radius

R=+/ 4 |2 —B , which is called to be a self-conjugate circle equation.

3.7. Remark. In the above discussions , in chapter 1, we proved that the ste-
reographic projections of a line and a circle in the extended complex plane, i.e. their
Reimann interpretation, are circles which consist of or do not consist of the pole, respec-
tively. This is one of the reasons the lines and the circles in the extended complex plane
are called as circles, and the circles in the complex plane are called as true circles. In the
following example we will give one more argument which enforces this terminology.

3.8. Example. (Apollonius circle). Let 4 and B be arbitrary points in the plane.
The locus of the point M so that MA: MB =k, (k> 0, k #1) is a circle. Prove it!
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Solution. We will consider the case where & >1. Firstly, let set a coordinate sys-
tem xOy such that the x-axis coincides with the line AB, and the origin with the midpoint
of the line segment AB. Hence, 4(a,0) and B(—a,0), i.e. the affixes of the points 4 and

Bare z; =a and z, =—a, respectively. If the point M, which belongs to the considered
|z—a|

m , 1.C.

locus, has affix z, then the given condition implies that k =

— 2 —
ZZ+CI%(Z+Z)+CIZ=O. (6)
The constants

_ k4l p_ 2
A—akz_l, B=a
satisfy the condition

|A? =B>0.

Therefore, (6) is the equation of a circle with centre

and radius

The case where 0 <k <1 can be considered analogously. m

3.9. Relationship between a line and a circle. Let z—2z) = n(E —%) and
|z—2z1|=R be the equations of a given line (p) and a circle (K), respectively. Through
the centre of the circle with affix we draw the line (p') perpendicular to (p). The line
equation of (p') is z—z = —n(; - Z_l) . If we add the equations of the lines (p) and (p")
then we find the affix of the point of intersection of these two lines

. N(z—zp)+z1+2g
— ==

So, the distance between the centre of the circle and the line (p) is the following

‘ N(z—20)+2-2 ‘ .

d(z¥,zg)=|z*-z9| = 3

The above stated implies that:
if [nGi—z0)+21—20

2
of touching has affix z*;

=R , then the line (p) is tangent to the circle (K) and the point

. 71—20)+21— . . .
-if w < R , then the line (p) and the circle (K) have two points of
intersection;

_ lf ‘n(;l_%)_‘—zl_zo‘

: >R , then the line (p) and the circle (K) do not have any

common points.
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3.10. Example. Determine the relationship between the line (p) and the circle (K)
whose equations are z=2z+3i and |z+4—2i| =3, respectively.

Solution. Since the line equation z =z +3i, we get that z = % . Further, since

the circle equation
|z+4-2i|=3
we obtain that z; =—4+2i and R =3. Therefore,
d= [ n(@—20)+z-2 | _ ‘(_4_2i+%)+(_4+2i_%)‘ _1-8 8|
2 2

and thereby 3.9, the line (p) and the circle (K) do not have any common points i.e. they
do not have any points of inetrsection.m

=4>3=R,

3.11. Example. Let (K): | z—zy | = R be a given circle and z; be a point which is
placed on the circle. Find the equation of the tangent to the circle (K) at the point z; .

Solution. The equation of a line (p), such that it passes through points z, and

21, 1s the following
z=zp= 2:—2(;—%) :
So, the equation of the tangent (p") to (K) at the point z; is the following
20 (z-z). m

2172

z—z1=—

3.12. Remark. a) If (K): | z| =1 is the unit circle and z isa pomt on (K), then

the equation of the tangent to (K) at the point z; is the following z + Zl z=2z.
b) If 4, B, C and D with affixes a, b, ¢ and d, respectively, are on the unit circle
(K): |z|=1, then E:a_l, l;=b_1, c=c! and d=d7". Thereby Corollary 1.8, the
chords AB and CD are parallel if and only if
(b—a)d-c)=(b-a)d -c)
holds true, that is if and only if ab = cd . Analogously, the chords AB and CD are perpen-

dicular to each other if and only if ab+cd =0.
Apparently, if 4 and B with affixes a and b, respectively are points on the unit

circle, then a=a"! , h=b"! , and therefore

a-b l_b -=-ab.
a~b a -b"
Further, if M with affix m is a point on the chord AB, then by Corollary 1.3 it is true that
m—a_rg—a m=a ,p — _ mab—b
b—a p—gq a-b b—a ’
and by equivalent transformations, we express m as the following m = “tﬁ’—b‘m

c) Let 4, B, C and D with affixes a, b, ¢ and d, respectively, be points on the
unit circle (K): |z| =1, and ABNCD ={S}. The equations of the lines 4B and CD are

45



z+abz=a+b and z+cdz=c+d, respectively. By eliminating z from the last two
(a+b)cd—(c+d)ab

cd—ab
d) Let 4 and B, with affixes a and b, respectively, be points on the unit circle, so

that the line segment AB is not its diameter. According to the statement a), the equations

equations, we obtain that the affix of S'is s =

of tangents (¢4) and (tg) are z+ a’z=2a and z+b>z=2b , respectively. If we elimi-

2ab

, 1s the affix of the intersection
a+b

nate z from the last two equations, we get that s =

point S=(t4)N(tg).

e) Let the line (p) meet the unit circle at two points 4 and B, whose affixes are a
and b, respectively, and let M, whose affix is m, be an arbitrary point on the plane. It is
easy to prove that the affix of the orthogonal projection of M onto the line (p), is given

a+b+m—abm

by c¢= 3

4. DIRECT SIMILARITIES

4.1. Definition. The mapping S:C — C defined by
w=S8(z)=az+b, a,beC, a#0 (D)
is called to be a direct similarity.

4.2. Theorem. The set of the direct similarities DS under the operation composi-
tion of mappings is a noncommutative group.

Proof. If S;,5, € DS, then

Si(z)=az+b, a,beC, a#0 and S,(z)=cz+d, c,deC, d#0.
Hence,
S$1(S2(2))=S(cz+d)=a(cz+d)+b=(ac)z+(ad +b), ac,ad +be C, ac #0
i.e. S8, € DS . Thus, the set DS is closed with respect to the composition of mappings
and in general the following holds true
S$1(S2(2)) =(ac)z +(ad +b) # (ac)z + (bc +d) = S, (S)(2)) .
Let S§;,8,,583 € DS . With direct checking the following could be proved
S10(85 083)(2)=(81°8,)083)(z), foreach ze C.
Therefore, S; o (S, ©83)=(S; ©S;) 083, i.e. the associative law holds true.

The mapping E(z)=z, for each ze C is an element of DS and further
EoS=SocFE=S8, foreach Se DS.

Let S(z)=az+b, a,be C, a#0 be an arbitrary direct similarity. The mapping
defined by S;(z)= %Z —% is a direct similarity and furthermore, the following holds
true

S(81(2))=5,(S(2)), for ze C, i.c. s1= S;€DS . =
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4.3. Theorem. Each direct similarity is uniquely determined by two pairs of cor-
responding points.

Proof. Let S be an arbitrary direct similarity so that S(z;) =w; and S(zy)=w,.
Then S(z)=az+b, where a,be C, a#0 are coefficients which should be obtained.
Since Theorem 4.2 each direct similarity is bijection, and therefore z; # z, implies that
wy # w; . By substituting in S(z) = az +b we get the following system of linear equations

of the variables a and b
wy =az; +b
_ )

Wy =azy +b

By solving the system (2) with respect the variables a and b, we obtain

=MW AWaTHW
7=z’ Sy}

and a #0, i.e. the coefficients a and b of the direct similarity S(z)=az+b are com-
pletely determined by two pairs of corresponding points (z,5(z)) and (22,5(22)) . m

4.4. Theorem. a) The image of a line (p) under a direct similarity is a line (p").

b) Two parallel lines under direct similarity map to parallel lines.

¢) Two perpendicular lines under direct similarity map to perpendicular lines.

Proof. a) Let be given the direct similarity (1) and a equation of (p) as z = nE +c.
According to (1), we get that z = WT_b and if we substitute in the line equation we get

w:(%n)v_v+ac+b—“7i’n.

Further, ‘%n ‘ =1 implies that an image of line (p) under a direct similarity is the line
(p" with complex gradient €7 .
a

The proofs of the statements b) and c) are direct implications of the statement a)
and Corallary 1.8 A. m

4.5. Theorem. The image of a circle (K) under direct similarity is a circle (K"') .

Proof. Let be the given direct similarity (1) and a circle (K) with equation
|z—c|=R. According to (1), we get that z :WT_b and if we substitute in the circle

equation we obtain |w—(ac +b)|=]|a| R . The latter actually means that the image of the
circle (K) under the given similarity (1) is the circle (K"). The centre of the image circle
has an affix ac+ b, and the length of its radius is |a|R. m

4.6. Theorem. If A4, B are arbitrary distinct points, A', B' are their images under

the direct similarity (1), respectively, and if a = re'® ,then 4'B'= rAB , and the lines AB
and A4'B' form an oriented angle ¢.
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Proof. Let z;, z;, wy, w, be the affixes of the points 4, B, A', B', respectively.
Hence, zy —z = ABe™ and wy—wy=A'B '™ | where o and oy are the angles formed
by the real axis and the vectors AB and A'B’, respectively. By the equalities wy = az; +b

and w, =az, +b, we get the following equality
wy —wy =a(z; —z),
i.e. the equality
A'_B'ei(x1 = rﬁei(aﬂp) R
which implies that 4'B'= rAB and =0y —-0.m

The real number 7 is called to be the ratio of the direct similarity (stretching
factor or direct similarity coefficient) (1), and the angle ¢ is called to be an angle of the
direct similarity (1).

4.7. Definition. Two figures are said to be directly similar if there exists a direct
similarity under which one of the figures is mapped to the other one.

4.8. Corollary. If ABC and A'B'C' are directly similar triangles, then
A'B':A'C'=AB: AC and ZLA'B'C'= ZABC .

Proof. The proof'is directly implicated by Theorem 4.6.. m

4.9. Theorem. Let z, z5, z3, Wy, w,, w3, be the affixes of 4, B, C, 4', B', C'
respectively. The triangles ABC and A'B'C"' are directly similar if and only if
z1(wy =ws3) + 25 (W3 —wp) + z3(w —wp) =0 3)
holds.

Proof. The triangles ABC and A'B'C' are directly similar if and only if there
exists a direct similarity (1) so that w; =az; + b, for i=1,2,3. The last equalities imply
the following

w—wy =a(z;—zp) and wy —wy =a(z; —z3) .
If we divide the first equality by the other one, we actually obtain the following equality

MW, _Za7% (3 7)
w—wy  z—z3

The latter is equivalent to (3). m

4.10. Remark. The condition (3), i.e. the condition (3”) of the previous Theorem
is equivalent to the following condition

1 1 1
Zl 22 Z3 =0.

W Wy w3
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Indeed, the condition (3”) and the properties of the determinants imply
1 1 1

21 Zp Z3|=

21722 21723

W —wy W —ws
W wy W3

=(z1 —zp)(W —w3) = (21 —z3)(W; —w, ) =0.

4.11. Definition. A point z is said to be a fixed point under the direct similarity
(1) if it satisfies the condition z=az+b.

Apparently, for a #1, the direct similarity (1) has a unique fixed point and its
affix is z; = % .If a=1,then =0, i.e. the direct similarity (1) is the identity mapping
and each point of the complex plane is a fixed point.

The point C with affix c=-Lis said to be center of the direct similarity

l-a
S(z)=az+b.

4.12. Let (p): z—z =n(2 —%) be a tangent to the circle (K): |z—z;|=R and
let w=S(z)=az+b, a,be C, a#0 be a direct similarity. Since 3.9,

‘n(z—%2)+21 _ZO‘ =R (4)

holds. Further, according to Theorem 4.5 the image of the circle (K) is a circle (K') with
equation |w—(azy +b)|=|a| R . Analogously to the proof of Theorem 4.4 a) if we sub-
stitute that z = WT_b in the equation of (p) and we get that the image of a line (p) is a line
(p") with the following equation

w—(azy +b) :%(@—m) .
By using the equation (4) we find that the circle (K') and the line (p') satisfy the fol-
lowing

| azytbazg by az, +h—(azg+b) | |Ma(z-zo)+a(z=z)|
2 2

N(z1-20)+(z1~2))
SPILEETLC A
Hence, 3.9 implies that the line (p') is tangent to the circle (K").

Thus, we proved the following theorem.

Theorem. Let (p) be a tangent line to the circle (K) and (p") and (K') be their

images under the direct similarity (1), respectively. Then (p') is a tangent line to the
circle (K'). m

4.13. Example. Let ABCD be a given parallelogram. On its sides CD and CB,
similar and same oriented triangles (directly similar) CDE and FBC, are constructed.
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Prove that the triangle FAFE is similar and is also the same oriented to the triangles CDE
and FBC.

Solution. Let the origin be the point of intersection of the parallelogram diago-
nals. Then ¢=—a and d =-b. The triangles CDE and FBC are similar and a same ori-

ented. Thus, Theorem 4.9 implies that <% s f Z 4 Therefore,
f= be+c?—be—cd — beta*
e—d e+b
Hence,

f_azw, c—d=c+b,d—-e=—(b+e) and b—a=c—d,
therefore

(b—a)(e—a)
J=a _ b _ _b-a _c=d
a—e a—e —(e+b) d-e’

The latter according to Theorem 4.9, means that the triangles FAE and CDE are directly
similar.m

Example 4.14. On the sides 4B, BC and CA of a triangle ABC, such pairwise
similar triangles ABK, BCL and ACM are constructed,
that the first two are out of the triangle ABC and the
third one is in (see figure 1). Prove that the quadrilateral
BLMK is parallelogram.

Solution. The triangles AKB and BLC are di-
rectly similar. Therefore,

ka LB e I=b+(k-a)sL

b—a b’

The triangles AKB and AMC are directly 31mllar, and

Figure 1 therefore /I§ =124 ‘je.
a c—a
m=a+((k—a b =

Thus,

BL=1-b=(k-a)c=t

BL=1-b=(k-a);=]
and

KM =m-k=a+(k-a)&2—k=(k-a)(£2-1)=(k—a) &=L,

i.e. BL=KM . The latter means that the quadrilateral BLMK is parallelogram. m
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5. MOTIONS

5.1. In the previous section we considered and discussed the direct similarities
and we also proved several properties about them. In this section the focus of our interest
is one of the most important classes of direct similaritiesand their classification.

5.2. Definition. The direct similarity S(z)=az+b, for|a|=1, for |a|=1 is
said to be motion.

5.3. Theorem. The set of motions D under the operation composition of mappings
is a subgroup of the direct similarity group DS.

Proof. If §1,5, € D, then
Si(z)=az+b, Sy(z)=cz+d, |a|=|d|=1.
Thus,

S (Sz(z)) =Si(cz+d)=a(cz+d)+b=(ac)z+(ad +b), |ac|=1,
therefore, S} oS, € D . The latter means that the set D is closed under the composition of
mappings.

If §,5,,53€ D, then §;,S,,S; € DS, therefore
S10(83083)=(S81°83)°83,
1.e. the associative law holds true.
Ifa=1,b=0then 1-z+0=E(z)eD.
Let S(z)=az+b, |a|=1 be an arbitrary motion. The mapping

Sl(z)=%z—ﬁ, =1

a’lal” |a|

is motion and moreover the following holds true
S(8)(2))=5,(S(2)) =z, foreach ze C,ic. S =S5 €D . m

5.4. Definition. The motion S(z)=z+b is said to be translation for the vector
b, and it is denoted by Sp, .

5.5. Theorem. The translation which is not identity mapping has no fix points.

Proof. The proofis directly implicated by 4.10. m

5.6. Theorem. The set of translations T under the composition of mappings is a
commutative subgroup of the group of motions D.

Proof. If S|,S, €T ,then S|(z)=z+b, Sh(z)=z+d . Thus,
S1(82(2))=81(z+d)=(z+d)+b=z+(d +b),

therefore, S) oS, € T . The latter means that the set T is closed under the composition of
mappings.
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If S17S29S3 eT , then SI’SZ’S3 eD , Hence,
S10(S2083)=(S51°83)°83,

i.e. the associative law holds true.

Let SI’SZ eT , then SI(Z) = Z+b, Sz(Z) =z+d. Hence,

$1(82(2))=S(z+d)=(z+d)+b=(z+b)+d
=8,(z+b)=5,(51(2)),

for each ze C, i.e. the commutative law holds true.

If b=0then 1-z+0=E(z)eT.

Let S(z) =z + b be translation. The mapping S;(z) =z —b is also translation and
furthermore the following holds true

S(81(2))=5,(S(2)) =z, foreach ze C,ie. S' =S €D . m

5.7. Definition. The direct similarity with ratio 1 and angle = is said to be a point

reflection.
The shape F is said to be a point reflection iff there exists such a reflection S, that
S(F)=F.

Thus, S(z)=az+b, a,be C, a+0 isapoint reflection if a =—1. Due to the last,
S(z) =b -z denotes a point reflection.

Moreover 4.10, implies that the point reflection S(z)=b—z has center C with
b
2
tions will be denoted by CS.

Let A(a) be any arbitrary point in a plane. The image of that point under the point

reflection S(z)=b—z is the point A'(b—a). Since the centre C of the point reflection

affix ¢ =72 and is denoted by S =S . In our further considerations the set of point reflec-

has an affix ¢= % , we get that
AC=b-a=(p-a)-2=C4'.
So, the centre C of the point reflection is the midpoint of the line segment AA4".

5.8. Theorem. a) The composition of two point reflections is translation.
b) The composition of a point reflection and a translation is point reflection.

Proof. a) Let S;(z)=b—-z and S,(z)=d -z, b,d € C be arbitrary point reflec-
tions. Then,
Sl(Sz(z))le(d—z)=b—(d—z)=z+(b—d) .
So, the composition S; oS, is translation for the vector b—d .
6) Let Sj(z)=b—-z and S,(z)=z+d , b,d € C be arbitrary point reflection and
translation, respectively. Therefore,
S1(82(2))=81(z+d)=b—(z+d)=b—-d -z
and
Sy (81(2))=Sy(b—2z)=d +(b—z)=b+d -z,

re. S; 08, and §, o §; are point reflections with centers % and % , respectively. m
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5.9. Definition. The mapping S : C — C is said to be involuntary iff the mapping
is invertible, i.e. there exists such S7!that S7'=5.

5.10. Theorem. The direct similarity which is not identity is involuntary if and
only if it is a point reflection.

Proof. Theorem 4.2 implies that the direct similarity is involuntary if and only
if
az+b= T for each ze C,
i.e. if and only if a =% and b= —; . The last two equalities are satisfied if and only if
a =-1. Therefore, S is involuntary if and only if S is a point reflection. m

5.11. Corollary. The set T UCS under the operation composition of mappings
is a non-commutative subgroup of the group of motions D.

Proof. The proofis a directly implicated by Theorem 5.6 and Theorem 5.8. m

5.12. Definition. The motion which is not translation is said to be rotation.

Thereby each rotation S(z)=az+b, |a|=1 satisfies that a #1, we deduce that
each rotation has center C with affix ¢ = % . If C and a are the center of the rotation and
the angle of the rotation, respectively,we use to say that we have a rotation about C with
angle o and we use to write § =S¢, . In our further discussion the set of the rotations

will be denoted by R. Apparently, the point reflections are rotations with angle w, and
therefore CSC R .
Let S(z)=az+b, |al=1, a#1 be rotation about C with angle a. Then, the in-

verse mapping S~ ! defined by S~ (z) az—ab is rotation about C with angle —a..

5.13. Theorem. a) The composition of two rotations is either rotation or transla-
tion.
b) The composition of rotation and translation is rotation.

Proof. a) Let
Si(z)=az+b, |a|=1, a#1 and S)(z)=cz+d, |c|=1, c#1
be two rotations. So,
S (Sz(z)) =Si(cz+d)=a(cz+d)+b=(ac)z+(ad +b). (D)
Apparently, if ac =1, then S; 0§, is translation; if ac #1, then Sj oS, is rotation about
C, with affix %, and with angle oy +a,, where 04 and o, are the angles of the

rotations S} and S, respectively.
b) Let
S1(z)=z+b and S)(z)=cz+d, |c|=1, c#1

be an arbitrary translation and a rotation, respectively.
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Since,
S (Sz(z)) =S8)(cz+d)=cz+(d +D)

it follows that S} oS, is rotation about C with affix ‘f%’f and with angle o, . Further,
S5 (81(2)) =8y (z+b)=cz +(d +bc)

d +bc

implies that S, o.S; is rotation about C' with affix and with angle o, . m

5.14. Consider the rotations
Si(z)=az+b,|a|=1, a#1 and S)(z)=cz+d, |c|=1, c#1.
While proving Theorem 5.13 we established that the composition Sj .S, is either rotation
or translation, depending on whether ac #1 or ac =1, respectively. Apparently,

S5 (Sl (2))=Sy(az+b)=c(az+b)+d = (ac)z+(bc+d), )
implies that S, o.S; is either rotation or translation, too, depending on whether ac #1 or
ac =1, respectively. Logically the following question arises: whether and under which
conditions S} and S, commute under to the composition of mappings, i.e. when does
the following relation hold true

S5 (81(2)) =8 (S,(2)), for each ze C. 3)
If we substitute (1) and (2) into (3), after reducing, we obtain that S; and S, commute

if and only if ad +b =bc +d . The latter actually means that S; and S, commute if and

only if % = % . So, we proved the following theorem.

Theorem. Two rotations commute if and only if their centers of rotations
coincide. m

5.15. Consider the rotations about a common centre. Let
Si(z)=az+b, |a|=1, a#1 and S)(z)=cz+d, |c|=1, c#1,
be so that % = % holds. Then,
SZ(SI(Z))=(ac)z+(bc+d), a#zl,c#1,|al|=1and |c|=1.

Obviously, |ac|=1.1If ac=1, then |c|=1 implies cc=1, and therefore a=c= % By

substituting in £ =-% we obtain that bc+d =0, that is Sy (81(2))=z=E(2). If

lI-a l-c
ac #1, then the condition % =% is equivalent to bfrd ldc

S5 0.8 is rotation with center which coincides with the centers of the rotations §; and

i.e. the composition

S5 . Finally, if have on mind the fact that the identity mapping can be understood as a
rotation about an arbitrary centre, then the previous considerations and also Theorem
5.14 imply the validity of the following Theorem.
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Theorem. The set of rotations about a common centre under the operation com-
position of mappings is a commutative sub-group of the group of motions D. m

5.16. Example. Let ABCDEF be a regular hexagon, K be the midpoint of the
diagonal BD, and M be the midpoint of the side EF. Prove that A AMK is an equilateral
triangle.

Solution. Let the hexagon ABCDEF E_——D

be inscribed into the unit circle (figure 2). Then

L 2n i jAn 5m M
l,e3,e3,e", e 3,e 3 are the affixes of the ver-
tices C, D, E, F, A, B, respectively. Thus the affixes K
of the points K and M are

2T

€343 _ 1 _el3e™ 3B
5 —2andm— =yt

respectively. Further,

A ~~—_ —B

i iz (1 iﬂ) iz jAn
—a)e3ta=\>—-e3]ed+te 3 = .
( ) 2 Figure 2
O .
=%e3 —-e3 t+e 3 =—%+z§=m,

s
re. (k— a)el 3 =m—a implies, that the side MA of A AMK is obtained when the side 4K
is rotated about the vertex 4 with angle % . S0, oA AMK is an equilateral triangle. m

5.17. Example. Let M, k=1,2,3,4 with affixes z;, k=1,2,3,4, respectively,
be given distinct points in the complex plane. Prove the following statement:
The identity
2y =21 =%i(z4 — 23) (1)
holds true if and only if
M1M2=M3M4 and M1M2 J_M3M4 (2)

Solution. Since the condition (1) we get |z —z |=|z4—2z3|, that is
M1M2 = M3M4 . LikeWise,

i

[SJE)

, +
7y —z1=%i(z4 —z3) =€ 2(z4 —23),

that is the number z, -z is obtained by rotation of the number z4 — z3 about the origin
O with angle i% . Thus, M{M, L MM, . Therefore, the condition (2) is implied by the
condition (2).
Conversely, since
MMy =]z~ 2|, M3My =2y ~z3| and MMy = M3M,

the following is satisfied z, —z, =re'’, z, —z3 = re” . Therefore

5 -7=" (- 2). A3)
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The second condition in (2) implies

t—s=i%+2kn, kel
By substituting in (3) we get z, —z; =%i(z4 —z3) . Thus, the condition (2) implies the
condition (1). m

6. HOMOTHETY

6.1. Definition. The direct similarity with angle 0 or «, which is not translation
is called to be homothety.

Due to this, the direct similarity S(z)=az+b, a,be C, a#0 is homothety
if and only if ae R\{0,1}. Ratio of homothety is a real (not a complex number as it
was for generally directly similarities) number a, such that a, (a #0,1). Apparently, the
point reflections are homotheties with ratio # Theorem 4.2, implies that the inverse

mapping of a homothety with ratio « is also a homothety, but the ratio is % . In our further

considerations the set of the homotheties will be denoted by H.

6.2. Theorem. a) The composition of two homotheties is either a homothety or
a translation.
b) The composition of homothety and translation is homothety.

Proof. a) Let
S1(z)=aiz+ b, ag€ R\{0,1}
and
Sz(Z) = a22+b2, ap e R\{O,l}
be two homotheties. Then,
S2(81(2)) =aayz + azby +b;.
Obviously, if aja, =1, then S,08; is translation for the vector a,b +b,, and if

ajay #1, then S, oS; is homothety with center C and a ratio of homothety a;a, . The

a2b1 +b2
l—alaz ’

b) Let the homothety and the translation be given by
Si(z)=ayz+by, aj€ R\{0,1} and S,(z) =z +b,, respectively.
Thereby,

affix of such the center is

Sz (SI(Z)) =a12+b1 +b2, a e R\{O,l}

holds true, we get that S, oS; is homothety with center C, the affix of the center is

bi+b,
l—al

, and the ratio of the homothety is g; . Since,
Sl (Sz(Z)) =z +b1 + a1b2 , 1 € R\ {0,1}
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holds true,we get that S oS, is a homothety with center C, the affix of the center is
a1b2 +b1

-, and the ratio of the homothety is ;. m
—a

6.3. Corollary. The set T UH is a non-commutative subgroup of the direct
similarity group DS under the composition of mappings.

Proof. The proof is directly implied by Definition 6.1 and Theorems 4.2, 5.6 and
6.2.m

6.4. Theorem. Any two homotheties and their composition, if it is not transla-
tion, have collinear centers.

Proof. a) Let
S1(z)=aiz+ by, age R\{0,1} and S,(z)=arz+b,, ap € R\{0,1}

be two homotheties with centers C; and C,, whose affixes are ¢| = % and ¢) = 1b—2 ,
!

respectively, and also let the composition
S2 (Sl (Z)) =aq1arz + a2b1 + bz

be homothety with center C, whose affix is %. Then,
e b
bz _azbl +b2

c—c _l-a, l-aa, _qa—a

aq—c - bl _a2b1+b2 l—az
I-a; l-aqa,

is real number, and thereby Corollary 1.4, the points C;, C, and C are collinear. m

6.5. Theorem. The line (p) under a direct similarity S(z)=az+b is mappedto a
parallel line (p") if and only if the direct similarity is either homothety or translation.

Proof. If the line (p) has complex gradient ), then its image (p') under the direct
similarity S(z)=az+b has complex gradient N4 .The straight lines (p) and (p') are
a

parallel if and only if N4 =m, i.e. if and only if a = a, or in other words if and only if
a

a€ R. Hence, the direct similarity S(z)=az + b maps the line (p) to a parallel line (p")
if and only if the direct similarity is either a homothety or a translation. m

6.6. Let |[z—c;|=R; and |z—c, |=R, be the equations of circles (K;) and
(K,), respectively.
If R # R, , then the mapping §:C — C defined by

R Ricy—Ryc
w:S(z)=7?2+—1 2R1 - (1)
. . . Ry Ricy =Ry . . .
is a homothety with ratio A and center R - Since (1), we obtain the following
1 1—Ry

expression for z
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RIW—R102+R2C1
z=—"—3r 22
Ry
and if we substitute it into the (K;) circle equation, we get the following equation
RIW—RIC’2+R2C1 _
)
which in fact is equivalent to the (K,) circle equation.
If R =R, , the mapping (1) is translation for the vector ¢, — ¢ and furthermore
it maps (K;) onto (K5).
Analogously, the mapping S :C — C defined by

al=Ry,

R Rich+Ryc
w=S(z) =R, Rt 2
()=~ 74 Berthen @
) Ricy+Ry¢

is homothety with ratio ~® and center

R, Rk, and furthermore it maps (K;) onto
(K3).

The above statement implies the validity of the following Theorem.

Theorem. Any two circles are homotethic, i.e. there exists a homotethy which
maps one of the circles to the other one. m

6.7. Example. Let B and C be arbitrary distinct points on a given circle, such that
they are not diametrically opposite and let the tangents to the given circle at these points
intersect at point 4. Let P be an arbitrary point on the circle. Let 4, B;, C; be the feet
of the perpendiculars from P to the lines BC, CA, AB, respectively.

Hence, ﬁ%: ﬁl' R’l . Prove it!

Solution. Without loss of generality we may assume that the given circle is the
unit circle, and 1 is the affix of P (why?).

Let b and ¢ be the affixes of the points B and C, respectively. According to Remark
3.12 e) and d) it follows, that the affixes of the points 4 and A4, are the following

_ 2bc _ bt+c+l-bc
a=+2and g = =5

2

respectively. In order to determine the affix b; of the point B; we will use the fact that the
point B; is on the line AC and furthermore that PB; is perpendicular to AC. So,

b = —B,I_E and L = —IEI_J .
a—c a—c a—¢  g-c
By substituting the expression for « in the last two equations, and after reducing, we get

the following system:
b + l_)lc2 =2c
b - Elcz =1-¢?
_ 1+2b-b*

2 .
therefore by = ”2% - Analogously, ¢ =23="-. Due to this,
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PA}=|1-q P=1|bc—b—c+1P=L[p-17 -L|c-1P
=[1=b|-|1=¢|=PB-PC .

6.8. According to Theorem 5.5 and Definition 4.11, the direct similarity which
is neither identity nor translation, has exactly one fixed point, and such fixed point is the
center of the direct similarity. The line (p): z = n; + ¢ is called to be a fixed line for the
direct similarity S if S(p)= p, i.e. if the direct similarity maps (p) to itself. The circle
(K): |z—c| =R is called to be a fixed circle for the direct similarity S if S(K)=K .

6.9. Theorem 4.5 implies that the image of the circle (K): |z—c|=R under the
direct similarity w=S(z) =az +b isthecircle (K" : |z—(ac+b)|=R-|a|. So, the circle
(K) is fixed under the direct similarity if and only if |a | =1 and ¢ = % ,1.e.ifand only if
S is a motion which is not a translation and the center of the such motion coincides with
the center of the circle.

So, we proved the following theorem.

Theorem. a) The direct similarity has a fixed circle if and only if the direct
similarity is a motion which is not translation.

b) The The only fixed circles under a motion which is not translation, are the
circles centered at the center of the motion. m

6.10. Theorem 4.4 implies that the image of the line (p): z= 712 + ¢ under the
direct similarity w=S(z) =az+b is the line (p"):
wz(in);v+b+ac—gl_m .

a a

Therefore, the line (p) is fixed under the direct similarity S if and only if
%n=n and b+ac—%l_m:c,

i.e. if and only if a€ R and

b+ac— l_ﬂ] =c.

The already stated assertion implies that the line (p): z = nz +c¢ is afixed line

under the direct similarity if and only if a =1 and b = l_m or a#1 and % = n% +c,ie.if
and only if either S is translation and the line (p) is parallel to the translation vector or S

is a homothety and the line (p) passes through its center.
Thus, we proved the following theorem.

Theorem. A fixed line under a direct similarity exists if and only if the direct
similarity is:

a) translation — the fixed line is each line parallel to the translation vector,

0) homothety — the fixed line is each line which passes through its center. m
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6.11. Remark. The proof of Theorem 6.6 implies that two concentric circles
have one and only one center of similarity which coincides
with the center of the circles (figure 3), and non-concentric
circles have either one or two centers of similarity, depending

‘ on either their radii are congruent or not, respectively. In case
when the radii of non-concentric circles are not congruent, the
e center of similarity of homothety (1) is said to be an outer
2 center of similarity, and the center of homothety (2) is said to
Figure 3 be an inner center of similarity (figure 4).

6.12. Remark. By Theorem 6.5, each homothety an arbitrary line maps to a par-
allel line. This statement enables the center of similarity of a homoethety to be construct-
C ed in case where we have non-concen-
tric circles (Kj) and (K,). Through
the center S; we draw a diameter 4B of
the circle (Kj) and through the center
S, we draw a radius S,C parallel to
the diameter AB (figure 4). If R # R, ,
Figure 4 then the lines AC and BC meet the line

S1S, at points O; and O,, which are
an outer and an inner center of the considered homotheties, respectively. If R} = R, , then
AC is parallel to S;S, , and the lines BC and S5, intersect at the inner center of similar-

ity.

For the common tangent (¢) to the circles (K;) and (K,), we get:

1. If R =R, , then () is parallel to S5, , and

2. If Ry #R,, then (¢) passes through one of the centers of similarity (why?).
So, if R} # R, , then in order to construct the common tangents to (K;) and
(K,), we should firstly determine their centers of similarity and then draw
the tangents to one of the circles.

6.13. Consider the circles (K;), i=1,2,3 given by the following equations
|Z—Cl’ | =Ri’ i=1,2,3,
respectively, R; # R;, for i # j, and their centers are not collinear (figure 5). The proof
of Theorem 6.6 implies, that
RICZ_RZCI R2C3—R3C2 R1C3—R3Cl
R-Ry ° Ry=Ry and Ri=R,

are the affixes of the homothety centers §),, Sp3 and Sj3, where (Kj) is mapped to
(K5), (Ky) to (K3),and (K;) to (K3), respectively. Further,
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Rie3—Rye; _ Riep—Rocy
R-Ry — R-Ry  _Ri(By=Ry) o
Rype3—Ryey _Ricxy—Ryel Ry (Ri—R3) )
Ry-R3 Ri-Ry

So, by corollary 1.4, the points
Si2, Sp3 and S)3 are collinear.
Analogously, the following can

be proven:
- the points Sj5, S'3, '3
are collinear
- the points S'5, S"3, i3
are collinear
- the points S'|,, S>3, 83
are collinear.
Hence, we proved the following
theorem.

Figure 5

Theorem. If the centers of the circles (K;), i=1,2,3, whose radii are not
congruent, are non-collinear, then the centers ofhomothety S5, S>3, 813, S'12, 8'3, '3
are on four lines, so that each line consists of exactly three of themy. m

6.14. Example. Construct a circle which passes through a given point and touches
two different given lines.

Solution. Let (a)
and (b) be given lines and
A be a given point. We will
consider only the case where
the lines («) and (b) intersect,
and the point 4 is on neither
one of the lines (a) and (b). 4
is also not on the bisector of
the angle formed by the lines
(a) and (b) (as shown in fig-
ure 60). The other cases are left as exercises.

Let S=(a)n(b) and let K(O,r) be the required circle. Since (a) and (b) are outer
tangents to the circle (K), it is true that the center O of the circle is on the bisector (s) of
the angle formed by the lines (a) and (b), (we consider the angle for which 4 is an inner
point). If H is a homothety with center S and arbitrary ratio of homothety, then H(a) =a,
H(p)=b and H(K) = K is a circle which touches the lines (a) and (b). So, if we want to
construct the circle (K), we must firstly construct an arbitrary circle (E) which touches
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the lines (@) and (b). Let 4; and A4, be the points where the circle (E) meets the line
SA4. If H; and H, are homotheties with center S and ratio of homotheties @:&1
and OA4:04 5, respectively, then H;(4;)=4 and H,(A4,)=A. Therefore, the circles
H, (]_<) =K' and Hz(f) = K" pass through the point 4 and touch the lines (¢) and (b).
Their centers are H1(5) =0'" and H2(5) = 0", respectively. Due to this, it is necessary
to draw parallel lines to the lines O4; and OA4, . The points where these parallel lines
intersect the line (s), are actually the points O' and O".

According to the previous considerations we conclude that the given problem has
two solutions.m

7. INDIRECT SIMILARITY

7.1. Definition. The mapping S:C — C defined by
S(z)=az+b, a,peC, a#0 (1)

is said to be indirect similarity. In our further discussion the set of indirect similarities
will be denoted by IS.

7.2. Theorem. The indirect similarity S:C — C defined as (1) is bijection. Its
inverse mapping S7':C— C is defined by

S“(z)=éz—%, a,beC, a#0, 2)

a
and furthermore S~ '€ IS .

Proof. If S(z;)=S(z;), then
azi+b=azy+b,

S

therefore z; =z, i.e. Sis an injection. If we C, then z =2=2 satisfies
a

S(z)=S(ﬁ)=aw—_b+b=w
a a

i.e. Sis a surjection. So, S is a bijection.

The mapping S;(z) = 12-% s an indirect similarity and furthermore the fol-
a a

lowing holds true S(Sj(z))=5;(S(2))=2z, i.e. S'=5¢€IS.m

7.3. Theorem. The composition of two indirect similarities is also direct similarity,
and the composition of a direct and an indirect similarity is indirect similarity.

Proof. If S, S, € IS, then the following holds true
Si(z)=az+b, a,beC, a#0 and Sy(z)=cz+d, ¢,deC, c#0.
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Thus,

S1(85(2)) = Si(cz+d) = a(cz +d) +b = (ac)z +(ad +b),
where ac_:,a3+be C, ac#0 ,i.e. S;08,eDS.
So, the composition of two indirect similarities is a direct similarity.
If S;e DS and S, €IS, then
Si(z)=az+b, a,beC, a#0 and S,(z) =cg+d, c,deC, c#0.
Hence,
S1(85(2)) = Si(cz +d) =a(cz +d) +b = (ac)z + (ad +b),
where ac,ad +be C, ac#0,1i.e. S;oS, € IS. Analogously, S, oS, €IS.
So, the composition of a direct and an indirect similarity is indirect similarity. m

7.4. Both the direct and indirect similarities are commonly said to be similarities.
In our further discussion the set of the similarities will be denoted by S. With direct
checking, the associative law for similarities with respect to composition of mappings can
be proved. The above stated assertion and Theorems 4.2, 7.2 and 7.3 imply the validity
of the following Theorem.

Theorem. The set of the similarities S is non-commutative group under the
composition of mappings. m

7.5. Theorem. Each indirect similarity is exactly determined by two pairs of
corresponding points.

Proof. Let S be an arbitrary indirect similarity such that S(z)=w; and
S(zy)=w,. So, S(z)= az+ b, where a,be C, a#0 are coefficients that should be
determined. According to Theorem 7.2 each indirect similarity is a bijection, and therefore
71 # zp implies wy # w, . By substituting in S(z) = az+b , we get the following system
of equations

{Wl = agl +b 3)

Wy = agz +b
By solving the system (3) with respect to a and b, we get

=070 p=ETEM and a#0
- - - - b

Z1—Z2 ’ Z1—Z2
i.e. the ratios of the indirect similarity are completely determined by two pairs of
corresponding points (z1,5(z)) and (z,,5(z;)) . m

7.6. Theorem. The image of a line (p) under indirect similarity is the line (p").

Proof. Let S (z)=a;+b, a,beC, a#0 be an indirect similarity and

(p): z= Nz+c bea given line. Hence, z = WT_b and by substituting into the line equation
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of (p), we get that line (p) is mapped to the line (p'") with the following line equation
wz(gr_])v_v+(b—ac‘r_]—afg"r_]), n
a a
7.7. Theorem. The image of a circle (K) under an indirect similarity is the circle
(K").
Proof. Let Si(z)= az+ b, a,be C, a#0 be an indirect similarity and
(K): |z—c|=R be a given circle. Hence, z =% and by substituting into the circle

equation of (K), we get that the circle (K) is mapped to the circle (K') with the following
circle equation

lw=(b+ac)|=R-|a|.m

7.8. Theorem. If 4, B are arbitrary distinct points and A', B' are their images,

respectively, under the indirect similarity (1) and if a= re'® , then A'B'= ¥ AB .
Furthermore, if o and o are the directed angles between the real axis and the lines AB
and A'B', respectively, then ot +0y =¢@.

Proof. Let z;, zp, wy, w, be affixes of the points 4, B, A', B', respectively. The
following equalities are satisfied,

Zp—1= AB - eia and Wy =W = A'B'-e
where o and o are the angles formed by the real axis and the vectors AB and A'B’,
respectively. Thereby wy =az1 +b and w, =az2 +b, we get the following equation

wy—w =a(z; —7),
ie.
A'B- M =1 AB- ei((p—oc) ,
which implies that 4'B'= rAB and o+ o =¢.m

7.9. Definition. Two forms are indirect similar if there exists an indirect similarity
so that under that similarity one of the forms is mapped to the other one.

The real number » given in the previous theorem is called to be the ratio of the
indirect similarity (1).

7.10. Corollary IfABCand A'B'C"' are indirect similar triangles, then
A'B":A'C'=AB: AC and ZA'B'C'=—-/ABC.

Proof. The proof is directly implicated by Theorem 7.8. m

7.11. Theorem. Let z, z5, z3, Wy, wy, wy be affixes of the points 4, B, C,

A', B', C', respectively. The triangles ABC and A'B'C" are indirectly similar if and only
if the following holds true

zl(v_vz—;v3)+22(v_v3—v_v1)+23(17v1—v_vz)=0. 4)
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Proof. The triangles ABC and A'B'C" are indirectly similar if and only if there
exists an indirect similarity like (1) such that the following holds true

w;=azi+b, for i=1,2,3.
By the last equations we obtain the following

W —wy =a(zy—zp) and wy —w3y =a(z —z3) .
After dividing and reducing the last two equations we get:

MW, _ 5175

WM—Wy  z-z3’
which is equivalent to (4). m

7.12. Example. Let ABCD be a given rectangle and M and N be the midpoints of
the sides 4D and BC, respectively. Let P be a point on the extension of DC through D and
Q is the intersection point of the lines PM and AC. Prove that LZQMN = ZMNP .

Solution. Let the origin coincides with the point A P
N and B(-x), C(x), D(x+iy), A(-x+iy), P(x+iz) 4
(figure 7). Hence, M(iy) and the equation of the line PM is (@) M

D

z(x—ip+iy)—z(x+ip—iy)—-2ixy =0, i.e.

g X 2o (*)
X—ip+iy  x—ip+iy

Then AC coincides to AS, thus the equation of AC is

[ et S TP
z(x+2) z(x 2) ixy=0,1e.

z-z 2, ) BK N=0 C
x+iy  2x+iy )
Since Q = AC N PM , by utilizing the identities (*) and (**) we Figure 7
find the affix of Q to be the following

7= ygp '% L 4= ygp _iyfgp ’
Further, if K denotes the projection of the point O on the x-axis, then its affix is

k= % . In order to prove the statement, we should only prove that the triangle CPN is

indirectly similar to the triangle KON. Therefore by Theorem 7.11 it is sufficient to check
the validity of the following equality

l
1
l
1
Let S(%) be the intersection of the lines MN and AC. |
|
1
1

\/

) v . W

X+Ip—=X _ y+2p y+2p y+2p

0—x 0— Xy >
y+2p

which is obviously satisfied. m

7.13. Definition. An indirect similarity with ratio |a|=1 is called to be an
indirect isometry. The motions and the indirect isometries are called to be isometries.
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In our further discussion the set of the direct isometries will be denoted by /I,
and the set of the isometries by /. The already stated assertion implies the validity of the
following Theorem.

Theorem. The set / of the isomeries with the composition of mappings is a non-
commutative group. m

7.14. Theorem. The indirect similarity is involutory if and only if it is a reflec-
tion.

Proof. Let the indirect similarity S : C — C be involutory. Hence, S(z) = s7! (2),
for each ze C, and therefore
170
a a _
The latter implies |a|=1 and %: —a . Thus, the equation z=az+b is a line equation.

az+b= , foreach ze C.

Let us consider the point z and its image w= S(z) . We have w= az+b,and according to

Example 1.9 the points are symmetric with respect to the line z = az+b ,ie. S:C—>C
is a reflection.

Conversely, it is enough to apply Example 1.9 directly. m

7.15. The pomt z is fixed point of the indirect similarity (1) if and only if
z=az+b.Hence, z=az+b and applying the previous equation we get
z(l—aa):ab+b . ®)
There are three possibilities:
1) If aajt 1, then (1) is not an isometry and it has only one fixed point z,

7z = abtb
1-aa

2) If aa=1 and ab+b+# 0, then (1) is an indirect isometry, but it is not a
reflection and there are no fixed points.
3) If aa=1and ab+b=0, then |a]=1 and % =—a . By the proof of Theorem

7.13 we deduce that (1) is a reflection. Furthermore, z = az+b implies that
the point z is on the line of reflection.
The above statement implies the validity of the following Theorem.

Theorem. The indirect similarity which is not an isometry has a unique fixed

point z= ;‘b—ﬂ) . If the indirect isometry is not a reflection, then there are no fixed points.
—aa

If the indirect isometry is a reflection, then the only fixed points are points on the line of
reflection. m
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7.16. Definition. If the indirect similarity (1) is not an isometry, then the fixed
az+§
l-aa

point is called to be a center of the indirect similarity.

7.17. Definition. The line (p): z= n2+c is called to be a fixed line under the
indirect similarity (1) if S(p)= p, i.e. if the indirect similarity maps the line (p) to itself.
The circle (K): |z—c|=R is called to be a fixed circle under the indirect similarity (1)
if S(K)=K.

7.18. Theorem. a) If the indirect similarity (1) is a reflection, then the line of
reflection and its perpendicular lines are the only fixed lines under (1).

b) If the indirect similarity (1) is a reflection, then only the circles with center on
the line of reflection are fixed circles under (1).

Proof. a) Let (1) be a reflection, (p): z = az+b be the line of reflection, la|=1,

% =—a and (¢): z= n; + ¢ be an arbitrary line. Hence w= az+b. We obtain z=2=2
a
Now, substituting in the equation of (¢) we get
w=b _ o w=b
== +c
Le.
w=Lyt+byp-<c
Na nNa na

The line (g) is fixed line under the reflection (1) if and only if

4=y and L+p-<=c.

Na na na
Since 4+ =1 and |a|=1, we have 1 =za. Furthermore, if n=a, then
na
boyp-<c=¢
Na Nna
implies that b =c . If n=—a, then the equation
boyp-<c=¢
Na Na

is satisfied for each ce C and (¢) L (p).
b) Let (1) be a reflection with a line of reflection (p): z=az+b, |a|=1, % =—a

and let (K): |z—c|=R be an arbitrary circle. Since w= az+b, we obtain z= ;V;;E . By

substituting in the equation of the circle (K), we get [w—(b+ aZ’)| =R. The circle (K) is
fixed under the reflection (1) if and only if ¢ =ac+b, or in other words if and only if its
center is on the line of reflection. m

7.19. Example. Construct a circle which passes through two distinct given points
and touches a given line.
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Solution. Let the points 4, B and the line (c) be given. Obviously, if 4 and B are in
different semi-planes with respect to the line (¢) or both are on the line (c), then the given
problem has no solution. If A€ (c) and B¢ (c), then the problem has a unique solution.

Figure 8

Figure 10

The center O of the required circle will be the
intersection of the bisector of the segment AB
and the line (p), which passes through A4 and
is perpendicular to (c). If the points 4 and B
are in the same semi-plane with respect to
the line (¢) and 4B is parallel to (c), then the
given problem has two solutions. The one is
the circle which passes through the points 4,
B and M, where M is the intersection of the
bisector of the segment 4B and the line (c¢).
The other one is the line 4B (figure 8).

Let the points 4 and B be in the same
semi-plane with respect to the line (c¢) and the
line AB be not parallel to the line (¢) (figure 9).
Since, the required circle K(O,R) passes
through the points 4 and B, its center will
be on the bisector (/) of the segment 4B. Let
6, be areflection with a line of reflection (/).
By the previous theorem, ¢;(K)=K . Since
the line (¢) is tangent to the circle K(O,R),
Corollary 7.10 implies that o©;(c)=c' is
tangent to K(O,R) . If the lines (¢) and (c")
are not parallel, then the problem can be
transformed to Example 6.14.

If the lines (¢) and (c¢') are parallel,
then the point A4 is between them. Let d be
the distance between the lines (¢) and (c¢').

The circle K 4,2) meets the bisector (s) in
points O and O, . So, the required circles are

K; (01,%) and K, (02,%), (figure 10). m

7.20. It is naturally to wonder, if there are any fixed lines under an indirect
similarity, which is not a reflection, i.e. |a|#1.

According to Theorem 7.6, the image of the line (p): z=mz + ¢ under the indirect
similarity (1) is the line (p') with equation

w:(%?—]);v+(b—acr_]—%l;ﬁ).

The lines (p) and (p') coincide if and only if
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Reducing the last two equalities, we get
2 2.
‘n :g:a—zjl.e. nlzi,’nzz—i
a |al \

and

ba—b|a| ba+b|al|

= = ) 02 = = N

a(l+al) a(l-al)
respectively. Thus, the indirect similarity which is not an isometry has two fixed lines
(p1) and (p,) such that

. a =, ba-bla . a =, batbla|
tz=L 42 tz=—4 4o )
(p): 2=14 a(1+al) and (pa): z==1;° a(1-al)
According to Corollary 1.8. A b) the lines and are perpendicular.

Since

lL(aB+§)+_é;—aa\::£Lb;+E_Fé;—aa\
lal\1~aa ] a(+a)) lal14a?  a(1+a])
_ |al(ba+b)+(ba=bla])(1-|a])

a(l-af*)

— P;+Zaa — b+ba
a(i~laP’)  1-af’
we get that the center % of the indirect similarity (1), which is not an isometry, is on
—la
the line (p;). Analogously,
l(a5+b)+ batbla| _ 4 batb + ba+bla|
D)4+ 2 = 2+ =
al a(l-|al) lal 1-a>  a(1-al)
_ —lal(ba+b)+(ba+b|a|)(1+|al)
a(l-{af’)

1-aa

— P;+I;a5 — b+ba
a(l-laf’)  1-af
i.e. the center —lelrbl‘; of the indirect similarity (1), which is not an isometry, is on the line
—|a
(p2)-
Thus, we proved the following theorem.

Theorem. The indirect similarity (1), which is not isometry, has such two
perpendicular fixed lines that pass through the center of similarity. m

7.21. Definition Let (1) be an indirect similarity, which is not isometry. The lines
(p1) and (p,) with equations
Z=12+@$m 4 @@m
lal™ " a(+al) lal™ " a-a))’
respectively, are called to be lines of the indirect similarity (1).
Clearly, by Theorem 7.19 the lines of the indirect similarity are the only fixed

lines under indirect similarity which is not an isometry.

and z=—
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8. INVERSION

8.1. Let me R, m>0 and ae C and let /:C\{a} > C\{a} be a mapping
defined by
I(z)=a+--. (1)
i) If I(z) =1(z,), then o

g+ =g+
Z1—a zZ2—a

implies z; =z, , 1.e. ] is an injection.

ii) For we C\{a}, there exists such z=a+ -2 that /(z)=w, i.e. [ is a surjec-
w—a

tion.
Now, i) and i7) imply that / is a bijection.

Definition. The mapping
1:C\{a} >C\{a}
defined by (1) is called to be an inversion with center a and radius Jm .

8.2. The point z is fixed point under the inversion (1) if and only if the following
equality is satisfied

z=a+

!
z—a

lz—a|=~/m .

Thus we proved the following theorem.

or in other words, if and only if

Theorem. The point z is fixed point under the inversion (1) if and only if z is on
the circle |z —a| =Jm.m

8.3. Definition. The circle (Ky): [z—a| =m , 1s called to be the inversion
circle of (1).
8.4. Theorem. The inversion is involutory mapping.

Proof. Let an inversion be defined by (1). Thus, for each ze C the following
holds true

](I(z))=l(a+%)=a+;+%_;=z=E(z)

i.e. I =E and since I is a bijection, then /=1 _1, i.e. the inversion is involutory. m

8.5. Let O be the center of inversion (1), 4 be an arbitrary point in the plane,
such that 4 differs from O, and I(4) = A'. Let a, z and z* be the affixes of the points O,
A and A', respectively. Thus, it holds true

z¥—qg=qg+ —g=-"1 = mz(z—a)'
z—a z—a |z-a|
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The latter implies
arg(z*—a)=arg(z—a) and |z*—a|-|z—a|=m.

Thus, we have proved the following theorem.

Theorem. a) Under inversion each point A, distinct from O (the center of the
inversion (1)), is mapped to (inverts to) a point A' which is on the ray 04~ and
0A-OA'=m. )
b) The points 4 and A4', with affixes z and z*, respectively, are inverse with respect
to the circle | z—a|=~/m if and only if

(z*—a)(z—a)=m.m

8.6. Theorem. Each inner point of a referent circle inverts to an outer point of the
referent circle, and vice versa.

Proof. If 4 is an inner point of the referent circle K| (O,\/Z ) and I(4)=4",

then O4<+/m and according to (2) it follows, that 0A'>Im . So, A' is an outer point
for the circle K.
The converse statement can be proved analogously. m

8.7. Let us explain the construction of 4" as an inverse of A under the inversion
(1). Let 4, with affix z;, be an inner point of a referent circle K|, (O,\/E ) . Therefore,
|zg—a |2< m . The equation of the line OA is
z—a= 50‘3(2—5).
z 0—a
Through the point 4 we draw a line (q) perpendicular to OA. The equation of that line is
the following

Zo—a ,—
Z_ZOZ_;(:)_;(Z_ZO)-

The points of intersection of the line (¢) and the circle KO(O,«/; ) are obtained as

solutions of the following system t
Zo—a .~
z—zy=—=——=(z-z
0 Zp—a ( O) T

|z—a|=~/m
One of them is the point 7 with affix

\/m—|zo—a|2

|zg—al

leZo+i (ZO—CI).

Through the point 7" we draw a tangent (¢) to

the circle K (O,\/n_i ) The equation of that
tangent is

Figure 11
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z—-7 =—fl_g(;—;]) .
zZ1—a

Further, we determine the point B, as intersection point of the tangent () and the line OA.

Its affix is

7m7

z=a+
zo—a
Thus, [(4)=B=4".

Let 4 be an outer point for the circle K| (O,\/; ) . According to Theorem 8.4 the
following holds true 1> = E . The latter implies the construction 1(A4)= A'. We draw the
tangent (¢) to the circle Ky through the 4. The orthogonal projection of T, the point where
the tangent (7) touches Ky, on the line O4 is the point I(4) = A4".

8.8. Let ¢ and b, be the affixes of the points 4 and B respectively. The affixes of
their images under the inversion (1) are the following:

c'=a+- and b'=a+-,
c—a b-a

respectively. The complex gradients of the
lines OA, OB, AB, OA', OB' and A'B'
are

M =2 my =By =

_ET b-a’ b—c
7]4 :nlv nS :n29
n _ (b=a)(c=a)(b=c)
6 (b-a)(c-a)(b—c)
respectively. Since Mo gpg D=l
N3 Mg n3 MNs
and also theorem 1.7, we deduce, that
(figure 12):

Figure 12

ZOBA=/B'A'O and
ZOAB=ZA'B'O.
Thus, we have proved the following theorem.

Theorem. Let O be the center of the inversion (1), 4 and B be arbitrary points
and A' and B' are their images under the inversion (1). Then,

ZOBA=4ZB'A'O and LOAB=ZA'B'O. =

8.9. Under the inversion (1) the line (p) with a self-conjugate equation
Az+Bz+C=0, CER, B=4
is mapped to the curve with equation
Aa+Ba+C+4m 4 Bm _ 3)

w—a WTa

Two following cases are possible:

72



i) If Aa+ Ba+C=0 , 1.e. the line passes through the inversion center, then (3)

implies that the image of (p) is the line
Aw+Bw+C=0, CER, B=4

The latter is actually the equation of the line (p).

ii) If Aa+ Ba+C#0 , 1.e. the line does not pass through the inversion center,
then (3) implies that the image of (p) is the circle

ww+ Ajw+ Alv_v+B1 =0,

where

Aam+ljm;
Aa+Ba+C

— Bm

= ~——a, Bj=aa-
Aa+Ba+C

4
By direct checking we get aa+ Aia+ Ala + B; =0. The latter means that the image of a
line (p) which does not pass through the center of the inversion (1) is circle which passes
through the inversion center.
The above stated assertion implies the validity of the following Theorem.

Theorem. Each line through the inversion center O is mapped to itself, and each
line, which does not pass through O is mapped to a circle through O. m

8.10. If the line (p) does not pass through the inversion center O, then the proof of
Theorem 8.9 implies that the center O; of the circle, in which (p) maps to, has affix

= _Al =a-— B—ni .
Aa+Ba+C
Let P be the orthogonal projection of the O on the line
(p). According to 2.3 the affix of the point P is
. = Aa=Ba-C
07" 24 >
Therefore the affix of its image P'=1(P) is
k=g —2Bm
Aa+Ba+C
Since,
Z*va _,__ Bm  _ 7
2 Aa+Ba+C Figure 13

we deduce that O, is the midpoint of OP"'.

The above stated assertion defines
the construction of the circle I(p) if the
line (p) does not pass through the center
O of an inversion I. Firstly, we determine
the orthogonal projection P of the inversion
center O on the line (p). Thus we get the point
P'=1(P), (figures 13 and 14). Further, we
construct a circle with diameter OP'. So,
we get the circle I(p). Figure 14

P

oS
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8.11. Example. Let (p) and (g) be given lines. Is there an inversion I such that
I(p)=¢q?

Solution. According to Theorem 8.9 such an inversion exists if and only if the
lines (p) and (q) coincide. Further, for each inversion with center on (p) and arbitrary
radius the following holds true I(p)=¢ . =

8.12. Theorem. If a circle K| passes through the center O of the inversion I, then
I(K;) is a line which does not pass through O.

Proof. The proof is directly implicated by Theorems 8.4 and 8.9. m

8.13. Example. Given are a line (p) and a circle K;(Oy,R). Is there an inversion
I such that I(p)=K;?

Solution. According to Theorem 8.9 if the required inversion I exists, then its
center O is on the circle K;(Oy,R) and the line OO is perpendicular to the line (p).

The following three cases are possible:

i) The line (p) and the circle K; meet at points M and N. Starting from the center
O, of'the circle K; we draw a line (g) perpendicular to (p) and find the points O and O'
as intersections of (¢) and K. The discussion in 8.10, implies that the inversions I and I;
determined by the circles K (0,0_M) and K '(O',O'_M) satisfy the given conditions.

ii) The line (p) touches the circle K; at the point M. Starting from the center
O, of the circle K; we draw a line (q) perpendicular to (p). The point O is found as
intersection of (¢) and Kj . The discussion in 8.10 implies that the inversion I determined
by the circles K(O, O_M) satisfies the given conditions.

iit) The line (p) and the circle K;
have no common points. Starting from the
center O; of the circle K; we draw a line
(q9) perpendicular to (p). The point P is
determined as intersection of (¢) and (p).
The points O and P' are the intersection
of (¢) and K; such that O, P', P are
positioned in that order (figure 15). We
construct a semicircle with diameter OP,

through P' we draw a line perpendicular
to OP and determine the point 7 as their

intersection. The discussion in 8.10 implies
that the inversion I determined by the circle
Figure 15 K(0,0T) satisfies the given conditions. m
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8.14. Now, we have to consider the image of the circle K;(O;,R) under inversion
I when K; does not pass through the inversion center O.

Let Kj:|z—b|=R be a given circle, which does not pass through the center of
the inversion (1), i.e. |a —b|# R . By substituting

z=q+2L
w—a

in the equation of the circle K;, and after equivalent transformations we get that the
circle K; inverts to a circle I(K;) with equation

W\/_V+ZIW+ A1V_V+Bl =0 5
where
_ m(b—a)

_ _ m2+ma(z—;)+m;(b—a)
1 R2—|b—a|2

112
—a, Bl _|a| RZ—\b—a|2

With direct checking we get
aa+ Aja+4a+B #0.
The above implies the validity of the following Theorem.

Theorem. If a circle K| does not pass through the center O of the inversion I,
then I(Kj) is circle such that it does not pass through O. m

8.15. If the circle K does not pass through the inversion center O, then the proof
of Theorem 8.14 implies that the center O'; of the circle I(K;) has affix

g mtb-a)
A T R P
The affixes z;, a and b of the points O'} , O and O satisfy
-4 _ m

b-a " |p-af*-R2 <

According to Corollary 1.4, the above means that they are collinear. But, the line OO,
is fixed under the inversion I. Therefore according to the discussion in 8.5 we conclude
that the diameter of K which is on this line inverts to a diameter of 1(K;) which is on
00 .

The above stated assertion implies the following construction of the circle
I(K;), when K; does not pass through
the center O of the inversion 1. We draw a
straight line OOy, we find the points M, N
(points where K; meets OO ) and further we
obtain M'=1(M) and N'=1(N). After that,
we construct a circle with diameter M 'N".

Hence, we get the circle I(K;) (figure 16).

Figure 16
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8.16. Example. Given are the circles K;(O;,R) and K,(O,,R). Is there an
inversion I so that I(K;) =K, ?

Solution. Let the equations of the circles K; and K, be |z—c¢;|=R; and
|z—cy | = Ry, respectively. We will consider five cases:
i) If ¢ =c,, 1.e. the circles are concentric, then the mapping
I(z)=¢ + &Ry
z—c,
is inversion, so that I(K;) = K, . Clearly, ¢ is the center of such the inversion and RR,
is the radius. The referent circle can be constructed if we draw an arbitrary half-line and
use the fact that the common points of the circles K; and K, are inverse.
ii)If g #cy, Ry # Ry and |c; — ¢, | #| R — R, |, then the mapping

Rle‘(Rz ~R)* e \2‘

I(Z) — aRk—o R + (R *Rl)z
R2 _Rl ;_cle—cle
Ry=Ry

is such an inversion, that I(K;) = K, . We notice that the inversion center coincides with
the outer center of homothety, given by 6.6, which can be constructed as explained in
Remark 6.7. When constructing the inversion circle, it is necessary to follow the procedure
given in Example 8.13.
iii)If ¢; #¢cy, Ry # Ry and |¢; — ¢y | =| R} — R, |, then the mapping
RiRo|(Ry +R) 2 ~Jey e |

_ qRtoR (Ry+R)?
@ ="%r *

;_Ele +22R1
Ry+Ry

is such an inversion, that I(K;) = K, . We notice that the inversion center coincides with
the inner center of homothety, given by 6.6, which can be constructed as explained in
Remark 6.7. When constructing the inversion circle, it is necessary to follow the procedure
given in Example 8.13.

iv)If ¢ #c5, Ry =Ry, =R and |c; —c, | <2R, then the mapping

e 2_lg-cP
[(z)=9f242 — 4
2 Z_Cl+62

is such an inversion, that I(K;) = K, . We notice that the inversion center is the midpoint
of segment 0,0, , and the common points of the circles K; and K, are fixed. So, we
can construct the referent circle.

Vif e #cy, Ri=Ry=R and |c] —c, | > 2R, then Theorem 8.4 implies that the
required inversion does not exist.m

8.17. Consider the following theorem.

Theorem. If two lines, a line and a circle, or two circles have no common points,
they are tangent, or they have two common points, then their images under the inversion
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I have no common points, they are tangent, or they have two common points, respec-
tively. m

8.18. Definition. Let the line (p) and the circle K meet in the points M and N. We
draw a tangent (¢) to the circle K through M. Let a be the smaller angle between (p) and
(?). The angle o is called to be angle of intersection of the circle K and the line (p).

Let the circles K and K* meet in the points M and N. We draw tangents (#) and
(tp) to the circles K and K* through M. Let a be the smaller angle between the lines (#;)
and (f,). The angle a is called to be angle of intersection of the circles K and K*.

We say that the circle K meets the circle K* orthogonally if the measure of the

angle of intersection of K and K* is % . K and K* are said to be orthogonal.

Theorem 8.2 proves that the fixed points under the inversion I with circle K
are the points on K only. This means that the circle is fixed under I. Theorem 8.8
implies that there does not exist any line which is fixed under I, but each line through the
inversion center is fixed under 1.

The question now is whether there exist
any other circle (different from Kj)), which is fixed
under the inversion I. By Theorem 8.6, it follows
that if there exists such a circle K;:|z=b|=R,
then it is mandatory to meet the reference circle
K. Therefore, it must have two fixed points. One
of them is denoted by 7 with affix z (figure 17).

Now, the proof of Theorem 8.14 implies that Figure 17
Kj:|z=b|=R is fixed under inversion (1) if and
only if
__m(b-a)
T R p-af’
i.e. if and only if m + R*= |b—a |2 . The last equality is equivalent to 2;2 = —2—_% .Due

to this, K; is fixed under inversion (1) if and only if the tangents to K; and K|, through
T are perpendicular to each other.
So, we proved the following Theorem.

Theorem. A circle Ky, different from K|, is fixed under inversion I if and only
if K intersects K|, orthogonally. m

8.19. Theorem. An angle between two lines, a line and a circle or between two
circles is preserved under inversions.

Proof. Let an inversion be given by (1) and let (p) and (¢) be two lines with the
following self-conjugate equations:
Az+Bz+C=0, B=A, CeR and 4z+Bjz+C, =0, B, =41, C;eR
respectively. The following two cases are possible:
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i) Let the lines (p) and (g) pass through the inversion center. It follows by the
proof of Theorem 8.9, that (p) and (g) are fixed, and therefore the angle between them is
preserved.

i) Let one of the lines, for example (p), passe through the inversion center and
let the other one (¢) does not pass through the inversion center. The proof of Theorem 8.9
implies that the line (p) is fixed, and the line (g) inverts to the circle

Bym __ m4
A1a+BIE+C1 \A1a+Bla+C1\ ’
Let the line (p) and the circle I(¢) meet at the inversion center with affix a. The
equation of the tangent (g;) to the circle I(¢) through a is the following
AIZ+B1;+C1 —aAl —EBI =0.
We check directly that the complex gradients 1y, 1,, 13 of the lines (p), (¢), (g;) satisfy
:—1 = % . Further, the statement given in this Theorem is implied by Theorem 1.7.
2 M

iii) The lines (p) and (g) do not pass through the center of inversion. The proof
of Theorem 8.9 implies that the inverses of the lines (p) and (q) are circles with the
following equations

I(g):|z—a+

rmqb—Bm | A ang|zog D |o Al ,
Aa+Ba+C | |Aa+Ba+C| Aa+Ba+Cy | |A4atBat+(
respectively. The circles I(p) and I(¢) meet in the inversion center with affix e a. The
equations of the tangents (p;) and (g;) to the circles I(p) and I(¢g) through a are the
following

Az+Bz+C—ad—aB=0 and Az +Byz+C —ad —aB, =0,
respectively. The complex gradients my, My, M3, N4 of the lines (p), (¢), (p1). (q1)

o

satisfy the following equality .
2

:]]—3. Due to this, Theorem 1.7 implies the validity of
4
the given Theorem.

The remaining part of Theorem is proved analogously, using Theorems 8.9 8.12

and 8.14. m

8.20. Example. Let the line (p) and the circle PN P
K(O,R) have no common points. Prove that there exists
an inversion I such that I(p) and I(K) are two concentric
circles.

Solution. Through the center O of the circle K we
draw a line (¢) perpendicular to (p) and let P=(p)N(q),
(figure18). Let 7 be an arbitrary point on the circle K, so
that 7'is not on (¢), and S be one of the common points of
the circle K;(P,PT) and the line (g). q

Figure 18
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We define an inversion [ with center S and arbitrary radius. According to Theorems
8.9 and 8.14, the inverses (images) I(p) and I(K) are circles. We have to determine their
centers.

The line (p) meets orthogonally the line (¢) and the circle Kj. Due to this,
Theorem 8.19 implies that I(p) meets orthogonally I(g) and I(K;) . Theorem 8.9 implies
that I(g) =¢q, and Theorem 8.12 implies that I(K;) is a line. Since, the lines (¢) and
I(K;) meet the circle I(p) orthogonally, we get that its center O" is a common point of
these two lines. Hence, O"=(q) "I(K}).

The circle K meets orthogonally the line (¢) and the circle K;. Due to this,
Theorem 8.19 implies that I(K) meets I(¢) and I(K;) orthogonally. This means that I(K)
meets (¢) and I(K;) orthogonally. Hence, the center O' of the circle I(X) is obtained as
0'=(q)NI(K)).

Finally, O'= 0", i.e. I(p) and I(K) are two concentric circles.m

8.21. We solve the problem below by applying homothety (Example 7.18). In
this section we will give the solution by applying inversion.

Example. Construct a circle which passes through two given points and touches
a given line.

Solution. Let points 4 and B and a
line ¢ be given. We suppose that the points
A and B lie in the same semi-plane with
respect to the line ¢ and that the line 4B is
not parallel to the line c.

Let I be an inversion with center 4

and radius Z?z. Hence, I(B)=A8 and I(c)
is the circle K; which passes through 4.
The required circle K passes through the
point 4, therefore I(K) is a line which passes
through B and touches the circle K, i.e.
I(K) is the tangent to the circle K; through Figure 19
the point B. The already stated assertion

implies the following construction (figure 19): _,
- We define an inversion I with center 4 and radius AB .
- We construct the circle K =I(c).
- Through B we draw the tangents (¢') and (¢") to the circle .
- The required circles are K'=1(¢") and K"=1(¢") . m
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9. MOBIUS TRANSFORMATION

9.1. Definition. The mapping
S(z)=4%L " qd —bc#0, (1)

cz+d’
where a, b, ¢, d are complex numbers, is called to be a Mébius transformation.
The Mobius transformation is determined for each z # —%,oo. If ¢=0, then
the Mobius transformation is determined for each finite z. If ¢ # 0, then we extend the
definition by

S(_%) =co and S(e0) =4, (2)

If ¢=0, then it is sufficient to let S(e0)=co. Thus, S:C,.,— C, is a well defined
mapping.

Note that, the condition ad —bc # 0 is equivalent to S(z) is an injection (show
it!).

9.2. Example. Determine the image of the unit circle |z|=1 under the

transformation
w=u5_"1, u,ve C and |v|#1.
vZ—

Solution. Since

WW = uu ZZ=VZ=ZV+Vy

vzz+zv—zv+l
for zz=1 we get ww=uu. That means, that the unit circle is mapped to the circle
wl=lul. m

9.3. Theorem. The Mdbius transformation defined by (1) and (2) is a bijection
from C_, to C_,.

Proof. Let S be a Mobius transformation defined by (1) and (2).

azt+h e get z= dw=b

If we C and w# £, then since w= .
c cz+d —cw+a

So, when w;t%,oo

there exists z =-2=b gych that S(z)=w.
w+a

If w=oo, then S(—%)zoo, and if w=%, then S(w)z%. Due to that, S is
surjection. But, we already noted that S is injection, and therefore S is bijection.

The above stated implies that the mapping S -1 C,, — C,, defined by
ST (2)=&L if z#2 andby S (ee) =<, ST (&)=
is well defined, and furthermore
S(57(2)) =57 (S(z)) =z holds.
Finally, S7! is the inverse mapping to S and since
ad —(=b)(—c)=ad —bc #0
we get that it is MObius transformation. m
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9.4. Theorem. The family M of all Mobius transformations under the composi-
tion of mapping is a group.
Proof. Let
S1(z)=%*b " ad —bc#0 and S,(z )—

cz+d’
be two Mobius transformations. Then,

eh— fg #0

ez

+f
+f\_ Deih ™ (ac+gb)z+(af+bh
5(2)=(S1°8,)(2) = 51 (52(2)) = 5, (egZz+]l:) - Cegz:?er - Ej;gdg;ggmh;
gz+h

and
(ae+ gb)(cf +dh)—(af +bh)(ce+ gd)=(ad —vc)(eh— fg)#0.

So, the mapping § =S oS, is Mobius transformation, i.e. (M,°) is a groupoid.

a) Associativity. For all §;,S,,53€ M we have

S10(8083)=(S81°8,)°8;3. 3)

Namely, both sides of (3) are equal to the Mobius transformation S§; (S2 (S3 (z))) .
Therefore, (M,o) is a semi-group.

b) Existence of identity. Obviously, the identity mapping E(z) =z is Mobius
transformation, that E(z) =z is an identity in the semi-group (M,o).

c¢) Thereby Theorem 9.3, it is true that each element of (M,0) has its inverse.

So, statements a), b) and ¢) imply that (M,o) is group. m

9.5. Remark. The group (M,°) is a non-abelian.
Indeed, for

S1(z)=z+a, a#0 and S,(z) =1
the following holds true
S1(S2(2))=L+a and 8, (8(2)) ==, ie. §108,#5,08;.

9.6. Theorem. If S is Mdbius transformation, then S is a composition of elemen-
tary transformations in a complex plane.

Proof. Let
S(Z)=%, ad—bc#0
be an arbitrary Mobius transformation.
If ¢=0, then
S(z)=4z+5.

Therefore, if
Si(z)=%z and Sy(z)=z+%
we get §=5,08],1.e.Sisa composmon of elementary transformations.

If ¢#0, then for
S1(z)= z+— Sz(z)— S3(2) = be= adz S4(Z)_Z+a
we get §=8408308,08]. Thus, also in this case S is composition of elementary trans-
formations. m
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9.7. Example. Let w= be a given transformation. Determine the image of:

a) the real axis, b) the circle |z | =1
under the given transformation.

Solution. The given transformation can be rewritten as w=—-1+ i’z

a) The equation of the real axis is z—z=0, and under the transformation
wy =z +1, it is mapped to the line w; —w; = 2i. Further, the line w; —w; =2i is mapped

5 under w, =-- and under the transformatlon wy =2iw, the
M

= % is mapped to the circle | w3 —1| =1. Finally, under the transformation

w=—1+wj the circle | w3 —1| =1 is mapped to the circle | w|=1. The above means that
the given transformation maps the real axis to the circle |w|=1.
b) The translation w; =z +i maps the circle |z| =1 to the circle |w; —i|=1.
Further the transformation w, = L maps the circle |w; —i | =1 to the line
Wy — w2 =—i, and the transformation w; = 2zw2 maps the line w) —w, =—i to the line
wy +wy =2 . Finally, the transformation w=—1+w; maps the line wy + w3 =2 to the

line w+w=0. The above means that the given Mobius transformation maps the circle

to the circle

circle ‘ Wy +4

|z| =1 to the line w+w=0.m

1
+

9.8. Consider the Mobius transformation (1). The mapping S;(z) :—%+ =

N
o

is an inversion with respect to the circle ‘ +4 ‘—1 and the mapping S,(z) = pz+ q,
where

C
is an indirect similarity. Further, since
_ _d 1 \_bc—ad (_d 1 bc—ad i a
SZ(SI(Z))_S2( C+;+£) 2 ( ct= )+ 2 E+C
c

z+4

c

bc—ad d 1 be—ad d
== —=+ bead d 4 a
c2 L c z+ij c2 c c

be—ad d | bc—ad d  be—ad 1  a

2 ¢ 2 e ¢ cz+d
_ bc—ad+a(cz+d) _ q4z4b
- c(ez+d) T cz+d’

it follows the validity of the following Theorem.

Theorem. The Mobius transformation (1) can be expressed as composition

§=38, 08, of the inversion Sj(z) = —% + % with respect to the circle ‘ z+ % ‘ =1 and
z+4
c
the indirect similarity S,(z) = pz+¢q, where
p= bc—zad , q= bc—zaa'
c c

o |

+4 . m
c
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10. GEOMETRIC PROPERTIES OF A
MOBIUS TRANSFORMATION

10.1. Theorem. Arbitrary Mobius transformation maps each circle of C,, to a
circle of C_,.

Proof. According to Theorem 9.6, each Mobius transformation is a composition of
elementary transformations in the complex plane and moreover the elementary transforma-

tion S,(z) = % given in the proof of Theorem 9.6 is composition of the inversion 7(z) =1
z

and the reflection S(z) =z . Then, the validity of the Theorem is implied directly by the
previously proved properties of the elementary transformations in the complex plane. m

10.2. Applying the properties of elementary transformations in a complex plane,
analogously to the proof of Theorem 8.19, can be proved the following very important
Theorem.

Theorem. Arbitrary Mdbius transformation preserves the angle between circles
in the extended complex plane C,,. m

10.3. Definition. Consider the circle K(O,R). The points M and M* are said to be
symmetric with respect to the circle K, if I(M)= M * , where | is an inversion determined
by the circle K.

10.4. Before discussing the properties of the symmetric points with respect to
a circle, and related to the Mdbius transformation we will give the following Lemma,
which characterizes the symmetric points M and M* with respect to the circle K(O,R).

Lemma. The points M and M* are symmetric with respect to the circle K(O,R) if
and only if each circle y through these points meets orthogonally the circle K(O,R).

Proof. Let the points M and M* be symmetric with respect to the circle K(O,R)
(figure 20).

Consider the circle y through the
points M and M* and K Ny ={P} . According
to Theorem 8.14, the circle y under inversion I,
determined by the circle K, is mapped to a circle
Y1 » which passes through the points M, M* and
P. Therefore, the circles y and y; coincide, i.e.
the circle vy is fixed under the inversion I. Now,
the validity of the given Theorem is directly
implicated by Theorem 8.18.

Conversely, let each circle y, which
passes through the points M and M*, meets

Figure 20
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orthogonally the circle K (figure 20). The Theorem 8.18 implies that the circle y is fixed
under the inversion I, determined by the circle K. Then the line (in the extended complex
plane viewed as a circle), which passes through the points M and M*, also meets the
circle K orthogonally i.e. the line passes through the center O of the circle K. But, y
is fixed under the inversion I, and therefore I(M)=M *, i.e. the points M and M* are
symmetric with respect to the circle K. m

10.5. Theorem. A Mobius transformation maps a pair of symmetric points with
respect to a circle, to a pair of symmetric points with respect to the image of that circle.

Proof. Let the points z and z* be symmetric with respect to the circle K and let
w=S(z) be an arbitrary Mdbius transformation. According to Theorem 10.1 the image
K™ of the circle K is a circle. We have to prove that the points w and w* are symmetric
with respect to K~ . According to Lemma 10.4 it is sufficient to prove that each circle
Y™, which passes through the points w and w*, crosses K~ at right angle.

The inverse image of the circle ¥~ under the Mobius transformation w = S(z)
is a circle which passes through the points z and z*. This circle crosses the circle K at
right angle. Therefore, Y~ crosses K~ at right angle, because Theorem 10.2 states that
the Mobius transformation preserves the angle between intersecting circles at any point
in the extended complex plane. m

10.6. Further, we will prove one important Theorem about Mobius transforma-
tion.

Theorem. A Mdbius transformation S:C,, — C.,, maps the unit circle |z| <1
to the unit circle | w| <1 if and only if

w=S(z)=e"‘f’lﬂ, veC, 0<@<2m, |v|<l. (1)
vz

Proof. Let ze C, |z|<1. Likewise, the following holds true:

|w|2:wv_v=ei(pz—i" _i(pg—i;=@ﬁ
1-vz I-zv  |l-vz|
i.e. the Mobius transformation (1) maps the unit circle |z | <1 to the unit circle |w|<1.
Conversely, let S:C.,, — C,, be Mobius transformation such that it maps the
unit circle | z| <1 to the unit circle |w|<1 and let us suppose that there exists such a
point v, v#0, |v| <1 that is mapped to the point w=0. The point symmetric to null
with respect to the circle |w|=1 is the infinity distanced point. According to Theorem

L and therefore the required Mdbius transformation

10.5 it follows that w=o when z ==
A%

is the following
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where £k is a constant. The latter can be transformed and rewritten as it follows
w=—ky I = 'V )

_ 1-vz l-vz
Since z=- when |z|=1 we get
|1—\_/z|=E—\_z‘=|;—\_z|=|z—v|.
But, the circle |z|=1 is mapped to the circle |w|=1, and therefore |k'|=1, i.e.

k'=é? , for some 0 <@ < 2m, i.e. the formula (2) transforms to (1). Clearly, likewise the
formula (2) holds true when v=0. =

10.7. Definition. A point z is said to be a fixed point under the Mobius transfor-
mation

S(z) =% if z=8(z), 1. z=%5D

cz+d cz+d ’
Clearly, z is a fixed point under the Mdbius transformation if S(z) = %
ez’ +(d-a)z-b=0. 3)
If ¢ #0, then the fixed points are the following:
2y =l eare. )
If ¢ =0, then the fixed points are z; = ﬁ and z, =oo. Further, if b=c=0 and a=4d,

then the M&bius transformation is the identity mapping S(z) = z and therefore each point
of C,, is fixed point.

By (4), if (a —d)2 +4bc=0, then z; =z,. The last means that we have a re-
peated or a double fixed point i.e. the two fixed points coincide. When ¢ =0, the condition

for repeated points implies that a =d , and in this case we get that z =co is a double fixed
b

point for the translation S(z)=z+ y

10.8. Comment. When defining the Mobius transformation
S(z) =—gzzis > ad —bc#0,
four complex numbers a, b, ¢ and dare used. But, one of ¢ or d differs from 0, and therefore
if we divide both, the numerator and the denominator, by this number, we get that the
Mobius transformation can be expressed using three coefficients. Therefore, it is naturally

to expect that the images of three given points determine a unique Mdbius transformation.
The following Theorem confirms our assumtion..
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10.9. Theorem. There is a unique Mdbius transformation S, such that the points
21, 29, Z3 (Zi ¢Zj,l¢])
under such transformation, are mapped to the points wy, wy, w3 (w; # w;,i # j), respec-
tively.
Proof. Existence. The mappings S; and S, defined by

S)(z) = EET) g g () = L) )

(z=2,)(z3—7) (w=-wy)(w3—w;) ’
map the points zj, z,, z3 in the plane z and the points wy, w,, w3 in the plane w, to the
points 0, oo, 1 in the plane ¢ , respectively. Finally, the mapping
S=8"08 (6)
which is determinedfrom the plane z to the plane w, S(z) =w, as

z—Z) . ) _ w—w| . W3 =Wy (7)

Z—Zy Z37Z W=w, W3—w;
is Mobius transformation, which maps the points zj, z,, z3 to the points wy, w,, wy,
respectively.

Uniqueness. Let A, Mz;)=w;, i=1,2,3 be an arbitrary Mobius transformation.
Consider the mapping =S, cAo S| ! , where S} and S, are mappings defined by (5).
Clearly, p is Mobius transformation and the points 0, oo, 1 are fixed points under this
transformation. Since the condition p(ee) =00 it follows that p(g) =og+ . The condi-
tion w(0) =0 implies that =0, and the condition p(l) =1 implies that o =1. Therefore,
ne) =g, ie.

SyohoST =E.
Since (M,0) is a group, we get A = Sz_l oSj,ie. A=S.m

10.10. Remark. In the equality (7), each of the points z; and w; appears
exactly twice, once in the numerator and once in the denominator. It is easy to prove
that the equality holds true when one of the points z; or w; (either one z; and one w;)
is the infinity point. Then, it is necessary the numerator and denominator, where this point
appears, to be replaced by 1. For example, if z, = w; = o, then the formula (7) can be

transformed and rewritten as
=7 1 __ 1 WwW

1 z3—7 - wW—w, 1

Therefore, Theorem 10.9 holds true for any point in the extended complex plane C,, .

10.11. Corollary. It exists a unique Mdobius transformation S, such that it maps
the points z;, z5, z3, z4 (z; ¢Zj,i¢j) to the points wy, wy, wy, wy (W; Zw;,i# j) if
and only if

86



Z4—Z) . Z3—Zp — Wq4—W, . W3 =Wy

Z4=Zy Z3=Z]  W4—Wp Wy3—w (7)
Proof. Let the equality (7°) be satisfied and let S be such the Mobius transformation
that maps the points z;, z, z3 (z; #z;,i# j) tothepoints wy, wy, wy (w; Zw;, i # j),
respectively. Then the Mébius transformation is defined by (7), and therefore
24=7 7377 _ S(z)-w wimwy

4=z 3= S(zg)-wy owymwp
Thus,

S(zg)=w W3=Wy _ Wamw W3y

S(zg)=wy wy=wp  wg=wy  wy—w
Le. S(zq4)=wy.

If there exists a Mobius transformation with the stated properties, then that
transformation maps the points z, zp, z3 (z; #z;,i# j) to the points wy, wy, ws
(w; #w;, i # j), and therefore the Mobius transformation is as (7), and S(z4) =wy. So,
(7°) holds true. m

10.12. Remark. Theorems 10.9 and 10.1 imply that each circle K in C,, can be
mapped to a circle K* in C,, . It is sufficient to map any three distinct points of K to any
three distinct points of K*.

10.13. Example. Determine the Mdbius transformation such that it maps the
points —1, i, 1417 to the points

a) 0, 2i, 1-1i; 0) i, oo, 1,
respectively.

Solution. According to Theorem 10.9 and Remark 10.10 the required M&bius
transformations are
2) we —2i(z+1)
T —4z-1-5i°

_ (142i)z+6-3i

0) w="=5

10.14. Remark. The proof of Theorem 10.9 implies that each Mobius transfor-
mation S have up to two fixed points z;, z,, i.e. such points zj, z,, so that S(z;) =z,
S(zy)=zp, when §# E. The Mébius transformation with two fixed points z;, z, is
determined by

m z—Z

=4 , 21,22 #* oo (8)

) Z—Zy

or
w-z;=A4(z—-z7), zp=c°. ©)

The coefficients 4 and 4; are given by
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_ 237z W3TZ _ W
A—T'fa A_Ta (10)
3721 W3TZp W3—Zp

azy

b .
i 7 It is easy to express the

and they do not depend on the choice of z3 when wy = ——
3

coefficients 4 and 4; in terms of a, b, ¢ and d, if (10) holds true and we set wj :g

when z3=0.

10.15. At the end of this section we will provide a proof of the following Theo-
rem.

Theorem. The set of Mdbius transformations F such that the unit circle | z| <1

they mapped to the unit circle | w| <1 is a subgroup of the group of Mdbius transforma-
tions.

Proof. Let S;,S, € F. Then, Theorem 10.6 implies that
Si(z)=€* 2=, |a|<1 and Sy(z)=eP 2 |b|<1,
l-az 1-bz

therefore,
] _ Z_el:Bb+a
51(82(2)) = o0B) ePrab ~ Prab
elﬁ+al;1 Prra z
P rab
where
Pora| _|brac®| 1 ang | pi0B) Prab |y
Prab|  |1+ae®p ¢Prab

Applying Theorem 10.6 once again, we get that S; oS, € F. So, the set Fis closed under
the composition of mappings.
Let §1,5,,8;€ F. Then §;,5,,5;3 € M, therefore
S10(82083)=(S108;)0 83
i.e. the associative law holds true.

Letting v=0 and @ =0 in Theorem 10.6 we get

FaE(z)=Z=ei'OZ;Q.
1-z0

Let Se F.Then, S(z)= & IZ;J’, |v|<1. Consider the transformation
vz
. B ()] .
S1(2)= G0z e ) (ve Ve_ ) s |—vel(p |<1.
1~(—ve'®)z
Clearly, S| € F and the following holds true
S(S1(2))=5(5(2)),ie. S'=SeF.m
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CHAPTER III
GEOMETRY OF CIRCLE AND TRIANGLE

1. CENTRAL AND INSCRIBED ANGLES

1.1. Definition. An angle whose vertex coincides with the center of a given circle
K is called a central angle.

1.2. Theorem. If two central angles in a same circle are congruent, then their
corresponding arcs are congruent, too.

Proof. Without loss of generality, we consider

K as a unit circle. Let £ZAOB=/ZCOD (figure 1) and

the affixes of points 4, B, C and D be a, b, ¢ and d,
respectively. Therefore

b_d

L4 je £=
a C a

o

Since
S(a)=%a=c and S(b)=<b=4b=d

we get that under the mapping S(z) =§z, which in

fact is a rotation around £ AOC , the point A maps to a Figure 1
point C, and B to D. Therefore, the arc AB maps to the arc CD. m

1.3. Similarly the reverse theorem of theorem 1.2 can be proved. The proof'is left
as an exercise.

Theorem. If two arcs in a same circle are congruent, then their corresponding
central angles are congruent, too. m

1.4. Definition. An angle whose vertex is on a given circle K, and its rays meet
the circle is called an inscribed angle.

1.5. Theorem. The size of an inscribed angle is
half of the size of its corresponding central angle.

Proof. Without loss of generality, we consider K
as a unit circle. Let consider the arc 4B where points 4

and B has affixes 1 and €®, e (0,m), respectively. Then,
ZAOB=¢. Let M be a point of the complementary arc

of the circle (figure 2), i.e.it has affix e , Be (0,2m).




Then,

R
i= i~ i(0-%)
2 (e 2_¢ 2

0
—2ie 2 sin%

)

i i0
L AMB =arg e;:ﬁa =arg

0 0.9 00
222127,
=arg —5
2151n5
Q0 oin(8_@ o
i sin( ) is
=arge 2 — ;% =arge > =%
511’15
. £ AOB
ie. LAMB =

> . ;

1.6. Corollary. All inscribed angles with congruent arcs in a given circle K, are
congruent.
Proof. The proofis directly implied by Theorem 1.5. m

1.7. Corollary (Thales’ Theorem). Each inscribed angle on a diameter of a
circle is a right angle.
Proof. The proof is directly implied by Theorem 1.5. m

1.8. Remark. In paragraph II 8.7 during the construction of the image of an
arbitrary point under inversion, we have drawn a tangent to a circle at point which is
out of that circle. The effective construction of the tangent is implied by the Thales’
Theorem.

Let a circle K(O,R) and a point M which
is outer for the circle K be given. The tangent at
M to K is constructed with the following proce-
dure (figure 3).

a) we construct the midpoint O; of the
line segment OM, L

b) we construct a circle K;(0,MO1),

c¢) we find the intersecting points
Figure 3 KnNK;={T,T;} and
d) we draw lines MT and MT; .

(Ky)

1.9. The above discussed line segments M7 and M7 , are called tangent segments
to the circle K(O,R) at point M. The tangent segments satisfy the following Theorem.

Theorem. Let M be a point out of the circle K(O,R). If MT and MT; are tangent
segments drawn at point M to the circle K, then MT = MT] .
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Proof. Without loss of generality we consider K as a unit circle (why?). Let the
affixes of points 7"and 7; be ¢ and ¢, respectively. The lines MT and M1, are tangents,
and since Remark II 3.13, their equations are

z+t2z=2t and z+6 2 =24

. 2t o
and affix of M is m = # . Finally,
1
|2 | |ween| C|ae=)| |2 |
MT =|m-t|= 1+, t‘_ ||y | |ty hl=lm-t[=MT1. u

1.10. Theorem. The angle between a chord 4B and the tangent to the circle (7)
drawn at one of the points 4 or B is congruent to the inscribed angle on the chord AB.

Proof. Without loss of generality we can consider the unit circle K(O,R). Let
affixes of points 4 and B be a and b, respectively. The equation of the tangent (¢) drawn
at the point B is as following

z=-b*z+2b,
And the equation of a line 4B is
z=—abz+a+h.
Therefore, the angle B between line 4B and the tangent ()

satisfies the following 2B = % . Since the proof of Theorem

II 1.4, the inscribed angle o satisfies that
62106 _ % _ eZlB ’

Figure 4
So, a=p.m

2. POWER OF A POINT WITH RESPECT TO A CIRCLE

2.1. Let K(O,R) be a given circle and M be an arbitrary point of a plane. Through
M we draw an arbitrary line (p) which meets the circle K at points 4 and B. We will prove
that the product MA4-MB does not depend on the choice of the line (p).

If the point M is on a circle K, then M is one of the points 4 or B. Therefore one
of MA or MB is null. So, MA-MB=0.

Let point M be out of the circle K (figure
5) and () be one of the tangents to K drawn
at M, and T be the tangent point. The circle
K{(M,MT) orthogonally crosses the circle K,
therefore K is fixed under the inversion defined
by the circle K. Therefore, from the definition
of inversion we have that

Figure 5

91



R — R — JRE— JRE— _2
MA-MB =MD -MC = (MO -RYMO+R)=MO -R*.
In this case, since the properties of inversion (Theorem 8.5), it is true that
MA-MB=MT" .

Let the point M be an inner point for the circle K and let (p) be an arbitrary line
which passes through M. Without loss of generality we assume that the center of the
circle coincides with the origin. Then, if m is an affix of M, the equation of line (p) is
the following z—m = n(; — %), and the equation of the circle is the following zz=R?%.

From the equation of (p) we express z, and when we substitute in the equation of the
circle we obtain a quadratic equation as following

Nz +(m-nm)z—R*=0

—mAMmt|(m-nm)>+4nR>

n
are the affixes of the points 4 and B, points of intersection between the line and the circle.
Due to this,

whose solutions

2112 =

MA-MB=|m—-z|-|m—2z, | =|mm—R2 | =R? —M02.

The arbitrariness of (p) implies that the product MA-MB does not depend on the choice
of the line (p) through the point M. o

The already stated implies that the product MA-MB does not depend on the
choice of the line (p) through M. It depends only on the length of the radius R of a circle
K and on a distance d = MO between the point M and the center O of the circle K. The
value (the real number) d 2 _R? is called as power of the point M with respect to the
circle K. Clearly, if M is a point on K, then the power is 0, furthermore if M is point
outside the circle K, then the power is a positive real number, and if M is within the circle
K, then the power is a negative real number.

2.2. Definition. Let K;(O;,R;) and K,(0O,,R,) be given circles and let H be
homothety with center S so that H(K;) = K, . If (p) is line such that it passes through S and
meets the circles K; and K, atpoints B, P and Q;, O, respectively and if H(F) =0,
H(P)=0,, then the points A and O, (P and Q) are said to be antihomothetic
(figure 6).

If the circle K touches the circles
K and K, ,both internally or externally,
then we shall say K touches K| and K,
in a same way, and if it touches one
internally and the other one externally ,
then we shall say that K touches K; and
K5 in a different way.




2.3. Lemma. The product of the distances between the center of homothety of
two circles and two antihomothetic points is a constant value.

Proof. Let S be external center of a homothety H of the circles K;(O,R;)
and K,(0,,Ry), (R #Ry) and let points A and O, (P and Q) be antihomothetic
(figure 6). Then, the homothety ratio is

_50,_50,
SP1  SP»
So,
SPy-SQO, =SP| - SP; - i = SP1-SP3 -a = const

Thus, SP; -SP, is a power of the point S with respect to the circle K;. m

2.4. Lemma. Let K(O,R) be such a circle that touches the circles K;(O;,R;) and
K5(0,,Ry) . Then,

a) if K touches K; and K, in a same way, then the points where K touches K
and K, are antthomothetic with respect to the external center of similarity S for circles
Kj and K,

b) if K touches K; and K, in a different way, then the points where K touches
K; and K, are antihomothetic with respect to the internal center of similarity S for
circles Kj and K,

Proof. b) Let a circle K touches the circles K; and K, at points A and O, in
a different way, respectively (figure 7) and let the affixes of O, O}, O,, B and O, be
¢, ¢, ¢y, p and g, respectively. Then the affix of internal center of homothety is
_ Ry +Ryq
R+R,y
The points O, Oy, B are collinear and it holds true that O} A = Ry, therefore the following
equalities are satisfied

p- Cl_—(P )
and

- 2
(p=c)p=c) =R
By reducing we get

1.€.

Thus, the affix p of the point A is as following
—C _ _ —c R
p=a- |c —| Ri=q R+R, "1°
Analogously, the affix ¢ of point O, is as following
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CrH—

_ 2 C _ C2—C
q_C2+|C —C|R2 =C +_R—R Rz.
Finally, ? ?
s=p __R(R-K) o

5=q Ry (R+Ry) ’
i.e. the points S, A and O, are collinear. Due to this, the points A and O, are antiho-
mothetic.

The statement a) can be proved analogously. The details are left to be proven as
an exercise.

2.5. Lemma. Each center of homothety of circles K;(O;,R)) and K,(O;,R,)
has equal power with respect to each circle which touches the circles K; and K, .

Proof. Since Lemma 2.4, if points where K touches the circles K; and K, are A
and O, respectively, then A and O, are antihomothetic points (figure 23 and figure 24).

If S is homothety center, then due to Lemma 2.3 the product SP1-SQ, is a constant
value, and that is actually the power of a point S with respect to the circle K. m

2.6. Example. Construct a circle such that it runs through the points 4 and B and
touches the line (¢).

Solution. We will consider the most general case when the points 4 and B are on
a same semi-plane with respect to the line (¢) and furthermore, the lines (¢) and 4B are
not parallel to each other (figure 8).

(K")

Figure 8

The power of the point M = AB N (c) with respect to the arbitrary circle which

crosses through the points 4 and B is MA-MB .If K (O,A—ZB) and if (¢) is a tangent to (K)
. —=2 . . .-

drawn at the point M, then MT  is a power of M with respect to (K), and therefore it is

actually the power of M with respect to the required circle. That means, the points A and

P, where the line (c¢) meets the circle (M ,m ) in fact are points where line (¢) meets
the circles which passes through the points 4 and B. If (p;) and (p,) are perpendicular
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to (c) and A and P, respectively, are foots of perpendicular and if (s) is a bisector of
the line segment 4B, then (p;)N(s)=0" and (p,)N(s)=0" are centers of required
circles. Clearly, the given problem has two solutions. m

3. RADICAL AXIS AND RADICAL CENTER

3.1. Let two circles K'(O',R") and K"(O",R") be given. Let’s determine the
locus I" such that it has an equal power with respect to the circles (K') and (K").

Let affixes of the centers O' and O" be ¢ and ¢, , respectively. Clearly, M e I"
if and only if

—2 —2

MO"™ -R? =MO" -R", M
i.e. if and only if

The last equality is equivalent to &) (K")
s _fma s lalHePeR2 R L
c2-cl c2—cl o' M o"
Finally, the required locus is a line perpen- \_/
dicularto O'O" (figure 9). This line shall be .
called the radical axis of K| and K, . Figure 9

3.2. Lemma. A radical axis of two circles with no common points and also a part
of a radical axis of two crossing circles (outer for the intersecting circles) is a locus of the
centres of circles which orthogonally crosses the given circles.

Proof. If K(O,R) orthogonally crosses the circles K'(O',R") and K"(O",R"),
then the tangents at O to (K'") and (K") are congruent, i.e. O has an equal power with
respect to (K'") and (K"). Hence, O is on the radical axis of (K') and (K"), figure 10.

(K") (K") (K")
a) b)
Figure 10

Let K(O,R) be a circle centred at a point on the radical axis of the circles (K")
and (K") and
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R=T'0=T"0.
Therefore, OT' and OT" are tangents to (K') and (K"), respectively, the circles (K)
and (K'), and also (K) and (K") cross at right angle, i.e. (K) orthogonally crosses (K")
and (K"). m

3.3. Definition. The circle K(O,R) halves the circle K'(O" R"), if (K) intersects
(K) (K" at two diametric opposite points.

Let us state that if the circle K(O,R) crosses
the circle K'(O',R") at two diametric opposite points
A and B (figure 11), then the power of the point O' with
D respect to the circle K(O,R) implies that

——— —2
0'C-0'D=0,4
Therefore, when writing d = O'O we get that
(R-d)R+d)=R"?,ie. R>=R"?+d".

Figure 11

3.4. Lemma. The inner part of a radical axis of intersecting circles K'(O',R")
and K"(O",R") is a locus of the centers of circles (K), such that both (K" and (K")

halve (K).

Proof. Clearly, if M is a center of

circle which is halved by two given circles

4 (K" and (K"), then M must be an inner

point for circles (K') and (K") (figure

12), therefore, such a circle exists only if

(K" and (K") intersect each other. The
comment after definition 3.3 implies that

R2=R2-q? and R2=R2—q",
Figure 12 thus

sz_dvz — Rn2_dn2
i.e. M has the equal power with respect to the both circles (K') and (K"), i.e. M is placed
on the inner part of the radical axis of (K') and (K"). m

3.5. Let be given three circles K;(O;,R;), i =1,2,3. We will determine the locus
of points in a plane which has an equal power with respect to the three given circles. Let
P12, P23, P13 be the radical axis of (K;) and (K,), (K,) and (K3), (K3) and (K),
respectively. Hence, if there is any point P with an equal power with respect to the circles
(K;), (Ky) and (K3), then that point must be on a radical axis (pp) and (py3). Two
cases are possible.

a) If centers O;, i=1,2,3 of the circles are not collinear (figure 13), then the
radical axis (p;,) and (p,3) intersect each other. The point P=(p;,) N (py3) has an
equal power with respect to the circles (K;), i =1,2,3. Therefore the radical axis (p;3)
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Figure 13 Figure 14

which passes through the point P, a point with equal power with respect to the circles
(K;), i=1,2,3. This point is to be called a radical center of (K;), i=1,2,3.

b) If the centers O;, i =1,2,3, ofthe circles are collinear, then the racial axes are
parallel, and furthermore each of them is either different or coincide. When the first case
is satisfied, there is no any point with required property, when the second case is satisfied
the required locus is a line.

3.6. The already stated implies )
the effective construction of radical axis
of two circles. Namely, if circles (K;)
and (K,) intersect at 4 and B, then the o

radical axis is a straight line 4B (figure O r 0,
14), and if circles touch at 7, then the (Ky) (K3)
radical axis is a common tangent to Figure 15

(K;) and (K,) at T (figure 15).
Ifcircles (K;) and (K,) donot
intersect, then we construct an arbitrary
circle (K3) such that it intersects both
(K;) and (K,). The intersecting point
of radical axes (pj3) and (pp3) is a
radical center P of the circles (X;),
i=1,2,3, and therefore the radical axis
is a line which passes through P and is
perpendicular to 0,0, (figure 16). Figure 16

3.7. Remark. Let us notice that we can discuss about a radical axis of a point and
a circle, and likewise about a radical axis of two points. Clearly, the radical axis of two
points 4 and B is a bisector of the line segment AB. When talking about the radical axis of
point 4 and circle (Kj), if 4€ (Kj), then it is a tangent at the point 4, and if 4 is outside
the circle, then the radical axis can be constructed by using the radical center of 4, (K)
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and a circle (K3) such that it passes
through 4 and intersects (K;) (figure
17). Namely, the radical axis of 4 and
(K3) infactis atangent () to (K3) atA4,
and the radical axis (p;3) passes through
the points of intersection M and N. So,
the radical center P is an intersection of
(t) and (p;3), and therefore the required
radical axis of 4 and (K;) is a straight
line (n) at P, perpendicular to AQ; .

Analogously, we can discuss about the radical center of a point and two circles,
of two points and a circle and also about radical center of three points. Clearly, the radical
center of three non-collinear points 4, B and C is a center of circle which passes through
A, Band C.

Figure 17

3.8. Lemma. If K;(O;,R;), i=1,2,3 are three not concurrent circles with centers
which are not collinear, then it exists a unique circle (K) such that either (K) intersects all
three circles or all three circles halve the circle (K).

Proof. Let P be a radical center of K;(O;,R;), i=1,2,3. Then, P is either inside
or outside of each three circles. When the first case is satisfied the power of the circle

is —m? and the circle K(P,m) halves the circles K;(O;,R;), i=1,2,3, and when the

second case is satisfied the power of the circle is m? and the circle K(P,m) orthogonally
intersects the circles K;(O;,R;), i1=12,3. m

3.9. Example. Construct a circle which passes through the points 4 and B and
touches (K;).

Solution. Through the points 4 and B, we draw an arbitrary circle (K) such that
(K) meets the circle (K7) at C and D (figure 18).
(K) Then, the radical axis of (K) and (K) is a straight
TS line CD, and the radical axis of (K) and the required
circle (K*) is a line AB. Thus, the intersection P of
lines AB and CD, if such point exists, is radical
center of (K), (K*) and (K;), which implies that
the radical axis of (K;) and (K*) is a tangent to
(Ky) atP.

Hence, drawing the tangents (¢) and (#,)
at Pto (Kj) , we find the points of touching 7; and
T, between the required circles and (Kj) . So, the
given problem has at most two solutions. m

=~

~

Figure 18
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4. A PENCILAND A BUNDLE OF CIRCLES

4.1. Let circles K;(O;,R)) and K,(O,,R,) be given and let (p) be their radical
axis. The set of circles such that (p) is radical axis for each two of them ((p) is considered
as a circle) is said to be a pencil of circles. The straight line (p) is said to be a radical axis
of the pencil.

Since 3.1 the centres of each circle of the pencil are on the line 0,0, which is
perpendicular to (p) and is said to be a central line of a pencil.

4.2. Clearly, each pencil is defined by two circles, but our further discussion will
imply that pencil of circles is likewise fully defined by a radical axis and a circle. Let
M be an arbitrary point of a plane. If M is on a radical axis, then it exists a circle which
passes through M. Let M not be on a radical axis. Likewise in 3.5 we will consider three
cases:

a) If circles (K;) and (K,) intersect at 4 and B, then the unique circle (K)
passes through the points M, 4 and B. It is easy to conclude that the circle (K()) belongs
to a pencil of circles determined by the circles (K;) and (K3).

b) If circles (Kj) and (K,) touch at 4, then the circle Ky(O,04) (O is
intersection of bisector of line segment AM and the central line of the pencil), belongs to
a pencil of circles determined by (X;) and (K>).

c) Let (K;) and (K,) have no intersection, m be an affix of M and T with affix ¢
be an arbitrary point on a radical axis. Then, it exists a unique point M; with affix

2_p2
m =t+‘t_ol‘—_2&(m—t).
Since, =]
|t_01|2_2R12 (m _ t) —¢
Im~|
=|t~o P ~Rf =TOT- R},
the circle K,(O,0M) (O is intersection of the bisector of line segment MM, and the
central line of a pencil), belongs to a pencil of circles determined by (X;) and (K5).
Thus, we proved the following theorem.

TM -TM = |m—t|-t +

Theorem. Through each point of a plane passes exactly one and only one circle
of a given pencil of circles. m

4.3. Let the pencil I'1 be defined by a radical 4
axis (p) and a circle (Ky) . Since the proof of Theorem
4.2, depending on the relationship between (p) and
(Kj), there are three types of pencils. Namely,

a) If (p) and (K)) intersect at 4 and B (fig-
ure 19), then each circle K of IT intersects the radical B
axis at 4 and B (the Poncelet points of the pencil) and Figure 19
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vice verse, each circle which passes through 4 and B be-
m longs to a pencil I'l. Thus, the pencil consists of each circle
A which passes through 4 and B. So, we will say that the
pencil IT has two basic points or in other words is said to
be a hyperbolic pencil .
b) If (p) and (K)) touch at 4 (figure 20), then each

Figure 20

circle (K) of Il touches the radical axis at 4 and vice verse,
each circle such that it touches (p) at 4 belongs to 1. Thus,
the pencil of circles consists of each circle which touches
(p) at 4. So, we will say that the pencil IT has one basic
point or in other words is said to be a parabolic pencil .

c) If (p) and (K,) have not any sharing points
(figure 21), then each other circle of Il has no sharing
points with (p) and furthermore, each two circles of I1 do
not have any sharing points. So, we will say that the pencil I'T has no any basic point or in
other words is said to be an elliptic pencil.

Figure 21

4.4. Lemma. The set of circles Il (each of them is orthogonal to the circles of
a pencil IT) is a pencil of circles, too.

Proof. Let K;(O;,R;), i=1,2 be two
arbitrary circles of the pencil IT with radical
axis (p) and central line (g), and let

@ Ki (O';,R'";), i=1,2 be two arbitrary cir-
cles of the set II; (figure 22). Since the cir-
cles K';(O';,R";), i=1,2 are orthogonal to
K;(O;,R;), i=1,2 their centres O'; , i=1,2
- are on a radical axis (p) of K';(O';,R";),
0, i=1L2. On the other hand, the points

Figure 22 O;, i=1,2 are with equal power with respect

to K';(0',R";), i=1,2,1ie. (q) is a radical
axis of K';(0';,R";), i=1,2. Now, the statement is implied by the arbitrariness of the
circles K'; (O';,R";),i=12.m

(K7

(K5) ()

4.5. Definition. If each circle of the pencil of circles I1 is orthogonal to the pencil
IT; , then the pencils IT and I1; shall be called conjugate pencil of circles.

4.6. Lemma. a) If one of two conjugate pencils of circles is elliptic, then the
other one is hyperbolic, and vice versa.

b) If one of two conjugate pencils of circles is parabolic, then the other one is
parabolic, too.
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Proof. a) Let I be an elliptic
pencil with radical (p) and central line T (K"
(¢) (figure 23). The intersection P of
(p) and (gq) is outer for each circle of o
the pencil I1, and therefore it is a centre O, 4 P\ /B O, (@)
of (K", which belongs to a conjugate
pencil IT; . Since (K') meets the radical »)
axis (q) of the pencil I1; at 4 and B, we Figure 23

get that the pencil II; is hyperbolic.

Conversely, let Iy be hyperbolic pencil with radical axis (¢) and central line (p)
(figure 23). The circle of the pencil I1; centred at P =(p)(g) meets the radical axis
(g) at 4 and B. If K;(O;,R;) be an arbitrary circle of I, and 7 a point of intersection
between (K;) and (K'"), then O;T <O, P, and therefore (K;) has no any intersection
point with the radical axis (p) of I'1. So, the pencil of circles IT is elliptic.

b) The statement is directly implied by the Definition of parabolic pencil of
circles. The details are left as an exercise. m

4.7. Example. Let be given a pencil of circles IT with a radical axis (p) and a
circle K;(Oy,R;). Construct a circle K(O,R) such that it belongs to the pencil IT and
touches the given circle K,(0,,R,) .

Solution. Let (p;,) be a radical axis of the circles (K;) and (XK;). Since the
required circle (K) belongs to a pencil I, the radical axis of (K;) and (K) will be the line
(p). So, the radical centre of (K), (K;) and (K,) is P=(p)N(p),), and therefore the
radical axis of (K) and (K,) is a tangent to (K, ) such that it passes through P. After that,
we construct the tangents to (K, ) through P, if such tangent exist, and further construct
the required circle (K) centred at the perpendicular of the tangent drawn at the point of
touching to (K,). Then we find the central line of the pencil determined by (K;) and

(p).m

4.8. Example. Given a pencil IT with a radical axis (p) and a circle K;(O},R;).
Construct a circle K(O,R) such that it belongs to the pencil IT and touches the given line
(a) which differs from (p).

Solution. If (@) is parallel to (p), then the exersize given problem may be
considered as construction of a circle that belongs to the pencil IT and passes through the
point (a) N (g) , where (q) is the central line of the tensile I1.

Therefore, let’s assume that the line (@) intersects the line (p) and let M be the
point of intersection. The tangent distance from M to (K;) is equivalent to the tangent
distance from M to the required circle (K), thus the circle (K) tangents the line (@) at the
point P so that MP = MT , where T is the point of tangent of the tangent drawn from M to
(K;) . Now the center of (K) is in the intersection of the perpendicular to () at the point
P and the central line (¢) of the pencil 1. m
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4.9. Definition. The set of all the circles, such that each three of them have a
common radical center P, and all the lines such that pass through the point P, is called
a bundle of circles. The point P is called the radical center of the bundle and the degree
of the point P with respect to an arbitrary circle of that bundle is called the degree of the
bundle.

4.10. Every bundle of circles I' is determined by
- center and degree,
- acenter and a circle
- adegree and two circles or
- three circles.
Depending on the mutual position of the center with
respect to the circles of the bundle I', we can distinguish
between three types of bundles such that:

a) If the degree is m? > 0, then the center P is an
external point to every circle of the bundle I" and according
Figure 24 to the lemma 13.8 the circle K(P,m) intersects orthogonally
every circle of I'. According to this, I" consists of every
circle and every line which orthogonally intersect the circle
K(P,m) (figure 24).

b) If the degree is m> =0 , then the bundle I
consists of every circle and every line that pass through the
centre P.

c¢) If the degree is m? < 0, then the centre P is an
internal point for every circle of the bundle I" and according
to lemma 13.8 every circles of I' half the circle K(P,m).
Therefore, I consists of every circle and every line which
Figure 25 intersect the circle K(P,m) in diametrically opposite points
(figure 25).

4.11. Remark. Sometimes a bundle of circles is regarded as a set of all circles
whose centers are on a given line (p) and every line perpendicular to (p), i.e. the set of
every circle and every line which orthogonally intersect the line (p) and this bundle is a
bundle of the first type, because as we said before the line in an extended complex plane
might be regarded as a circle.

4.12. Lemma. The intersection of two bundles of circles is a pencil of circles or
pencil of lines.

Proof. Let I'} and I'; be two bundles of circles with centers P and O and degrees
m and n, respectively. If P# Q,then I'} " T', is a pencil of circles with a radical axis PO,
and if P=Q =0, then it is a pencil of lines with a center at O. We will consider three
different cases where P£ Q.
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a)If m=n=0,then I'} and I', are the sets of every circle which passes through
P and Q, respectively, thus I'; "I', is the set of every circle which passes through the
points P and Q, i.e it is a hyperbolic pencil of circles

b) If m>0 and n>0, then I'y "I, is the set of all circles which orthogonally
intersect the circles K (P,\/Z ) and K *(Q,\/; ) . According to the lemma 4.4 Ty N I",
is a pencil of circles.

c)If m=0 and n>0, then Iy "T", is the set of all the circles which pass
through the point P and orthogonally intersect the circle K * (Q, Jn ) , and that is a pencil
of circles with at least one base point, i.e. it is a hyperbolic or parabolic pencil of circles
depending on whether P¢ K *(Q,\/;) or Pe K *(Q,\/;) .

The other possible cases are left as an exercise for the reader. m

5. ORTHOCENTAR AND CENTROID OF A TRIANGLE

5.1. Let consider the o ABC, whose vertices 4, B and C have affixes a, b and c,
respectively. In the example II 3.3 we proved that
0= a;(c—b)+b5((i—c)+cg(b—a)
1
1
1

a
b

c

ol S

is the affix of O circumcenter of 4 ABC. Clearly, the radius of the circum circle of A ABC
is R=|a-o|. The mapping S:C— C determined by S(z)= %(z —o0) is a direct
similarity which maps a ABC into a A'B'C". According to consequence 4.8 we get that
A'B':A'C'=AB: AC and L A'B'C'= £ ABC.
Let a', b, ¢' be the affixes of the vertices A4', B', C', respectively, and let # be one of
the three square roots of the complex number a'b'c'. The mapping §;:C — C deter-
mined by S;(z) =¢z is a movement which maps a4'B'C"' into a 4"B"C". Moreover, if
a",b", c" are the affixes of 4", B", C", respectively, then
a"b"c"=ra'b'c'=1
and according to the consequence 4.8 we get that
A"B":A"C"=A'B'":A'C'and LA'B'C'=ZA"B"C".

The above stated implies that when consider the triangle with no loss of generality

we take that its vertexes 4, B and C with the affixes a, b and ¢, respectively, are on

the unit center circle centered at the origin. Therefore |a|=|b|=|c|=1. Moreover, the
coordinate system is chosen such that abc =1.
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In our further consideration, unless it is not mentioned differently, we will
consider that a ABC is inscribed in the unit circle centered at the origin O and that for the
affixes a, b and ¢ and the vertices 4, B and C is true that abc=1.

5.2. Let’s consider the a ABC whose vertices A, B and C have the affixes a, b
and c, respectively. According to the theorem 1.2 the equations of the lines AB, BC and
CA are such that

z+ab;=a+b,z+bc;=b+c,z+ca;=c+a, (1)
respectively, i.e. their complex angle coefficients are —ab, —bc and —ca , respectively.

According to consequence 1.8 the lines that go through C, 4 and B, and are perpendicular
to AB, BC and CA are expressed as following
cz—;=cz—ab,az—;:az—bc,bz—;=b2—ca, 2)
respectively. The lines whose equations are given in (2) are to be called altitudes of
a ABC, drawn from the vertices C, A and B, respectively.
Similarly, the equations of the bisectors of the sides AB, BC and CA are the
following
z—abz=0, z—bcz=0, z—caz=0, 3)
respectively.
Therefore a #b we get that the system of equations

az—z=a’ —bc
bz—z=b*-ca
has a solution # =a+ b+ c. With a direct check we can prove that the complex number /4

satisfies the equation of the altitude drawn from the vertex C as well.
Thus, we proved the following theorem.

Theorem. The altitudes at o 4ABC concur at the point H with affix
h=a+b+c.m

5.3. Definition. The point N discussed in the theorem5.2 is called the orthocenter
of A ABC.

5.4. Remark. a) For A ABC whose vertexes 4, B and C have the affixes a, b
and ¢, respectively, and which is not inscribed in the unit circle centered at the origin, it
can be proven that for the affixes # and o of the orthocenter H and the circumcenter O,
respectively, the following is true

h+20=a+b+c.

b) Let’s consider the at a OXY such that one of its vertexes coincides with the
origin and the other X and Y have the affixes x and y, respectively. Then, for the affix o of
O, circum center of the A OXY we get that
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o = D00 +xx(0-p)ytyy(x=0) _ yyx—xxy _ xy(y=x)
00 1 xy-xy  xy-xy

1

1

X

=l %l o

y
Moreover, for the affix 4 of the orthocenter H of A OXY we get that
xy(;—}) — xz;—x;yﬂ/;x—yz}—2y;x+2x;y
Xy—Xxy Xy—Xxy

h=0+x+y—-20=x+y-2

_ x2y—y? %—X;x+x;y _ x;(x—y2+1/;(x—y) _ (x—y)ﬁxi+y;c)
Xy=xy Xy=xy Xy—xy

5.5. Example. Draw a line perpendicular to the
diameter of the circle K(O,R) from a point M which is not
on that circle.

Solution. We draw lines from the point M to
the ends of the diameter 4 and B. Then, the lines AM
and BM meet the circle K(O,R) at the points C and D,
respectively. In accordance with consequence 1.7 the
lines AD and BC are altitudes of the triangle whose
sides are on the lines AC and BD. So the theorem 5.2
implies that the line MP is the required perpendicular
drawn at the point M to the diameter AB (figure 26). m Figure 26

5.5. Example. If H and O are the orthocenter and the circum center of the » ABC,
respectively, then

—2 —2 —=2 —=2
OH  =9R> — (4B~ + AC” +BC"),
where R is the length of the circumradius. Prove this!

Solution. Without loss of generality, we can assume that A ABC is inscribed in a
circle centered at the origin and a radius R. If the vertices 4, B and C have the affixes a,
bandc,then |a|=|b|=|c|=R and the remark 15.4 implies that:

O_H2 :|a+b+c|2:(a+b+c)(5+l;+2)
=aa+bb+cc+ab+ab+bc+bc+ca+ca
=3(aa+bb+cc)—(a-bP +|b—cP +|c—al)

—9R?—(4B" + AC” +BC"),
Which was exactly supposed to be proven. m
5.6. Theorem. If H is the orthocenter of A ABC and are the points symmetric

to H with respect to the lines BC, CA, AB, respectively, then the points Ay, B4, Cy4 lie on
the circle circumscribed around a ABC.
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Proof. The example 11 1.9 and the theorem 5.2 it follows that the affixes of the

points Ay, By, C4 symmetric to the point A with respect to the lines BC, CA, AB are
_B22 — 22 — 22

,—ca”, , respectively. From
la|=1b]=]c|=1
it follows that
=% | =| =%’ | =|=a’b? | =1,

i.e. the points Ay, B4, C4 are on the circumcircle of the s ABC. m

5.7. Consequence. The projections 4,, By, C, of the vertexes 4, B, C on the

2 2

272 2,2
sides BC, CA, AB of a ABC have the affixes h—g c_, h—c2 a_, h_‘; b~ respectively.

Proof. According to the theorem 5.6 the points A4,, B,, C, are midpoints of the
line segments HA,, HB4, HC,4, respectively. Now, the proof by the fact that the affix

of the orthocenter / is s, and the affixes of the points Ay, By, C4 are —bzcz, —czaz,
—a’b? respectively. m

5.8. Let o ABC be given, and let its vertices 4, B, C have the affixes a, b, c,
respectively. The affixes of the midpoints 4, By, C; of the sides BC, CA, AB are

b%, ”T“, % , respectively, which means that the equations of the lines 44;, BB, CC;

are

btc=2a /., _ cta=2b,. _ 71 atb-2c (. _ .
z—aq=2=24(z—q), z-b=E4=2(z-b), z-c=LL=L(z—0), 4
b+c—2a( ) c+a—2b( ) a+b—20( ) ( )

The system of equations

z—a=bre2a ;g
b+c—2a

z—b=cta2b;_p)
cta-2b
has the solution

t = atbtc
3
By a direct check we prove that the complex number ¢ satisfies the equality of the line

CCy as well. The point whose affix is the complex number ¢ is denoted by 7. Further-
more, we get that
g7 | atb+tc _ | _| b+tc—2a
AT = asbie g | <| b

Analogously we prove that

_n| bte=2al|_ 5| b+c _ atbtc | _
_2‘ . ||_2‘T—T =2A4T .

ﬁzﬂ?TT and C_T=2?T.
Thus we proved the following theorem.

Theorem. If 4, B;, C; are the midpoints of the sides BC, CA4, AB of the » ABC,

at+b+c
3

then the lines A4, BB;, CC; concur at a point 7" whose affix is ¢ = and the point

T divides the line segments 44;, BB;, CC| inaratioof2:1. m
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5.9. Definition. The point 7 defined as in theorem 5.8 is called a centroid of
a ABC, and the lines A4, BBy, CCy are its medians.

5.10. Example A. Let be given a quadrangle ABCD and let T, T}, T,., T;; be the
centroids of the triangles BCD, ACD, BAD, ABC, respectively. Prove that the line seg-
ments AT, BT, CT,, DT; intersect in one point, and each of them is divided in a ratio
of 3:1 starting at the vertices of the quadrangle.

Solution. Due to the theorem 15.8 we get that

t, = b+§+d, tp = a+§+d, t, = a+l§+d and 1y = a+137+c )
Let A', B', C', D' be the points which divide the line segments A47,, BT,, CT,., DT; in
aratio of 3:1 starting from the vertices of the quadrangle, respectively. [ 4.2. implies that
a'=b'=c'= d'=%, which means that AT, BT;,, CT,, DT; concur at a point T’

a+b+c+d

with an affix ¢ = , and each of them is divided by in a ratio of 3:1 starting from

the vertices of the quadrangle. m

Comment. The point 7" discussed in the previous example is called centroid
ABCD. The example A shows how we can define the centroid of a pentagon. Namely,
we consider the line segments which connect a vertex of a pentagon with a centroid of a
quadrlateral formed by the other four vertices of the pentagon and thus we get five line
segments which intersect at 7, which is to be called a vertex of a pentagon. It is easy
to prove that if the affixes of the vertices of the pentagon ABCDE are a', b',c',d", e',
respectively, then the affix ¢ of its centroid T'is ¢ = % . On a similar way we can

define the centroid 7 of n-gon A4, 4,...4, and we can prove that its affix is

a1+a2+.‘.+a,,
- LLALUL g

n
where g;, i=1,2,...,n are the affixes of the vertices 4;, i=12,...,n, respectively.

Example B. Let S be the center of a circumcenter, and H be the orthocenter of
a ABC. Furthermore, let the point Q be such that S is the midpoint of the line segment
HQ and let T}, T, and T3 be the centroids of A BCQ, a CAQ and a ABQ, respectively.
Prove that

where R is the circumradius of o ABC.

SSTEN

R,

Solution. Without loss of generality, we can say that the circumcircle of a ABC'is

the unit circle, i.e. that 0 =0 and |a|=|b|=|c|=1.Wehave h=a+b+c and o="14

2 9
b+§+q =—4% and similar to this we

and therefore ¢ =—h=-a—b—c. Furthermore, ¢, =

get that ¢, = —% , 13 =—% . Now we have that
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_ _ 4
AT1—|a—t1|—‘a+% 4a

Which was actually supposed to be proven.

4_4p pr _o _4_4
3=3R. B, =Cl3 =3=3R,
| ]

5.11. Theorem (Leibniz). If T is the centroid of A ABC and P is an arbitrary
point of the plane of the triangle, then
—2 —2 —=2 —2 —2 —2 —=2
PA +PB +PC =3PT +TA +TB +71C .
Proof. Let a, b, ¢ be the affixes of the vertexes 4, B, C respectively and let p be
the affix of the point P. From the theorem 5.8, we get
72 L T2 L TR T 2 at+b=2c 2
3PT +TA +TB +TC =3 ‘

_l_‘ b+c3—2a 2 + a+c3—2b ‘2 +

a+b+c-3p
3

=3p;+aa+bl_)+cz—p5—]_9a—pE—;b—pE—]_ac
2 2 2
=lp—al”+[p=b" +[p-c|
— P4’ +PB +PC’,
Which was supposed to be proven. m
5.12. Example. If T is the centroid of a ABC, then
—2 —2 —2 —2 —=2 —2
TA" +TB™ +TC =%(AB +BC+CA47).
Prove this!
Solution. It is sufficient to get that P=A4, P=B and P=C in the equality of

theorem 5.11 and after that to summaries all the obtained equalities. m

5.13. Let it be given a ABC and let consider the homothety

=—1l,4h
w=—5z+7. )
The equality z = —%z +% implies that z =% , 1.e. the center of the homothety (5) is the
centroid 7 of a ABC. The point 4 under the homothety (5) maps to a point with an affix
—a4 h _ btc
22 2

This means that at 4; maps in the midpoint of the side BC. Analogously it can be
proven that the points B and C map at the midpoints B; and C; of the sides AC and 45,
respectively. Thus, we proved the following theorem.

Theorem. If 7 is the centroid of A ABC and 4;, B, and C; are the midpoints of
the sides BC, AC and AB, respectively, then the homothety with a center in 7 and a ration

—% maps a ABCto a4 BiC;.m

5.14. Consequence. If 4;, B; and C; are the midpoints of the sides BC, 4C and
AB of A ABC, then the following holds true
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4B, || 4B, B |IBC, G4 ||C4,
24B =AB, 2B,C,=BC, 2C4 =CA.
Proof. The theorems 5.13 and II 6.5 imply that
4B, || 4B, B|Cy || BC, (14, || CA4,
and the theorems 5.12 and 4.6 imply that

24,B, = AB, 2B,C{=BC, 2C;4,=CA.m

5.15. Definition. Let 4;, B; and C; and be the midpoints of the sides BC,
AC and 4B, respectively, of » ABC. The line segments A4, B;, B|C}, C}4; are called the
medians of the sides 4B, BC, CA, respectively.

5.16. Remark. In consequence 5.14 we proved that the medians of the triangle
are parallel to the suitable sides of the triangle and that the length of each one Is half of
the length of the suitable side.

6. RIGHT ANGLED TRIANGLE

6.1. We call a ABC right angled triangle if its orthocenter H coincides with one
of the vertices 4, B or C. Due to this, » ABC is a right angled triangle if and only if
|h|=1,1ieif and only if o

(a+b+c)a+b+c)=1.
The last equality is equivalent to the equality
(a+b)b+c)c+a)=0.
Which implies that the a ABC is a right angled triangle if and only if either

a+b=0or b+c=0or c+a=0.
Thus, we proved the following theorem.

Theorem. The triangle ABC is aright angled triangle ifand only if either a + 5 =0
orb+c=0orc+a=0.m

6.2. Consequence. The triangle ABC is a right triangle if and only if one of the
sides AB, BC or CA is the diameter of the circle circumscribed around it.

Proof. It is directly implied by the theorem 6.1. m

The side of the right angled traingle ABC which is the diameter of its circumcircle
is called a hypotenuse, and the remaining two sides are called legs of a ABC.
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6.3. Theorem (Pythagoras). For every right angled triangle the square of the
length of the hypotenuse is equal to the sum of the squares of the length of its legs.

Proof. Let AB be the hypotenuse of the right triangle ABC. According to theorem
16.1 we get that a+b=0 i.e. b=—a, thus

ACT +BC =|c—al +|c—bP
=|c—a|2+|c+a|2
=(c—a)c—a)+(c—a)c+a)
=2(cP +2|al=4|b

—2
=|2b*=|b-al*= 4B,
which was supposed to be proven. m

6.4. Example. If the hypotenuse of the right triangle is divided in three equal
parts and the point of division are connected with the vertex of the right angle, then the
sum of the squared of the length of the sides of so obtained triangle is equal to % of the
square of the hypotenuse. Prove it!

Solution. Without loss of generality, we take that ABC is a right angled triangle
with a right angle in the vertex C, such that it is inscribed in the unit circle. Let the affixes
on the vertices 4, B, C are a, b, c respectively. If D and E are points of the hypotenuse
AB such that

AD = DE = EB,

then their affixes are 2aT+b and %Zb, respectively. According to theorem 6.1 we get
that

—2 —2 —=2 2 2 2
CD” +DE™ + EC” =| 2atb=3c +‘b%a +| ar2b=e
2 2 2
—_|a-3c 2a a+3c
=195+ 5 5
_ 2aa+6cc _ 2,12 2
_ 200} cc_§(|a| +3|cP)

2 2 2
=2(jaf +3]a*)=2|2a]

2 22 4R%
—3|b a —3AB,

which was supposed to be proven. m
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7. EULER LINE AND EULER CIRCLE

7.1. Theorem. The circum center O, the centroid 7 and the orthocenter H of
a ABC are on a same line and furthermore OH =30T .

Proof. For the affixes 4 and ¢ of the orthocenter H and the centroid 7" we get
that
h=a+b+c=3%b+c:3t,

which means that O, T and H are collinear and thus OH =30T .m

7.2. Definition. The line on which are the circum center O, the centroid 7" and the
orthocenter H of o ABC is called Euler line for n ABC.

7.3. Example. If T and O are the centroid and the circum center of a ABC,
respectively, then

—2 —2 —2 —2
OT" =R*-L(4B" +BC" +C4"),
where R is the length of the circumradius of the o ABC.

—2 —2
Solution. According to the theorem 7.1 we get OH =90T . So, the statement
is implied directly by example 5.5. m

7.4. According to theorem II 2.2 the equation of the Euler line OH is z = %2 ,

which means that its complex angle coefficient is % .Let ¢, t5, t3 and t4 be the complex
angle coefficients of the lines BC, CA, AB and the Euler line of a ABC. We get that,
ty==bc, ty =—ca, ty =—ab and t,4 =% . Thus,

Hiy +hts ity + ity 1ty T gty = () H1 +13)t4 + bty + {13 + ity

=—(bc+ca+ab)%+abc(a+b+c)

=—hli1.h=0
h

For any movement the complex angle coefficients of the lines are multiplied by the same
constant, thus if the equality

Wty Tty iy T iyly ity gty = 0 (1)
is true for a o ABC which is inscribed in the unit circle centered at the origin O, and for
the affixes a, b, ¢ of its vertices 4, B, C it is true that abc = 1, then this is true for any
triangle. Thus, we proved the following theorem.

Theorem. For the complex angle coefficients 7, t,, t3 and 74 of the sides and the
Euler line of an arbitrary triangle the equality (1) holds true. m
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7.5. Theorem. If H is the orthocenter of a ABC, 4, B;, C; are the midpoints
of the sides BC, CA, AB, respectively, A4,, B,, C, are foots of the altitudes and
A3, By, C3 are the midpoints of the line segments AH, BH, CH, then the points
Al’ Bl’ Cl’ A2, B2, Cz, A3, B3, C3 are on a same circle.

Proof. The midpoints 4;, B;, C; of the sides BC, CA, AB have the affixes %,

<, “—erb. According to consequence 5.7 4,, By, C, the foots of the altitudes have

22 22 2 2 . . .
the affixes h_bz < h—a2 < h_bz 4 and since 43, By, C3 are the midpoints of the line

segments AH, BH, CH we get that their affixes are %, %, %
Due to the example II 3.3 we get that Oy the circumcircle of the a 4 B;C; has

the affix

g=atbtc _h
. .. 2 2°
and its radius 1s

—|lg_atb|_1
R =|e-ab|=1.
By a direct check we can conclude that the points 4,, B,, C,, 43, By, C5 are on the same
circle centered at Oy and with radius R} = % , which means that the points 4;, By, C,

Ay, By, Cy, A3, By, C3 are on a same circle. m

7.6. Definition. A circle centered at Oy and with radius R} =0y 4 , is called
Euler circle, and the point Oy is called Euler point for a ABC.

7.7. Remark. Clearly, for any a ABC the Euler point is a midpoint of the line
segment OH, i.e. it is placed on the Euler line, and the radius of the Euler circle is equal
to % , where R is the radius of the circumcircle of the » ABC.

7.8. Let L, M, N be the points with the affixes

l=b+c, m=c+a, n=a+b,
respectively. then, the line segments BC and OL have a common midpoint 4, so the
point L is symmetrical to the center O of the circumcircle of the a ABC with respect to
the 4, i.e with respect to the line BC. Since

atl _ b+tm _ ctn _

2 2 2 %
we get that the line segments AL, BM, CL, HO have common midpoint, and that is the
Euler point Og. The equalities

h=Il+a, b=l-c, c=1-b
and the fact that |a|=|b|=|c|=1, we conclude that the points H, B, C are on the circle
with a center at L and a length radius 1. Similarly, H, C, 4 are on the circle centered at M
and a length radius of 1, and H, B, A4 are on the circle centered at N and a length radius
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of 1. The symmetry with respect to the point Oy implies that the other statements of the
following theorem are true.

Theorem. If L, M, N are symmetrical points to the center O of the circumcircle
of the » ABC to the lines BC, CA, AB, respectively, and H is the orthocenter of a ABC,
then the quadrilaterals ABCH and LMNO are symmetrical with respect to the Euler point
Oy . The triangles ABC, BCH, CAH, ABH, LMN, MNO, NLO, LMO subsequently have
the orthocenters H, 4, B, C, O, L, M, N and the circumcircle with congruent radii and
centers at the points O, L, M, N, H, A, B, C, respectively. m

7.9. Example. Let H be the orthocenter of a ABC. Prove that the Euler lines of
the triangles ABC, ABH, BCH and CAH intersect at a unique point.

Solution. Without loss of generality we can say that A ABC is inscribed into the
unit circle. The orthocenter H of the triangle has an affix #=a+ b+ c. The point O' with
an affix o'=a+b is symmetrical to the center O of the circumcenter with respect to the
line AB. Moreover,

O'A=|a+b-a|=|a|=1,

O'B=|a+b-b|=|b|=1 and

O'H=|a+b+c—a-b|=|c|=1,
thus O' is the circumcenter of the A ABH.
Analogously, the points O" and O™ with the
affixes 0"=b+c¢ and o"=a+c are circum-
centers of the triangles BCH and ACH, respec-
tively. If 7' is the centroid of the triangle ABH,
then its affix is

= atb+(atb+c) _ 2a+2b+c
3 3 ’

The Euler lines of the triangles ABH and ABC Figure 27
are the lines 7'O' and OH, respectively.

Thereby, ¢'= w we get that 7' is the centroid of a HOO', thus the line

T'O' intersects the line segment OH at point £ with an affix e= %b‘*c . Therefore, the
point £ is the intersection of the Euler lines of the triangles ABH and ABC.

Similarly, we can prove that the point £ is the intersection of the Euler lines of the
triangles BCH and ABC, that is the triangles CAH and ABC, which means that the Euler
lines of the triangles ABC, ABH, BCH and CAH intersect in the same point. m
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8. MENELAU’S THEOREM

8.1.If AB and CD are collinear vectors, then it exists a real number A such that

AB=2\CD . In the following consideration we will get that A = A:g .
Since the equality AB=ACD is equivalent to the equality CD=14B we get

A
that D =1,
B
8.2. Definition. Let the side AB of o ABC be on the line (p). The point P is called
Menelaus point of the side AB if Pe(p) and P# A,B . Analogously, we define the
Menelaus points of the sides BC and CA4 of the o ABC.

8.3. Theorem (Menelaus). Let D, E and F be the Menelaus™ points of the sides
BC, CA and 4B of any a ABC, respectively. The points D, E and F' are collinear if and
only if it holds true that
BD CE AF -1. (1)

Proof 1. Let D, E and F with affixes p, ¢ and r respectively be the Menelaus'
points of the sides BC, CA and AB. If it holds true that

@ =A, @ =W, A—F =V,
DC EA FB
then for the affixes p, ¢ and 7 of the points D, E and F' we get that
Pkl g rg @
The points D, E and F are collinear if and only if
£7q 749
p=q rq’

If in the last equality (2) we substitute the values of p, ¢ and r and the obtained equality
we multiply by (1+A)(A+wn)(1+v), we get that

1+ Muv)(ab +be +ca—ba—cb—ac)=0. 3)
Therefore, the points D, E and F are collinear if and only if the equality (3) is satisfied.

Lastly, the points D, E and F are collinear if and only if 1+ Auv =0 (why?), that is if and
only the condition (1) is satisfied

Proof 2. Let the condition (1) be satisfied , i.e u= —*. Then

btAc _ atvb _ Avc—a
P=T00 T and ¢ = Av-1 >
thus
DF (1+A)a+(Av-D)b-A(1+V)c

(1+v)(1+1) >

(1+A)a+(Av-D)b-A(1+V)c

DE = A=2v)(1+1) ’
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E _ 14+h
T-Av

we get that FD|| AC, which contradicts the finiteness
of the point E£. Therefore, DE || DF , which implies that
the points D, E and F are collinear.

Let the points D, E and F be collinear and let
the projections of the points 4, B, C on the line ED be
the points A", B', C', respectively (see the figure). Then
the triangles BB'D and CC'D are directly similar, and
thus Figure 28

b=b_c— je b-b_ b .

p—b p-—c’ c'-c  p-c
Analogously, the direct similarity of the triangles AA4'E and CC'E implies that
=972 and the direct similarity of the triangles A44'F and BB'F implies that

c'—c  g-c
b=b _r=b Fipqly,
a'—-a  r-a
BD CE AF _b-p c¢—q a—r:(_b'—b)(_c'—c)(_a'—a)_l..

DC EA FB P q-a r=b b'=b

which means that gF e R, since for 1-Av=0

8.4. Example. Given is the 2 ABC and the points D and E on the sides BC and CA4,
respectively, such that BD=CE = AB . We draw a hne (/) through the point D, parallel to

AB. If M =(I)n BE and F =CM N AB , then AB = AE - FB-CD . Prove this!

Solution. Let’s consider the a ACF (figure 29). The points £, M and B are
Menelaus' points of the sides AC, CF and AF, respectively, and under a condition, they
are collinear. From the Menelaus’ theorem , we get that

= == = —1 5 C
which implies that B M€ B4

BF MC EA M, D

Due to DM || BF we get that £ = BD. [f we substitute in E )
MC DC

the previous equality, we get that

- Figure 29
And due to BD=CE = AB we get AB =AE-FB-CD.
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9. PASCAL’'S AND DESARGUES' THEOREM

9.1. In this section, by using the Menelay’s theorem, we are going to prove the
Desarg theorem which is a fundamental result in projective geometry. We are also going
to prove the Pascal's theorem for a hexagon inscribed in a circle.

Definition. The triangles ABC and A'B'C' are called copolar if the lines
AA', BB' and CC' are concurrent.

The triangles ABC and A'B'C" are called coax if the points of intersection of the
lines BC and B'C',CA and C'A', AB and A'B' lie on the same line.

9.2. Theorem (Desargue). The triangles ABC and A'B'C' are copolar if and
only if they are coax.

Proof. Let the triangles ABC and A'B'C"' be copolar and let the lines 44", BB'
and CC' intersect in the point O. Let’s denote the points of intersection of the lines
BCand B'C', C4A and C'A', AB and A'B' by P, Q, R respectively (figure 30). The
Menelaus’ theorem, applied to the triangles, BCO, CAO and AOB implies

BP . CC' OB __;

PC C'O B'B
€O 44" .0C __,

2

04 40 CC
AR . BB OA' _ _|
RB B'O A'A
If we multiply the above equalities, we
get

Thus, from the Menelaus’ theorem we
conclude that the points P, Q and R are
collinear. Therefore, the triangles 4BC
and A'B'C" are coax.
Figure 30 Reversely, let’s assume that P,
0 and R are collinear and let the lines
AA' and BB' intersect in the point O. Now, the triangles AQA' and BPB' are copolar,
and therefore, coax. According to this, the points O, C and C' are collinear, which means
that the coax triangles are copolar. m

9.3. Theorem (Pascal). Let the hexagon ABCDEF, whose opposite sides are not
collinear, be inscribed in a circle. Let denote by L, M, N the points of intersection of the
three pairs of opposite sides AB and ED, BC and EF, FA and CD, respectively. Then, the
points L, M, N are collinear.
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Figure 31

Proof 1. Let X, Y, Z be the points of intersection of 4B and CD, CD and EF, EF
and AB, respectively (figure 31). The points D, E, L; F, A, N; B, C, M are the Menelaus’
points for a XYZ, and from the Menelaus’ theorem we get that

XL ZE YD | XA.ZF YN __| XB.ZIM .YC _ _,

LZ EY DX  4Z FY NX " BZ MY CX
If we multiply the above equalities, we get that
(L.2.08) 8. 0.EBL
LZ MY NX|) EY DX AZ FY BZ CX
Furthermore, we apply the power of the points X, Y, Z with respect to the circle, then the
geometrical interpretation of complex numbers, implies that

—_— — —_— — — —— _— —— —— —— —_—

ZE-ZY=AZ-BZ, EY -FY=YD-YC, CX -DX = XA- XB.
If we substitute in (1) we get
IZ MY NX
which according to the Menelaus’ theorem means that the points L, M and N are
collinear.

Proof 2. Without loss of generality, we can say that the hexagon ABCDEF is
inscribed in a unit circle. The affixes /, m, n of the points L=ABNDE , M = BCNFE
and N=CD N AF are

7 _a+b—(d+e) — _ btc—(etf) ~  c+d—(f+a)
I= ab—de > M7 bc—ef and n = cd-fa
Furthermore
(b—e)(bc—cd+de—ef + fa—ab) (c—f)cd—de+ef — fa+ab—bc)
. l=m= (ab—de)(be—ef ) and m—n = (be—ef )cd—fa) ’
o,
em _ (b=o)cd—fa)
m-n  (f—c)ab-de) "

Finally, if we take that for every point of a unit circle it is true that x= % , by applying the
properties of the complex numbers we get that
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bm _ Goed—ga) _ e ) _ e-byja—ed) _ im
m=n_ (f—c)(ab—de) (L_l)(i_é) (c=f)Nde=ab) ~ m—n

foe
which means that ,ln_—’" is a real number, therefore the consequence 1.4 implies that the

points L, M and N are collinear . m

10. TRIANGULAR COORDINATES

10.1. Lemma. If for the complex numbers a, b and ¢ holds true
Aa+ub+ve=0 (1)
where
A+u+v=0 2)
and A, u, v are nonzero real numbers, then the points 4, B and C whose affixes are a, b
and ¢, respectively, are collinear, and vice versa.

Proof. Truly, from (1) and (2) it follows that
a+%b

¢= ; 3)

12
1+

i.e. the point C divides the line segment 4B in a ratio £, which means that the points 4,

B and C are collinear.
Reversely, if the points 4, B and C lay on a same line and if the point C divides

the line segment 4B in a ration of Y then from (3) in
v=—(A+p)
we obtain the equalities (1) and (2). m

10.2. Remark. Equality (2) implies that the numbers A, 1 and v may not have the
same sign, i.e. one of them must have an opposite sign from the other two. The point to
which in (1) corresponds this number is between the other two points.

Thus, for example, from the equality

3a—b—-2c=0
according to lemma 10.1 we get that the point whose affix is the complex number a is
between the points whose affixes are the complex numbers b and c.

10.3. Lemma. Let 4, B and C, with affixes a, b and ¢, respectively, are three

non-collinear points in the plane. Then, to every point in the plane D, with an affix d,
correspond three real numbers A, u and v such that
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ra+ub+ve=d €))
where
A+u+v=l1 %)

Proof. Let’s connect the point D, for example, with the point 4 and the intersection
of the lines AD and BC be denoted by D'. Then, the point D divides the line segment

AD' in a ratio of o:A=DD': DA, and the numbers o and A can be chosen so that
o+ A =1. the lemma 20.1 implies that

—d+ha+od'=0 and -1+A+0=0 (6)
Furthermore, the point D' divides the line segment BC with a ratio
v:u=CD'":D'B

These numbers can be chosen so that
v+u=o.
According to the lemma 10.1 we get that
—od'+ub+ve=0 and —o+u+v=0. @)
Now the equalities (4) are (5) are implied directly by the equalities (6) and (7).
Reversely, for pu and v it exists a sole point D' on the line BC whose affix is
determined by

\ _ Wb+ve
d'= v
Now, on the line 4D' there is a unique point D such that
_ Aa+(u+v)d' _ _
d_—x+u+v =Aa+ub+ve, A+u+v=I1,

This means that (4) and (5) determine a unique point D in the plane. m

10.4. Remark. The numbers A, p (—+)
and v uniquely determine the position of
the point D with respect to the a ABC.
Therefore, the ordered triple (A,u,v) is called
triangle coordinates of the point D with
respect to a ABC. From (5) we get that all
three numbers A, pu and v cannot be negative,
and the position of the point D with respect
to a ABC is determined by the signs of the
numbers A, p and v (figure 32).

(+—)

b
(—+)
Figure 32

119



11. CEVA'S AND VAN AUBEL'S THEOREM

11.1. Theorem (Ceva). Let D', D" and D" lie on the sides BC, AC and 4B of
a ABC or their extensions, respectively. The lines 4D', BD" and CD" intersect in one
point if and only if the following equality is satisfied
E.Q.AD”_l (D)
D'C D"A D"B
Proof. Let the lines AD', BD" and CD" intersect in a point O and let (p) be a
line which goes through the point 4 and is parallel to the line BC. Let BD"N(p) ={K}

and CD"M ( p) {L}, figure 33. The triangle D'QB is directly similar to the triangle
AQK, thus € ﬁ = %. The triangle D'CQ is directly similar to the triangle ALQ, thus
;:z,', = ZI_TZ . From the last two equalities we get that

c=d' l-a’
Furthermore, the triangle CD"B is directly simi-
D (®)  Tar to the triangle AD"K , therefore the equality

D" % = % holds true, and it is equivalent to the

0 equality

b=d' _k-a )
L A K

B D’ C 4 = b=c 3)
The triangle BCD™ is directly similar to the triangle
ALD™, and therefore the equality dc':—bb = dl';fa
holds true, and is equivalent to the equality

Figure 33

d"—a _l__a
d"—b - c—b . (4)

Finally, the equalities (2), (3) and (4) imply that
BD' . CD' AD" _d'=b d'-c d"-a _(_k=a\(_b=c)(_lza)_
D_ICW‘ DVIA D"'B C— d' d" b_d"' ( )( )( ) 1’
i.e. the equality (1) holds true.
Ontheotherhand, if BD""CD" ={Q} and AQ N BC ={A"} ,then theprev10usly

proven, implies that %-%- AD" =1 and by assumption that &-C:~ ﬂ =
Alc D"A DY"B C D"A DINB
holds true we get that % = % . The latter implies that the points 4' and D' coincide,

re. Qe AD'. m

11.2. Remark. According to the Ceva theorem the medians of a ABC intersect
in one point. Namely, if Al, 31 and Cl are the mldpomts of the sides BC, C4 and AB
respectively, then BAI AlC CBl BIA and ACI CIB thus

BA, CB AC,

:':':21
4C B4 CB
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which according to the Ceva theorem means that the medians A4, BB; and CC; intersect
in one point.

11.3. Definition. The line segments (the lines) AD', BD" and CD™ from theorem
11.1 are called Ceva line segments (lines) for o ABC.

11.4. Theorem. The lines which connect the midpoints of the sides of a triangle
with the suitable Ceva line segments intersect in a unique point.

Proof. Letin 2 ABC (figure 34) AD, BE and CF be arbitrary lines which intersect
in the point M; A', B' and C' are midpoints of the lines BC, CA and AB respectively and
P, K and L are midpoints of the line segments AD, BE and CF respectively. By applying
the Ceva theorem to AD, BE and CF, we get the following

EC DB FA
thus,
AE CD BF
2 .2 .2
EC DB FA
. 2 2 2
1.€

Finally, from the Ceva theorem applied to B
aA'B'C" we get that the lines 4'P, B'K and
C'L intersect in one and only one point. m

Figure 34

11.5. Consequence. The lines which connect the midpoints of the sides of a
triangle and the midpoints of its altitudes intersect in one and only one point.

Proof. It is implied directly from the theorems 5.1 and 11.4. m

11.6. Theorem (Van Aubel). If A', B', C' are points on the sides BC, CA, AB
respectively, of the triangle ABC such that the lines AA4', BB', CC" intersect in the point
0, then the following holds true

40 _4C , 4B
o4' C'B B'C’

Proof. Let the affixes of points be labeled by
a suitable small letter. Let () be the line which goes
through the point C and is parallel to the line 44', and
(s) be the line which goes through the point B and is
parallel to the line AA4' and let (»)NBB'={L} and
(s)NCC'={K}, figure 35. Figure 35
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The triangle AQC' is directly similar to the triangle BKC', thus Z,:Z = C,:b ,

ie. i:g = % . Furthermore, the triangle CB'L is directly similar to the triangle AB
thus [;__CC = l;__s, i.e Z',:‘c’ =‘; : the triangle BKC is directly similar to the triangle
' ﬂ_q—a' . c—a'_ q-a' . . . ..
A'QC, thus = =-—7:, ie. T=-=-— and the triangle CLB is directly similar to the
. ' l—c _9=@" . b-a'_4q9-¢
triangle 4'QB , thus ,="=;—,ie. 5="=-——.Now,
AC! ¢'—a| | |b'=a| _|q-a| | |g-al ( 1 1 )
== 4 = r = + = —a —_—
C'B B'C [|b=c'| " [|b'=c| |k=b| " |l=c]| lg-al 5] " i=]
=lg—a|(-L c—a'| 1 Ib—a'l): lg=a|  |c—a'lt|b—a|
lg=a'| |c=b|] ~ |g=a'| [b=c| ] [g~a'l |b=c|
_lg-al _ 40 .
lg—a'l o4’

11.7. Comment. In the Van Aubel theorem the lines AA4', BB', CC"' intersect in

the point O, therefore by the Ceva theorem we get that B—AC . % . % =1, which means
that there exist real numbers m, n, p such that 2L =2 €B _m = AC. _n Tpep the
A'C n° B'A P C'B
nb+pc

affix of the point A' is determined by a'=

and thereby the Van Aubel theorem

holds true that 22 = AC' | AB' _n % ”+P

, therefore the affix of the point Q is as

C'B BC m
following
_ ma+(n+p)a' _ ma+nb+pc (5)
- m+n+p - m+n+p

11.8. Theorem. If A4', B', C' are points on the sides BC, CA, 4B, respectively,
of the triangle ABC such that
B4 _P CB' _m AC' _n

b

A4C n’ B4 p’CB m’
Then the lines AA4', BB', CC" intersect in a point Q whose affix is determined in (5).

Proof. Thereby, it holds true that

BA'ZE’ CB' _m and _n
A'C n° B'A P c'B m

we get that
a'= nb+pc b= pct+ma
n+p °’ p+m m+n
Clearly, the first part of the statement implies from the Ceva theorem. We are going to
show that the point O whose affix is given in (5) lies on the line 44'. We have

ma+nb+pc
q a _ mintp ¢ ntp _nbtpc—(ntpla _ ntp R
a'-a nbtpe_, m+n+p nb+pc—(n+p)a m+n+p ’

n+p
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which according to the consequence 1.4 means that the points 4, Q and B, O, B' are
collinear. Analogously, we prove that the points are collinear and that the points C, Q, C'
are collinear as well. m

11.9. The last theorem can be used to find the affixes of some important points
of a triangle, such as the centroid, the center of the in-circle, the Jargon point( will be
discussed later) and so. For example, for the midpoints A', B', C' of the sides BC, CA,
AB of the triangle, it holds true that

B4 —1 CB' _1 AC' _

ac 7 B4 CcB
i.e. m=n= p=1,thus, from the theorem 11.8 we get that the medians intersect at a point
T with affix tz%b“. [

12. AREA OF A TRIANGLE

12.1. Let be given a o ABC and let the affixes of the vertices 4, B, C be a, b, ¢
respectively. We plot a line through the vertices B and C, whose auto conjugated equation
is as following

i(c—b)z—i(c—b)z+i(ch—cb)=0. (1)
The distance from the point 4 to the line (1), i.e. the length of the altitude of A ABC plot
at the vertex 4, 1s
li(c—b)a—i(c—b)a-+i(ch—ch)
2lc—b| ’

hgc =
1.e.

. _|~(c-bya+(c-b)a-cb+ch)
BC ~ 2[c=b|

Therefore the area of the a ABC is

BC-h —(c—b)a+(c—b)a—cb+ch
PAABC= 2BC=‘ 4 ‘ : (2)

Since the arbitrary complex numbers u and v the number uv—vu isan imaginary number,
the equality(2) transforms as following

—(c=b)a+(c—b)a—cb+ch

_ P, apc =i 7
1.€
a a 1
P apc=*b b 1) 3)
c ¢ 1

12.2. Definition. Let be given a ABC and let the affixes of the vertices 4, B, C
be a, b, c respectively. We shall say that the a ABC is positively oriented with respect to
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the considered coordinate system, if its area, calculated by applying the formula (3), is
obtained when we multiply by +i, and negatively oriented if its area is obtained when the
formula (3) is multiplied by —i.

12.3. Remark. If A ABC is aright angled triangle, with a right angle in the vertex
C, then for the affixes in the vertices 4 and B it holds true b =—a, thus from (3) for the
area of the triangle we get that

_ \Ea—c;|
Boapc=—% -
12.4. Remark. The affix of the point P', symmetrical to the point P with an affix
p, with respect to the line which passes through the points with affixes a and b, can be
determined by using the following condition

a a 1
b b 1|=0,
m m 1
where m = %p' . The details are left to the reader as an exercise.

12.5. Definition. We shall say that the n-gon 4,4,...4,, is positively oriented if
a A1 Ay A3 1s positively oriented.

We shall say that the n-gon A4 4,...4, is negatively oriented if aAjAyA; is
negatively oriented.

12.6. Theorem. If 4;4,...4, isa convex polygon whose vertices 4, 4,,..., 4,
have affixes a, a,,..., a,, respectively, and § is its area, then § = i%lm(T a,a), where
a=(ay,a,,...,a,) and T is the mapping given in paragraph I 9.

Proof. The area of the polygon is calculated as a sum of the areas of a 44,45,
aAA3Ay ..., a A4, _» A, and a 4 A, _; A, . Furthermore, these triangles are equivalently
oriented, therefore

@ a 1 a a1 a a 1 aq a1 Q a 1
ia g 1| ilas ;3 1| day a 1 ila,» a,, 1| ia, a,; 1
S—+ ay  ag li a, ay 1i as as li...i [ li a, a, 1
4 4 4 4 4
:iﬁ'(alaz—azal+a2a3—a3a2+a3a4—a4a3+...+ana1—alan)
=i£(2ilma1a2 +2ilmayaz +2ilmayay +...+ 2ilma, a;)
=+ 72ilm(a a0y +agaz +azay +...+a,ap)
=i—%lm(a,Ta) =i%lm(Ta,a) . H
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12.7. Remark. The formula for calculating the area of a convex polygon, given
in the previous theorem, applies as well when the triangle is not convex.

12.8. Example. Let be given a convex pentagon A; 4, A3 A4 A5 . If we connect the
midpoints of its sides consequently, we get a new pentagon. Following the procedure, we
get a series of pentagons and let Sy, S],5,,... be their areas. Prove that

16Sn+2 _12Sn+l +Sn =0.
Solution. It is sufficient to prove that
168, =128+ 57 =0 4
For this purpose we will first calculate S; and S, .
+85, = Im(Ta + T?a,a + Ta) = 2Im(Ta,a) + Im(72a,a) and

125, = Im(T ( a+2T2+T2a )’ a+2T2+TZa ) ,

ie.
+325, = 5Im(Ta,a) +3Im(Ta,a).
If we eliminate Im(7 2a, a) and take that £S5, =Im(7a,a) we get the equality (5). m

12.9. Example. Prove that if the odd vertices of a n-gon are translated for the
same vector, then the area of the new n-gon is equivalent to the area of the given n-gon.

Solution. Let a be the oriented n-tuple of the affixes of the n-gon's vertices. The

area of the n-gon is as following
§=+11Im(Ta,a),
For the area of the new n-gon we get the following
§'=+1Im(T(a+h),a+h)
where h is one of the following ordered n-tuples
h=(0,0,0,0,...,0,0) or h=(,0,0,0,...,a), e C,

depending whether # is an even or an odd number, respectively.

We get that

128'=Im(T(a+h),a+h)=Im{(7a,a)+(Ta,h) + (Th,a) + (Th,h)} .
From
(Ta,h) = (a,Th) = (Ta,T*h) = (Ta,h)
we get the following
Im{(Ta,h)+ (a,Th)} =0
and if (Th,h) =0 we get
128'=Im(T(a+h),a+h)=Im(Ta,a) =25 .

According to this, S =S", which was supposed to be proven. m

125



12.10. Let’s consider a a ABC, whose vertices 4, B and C have the affixes a, b
and c, respectively. In the example II 3.3 we proved that
0o a&(c—b)+bl§(g—c)+c£(b—a)
a a 1
b 1

c 1

(oI~ |

Is the affix of the center O of the circumcicrle of the o 4BC. Clearly, the radius of the
circumcircle of the A ABCis R=|a—o|. According to this, for the radius of the circum

radius if of a ABC is as following

R=|o—a| = l-blb=cHac
a 1

b

ol Sl
—_

c 1
Since, A_B=|a—b|,ﬁ/’=|b—c|, a=|c—a|, and also applying 12.1 we get the
following formula

R= AB-BC-CA

4P, 4pc
12.11. Theorem. The ratio between the areas of two similar triangles is equivalent
to the ratio of the squares of the respected sides.

Proof. Let the triangles ABC and 4, B,C; , whose affixes of the vertices are a, b,
cand ay,b,c; respectively, be similar. There are two possible cases.

a) There is a direct similarity S(z)=dz+e which maps a ABC into a 4B,C
and therefore we get

a a 1 date date 1 a 1
b B o1 db+e db+e 1 b1
q a 1 dcte dcte 1 2 c ¢ 5
P aBc, = 7 = 7 =ld["=—F——=I[d[" F, 45c.

b) There is an indirect similarity S(z) = dz+e which maps a ABC to a 4 B,C; .
Analogously as in a) we prove that

2
P aBc, =1d1” B 4pc.

The statement of the theorem is implied by the theorems 4.6 and 7.8. m

12.12. Consequence. The ratio between the areas of two similar n-gons is
equivalent to the ratio of the squares of the respected sides.

Proof. Theorems 12.6 and 12.11 directly imply the above given consequence. m
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13. INCIRCLES AND EXCIRCLES OF A TRIANGLE

13.1. Let’s consider the » ABC whose vertices A, B and C have affixes a, b and
¢, respectively. In lemma 10.4 we proved that any point D with an affix d is uniquely
determined by the real numbers A, p, v such that

Aa+ub+ve=d €))
where
A+u+v=l.

Let P,R,P,P be the areas of the
triangles ABC, DBC, DAC and DBA, taken with an
appropriate sign depending on the orientation of
the triangles (figure 36). From (1) and (2) and the . _
conjugated equation of (1) we obtain the system:

A+u+v=1
Aa+ub+ve=d
ha+ ul; +ve=d .
The solution of the above system is Figure 36
_A B _5
h=p, W=F V=G 3)

So, we proved the following lemma.

Lemma. The numbers A, p and v which according to the formulae (1) and (2)
determine the position of the point D with respect to the o ABC are proportional to the
areas of A, P, and B, i.e. they are determined by the relation (3). m

13.2. Let be given a point /, with an affix z and let the distances between the point
I to the sides BC, CA and AB of the a ABC be 1, and r; respectively. The lemmas
13.1 and 10.4 imply that

_ 2\P _ 2upP _ 2vP
M=y 2 Tear BT Tad) @)

where the numbers A, i and v are uniquely determined. Clearly, if

- |b—c] _ lc—al _ la—b|
" |a—bl+b—c|+ c-a|’ H= |a=b|+|b—c|+c—a|’ " la—bl+b—clH c-a|’
then
— = mp=— 2P
== = = b Hb—cle—a]
and for the affix of the point / we get that
5= |b—c|-a+|c—al-b+|a—b|-c (5)

|a=b |+ b—c|+ c—al|
Since the numbers A, i and v are positive numbers, the remark10.4 implies that the point
1 is inside the a ABC. So, we proved the following lemma.
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Lemma. For any triangle, there is a unique point inside of it which is on the same
distance from the sides of the triangle. m

13.3. Remark. Clearly, the circle with a center in /, whose affix is given in (5),
and radius . 2p
|a=b|+b—c|+| c—al

touches the sides of the o ABC, i.e. it is an incircle of the o ABC.

13.4. Let A', B', C' be the points in which the circle K(/,r) meets the sides BC,
CA, AB of the A ABC. Then, using the degree of the
points 4, B, C with respect to the circle K(/,r) we get
that

AI

AC'=4B', BC'=BA', CA'=CB'

B’ B thus

iB i BT _,

B'C A'B C'4
Now, according to the Ceva theorem we get that
the lines AA4', BB' and CC' intersect at a point M

Figure 37 (figure 37). So, we proved the following lemma.

A

Lemma. The lines which connect the vertices 4, B, C of a ABC to the points
A', B', C' at which the sides meet the incircle K(/,7) intersect in a point M, which is
called a Gergonne point for A ABC.

13.5. Remark. Analoguosly, we prove that there exist three circles which are
excircle of a ABC. The affixes of their centers are as following

 _ —|b—cl-at|{c—a|b+|a-b|c v _ |b—cla—{c—al-b+a-b|c _ |b=c|-at|c—al-b—|a-b|c
T Ha-bHb—clHc-a| > ° T |a=blHb—clHc—a| > °  |a-bl+b—clHc—a]
their radii are
o 2P o 2P o 2P
—|a=bl+|b—c|+Hc-a|’ la—b|-|b—c|+ c—a|’ la=b|+|b—c|-|c—a|’

(figure 38), respectively.

Figure 38
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13.6. Lemma. The lines which connect the vertices 4, B, C of the » ABCto K, F,
L the points where the sides of the triangle meet the excircle concur in a point N which is
called Nagel point for the a ABC.

Proof. Firstly we are going to prove that

BF'= BM = AB+BC+CA
2

(figure 39) There is

=BA+ AF'= BA+ AF
and

BM =BC+CM =BC +CF .
If we add the last two equations and take that
AC = AF +CF
we get the required equality. According to this,

Figure 39

AF AF! BFv BA AB+BC+CA B_14= —AB+§C+CA.

Analogously to this, we prove that

CK =IA= AB+32C—CA  BL=FC= AB—BZC+CA  KB= —AB+£23C+CA '

Now, the statement in Lemma is implied from Ceva's theorem, thereby

13.7. Remark. Clearly, the lines A/, Bl and CI are bisectors of the inside angles
of the o ABC and their equations are

,_ |c al(b—a)+a—b|-(c— a)( _)
|c— a\(b a)+|a b\(c a)

2 p ellaiHabieh) — P
|b—c|-(a—b)+|a—b|-(c—b)

,_ |b c|(a c)+|c a\(b c)( ‘)

|b— c|(a c)+|c a\(b c)
respectively. Analogously, we can determine the bisectors of the outside angles of the
A ABC.

13.8. Let 4; be the point where the bisector 4/ meets the side BC. Its affix is
a = lerT)}‘f . Since the points 4, / and 4; are collinear, by applying the consequence II 1.3

we get that
|c—al-(b—a)+a=b|(c—a) _ b—a+A(c— a)
|c—al-(b-a)+ a=bl(c—a)  b—a+h(c—a)

The latter is equivalent to
[p-i) () -0
le=al]\¢c—a  b-a
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Now, since the points 4, B and C are not collinear we get that A = la- ‘| , 1.e. the affix of

|e=
the point 4 is
_|e=al-b+Ha-b|c
1™ e—alHa-b| -
Analogously, the affixes of B; and C; the points where the bisectors B/ and CI meet the
sides AC and AB are

__|b—clatla-b|c |c—al-b+|b—cl|-a
by

and ¢ =

T |b—c|+a-b| 1™ e—altb—c| >
respectively. Thus
BA, = 4BBC. g = AC-BC (6)
Do CA+A4B CA+4B
B _4p .
C4 A

Therefore, we proved the following lemma.

Lemma. If 4; is the point where 47, the bisector of the inside angle at the vertex
A of the a ABC, meets the side BC, then the equalities (6) and (7) are satisfied. m

13.9. Remark. Clearly, the analogous equalities to the equalitity (6) hold true
for the bisector B/ and CI of the inside angles at the vertices B and C of the a ABC.
Furthermore, if B; and C are the points of where the bisector meets the sides C4 and
AB respectively, then

B _pi 446 g
CB, BC BC, CB"
13.10. Theorem (Euler). Let O be I the circumcenter and the incenter of the

a ABC, and R and r be their radii, respectively. Then,
OI° =R®-2Rr.

Proof. Without loss of generality, we can say that the center of the circumscribed
circle coincides with the origin. If a, b, ¢ are the affixes of the vertices of the A 4BC, then
|a|=]b|=|c|=R and according to the proof of lemma 13.2 the affix of the incenter is
as following

_ |b—c|-at|{c—a|b+a—-b|c
|a=b|+|b—c|+ c—al|

Therefore,
(|b—c| a+|c—al|b+a-bl-c)(|b—c| a+\c—a| b+\a—b| c)

(la=b|+b—c|+|c— a|)
Now, the statement in Lemma is directly implied by the operations of complex numbers,
the formula for the radius of circumcircle (discussed in 12.10) and the formula for the
radius of incircle (discussed in Remark 13.3)

OI
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13.11. Remark. Analogously, as in theorem 13.10 it can be proved that

—2
Ol =R* + 2R , where I' and 7' are the center and the radius of the excircle of the
a ABC, and O and R are the center and the radius of the inscribed circle of the » ABC.

13.12. Remark. Let the unit circle be inscribed in the o ABC whose vertices A4,
B, C have the affixes a, b, ¢, respectively, and let it meets the sides BC, CA4, 4B at the
points P, O, R with affixes p, g, r, respectively. Then, according to the remark II 3.12 d)
we get that
= E b= Zi and ¢ = 2ﬂ

T og+r’ r+p p+q’
Furthermore, the example II 3.3 implies that the circum center of A 4BC has the affix
_ _ 2pgr(ptq+r)
(p+a)q+r)(r+p)”°

The remark 5.4 implies that the orthocenter of the o ABC has an affix

22,272 2
= AP +a*r 47 0 v par(prg )
(p+q)g+r)r+p)

13.13. At the end of this part let’s note that the following theorem can be proved.

Theorem. Let o~ ABC, whose vertices 4, B and C have the affixes a, b and c,
respectively, be inscribed in the unit circle. Then, there are complex numbers u, v, w such
that a = u> , b= V2 ,C= w? and the midpoints of the arcs AB, BC, C4A which don’t consist
of the points C, 4, B are points with affixes —uv, —vw, —wu , respectively. Therefore,
the affix of the incenter L of the a ABCis [ =—(uv+vw+wu). m

13.14. Example. Let L be the incenter of the A ABC, and the lines AL, BL, CL
meets the circums circle of the » ABC at the points 4, B, C|, respectively. If R is the
radius of the circumscribed, and r the radius of the inscribed circle of the A 4BC prove
that: o
LALG LA-LB Faapc  _ 2r
—— =R, b) £££2 =2p, =<

LB ) LC] d C) PAA]B]C] R

a)

Solution. Let the circumscribed circle of the o ABC be the unite circle and let u,
v, w are the complex numbers as in the theorem 13.13. According to that theorem, we get

that /=—(uv+vw+wu) and a = u? , b= V2 , C= w? and the midpoints of the arcs 4B,
BC, C4A which don’t consist of the points C, 4, B are points with affixes —uv, —vw, —wu,
respectively. Furthermore, since,

EEW) _ —uv—uw 2 and 2
7 - - 1 1
I=(—vw) —ul—v—ﬁ a—(—ww) u—2+w

a=(-vw) _ u’+ww _ wow

we get that the points with affixes a, / and —vw are collinear, which means that the point
A4, has an affix a; =—vw. Similarly, the affixes of the points By and C} are b =-uw
and ¢; =-uv, respectively.
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a) the statement is implied by the equality

LA-LC, _ |l—ajl{l=¢|| _ [u(v+w)w(u+v)| _ [vFwHu+v| =R

LB |I=b| |uv+uw+vw+v2| [(w+v)(w+v)|

b) If z is the affix of the point where the incircle meets the side BC, then z is the
affix of the foot of the perpendicular drawn from the point L to the side BC. Thus its affix
is

z=Lb+c+i-bel)

thus
r=|l-z|= LEORO) _ Ly ) y) ot w)(w+ )|
Therefore,
LA-LB _ [uA»)(uAw)u+v)(v+w)|
LG [w(u+v)|
=|(uw+v)v+w)(w+u)|=2r
c¢) The areas of the triangles are
u? 1u? 1 w u 1
| 5 ) ,
P apc=%54|v" 1/v® lland P, ypc =z —uw v 1,
w? 1w 1 uw w1
thus
| Prape |= u4w2+w4v2+v4u2—v4w2—u4v2—w4u2|

| PAA1 B | Vit +uw? —uv® —vw? —wu?

4

(v2 u)(vu +w—wu—wv)|

(u— v)(uv+w2 —WU—Wwv) |

(u—v)(u+v)[(uv+w2)2—(wu+wv) |

(u—v)(uv+w2 —Wu—wv) |

2

_|(u—= v)(u+v)(uv+w2 —wu—wv)(uv+w +wu+wv)|

(u— v)(uv+w —WuU—wv)
=|(u+v)(uv+w2 +wu +wv)|

=|(u+v)(v+w)(w+u)] =%

which was required to be proven. m
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14. STEWART'S THEOREM

14.1. Let a, b, ¢ be the affixes of the vertices 4, B, C of the a ABC and let
the point D be on the side BC (figure 40). Then, the affix of D is d = bli}}‘f , for some
A€ (0,1). According to this,

AB=|b—-a|, AC=|c—al|, BC=|b-c|,

——  Ab—c| A= |b-c| —m _ |b-a+A(c—a)|
BD= 144 > CD_1+,1’ AD_T
Thus
AC” -BD+AB"-CD-BC-CD-BD = A le=al +|b-af —2|b=cP)
—lb-c| kz(c—a)(E—£)+(b-a)(Z—a)+x(c—a)(c—a)+x(b—a)(b—a)—x(b—c)(b—c)
(1+1)%
—lb-c| 12 (c—a)(c—a)+(b—a)(b—-a)+\(c—a)(b—-a)+\(b—a)(c—a)
(142)?
=|b- |M AD .BC.

(1+2)?

So, we proved the following theorem.

Theorem (Stewart). If D is a point on the side BC of the A ABC, such that O is
between the points B and C, the following equality holds true

AC” -BD+AB"-CD—-BC-CD-BD=AD" -BC. m (1)

14.2. Example. Let m , mg, mc be the lengths of the medians of the » ABC
drawn from the vertices 4, B, C respectively. Prove that
2 _AC’+4B" _BC' 2 _BC'+BA _AC’ 2 _ CA'+CB’ _ 4B’
=TT T mp=T o, me == (2)
Solution. We shall only prove the first equality in (2). The other two equalities
can be proved analogously.
Let A" be the midpoint of the side BC. Since

CA'=BA'=BC and m, =44,
By applying the Stewart theorem, we get the following equality
2
m%-BC=AC" BC+AB BC - BC- BC BC

If we divide it by BC we get the following equallty
2 _AC'+4B- _BC

2 s "

14.3. Example. The lengths of the medians of the » ABC are m, =9 cm,
mpg =12 cm and m¢ =15 cm . Calculate the lengths of its sides.
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Solution. From the equalities (2) using the length of the medians we can find the
length of the sides of the o ABC.

AB _ 8(mA+mgb) 4m2 ’ BC2 _ 8(mB+rr19C) 4m? ’ CA2 _ 8(mc+mA) 4m3 3
Using the equality (3) we get that

Elecm, R’=2\/7_30m and CA=4\/BCH1.I

14.4. Example. Express the length of the bisectors of the interior angles of the
a ABC using the length of its sides.

Solution. Let D be the point where, the bisector /, of the angle at the vertex 4,
meets the side BC. In lemma 13.8 we proved that

_:—iBBic and C_D:AiBic .
CA+AB CA+AB

According to the Stewart theorem, we get that
—2
I =4B- AC( Lj
(AB+AC)?
It can be proved analogously that

lﬁ:ﬂe-ﬁ?@ Lj and I3 = AC- BC( L) n
(AB+BC)? (AC+BC)?

14.5. Definition. The line symmetrical to the median with respect to the bisector
of the angle drawn from the same vertex is called symmedian.

14.6. Let A4, AA' and AA" be the bisectors of the angle, the median and the
symmedian of the a ABC, drawn from the vertex 4 (figure 41). The equations of the
median and the symmetry are the following

z—q= bt+c-2a (Z a) and z - a_‘c a|(b a)ta—b|(c— a)( _)
b+c—2a |c— a|(b a)+|a b\(c a)
respectively.
The indirect similarity

|e— a|(b a)+\a b|(c a) =
S(2)= |c—a|(b a)+\a—b|(c a)( a)* “)

A is a line symmetry and the line of symmetry is a bisector
of the angle at the vertex A by direct calculations we get
that the line with an equation

|e— a| (b— a)+|a—b| (c=a) ~ =

|e— a| (b a)+|a b| (c a)( @) )

is an image of the median e under the line symmetry (4).

A" A4, A" According to this, (5) is the equation of the symmedian

Figure 41 drawn from the vertex 4. A" the point where the

z—a=
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— btic

symmedian and the side BC has the affix a" T

(5), thus the following equality is satisfied
lc—al*(b-a)+Ha—bP(c-a) _ b—a+h(c—a)
|c—a*(h—a)+|a=b|*(c-a)  b—a+\(c—a)

which is equivalent to the equality

(A——“‘“z )(c ca_ba ﬂ) 0

|c—al c-a b-a
and since the pomts A, B and C are not collinear we get that A =
the point 4" i

. But, the point 4" lies on the line

|a=bf?

le=al?

, 1.e. the affix of

w_ lc—alb+a-bPc
T |e=aff+a-bP
Analogously to this, for the points of intersection B" and C" of the other symmedians
and the sides AC and 4B we get that

w_ |b—cPa+la=blc w_ le—alb+b—cla
\b—c[>+a—b[* le—al?+|b—c[?
respectively.
The above stated impies that thus,
BA" AB BC and CA" Ag BC2 (6)

50 4B +CA” AB +CA

— —2

BA" _ AB (7)

C n az

So we proved the following lemma.

Lemma. If A" is the point of intersection between the symmedian at the vertex
A of the o ABC and the side BC, then the equalities (6) and (7) are satisfied. m

14.7. Consequence. The symmedians AA4", BB" and CC" of the » ABC are
concurrent.

Proof. The proof is directly implied by lemma 14.6 and the Ceva theorem. m

14.8. Example. Express the lengths of the symmedians of the A 4BC using the
lengths of the sides of the triangle.

Solution. By using the equalities (6), and the Stewart theorem for the length of
the symmedian 44" we get the following

—2 —2 —2 B2
A"A"=A4C" 4B | 2-—BC |
(AC”+4B")?
Analogously to this, for the symmedians BB" and CC" the following holds true
—2 —=2 2 N 5 —2
B'B°=BC" AB|2-—4C | and C'C’ =AC" -BC | 2-— 4B |
(BC +4B")? (AC +BC")?
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15. SIMPSON LINE

15.1. Theorem (Simpson). Let D be point on the circumcircle of A ABC. Then
the foots of the perpendiculars drawn from the point D to the sides of the o ABC are
collinear.

Proof. With no loss of generality, we can
say that the a ABC is inscribed in the unit circle. Let
a',b',c' be the affixes of 4', B',C' the foots of
perpendicular drawn from the point D to the sides BC,
CA and 4B, respectively (figure 42). If we take that

a=L, bp=1, c=1 and gzi,
a b c d
Then the example 1.9 implies that

a’:%(b+c+d—@), b'=l(c+a+d—%) and

ld 2 5 d
L _ab
c—2(a+b+d d)'

Thus,

gp _ brevd=ti—{asbrd—) o) _ (a-o)b-d)
' crard-%—(atb+d-2) (e=b)d=a)  (b=c)(a=d)

_ (c-a)(b-d) _ Drerd=ti—{arbrd—7)

_a'-'

- —b)d - - _ac_ _ab - bh'— [
(c=b)d=a)  ctq+d o< (a+b+d ”7) ¢

thus the consequence 1.4 implies that the points 4", B', C' are collinear. m

15.2. Definition. The line such that the points A4', B', C' (defined as in theorem
15.1) lay on it, is called Simpson line of the point D with respect to the o ABC.

15.3. We shall give the equation of Simpson line for the point D about the o ABC.
If Z is an arbitrary Boint on the Simpson line, then the points Z, 4", C' are collinear,

therefore 5%‘;, = 5';‘;" , and for the Simpson line we get that

z-zd=¢ pac=cd

a'-c' a'-c'
Furthermore, according to the proof of theorem 15.1 we get that
—e'=Lc— _b) goer=L (4= _d
a'-c'= 2(c a)(l d)’ a'-c'=5-(a c)(l b)’
therefore ‘1';5 = ”dLb . In order to determine the constant term m = “'Q""i:“' we shall take
a—c —C

that the point B' is on the Simpson line, i.e.

1 _ac\_1(ayga+d—ac\ach | -
2(c+a+d d) 2(c+a+d g)d +m=0.

So,
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m=4(a+b+c+d)-L(a+b+c+d)
thus the equation of Simpson line of the point D With respect to the a 4BC'is

z— a§b+ab0(a+b+c+d) Ha+b+c+d)=0. (1)

15.4. Example. Let the points 4, B, C, D lie on a same circle. Prove that the point
X where the Simpson line of 4 for the a BCD meets the Simpson line of B for the A ACD
is on the line which passes through the point C and the orthocenter H of the a ABD.

Solution. The quadrilateral ABCD is cyclic, so we can say that it is inscribed in
a unit circle. Let a', a", a™ be the affixes of A4', 4", A" the foot of the perpendiculars
drawn from the point 4 to the lines BC, CD, DB, respectively, and b', b", b™ are the
affixes of the food of perpendicular B', B", B" of the normal lines drawn from the point
B of the lines AC, CD, DA, respectively. So,

a' 1(a+b+c—b—c), a"=l(a+b+d—ﬁ), a"=

_cd
3 5 (a+c+d a),

1
2
b=t(b+a+c-), b'=L(b+c+d-<d), o =%(b+d+a—%).

The equation of Simpson line of the point 4 is: z—a'= ; Z (z a') ie.
z—a'=b4(z-q), )

and the equation of Simpson line of the point Bis: z—b'= b"_ll; : (z b') ie.
z—b':%(z—b'). 3)

By solving the system of equations (2) and (3) we get the affix x of the point of intersec-
tion X, as following
x=T(a+b+c+d).

Moreover, the affix of the orthocenter H of the A ABD is h=a+c+d and since

h=c _ atb+d—c _ atbtc+d—2¢ _ 2(a+b+c+d) c

h—c a+b+d—c a+b+c+d-2c 2(a+b+c+a?) c x—c’

— X=C

According to the consequence II 1.3 we get that the points C, H and X are collinear. m

15.5. Example. Let /(N,POR) be the SImson line of the point N of the a POR.
Let the points 4, B, C, D be on a same circle. Prove that the lines /(4,BCD), /(B,ACD),
I(C,ABD), I(D,ABC) concur.

Solution. We shall say that the points 4, B, C, D lie on a unit circle. According to
the example 15.4 the lines /(4,BCD) and /(B,ACD) intersect at the point X with an affix
x=7 (a+b+c+d). The right part of the last equality is symmetrical with respect to the
affixes a, b, ¢, d of the points 4, B, C, D, thus the point X is the point of intersection of the
Simpsons lines /((4,BCD), I(B,ACD), I(C,ABD), [(D,ABC). m
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15.6. Example. Let /(P,4BC) and /(Q,ABC) be the Simpsons lines of the points
P and Q with respect to the o ABC and O be the center of the circum circle of the » ABC.

Prove that £(I(P, ABC),I(Q, ABC)) = %LPOQ .

Solution. We shall say that o ABC is inscribed in the unit circle. 15.3 implies that
the equations of the lines /(P,4BC) and /(Q,4ABC) are

z—zap%b+‘;—[j;(a+b+c+p)—%(a+b+c+p)=0 and
Z—Z‘%b+"2—Zc(a+b+c+q)—%(a+b+c+q)=0,

respectively. The complex angle coefficients of the lines /(P,ABC) and /(Q,ABC) are
n :a—;b and n'=aTCb , respectively. According to theorem II 1.7 the oriented angle@

between the lines /(P,ABC) and I(Q,ABC) is given by the formula 20 = nﬂ = %, which
according to I 8.7 means that
Z(I(P,ABC),I(Q, ABC)) = %APOQ .;

16. PTOLEMY'S THEOREM

16.1. Lemma. If z j»J=12,3,4 are the affixes of the consecutive vertices of a
cyclic quadrilateral, then
(z21=22)(z3—24) 1
(z1=24)(z3—23) >0 (1)
Proof. With no loss of generality we shall say that the center of the circum circle

coincides with the origin, and the radius of the circle is 7. Then, z i= re'®i , j=12,3,4.
Also, we can assume that consecutively of the vertices is equivalent to the condition
Q] <Py <P3 <@g <@ +2m. 2)
Thus, it holds true that:
(z21=2))(z3-24) _ (¢M1=€"2)(' B =€)
(z21—24)(25~23) (eiq?l o4 )(ei‘Pz —o'"3 )

( [01=02 0102 )( 0304 _[(93—(P4)
e e

_ 2 e 2 2 . 2
( 0104 _ 0104 )( [02-03 9203 )
e 2 e 2 M\ 2 2
sin®L ;(Pz sin® ;(94
== < >

P10 - 92793
s 3 s 3

therefore according to (2), each argument of sin belongs to the interval (—m,0) . Thus the
inequality (1). is proved. m
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16.2. Theorem (Ptolemy). The product of the B
lengths of the diagonals of a cyclic quadrilateral is equal C
to the sum of the products of its lengths of the opposite
sides.

Proof. Let zj,j=1,2,3,4 be the affixes of the
vertices 4, B, C, D of a cyclic quadrilateral ABCD, figure

D
43. The statement of the theorem is equal to the equality A
AC-BD=AB-CD+BC- AD,
i.e. the equality Figure 43
lz1—z3|-|za—z4 | =lz1— 22 |- |z3 — 24 [+ |21 — 24 || 22 —23|.  (3)
According to the lemma 26.1 we have that
[(z1 =29 )23 —24) | +| (21 —24)(25 —23) | = [ (2] — 22 )(23 — 24) + (2] —24)(23 — 23) |
=|—z124 2323 + 2123 + 2324 |
=|(z1 —23)(z3 —24) |,
which means that the equality (3) is satisfied. m
16.3. Theorem. If for the complex numbers p, g, r, s it is true that (p=s)r=q) o g

(p=4q)(r=s) ’
then they are the affixes of the consecutive vertices P, O, R, S of a cyclic quadrilateral
(cyclic) or they are collinear.

Proof. In extended complex plane the points O, R, S, determine a circle (K).
A Mobius transformation determined by f(q)=c, f(r)=1, f(s)=0 maps the circle

(K) on the real axis and thereby theorem II 10.8 it is defined by f(z)= % . The

point P is on the circle (K) if and only if its image is on the real axis i.e. if and only if

— (p=s)r=9)
JP= g € R - =

16.4. Example. An equilateral triangle ABC is inscribed in a circle. An
arbitrary point M is on the arc BC on which doesn’t belong the point 4. Prove that
BM +CM =AM .

Solution. By applying the Ptolemy's theorem on the cyclic quadrilateral ABMC
we get that

BM -CA+CM -AB=BC-AM . (4)

But, the triangle ABC is equilateral, AB=BC=CA, so thereby (4) holds true we get
that

BM - AB+CM - AB= AB- AM
and if we divide the last equality by AB we get the necessary equality. m
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16.5. Example. Given are circles ki, ky, k3, k4 so required that
ky Nky = {41,815}, ky Nhy =143, By}, k3 Nky =143, B3} and
k4 ﬁkl = {A4,B4} .
If the points 4, 4,, A3, A4 are concyclic (they lie on a same circle too) or are collinear,
then the points By, By, By, B, are concyclic or collinear. Prove it!

Solution. The points
Al’ Bl, Az, Bz ) Az, Bz, A3, 83, A3, B3, A4, B4 and A4, B4, Al, Bl
are concyclic, so thereby lemma 25.1 we get that the numbers
(q—ay)(by=by) (ay—az)(by=by)  (az—ay)(by=by) (ag—a))(by—by)
(a=b)(by—ay) * (ay=by)(b3—a3) > (a3=b3)(bs—ay) * (as—bs)(by—ay)
are real numbers. The product of the first and the third number divided by the product of
the second and the forth number in (1) is equal to
(@—ay)a3—ay) (by=by)(by—b3)
(ay—a3)ag—a;) (b3=by)(b—by)
and it is a real number too. According to the condition of the example, the points
(a1—ay)(a3—ay)
(ay—a3)ag—ay)

A, Ay, A3, A4 are concyclic, so from the lemma 16.1 we get that is a real

(by=b))(bs—b3)
(b3=by )(y—by)
16.3 we get that the points By, B,, By, B4 are concyclic or collinear. m

number. But, that means that the number is a real number, so the theorem

16.6. Lemma (Ptolemy's inequality). For arbitrary points 4, B, C, D in a plane,

the following inequality holds true
AB-CD+BC-AD> AC-BD . (5)
Proof. Let a, b, ¢, d be the affixes of the vertices 4, B, C, D respectively. Then
(a=b)c—d)+(b-c)a—d)=(a-c)b-d)
and if we apply the triangle inequality, we get the following inequality
[(a=b)c—=d)|[+|(b-c)a—-d)|2[(a—-c)b-d)],

which is actually the inequality (5) written in terms of the affixes of the vertices of the
quadrilateral ABCD. m

17. INNER PRODUCT

17.1. Let the complex numbers a = | a | ¢ and b= | D] ¢ be given. Then
ab=|ale™|b|eP =1al-|b| P =|a|-|b|(cos(B - o) +isin(B-)),
SO
la|-|b|cos(B—o)=Reab and |a|-|b|sin(B—o)=Imab .
Furthermore, the complex numbers a and b correspond to the vectors a and b with
tale at the origin and held at the points 4 and B with affixes a and b . Moreover, the
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scalar product of the vectors a and b is defined by ab= | a [ b | cos 4(21,13) and since
A(:;,B) =1(B - o) we get that the scalar product of the vectors a and b (the complex

numbers « and b) holds true that ab=Reab (a-b= Reab ). The following properties of
a scalar product are very simple, and therefore they are left on the reads.

Theorem. The following statements hold true:

1) a-a=|al?, foreach ae C,

2) a-b=b-a,forall a,beC,

3) a-(b+c)=a-b+a-c,forall a,b,ce C,

4) (ka)-b=k(a-b)=a-(kb), forall a,be C and for each ke R,

5) (ac)-(bc)=|cP a-b, forall a,pe C,and
6) a-b=0 ifandonlyif OALOB .=

17.2. Lemma. Let 4, B, C, D be four distinct points with affixes a, b, ¢, d,
respectively. Then AB L CD ifand only if (b—a)-(d —c)=0.

Proof. The complex numbers b —a and d —c¢ correspond to the vectors AB and
CD . The statement directly implies the statement 6) of the previous theorem. m

17.3. Example. Let O be the circumcenter of the a ABC, C' be the
midpoint of the side AB and T be the centroid. Prove that OT L CC' if and only if

BC  +4C” =24B" .
Solution. With no loss of generality, we shall say that the triangle is inscribed in
the unit circle. Then OT L CC" if and only if
t-(c'-0)=0 &

at+b+c . (a_+b _
3 2

(a+b+c)-(a+b-20)=0 &

c)=0 s

lal? +|b> =2|cP +2a-b-ac—b-c=0 &
2a-b—a-c=b-c=0.
Furthermore,

BCY+AC° —2AB” =|c=bP +|a—c]> - 2|a-bP
=(c=b)-(c-b)+(a-c)-(a—c)-2(a-b)-(a-Db)
=2|cP -|aP -|bP +4a-b-2a-c-2b-c
=22a-b—a-c—b-c).

Therefore, OT LCC' if and only if 2a:-b—a-c—b-c=0 if and only if
BC'+AC =248 .m
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17.4. Theorem (Apollomus) Let M be a point on the side BC of the triangle
ABC such that BM : MC m:n. Then

-2 —2 —2
nAB +mAC =mCM +nBM +(m+n)AM .

Proof. Let a, b, ¢, z be determine the affixes of the points 4, B, C, M, respectively.
Then z= % , thus

4B’ =|b-aP=(b-a)-(b-a)=|al* - 2a-b+|b[,

2
AC =|c—a|2=(c—a)-(c—a)=|a|2 —2a-c+|c|2,

M =—_|b—cP=—2 (b = 2b-c+|cP),
(m+n) (m+n)

BM = bcP= (b 2b-ct|cf)
(m+n)2 (m+n)? ’

2
A’ =\af - 2|b| )2|c|2+ 20y ¢~ 2 g .|y 2m
n

(m+ (m+n)? m+n m+n

So,
2 2 2 _ mm 2, _mn 2 mn
mCM +nBM +(m+n)AM =21 1p|" + 22 |c|" -22Lp.c
m+n m+n m+n
|2

2 2
+(m+n)|af’ +2 b+ ¢

+2M o Dpg-b-2ma-c
m+n
=m(lal* 2a-c+|cP)+n(al* 2a-b+|b])
—2 —2
=ndAB +mAC .m
17.5. Let’s consider distinct points 4;, i=L2,.,n in a plane with
affixes a;,i=1,2,.,n and let k;,i=12,.,n be nonzero numbers, such that
ky +ky +..+k, =k#0.A barycenter or centroid of the system composed of the points
4;, i=12,...,n with centroids k;, i=1,2,...,n is called the point 7" with an affix
t _ k1a1+k2a2+...+knan
T kythyt.tk,
If k; =1, i=1,2,...,n, then the point T is called the equibarycenter or centroid of the set
of points 4;, i=12,...,n

17.6. Theorem (Lagrange). Let the points 4;, i=1,2,..,n be given and
the centroids k;, i=1,2,...,n, be non-zero, such that ky+ky, +..+k,=k#0. If T
is the barycenter of the system composed of the points 4;, i=1,2,...,n and centroids
ki, i=1,2,...,n, then for each point M with affix z the following holds true:

n —> —2 n )
i=l1 i=1
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Proof . We have that:
MA?=((t—2)+(a; 1)) -((t—2)+ (q; = 1)) = |t =z +]a; —t[* + 2(a; = 1) -(t — 2) ,
thus

n _2 2 n n 2 n

i=1 i=1 i=1 i=1
i=l1 i=l1 i=l1

_2 n —9 _2 n )

i=1 i=1

i.e. the equality (1) holds true . m

17.7. Consequence (Leibnez). Let the points 4;, i=1,2,...,n be given and let T’
be the centroid. Then for any point M in the plane the following holds true

i=1 i=1
Proof. The equality (2) is implied directly from the equality (1) for k; =1,
i=12,..,n.m

17.8. Comment a) If the points 4;, i=1,2,...,n be on a circle centered at O and
with radius R and if the point M corresponds with the center of the circle, we get the
formula

2_ 72 g2
nR* =nOT" + Y TA; .
i=1

b) If 4;,i=1,2,...,n are the vertices of a regular n-gon inscribed in the circle
|z| =R, then its centroid shall be the origin (why?). Now, according to the Leibniz
theorem we get that

n— —2
3 MA? =nMO™ +nR?,
i=1
and if the point M is on the circumcircle of this polygon, then the previous formula
implies the following
n ____
Y MA? =nR? + nR? =2nR?

i=1
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IV CHAPTER
EXAMPLES AND EXERCISES

1. EXAMPLES (CHAPTERI)

1. Without any transformation in a trigonometric form, find the set of the second
roots of the complex number z = a +ib. Hence, find the following

=7 +24i.

Solution. Since (x+iy)2 =a+ib holds true, we obtain the following system of
equations

x? —y2 =a, 2xy=>b,
which implies

x+iy:+(\/a+\/a2+b2 +i\/—a+\/a2+b2 J
+ 3 5 .
The fourth roots of —7 +24i are the following 2+i,-2—-i,1-2i,—1+2i. m

2. Determine the set of points z in the complex plane for which it exists a real number

¢ such that it satisfies the following z = £=

2¢-i "
Solution. Let z=x+iy. Since z = 2Cc__il. we get that
c= it _ —y+(x=Di 2x-1-2iy _ (1-2x) y+2(x=1) y+((x—1)(2x—-1)+2y?) i
2z-1  2x-1+2iy 2x-1-2iy (2x-1)%+4y?

Now, (2x—1)* +4y> 0, thus x#1 and y#0. Furthermore, it should be

2
2=0,] _3 2_ 1
(x-D2x-1)+2y" =0, 1i.e. (x 4) +y =1

So, the required set of points is the following
2
. 2
S={z=x+zy|(x—%) +y =%,(x,y)¢(%,0)}
={zllz-a|=1.a=3,221] a

3. Let a, b, ¢ be complex numbers such that they satisfy the following
|a|=|b|=|c|=1.Prove the following
|ab+bc+cal=|a+b+c]|.

Solution. Since the condition of the given problem, it is true that aa=bb=cc=1 ,

thus ;zé,zzi,zzl.Hence,
|arb+bc+ca|=‘abc(é+l

b
=la+b+c|=|la+b+c|.m

+1)|=lalb]-|c|-|a+b+c]
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4. If z and w are complex numbers such that they satisty the following Rez >0 and

Rew >0, then 5'—“"<1. Prove that!
z+w

Solution. / solution. Let z=x+iy, w=a+ib. Then:

u‘:u—w _ la—ay+(-b)i| _ N=a)’+(y-b)*

z |z+w|  [(x+a)+(=y+b)i| B \/(x+a)2+(b—y)2 '

z+w

If x>0 and @>0, then (x—a)®> <(x+a)?, and (y—b)> =(b—y)?, the radicand
of the numerator is always smaller then the radicand of the denominator.

11 solution. Since Rez>0, Rew>0 and the properties of complex numbers, we
have that

lz—wl? = z+wl=(z=w)(z=w)—(z+ W)z +W)
= ZZ—ZW— ZWH WW—ZZ— ZW— ZW— WW
=—[z(w+ W)+ z(w+w)]
=—(w+w)(z+2)=—4Rez-Rew<0,
Z_W‘<l. ™

i.e. |z—w|’<|z+w[?, which implies that £
ZTw

5. Prove the following inequality

n
\/(al tay+..+ay) + (b +by .. +b,)° < 2\/al~2 +b?

i=1
for a;,0;e R, i=1,2,..,n.

Solution. Let consider complex numbers z; = g; +ib;, for i =1,2,...,n. By substitu-
tion in the inequality
lzZ1+zy +otz, | S|z [+ 2z |+ 4] 2
we obtain the required inequality. m

n

5. Find the smallest possible value of the following expression ‘ z-1], zeC,if
z

given |z|=2.
Solution. If | z| =2, then
1|_| 224 ‘z I | El e W
z z |z| 2 T 2 2

The above stated implies that the required minimal value is equal to % and it is achieved

- 3
: ;.

for 22=4,i.e. z=12.m

6. Determine and show in a complex plane the set

{Z = % ‘te R}.
Solution. Let
3t+i _ 32-1, ; 4t -
z=="-= +1 =Xx+uy.
=i 24 24 Y
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31— H _ -
, ence, t = =—, thatis

247 +1 3-x
(x=1)%+)? =4, x#3.

So, the required set is a circle centered at (1,0) and radius 2, except the point (3,0). m

Therefore, x =

7. Solve the equation
2(1+i)z2 =42 -i)z—5-3i=0.

Solution. By solving the given quadratic equation for z we obtain the following

4116212 +8(1+)(5+31)
= 4(1+7) g
4-i _ 350 i 1w

hence, 2 =375=-3 2= = .

8. Determine all complex numbers z such that they satisfy the following

|z|==z-1].

\Z |
Solution. Firstly, let’s notice that the given expressions are defined for z # 0. Since
Iz] | ’ L
the above stated conditions imply that
x? +y2 =1 and ()c—l)2 +y2 =1,
V3 _B
> -
+

|z|= we getthat |z|=1 and |z|=|z—1]|, imply that |z—1|=1.If z=x+iy, then

that is x2 =(x-1 z,thus x———1 , and = ory=
y y=
f

[

Finally, the solutions of the given equation are

l\)lv—‘

-1
2
9. Solve the equation in a field of complex numbers
x=-3)*+@x-9*=2x-7*.
Solution. Let y =x— % . The given equation can be written as following
112y* —24y? -1=0,

thus y =7 and y2=—L ie.

287
1_1;/L /L
ye{Z’ 2’1 2 b l 28}5
Ty |L 1_;[L
6{3,4,2+l 5507 28}.-
3+i

n
10. Find all complex numbers 7, so that the number z = (E) is a real number.

Solution. Since "
= (34 2+ ) = 2%
Z_(z—i 2+i) =1+
we have that z2 = (2i)", so the number z is real if and only if z2 >0 holds true, and that
it is true if and only if » is factored by 4. m
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11. Given a complex number . Find all complex numbers z, such that a = s is

a real number.

Solution. A number a is a real number if and only if @ =a. Thus, “1__—”22 is a real

number if and only if % = ”I_—Zf‘ , 1.e. if and only if
- —Z

(u—-u)(1-zz)=0.
Hence, if u is a real number, then a solution is each complex number z #1, and if u is not
a real number, then a solution of the given problem is each complex number z #1 such
that zz =1, i.e. a solution is each complex number z such that |z| =1, z#1. =

12. Let a,...,a, be given complex numbers, such that
laj|=...=|a,|=1and a; +ay +..+a, =0.
Prove that for each complex number z
lay —z|+|ay —z|+.+|a, —z|=n holds true.

—_ n __
Solution. Since | g; | =|q; |, for each i=1,2,...,n and Y a; =0, we get that
n 2 n J— n J— n __ n J— l=1_
n=Yla " =Y aa; =3 aa; -z a; =3 (a;a; - za;)
i=l1 i=1 i=1 i=l i=l1

n

Z(ai_z)a_i

i=1

n n
<Yla;—z|-|a;|=Y]a;~z|. m
< !

13. Given complex numbers zj,zj,...,25,4; such that |z;|=1 and Imz; 20, for
i=1,2,...,2n+1. Prove that the following holds true
2n+1
Yz

i=1

>1,

Solution. The inequality can be proven by the principle of mathematical induction.
Clearly, the inequality holds true for n=0. Let assume that it holds true for all 2n—1
complex numbers which satisfy the condition of the given problem.

Let z;,25,...,25,41 be complex numbers which satisfy the conditions of the problem.
Without loss of the generality we assume

argzy Sargz, <...<argzy, .
Let position a new coordinate system in a complex plane so that the imaginary axis is a
bisector of £z0z,, and the real axis passes through the point O(0,0). In a so-defined
coordinate system the points are denoted by
zp =x, +iv, k=12,...,2n+1.
We have
Vi 20 and X ==x3,11, Y1 =Vapqi1s

The above stated and the inductive assumption imply that:
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2n+1
Yz

i=1

2 2
=(x]+xp ot X +X00) " F (1 Y2+t Yo+ Vou41)

2 2
=(Xp +.tx2,) " + (2t Yoy V2p41)

2 2
2(xp .t x,) +(y +.ty2,)
=|Zz t..+ 27, |221

Finally, by applying the principle of mathematical induction we get that each odd number
of complex numbers satisfies the conditions in the given problem. m

14. Let ay,ay,...,a, be complex numbers such thatif ze C, |z|<1, then
|a,z" + an_lzn_1 +..taz+ay|<1.
Prove the following
lap |<1 and |ay +a; +...+a, —(n+1a; |<n, foreach £=0,1,2,....,n.

Solution. Let
P(z)=a,z" +a, 2" +. ..+ az+a,
and w;, i=0,1,...,n be the (n+1)-th roots of the one. But,

n

Y wlk =0, if kis not factored by n+1 and
i=0

n
EWIk =n+1 if kis factored by n+1.

i=0

So,
n
Y wlkP(wi) =(n+1)a,_y, for each ke {0,1,...,n}.
i=0

Hence,
(m+D]a,_; =X wi PW)|S Y | wi P(w) =X | Pw)|S1+1+..+1=n+1,
i=0 i=0 i=0 e

The last implies that |a,_; | <1, for each ke {0,1,...,n}.
For the second part of the statement it is true that

n n n
Y wi POw) = X wf P(w) = P(1) = (n+1)a,_ — Y. a; and
i=1 i=0 i=1

&k
> wi P(w;)
i-1

n n
k
<D Iwi P(w)|= Y| P(w;)|<n
i-l i-1

thus,

n
(}’l + l)an—k - 2 a;
i=1

<n,foreach ke {0,1,...n}. m
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15. Let n be a positive integer. Prove that the polynomial
P(z)= Sz
has a root w such that | w| =1 if and only if 6|(n+2).

Solution. Let |w|=1 and w"*!

—w" =1=0.Then w"(w—1)=1 and since |w|=1
we get that |[w—1|=1. Hence, w is one of the intersection of the circles |Z| =1 and

2n

|z—1]|=1, thatis w= cos3izsm— Moreover, w— l—coszgtizsm 3 =w? . Finally,
I=w"(w=1)=w" 2 _cos +32)niisin(n+2)n,

(n+2)m

The last means that 3

6[(n+2).
Conversely, if 6|(n+2),i.e. n+2 =06k, forsome ke N, then for w=cos% 3 izsm§
holds true that | w|=1, w’

=2km, for some k€ N, thus n+2 =6k, forsome k€ N, i.e

=w-1 and w"* =1,thus

n+l n 2_1: n+2_1:0

W —1=w"(w-1)-1=w"w w .|

16. Let zj,z;,...,z, be arbitrary complex numbers. Prove that positive integers
if,....,i can be chosen such that they satisfy the followings 1<ij <...<i; <n and
2
|z tz) Ttz | > \/E(|Zl |+]zy |+ 4]z, ]).
Solution. Let zj=x;+iy;, x;,y;€R, j=1..,n.Lets
Sy ={jlx;20,y; 20}, S, ={j|x; <0,y; 20},
Then,

n 4
Xlzjl=% X 1z
j=1 j=1jes,
by applying the principle of Dirichlet, we get that for some ke {1,2,3,4} the following
inequality holds true

Y lzjlzg ZIZJI

JES)
For such a number £ we get the following

f2| 155 D 1zl=gs 3 b iy IS 3 (11D
Je

JES, ]eS
-
V2 JESk
2} _

127)
J%(

\S)

JESK

2)’]

JESK

sz'l

JES)

s|~

Je Sk
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17. Let zj,z5,...,z, be complex numbers such that
lzy [ +|zp [+ 4]z, | =1.
Prove that it exists a set S C{z},z5,...,z,} such that

Yz

z;eS

>1
2.

Solution. Let z; =x; +y;, k=1,2,...,n. Then

n n n
2. 2
1=z |= X A5k + vk < 2 (xg [+ v D
k=1 k=1 k=1
= D Ixl+ X+ X Iy l+ X 1yl

kaO xk<0 ykZO yk<0
by applying the principle of Dirichlet, we get that at least one of the four sums of the

right side of the equality is equal or greater to %. Let assume that Y, |x; IZ% .So we
<0
get that &

2

Yz

xk<0

Y X

Xk<0

— 1.1
=2 Ixglzy>¢.m

—1+i/3

2

18. Let a, b, ¢ be any complex numbers and w=
holds true

. Prove that the following

@ +b+c —3abc=(a+b+c)(a+bw+cw2)(a+bw2 +cw).

Solution. It can be directly checked that
w =1, w =w, W+ w? =-—1,
thus,

(a+b+c)(a+bw+cw2)(a+bw2 +cw) =

2

=(a+b+c)(a2 +b% +c +w(ab+bc+ca)+wz(ab+bc+ca))

=(a+b+c)(a2 +b2+cz+(w+w2)(ab+bc+ca))

=(a+b+c)(a2 +b% +c? —(ab+bc+ca)) =ad+b +¢ —3abc,
which was required to be proven. m

19. Let a and b be positive real numbers. Determine the minimum of the expression
‘ x+y

sl if x and y are complex numbers, so that |x|=a, | y|=b.

Solution. We have

|x+y |2 _ xty }+; _ |x|2+\y|2+2Rex;
|1+xy| +xy I+xy 1+|xy|2+2Rexy

B 3 P it iV
1+|xy|2+2Rexy 1+|xy\2+2Rexy’

whereby
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min{Rex)_/:|x| =a,| y|=b}=-ab,
max{Rexy:|x|=a,| y|=b} = ab.

If at least one of the numbers a and b is equal to 1, then
x+y
I+xy

n
y|=b

[xfa,
If both of the numbers a and b are either greater or less than 1, then

1= @D 1 ap |

XY
1+a%*—2ab  11-abl

I+xy

min =
|x[=a,|y|=b
If one of the numbers a and b is greater than 1, and the other is less than 1, then

2_ 2_
min |x+y | _ /1_(a 21)2(b H_
\x|:a,|y|:b|1+xy 1+a“b”+2ab

(V2+21)"

20. Compute z=——"73—.

(V3+i)°

Solution. The numbers

21=\/§+1 and 22=\/§+\/§i

shall be rewritten using Euler’s formulas. So,

n=AV3 +12 =2, 5 =20 442" =2,

o :arctgﬁ:% , (0, =arctgl =%,

a+b |
1+ab| -

i i
thus z; = 2¢'6 and Zy = 2¢'4 . Therefore,
107

10
T 107
W2 5] g

8 8 jST
(\/§+1) (zei%) 286 6
2% 2 =4 1(57”_4%) :461%
A
e 3
_ 17 eindx\—al_ B _ 1)\~ 3 _»;
—4(cos?+zsm?)—4( 5 12)— 2J3-2i m

21. Let z;, zy, z3 be distinct complex numbers with equal modulus. If the numbers
Z1+2pz3, zp +z37p and z3+z;zp are real, then the equality zz,z3 =1. holds true.
Prove it!

Solution. Let z; =r(cos@; +isin@;), k=1,2,3. By direct computations we get
that

212923 = = (cos@; +isin@;)(cos@, +isin@,)(cosP; +isin@s)
=7 (cos@+isin@Q),
Where (pz(pl +(p2 +(|)3.
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The condition of the given problem therefore
sinQ; +rsin(@—@;)=0, k=123,
that is
sin@, (1-rcos@)+cos@; -rsing=0, k=1,2,3.
Let assume that 1—rcos@ # 0. Then

tg, =—S09_ §_123,

~ rcos@-1’

which is not possible thereby ¢, €[0,2m). These numbers differ each other, hence
I-rcos@=0 and sin@ =0, thus cos¢=1, »=1. Finally,
Z12p23 = > (cos@+isin@)=1. m

22. Determine the maximal value of | z| if given that the complex number z satisfies
the following condition ‘ z+ %‘ =17
Solution. Let z=re"?, where ¢'® = cos@+isin@ . So,
2 . . . .
‘ z +l‘ = (re"p +1le "")(re @ +le“")
z r r
2

=r +L2+62’(p+e_2’(p=r
r

2,1
+r—2+200s2(p.

The equation
r? +L2+Zcos2(p=1
implies :
2 _ ~2c0s20+1E (2cos2¢-1)*~4
3 .

This implies that r? , as well as » will be maximal if
cos2¢p=—1.
Then

_\/—2(—1)+1+\/(2(—1)—1)2—4 I ENRIN
rmax - 2 - ) = 5 | |

23. Prove that z +% =2cos0 implies z" + Lm =2cosmb .
z

Solution. The equation z+ % =2cos0 implies 22 =2zcos0+1=0. The solutions
of the last quadratic equations are z =cos0+isin0. Now % =cosOFisinO . Therefore,
2" =cosmOtisinm@ and L =cos@Fisinm0 .
z

By adding the last two equalities we get

M +Lm=2cosm6 .m
z

24.Let teR and z= iJ_’—Z . Prove that

z" + 2" =2cos(2narctgt) .
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Leit J1= 2 pp

5 =it 142 14
- : 215 _ o

x =2arctgt , then cosx =——= == and sinx = ——— ==, thus
I+tg” S 1+t I+tg” 7 1+t

Solution. We express z as following z=

z" + 2" =(cosx +isinx)" +(cosx —isinx)”"
= cosnx —isinnx + conx —isin nx
=2cosnx =2cos(2narctg?). m

25. Solve the eqaution:
iz%+8 — \/g )
8i—z°
Solution. If 8i —z% =0 , then the fraction which is on the left side of the equation is

not defined. If 8 — z% » 0,i.e. 20 #8i , then we multiply by 8i — 2% the both sides of the
equation and after grouping the terms which consist of z on the left side, and the other
ones on the right side of the equation we get the following

(V3 +i)=-8+83i.
L6 _ =8+8V3i _ (-8+8V31)(V3—i) _ 8(-1+3)(V3-i) _o;

Vi (V3)(V3-i) 4

But, we previously found that 20 #8i , so, we find that the given equation has no solu-
tion. m

Thus,

26. On the field of complex numbers find the solution of the given system
Xt +6xzy2 +y4 =5
X y+ xy3 =1

Solution. The given system is equivalent to the system whose second equation is
multiplied by 4, that is equivalent to the following system

x4+6x2y2+y4 =5
4x‘?’y+4xy3 =4

Thus, it is equivalent to the system which consists of the sum and the difference of these
two equations, that is equivalent to the following system

{(x+y)4 =9

4
(x-y) =1
Since the above equations we get that

(x-\/2§+[3 y= Oﬂ'\/zg—ﬁ , o,pe{l,—-1,i,—i},

X =
that is, 16 solutions. It is necessary to percieve that these solutions differed from each
other. Namely, if
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b

0‘1‘\/§+f31 _ Oﬂz'\/gﬂ-”z
2 - 2
then

(04— V3 =B, -B)),
so 04 =0y, which means that 3; =f3,, i.e.that is the same solution, since if it is con-

versely \/§ can not be expressed as r +is, where r,s€ Q, therefore \/§ 1S an irrational
number. m

27. Solve the system in the field of complex numbers
19 25
z7w™ =1,

2w = 1,

Z4+w4=2.

Solution. If we cube the second equation of the system we get that 2wl =1. Since
219923 15,021 = 1 itis true that z*w?* =1. But, A ewt=2 , and the Vieta’s for-

mulas we get that z* and w* are solutions of the quadratic equation 2 —2t+1= 0,i.e.

=1 and z

24 =1 and w*=1. Moreover, 2wd=w implies zz4(w4)2 =w,i.e. z=w. Finally, so-
lutions of the given system might be only the ordered pairs (1,1), (-1,-1), (i,7), (—i,—i).
With direct check it is easy to be proven that these pairs are truly solutions of the given
system. m

28. If given that wy,wy,...,w,_; are the n-th roots of 1, calculate the following
sums:

a) X kwgy b) Xk wiy ) Xk w
k=1 k=1 k=1
Guidelines. a) The n-th roots of 1 can be written as following wy = wFL where
w= 00527” +i sinzn—” . The required sum can be written as
n n k=1
S= X kwi_y =Y kw

k=1 k=1
Since 1-w# 0, the following equalities hold true

§=S=Sw_ 1+2wH3w? 4 4w —w=2w? 3w~ "
I-w I-w
_on
_ lwtetw" o _ ll—viv —nw'" _ I=(n+D)w" +aw™!
B 1-w 1w T (=)

Finally, the required sum can be found by substituting for w as following

21

w=cos2Z +jsin 2L
n n

and by using the De Moivre’s formula.
The examples b) and ¢) can be solved analogously as already explaned example a). m
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29. Calculate the sums:
n n
a) chosznﬂ, b) stiny‘T”
k=1 k:l
Guidelines. Let
n n
A=Y kcos%, B=Y ksin%
k=1 k=1
calculate S =14 A4 +iB. Then, apply the example 28 a) and further find

A=Re(S-1) and B=Im(S-1).m

30. Prove that

n
a) Y C,]f cos(k +1)oe =2" cos” Lcos 2 o

2 2
k=0
n
b) Y C,]lc sin(k +1)a=2" cos” %sin%a )
k=0
Guidelines. Let z=coso+isinc, hence apply the binomial formula for
(1+z)". m

31. Prove that
= c0sE — cog 2T n_1
s=cosZ—cos<t+cosTt=7.
Solution. Firstly, let declare that z=cosZ +i sin% implies

Let w=cos@+isin@. Hence v_v=coscp—isin(p=% , thus

1 I\ whtl oo 1, 1) wl
COS(p_Z(W+ w)_ 2w’ Sln(p_Zi(W w)_ 2iw *
Further, by applying De Moivre’s formula we get
. —k .
wkzcosk(p+is1nkq) and w =cosk(p—ismk(p=ik,
thus "
2k 2k
cosk@=2"* sinkp=2"-1 2
? 2wk ? 2iwk ( )

Let z=cosZ+ isin% . By taking for £ =1,2,3 in (2) and hence by applying (1) we

7
gat that
3

_ 224 21, 2041 (26_25+Z4_Z3+22_Z+1)+Z3 _ Zz++11+z _ 2 1
Ry 2 3= 3 - 3 — .3 -8
2z 2z 2z 2z 2z
32. Compute
=cosZEcos AT cog 3T
P =C0SZCOS==COS==.
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Solution. Let z = cos% +i sin% . Then (2) and (1) in the example 31 therefore

thus

2 4 6
e T AT BT T BT e 2m (27D (27 +])
p =COoS 7 COS 7 COS 7 = COS 7 COS 7 COS 7 = 826

— 2247104 840,04 2442241 — —2 =P —z42%4 74 42241420
8z° 820
7
z"+1 6
— PP 241428 — _z+l tz

=1
820 820 g- ™

33. Let a, B and y be angles of any triangle. Then,

cos? o+ cos” B+ cos? Y+ 2cosacosPcosy=1,

holds. Prove it!

Solution. Let the left side of the identity be denoted by S and let
z=coso+isino, w=cosP+isinf. Then, the trigonometric entry of complex number
implies zw = cos(a + ) +isin(o + ), and since the equalities (2) in the example 31 we
get

cos? oL+ cos’ B+ cos’ Y= cos? o+ cos> B+ cos’ (m— (o +P))

= cos” 0 + cos’ B+ cos’ (o +P)

2 2 2
(22+1) +(w2+1) +(z2w2+1)
2z 2w 2zw
— w?zte2wtr6 2wl 42t ent 24wt 4

9
472w?

and
2241 W+l 22w+l

2
2cosacosfcosy =—-2cosocosPcos(a+ ) =-2 PR i .

— —wiz 2wt 27

47%w?

2W2 _22 _W2 _Z4W4

2.2
Finally, S=242%" =1 u
Y 472472

34. Solve the equation
cos? x +cos® 2x + cos? 3x =1.

Solution. By using that
cosZt= 1+cgs2t ,

the given equation can be transformed as following

% + %(cos 2x+cos4x+cosbx) =1,

1.€.
cos2x +cosdx+cos6x=-1 .
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Let z=cosx+isinx . If we apply the equality (2) of example 31, we obtain the following
4 8 12
A S R-A J -k J R
+EE 4 =-1
272 274 228
and by using the well known mathematical transformation we get
(1+z2 +z4 404284210 +212)+Z6 =0,

b

14
—22_1+Z6=O,

z7-1

-1t +1)=0.
In the above transformation we used the fact that z* # 1, thereby x=0 and x=m are
not the solution of the given equation. Since (z8 - 1)(z6 —1)=0, we get that 2 41=0
or zZ2+1=0 or z*+1=0. Furthermore, 20 4+1=0 therefore cos6x= -1, 1ie.

-k
x=£+5 ke Z.

Similarly one can obtain the other solutions
x=2+4 feZ and x=2+kn, keZ.m

35. Prove the identity
1 IR
sin2x  sin4x sin2" x

for ne N, xi%, k=01,2,...n, A€ Z

=ctgx—ctg2"x,

Solution. Let z =cosx +isinx . The equality (2) in the example 31 implies
iw* 1)

2%
toko=—2"=L  ctgko= . 1
SRP= ey BT O
Further, thereby (1) for n=2" it is true that
1 1 s s+1
12 e a2 P 4D
sin2’ x Zzs+1 4 Zzs+1 4 Zzs+1 1 (2)
7S 2s+l
_azo Al szt 4] s—1 s
—lzs——lst—Ctgz x—ctg2 X.
z7 -1 z -
Finally, if in (2) consequently we set s =1,2,4,...,2" and add the such obtained equalities
we get that
1 1 1
——t——+...+ =
sin2x ~ sin4x sin2" x

= (ctgx — ctg 2x) + (ctg 2x — ctg 4x) + ...+ (ctg 2" ' x — ctg 2" x)

=ctgx—ctg2"x,
which was supposed to be proven. m

36. Let o, B and y be angles of any triangle. The triangle is right angled triangle if
and only if
cos20+cos2P+cos2y=—1.
Prove it!
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Guidelines. Firstly, prove that for any triangle

cos2a + cos 2P+ cos2y =—1—4cosacosfcosy
holds. m

37. Find the sum:
S, =1+2cosx+ 2% cos2x +...+2" cosnx .

Solution. Let

T, =i(sinx+22 sin2x +...+ 2" sinnx) and z=2(cosx +isinx).
Then

S,+T, =1+ 2(cosx +isin x) + 2% (cos 2x +isin 2x) + ... + 2" (cos mx + i sin nx)

2 ntl_y 2™ cos(n+l)x+isin(n+1)x]-1

n_z
etz =g 2(cos x—isin x)

=l+z+z

2

thus

§ —Re 2"cos(n+1)x+isin(n+1)x]-1 | _ 22 cosnx—2""! cos(n+1)x—2cos x+1
n- 2(cosx—isin x) - 5—4cosx ’
38. Let ay,a;,...,a, bereal numbers such that for each real number x is true that

1+ a; cosx+a, cos2x +...+a, cosnx 0. (1)
Prove that
atay+..ta,<n. )

Solution. Let ¢ = % . Then for z =¢'® we get

2n+Dkn . . 2(n+)kn
__(n+Dk  1—cos isin
R R TR =l il ol =),
1-z 1—cos =T —jgin =KT
n+l n+l

for k=1,2,...,n, therefore
1+cosk@+cos2k@+...+cosnkp=0, 3)
for k=1,2,...,n. If in the inequality (1) we set consecutive
xX=0, x=20,..., x=n0,
we get n inequalities, which after adding, by using the (3) give the inequality
n—a —a, —...—a, =20, which is equivalent to the inequality (2). m
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2. EXERCISES (CHAPTER 1)

Compute the following

a)i", neZ, b) (1+i)" +(1-i)",ne N, and
n
c) ( 1+1§) ,neN.

Find the exact value of the following expression
(142000
(1=1)2990_ (172000 °

Determine the modulus of a complex number
xz—y2+2xyi

xy\/z+i\/x4+y4 '
Let A={zy,z5,...,7199¢} beasetof complex numbers and let foreach i =1,2,...,1996
hold true that 4= {leirzZZi»-"aZl996Zi} .
a) For each i=1,2,...,1996 it holds true that | z; | =1. Prove it!
b) If ze A then z€ A. Prove it!

Let * be an operation in a field of complex numbers defined as following:
z*z1 =zz1 +i(z + z;) — (1 +i) . Prove that * iscommutative and associative. Determine
the identity element e, i.e. determine an element ee C such that e*z=z*e=z is
satisfied for each ze C. Prove that there exists a unique complex number which
does not have its inverse (z'e C is an inverse element of ze C if zz'=z'z=¢).

Prove that
2 2 2 2 2 2
[bo [7 + 1By 7+ by [7=3(ag +ai +a3),

for

by =ay +a1wk +a2w k=0,1,2; ay,a;,a,€ R and w——%+i§.
Prove that x +iy = (s +it)", x,ys,t€ R implies that

(x2 +y2) = (s2 +t2)n.

Graphically show the set of complex numbers z such that holds +g 2.
Solve the equations:
a) |z|+z=4—i,and b) |z+i|+]|z—i|=2
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10. Let aj,a;...,a, be given complex numbers, such that | |=...=|a, |=r.

Let 7,; be the sum of each products of s pairwise distinct numbers. For example
Tn2 =aqay +qaz +...taqa, +araz +....+a,

Prove the following

o 1o s 5=1,2,3,0n-1,

7,1

11. Let all roots of a polynomial

P(x)=apx" +aix" ' +..+a, x+a,

be on the circle | z| =r. Prove the following

la,_;|=r"|a;|, i=0,1,2,..,n.

12. Prove the following:

a)If || <1, then |[Z==%4|<1 if and only if | z| <1.

l-za

2= |>1 ifand only if | z| <1.
1-za

b) If o] >1, then

13. Express in trigonometric form the following complex numbers:
a) —/2, b) —1+i, ¢) 2-i\3

d) 14+ cosa+isino, e) sino+i(1+cosar) .

e

14. Find the exact value of (1+w)", if given that n€ Z and w= —% +1i

15. Compute:

a) \2i , b) V-8i, ¢) V4+3i,
d) 3-1+i, e) Y-23-2i.

16. \/1+i\/§ +\/1—i\/§ =6 . Prove it!

17. If (“—“)" =1, then a=ctg®, k=0,1,2,..,n~1. Prove t!

a—i
18. Solve the following equations, for ne N .
a) (x+1)"-(x-1"=0,
b) (x+5)" —(x=5i)" =0,
¢) (x+3i)" +i(x-3i)" =0,
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19.

20.

21.

22,

23.

24.

25.

26.

27.

Y/ i
i—x\ ' _ ctgo+i
d) (i+x) T octgi’ a€R, and

e) (x+ai)" +(cosO+isin0)(x—oi)" =0, 0#2km, 020, 0,0 R.

Prove the following identities:

a) cosZ +cos3T + ... +cos2Z =1

11 11 -2’

2n 4n 1om _ _ 1
b) Cos 4 +CosTF ...+ Cos >

Find the sums:
a)1-C2+C4-Cl+... and
by Cl-C3+C3-C) +....

Find the sum:
1+CH+ 842+ +c¥ 4

Prove the equality:
1+C+C8+C) +..= %(2"_1 + cos%) .

Prove that for m =2,3,4,... it is true that:

. . . . (m-Dm
sin Esin 2gin 3T gin DT _ _m_
m m m m om-1

Prove the identity:
n
D (=1)¥ cos” ”7/‘ =1,
k=0 2

Let

F,=a"sinnd+b" sinnB +c" sinnC,

where a,b,c,4,B,C€ R and A+ B+C=2kn, for some k€ Z. Then, F; =F, =0

implies F,, =0 for each ne N. Prove it!

Let x#2km, xe R, k€ Z and ne N. Find the sum
1+2cosx+3cos2x+4cos3x+...+(n+1)cosnx.

Let x,ye R and ne N . Calculate the sums:
a) cosx+cos(x+2y)+...+cos(x+2ny), and
b) sinx +sin(x+2y)+...+sin(x + 2ky) .
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28.

29.

30.

31.

32.

33.

34.

35.
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f

, then calculate cos-Z%.

If given that cos 15

Given that tg— J2 —1. Prove the following: tg-ZL- 24 =2+J6-3-2.

Prove the following:

a) tgZ=v5-25, b) tgZE=5+25,
o) tg3h=—5+25, d) tg4h=—5-2V5

Calculate:

T gin8ngint
a) 51n2151n 2151 7

b) tgZtg g 3T,

T gin 28 gin 3T gin 4% gip 3% gip 08
c)sm14s1n14sm14sm14sm14sm14

Prove the identities:

a) sin3x=%sinx—%sin3x, and
4.1 1 3
b) cos" x= 8cos4x+ 2cos2x+ g

Prove the identities:

a) cos5x =16cos’ x—2OCos3x+500sx, and

4 2

b) sinSx =sinx(16cos” x—12cos” x+1).

A complex number a is called an algebraic, if it is a root of a polynomial
P(z)=ayz" + alzn_1 +..ta, +a,

with integer coeficients. The numbers wich are not algebraic are called as

transcendental numbers. For example 7 and e are transcendental numbers. But, there

exist numbers, such as e and e+ 7, for which it is still not found either they are

algebraic or trancedental numbers.

Prove that the numbers

a) V3 ++/2 and b) /4 —2i

are algebraic numbers.

Solve the eqation:

n—2 C33n3

x”—nax"_]—C,%a —a"=0,a#0.



36.

37.

38.

39.

40.

41.

Let n=2 be a positive integer. Find all the solutions x, of the equation
X" —x"2 —x+2=0 such that | xy | =1.

Find the solutions for x:

cosa+ C,ﬁxcos(a +b)+ C,%x2 cos(a+2b)+...+ C)x" cos(a+nb)=0.

Solve the equations:
a) sin2x +cos2x =+/2 , and
0) tgzx + ctgzx =6.

Let f(x,y) be arational function with real coefficients. If the function fis symmetric,
re.if f(x,y)=f(y,x),then f(a,a)e R, for each ae C. Prove it!

Let [7] be the maximal integer which is not greater than ¢. Let z =x+iy . Prove the
following:

[n/2] 3
a) Rezn — kgo (_1)k(2nk)xn 2ky2k ,

[n/2]
k —2k-1_2k+1
b) Imz" = ]EO e B e

n
©) Rez"+1mz" = 3 (<) (})x"~* ¥
k=0

Find the proper expression for Rez"” —Imz" ?

Each zero of the following polynomial is in the field of complex numbers.
a) Re(x+1)",

b) Im(x+i)",

¢) Re(x +i)" + Im(x +i)"

For each of the above polynomial prove the given statement and find the zeros.
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3. EXAMPLES (CHAPTER II, CHAPTER III)

1. Construct a trapezoid if given its bases and diagonals.

Solution. Let’s suppose that the given problem is solved and let ABCD be the required
trapezoid (figure 1). If a, b, ¢, d are the affixes of the points A4, B, C, D respectively, then

DC =c—d . Let’s consider the translation

D_c¢—d _C
N S(z)=z+c-d
~ and let the point B; be the image of B under
~ this translation. Further, S(d)=d+c—-d =c
________ .. therefore, the point C is the image of D under
4 B this translation, thus C_Bl = DB . Therefore, all
Figure 1 three sides of the triangle AB,C are already
determined (A4B;=A4B+DC, AC  and
C_B1 = DB), so it might be constructed. Since the base AB is already determined, the
point B can be found, and the point D is the inverse image of C. m

2. Construct a circle such that it passes through a given point and tangents two
parallel lines.

Solution. Let’s assume that the given problem is solved (figure 2). If a is a vector
parallel to the line (p), then the translation S(z)=z+a maps the circle (K) to a circle
(99 (K", such that it tangents the lines (p) and (g), but
it does not pass through 4. So, we have to construct
a circle (K') such that it tangents the lines (p) and
(K" o' o (K) (g) and by the translation we map that circle to the
required circle
®) The number of solutions depends on the
relationship between the point 4 and the lines (p) and
(9). Namely:
- If the point 4 is placed between the lines (p) and (g), then the given problem has
two solutions;
- If the point 4 is placed on any of the lines, then the given problem has a unique
solution, and
- In any other case the given problem has no solution. m

A

Figure 2

3. Given the circles K'(o',R") and K"(0",R") and the line (p). Construct a line (g)
parallel to (p), so that the circles (K') and (K") intersept congruent line segments on
the line (gq).

Solution. Let’s assume that the given problem is solved (figure 3). Let’s plot a line
(a) perpendicular to (p) and a line O'O perpendicular to (), i.e. parallel to (p). Hence,

A4"=B'B'=00.
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Due to this, if (a)
S(z)=z4+0-0'

is translation for vector O'O , then
S(a)=a", S®")=b" and S(0)=o0,
and the circle (K') maps to a circle
K(o,Jo—a"|) and further 4"(a") and
B"(b") are midpoints of the circles (K)
and (K").

Whether the problem has a solution
or not depends on the relationship of the
circles (K") and (K). Due to that, the given problem has a solution, and furthermore:

- if |[R"-R'|<|0"-0|=00"<R'+R", then the given problem has a unique solu-

tion,

- if|R"-R'|>|0"-0|=00"or |0"-0|=00">R'+ R", then the given problem

has no solution. m

B A"
Ao

(K")
Figure 3

4. Let be given two points 4, B and let S =u —z be a poin reglection. If S(4)=A4"
and S(B)=B", then AB=B'A". Prove it!
Solution. Let a, b be the affixes of the points 4, B, respectively. The affixes of the
points A', B' are a'=S(a)=u—a and b'=S(b)=u—b, respectively. Thus,
b'-a'=u-b—(u—-a)=a->b
The latter means that AB=B'A'. m

S5.1f O' and O" are centers of a symmetry of the figure F, prove that O =S5,+(O")
is also a center of a symmetry of the figure F.

Solution. Let % and %" be affixes of the points O' and O" respectively, and let
A(a) be any point on the figure F. Then, the affix of O is

o= SO" (%) = 0"—% .
Thereby the condition, the points 4, 4,, A; whose affixes are
a=Spv(a)=0"-a,

a, =Sp(a;)=0'-(0"-a)=0'-0"+a,
ay=Spv(ay)=0"-(0'-0"+a)=20"-0'-a,
belong on the figure F. Finally, the arbitrariness of the

point A and the equality

Sola)=20"-0'-a=a;

imply that O =S,+(0") is also a center of a symmetry of
the figure F (figure 4). m




6. Given two lines (p) and (¢g) and a point 4. Through 4 draw a line (a), so that 4 is
the midpoint of the line segment MN, where M =(a)N(p) and N =(a) N (q) .

Guidelines. Consider a poin reglection centered at 4. m

7. Let the circles K'(O',R") and K"(O",R") meet at a point 4. Through the point

(K

(K")

Figure 5

a
,Z

/

v/
°
)

h
X
\

Figure 6

e
S

& (k")

Figure 8
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A draw a line (a) on which the circles intersept
congruent line segments.

Solution. Let’s suppose that the given problem
is solved and let (a) be the required line (figure 5).
Thereby AB = AC, a point 4 is the midpoint of a
line segment BC. It means that C =S 4(B) . A point
Be (K'"), thus the point C=S,(B) will be on the
circle (K)=S4(K"). So, Ce (K)n(K").

The problem has a unique solution. m

8. Given four points 4, B, C, D, so that AB = C_D,
but 4B # CD . Prove that it exists a rotation S such
that S(4)=C, S(B)=D!

How many such rotations exist?

Guidelines. Consider the case when a line AC
is parallel to a line BD, (figure 6) and the case when
a line AC is not parallel to a line BD, (figure 7),
separately. m

9. Let (K" and (K") be circles with congruent
radii and let they intersect at 4 and B. Prove that
it exists a rotation S around the point 4, so that
S(K")=K".Moreover, if Xe(K") and S(X)=X",
then the line XX' passes through the point B.

Solution. Since r'=r",theline ABis abisector of
the linesegment O'O", thus 4 isa center of the rotation
S 4, suchthat S, (K')=K", where o0=20"'40".
Let Xe(K'") be any point and X'=XBN(K"),
(figure 8). Since L AXB and L AX'B are inscribed
angles of congruent arcs, the angles are conguent,
and thus AX =AX". If S ,(X)=X"*, we get that
AX = AX * and X*e (K"), therefore X'= X *.

Finally, for any point X € (K'), the points X, B
and S 4 (X) are collinear. m



10. Given lines (p) and (¢) and a point 4. Construct an equilateral triangle ABC, such
that Be (p) and Ce (q).

Solution. Let assume that the given problem A
is solved and ABC is the required triangle, (fig-
ure 9). Since the triangle ABC is an equilateral,
we obtain that 4B=AC and ZBAC=60° .
That is, Syepe(B)=C or Sy _gp(B)=C.
The point B is on the line (p), and therefore the
point S 60°(B)=C is on the line S, ¢0°(p)-
On the other hand C is on the line (g), thus
C=(9) NS 460°(p) . For the rotation S, _ggo the (@)
latter holds true, analogously.

Let

S4.600(P)=(p1) and Sy _60°(P)=(P2).

If
G=(@n(p): C=(@)N(p2)-
S4.-60°(C1) =By and S 4,60°(C2) =B,
then AB|C; and AB,C, are the required trian-
gles, (figure 10). Further, at least one of the lines

S460°(p) and Sy _goe(p) meet the line (g),
which means that the problem always has at least

one possible solution. m

11. Given lines (p) and (g) and a point O. Construct a
square ABCD centered at the point O, such that two adjacent
vertices are on the lines (p) and (g), respectively.

Solution. Let assume that the given problem is already
solved and ABCD is the required square, (figure 11). We have
ZAOB =-90°, therefore Sp _gpe(A) =B . Further, A€ (p)
implies that B€ (q) N Sp _9p°(P)-

Let’s consider the rotations Sp gge and Sp _gge -
So,

(P1)=8090°(P)> (P2)=S0-90°(P)
By =(p1) N (q), By =(p2) N (q),
A4 =80.-90°(By1), Ay =S0.90°(B2)-
Then the required squares are squares with sides

I
ABy n Ay B, , respectively. E y ;) ; -
Let state that the above problem may have ei- : 2 Lo
ther two solutions or none. Namely, if the lines (p) ' (py) L (P1)
and (g) are perpendicular to each other, then the lines Figure 12
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(p1) and (p,) are parallel with (¢) and the given problem does not have any solution,
if lines (p) and (g) are not perpendicular, then the given problem has exactly two solu-
tions. m

12. Given lines (p) and (¢) and a point O.
Construct an equilateral triangle ABC centered at
the point O, so that its two vertices are placed on
the lines (p) and (g), respectively.

Solution. Let assume that the given prob-
lem is solved and let the triangle ABC be the
required triangle. Thereby Z£AOC =-120°,
we get that Sp_jppe(A)=C, therefore
C=50-120°(P) N () . (figure 13).

Let’s consider the rotations Sp j29o and
S0.-120° - Therefore

(P1) =S0,1200(P) > (P2)=S0,-120°(P) ,
G =(p)Nn(g). C=(p2)N(q)>
=80,-120°(C1) » 4 =S0,120°(C2) -
Then the required triangles have sides 4;C; and
A,C, , respectively (figure 14).
Ay, P 4, (p) The given problem may have two solutions,
Figure 14 one solution or none. m

13. Let S(z)=az+b, ae R\{0,1} be a homothety and M be any point. Prove that
the center of a homothety C, the point M and its image N are collinear.

Solution. Let the affix of the point M be z. Then the affixes of the center of a

homothety C and a point N are ¢ = % and w=az+b. Then,
w—z _ az+b—z _ b+(a 1)2 b+(a—1)z az+b z _w-z
Ww—z _ az+o-. —a)=l-a= —a s
c-z  b_7  bt(a-1)z (1-a) b+(a-1)z (1-a)= -z ¢z

1-a 1 —a

and since corollary 1.4 we have that the points C, M and N are collinear. m

14. Given a circle K(O,r) and a point 4 on the circle. Determine the locus of midpoints
of the chords of the circle (K) at the point 4.

Solution. Let AX be an arbitrary chord of a circle K(O,r) and let Y be its midpoint,
(figure 15). If the affixes of the points 4, X and Y are a, z and w, respectively, then since

the condition of the problem it is true that
— 1
w=3 Liz4a)= z +5a,

The latter means that the required locus is the i 1mage of the circle (K) under the similar-
ity
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S(z)=1z+1a,

with coefficient % and center

Finally, the required locus is the image of a circle (K) under

the homothety with center at 4 and coefficient %, i.e. that is
the circle with diameter O4. m )
Figure 15
15. On the bases 4B and DC of the trapezoid
ABCD on the same side of them, are constructed
equilateral triangles ABM and DCN. Prove that a
line MN passes through the intersection point O
of the extensions of the legs.

Guideline. Prove that the homothety with

center at O and coefficient g:g maps the point

N at M, (figure 16), and further apply the Exam- Figure 16
ple 13. m

16. Let ABCD be trapezoid with bases AB and CD and let M be the midpoint of 4B,
N be the midpoint of CD, P be the intersection of diagonals and Q the intersection of
extensions of the legs. Prove that the points M, N, P and Q are collinear.

Guideline. Prove that it exists a homothety H with

— Q
center at O and coefficient i:g so that H(4A)=D and
H(B)=C, further, conclude that H(M)=N, (fig- D C
ure 17), and then apply the example 13. Provethat there
exists a homothety H; with center P and coefficient P
~DC o that H{(4)=C and H{(B)=D, and further y 7 B
M

AB
conclude that H(M)= N, (figure 17), and then apply

the example 13. m

Figure 17

17. Given two concentric circles K(O,R) and K'(O",R'), R>R'. Draw a line (p)
which consecutively meets the circles at A, B, C and D, so that AB=BC=CD.

Solution. Let assume that the given problem is
solved and let (p) be the required line, (figure 18).

Then %:%, thus under homothety H with cen-

ter at 4 and coefficient % the point D maps at B.
This means that B is on the circle H(K). That is, i
Be H(K)ﬁ(K') Flgure 18
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Finally, if we fix a point 4 on a circle (K) and let Be H(K) N (K"), then the required
line (p)= AB, (make a figure). m

18. Construct a triangle ABC if given o, f and 4, .

Solution. Let assume that the given problem is solved
and ABC is a required triangle (figure 19). If 4,B,C; is
any triangle with angles o and [3, then the triangles 4BC

and 4 B;C; are homothetic with center of homothety at
hC‘

D and coefficient

, thus the required triangle can be
1

By, constructed if we take an arbitrary triangle with angles
4 B, o and B and map it under homothety H with center D and
Figure 19 coefficient 4, B|C;, (make a figure). m

19. In a triangle ABC, inscribe a triangle POR whose sides are perpendicular to the
sides of ABC.

Guideline. Take any
point K on the side AB, and
construct the triangle KMN so
that NK L AB, MN L AC.
Further, draw the line AM and
find the point Q=AM N BC
. Now, the required triangle
PQR is an image of the triangle
KMN under homothety H with

49

center 4 and coefficient i
(figure 20). m

Figure 20

20. Prove that if two circles touch each other, their centers and the point of touch are
collinear.

Guideline. Determine the affix ¢ of a point of touch of the circles with equations
|z|=1and |z—a|=R and prove that the points with affixes 0, @ and c are collinear. m

21. Given points 4 and B. Let A' be a point on the line OB, B' be a point on the line
OA and Z be a point on AB. Construct a point Z' which divides the line segment A'B'
in a same ratio as a point Z divides the line segment AB.
Solution. Let a, a', b, b', z be the affixes of points 4, B, A', B', Z , respectively. If
BZ _ ), then
ZA
b-—z=Mz-a) €))

Hence, we should obtain the affix z' of a point Z so that
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b'-z'=A(z'-a"). (2)
Let Z; be the point where
the OA4 meets the line which
passes through the point Z and
is parallel with BB', and Z,
be the point where the line OB
meets the line which passes
through the point Z and is
parallel with A4A4'. Then, the
similarity of triangles AZZ;

and ABB', i.e. the similarity Figure 21
of BZZ, and BBA' implies that
—1= )\,(Zl (l) and b - ZH = }\.(22 - (l') . (3)

By reducing a and b, in (1) and (3), we obtain that
b'=(z1+zy-z)=M(z1+ 2, —2)—a'l,
Since (2),we get that
z'=zi+zy —zT.
Hence, the point Z' is obtained by construction, (show in figure 21). m

22. Prove that the sum of interior angles of any triangle is 7.

Solution. Let a, b, ¢ be afﬁxes of vertices 4, B C of a triangle. Then
ZCBA = arg , LBAC = argb , LACB = argb <

Since each of the interior angles of a triangle is strictly smaller then &, we get that their
sum is strictly smaller than 3w, and thus

ZCBA+ £BAC+ /£ ACB =arg9=h + arg £~ + arg b=<

a—b c—a ab

=arg iy

=arg(-1)=m,
which was supposed to be proven. m

23. Let ABCD be strictly convex quadrilateral and let the points 7,, T, T, T; be
centroids of the triangles BCD, ACD, BAD, ABC, respectively. Prove that the medians of
the quadrilaterals ABCD and T,T,T.T; are concurrent.

Solution. According to Example [ 4.2. B) the medians MP and NQ of the quadrilateral
ABCD intersect at a point 7'with affix ¢ = W , which according to Example 15.10 A)
is the centroid of the quadrilateral ABCD. Analogously, the medians of the quadrilateral
T,T,T.T; intersect at its centroid, whose affix is

oo L+ _ b+§+d+a+§+d+a+[3)+d+a+g+c _ atbictd ‘
4 4 4
Finally since, ¢ =t¢' the statement of the given problem is proven. m
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24. a) Given two vertices of an equilateral trianglein a complex plane. Determine its
third vertex.

b) Obtain a point z3 so that the points zy =2+2i, z, =3+i and z3 create an
equilateral triangle.

Solution. a) Let be given points 4 and B with affixes a and b. The given problem has
two possible solutions C and C': a ABC is positively oriented and a ABC' is negatively
oriented Thereby, a point C is obtained if the vector 4B is rotated around a point 4 at

3 ,and C' is obtained when aif the 4B is rotated around a pomt A at —Z | Therefore

c:a+(b—a)e 5 and ¢'=a+(b—-a)e '3
b) Since solution a),

' i -
Z3=ZI+(22_ZI)613:2+2i+(1—i)el3=2+2i+(1 )1+1\/— 5+\/— 2\/_

n _.E _.E
3=z +(zp—z)e 3 =2+2i+(1-i)e 13=2+2i+(1_) o 5\/— 3_5/—'.

25. Given an equilateral triangle o ABC let a be an affix of the vertex 4. Determine
the affix of the vertex B if the origin coincides with:

a) the vertex C,

b) the centroid 7 of the a ABC,

c) 4, the foot of the altitude at the vertex 4 to the line segment BC.

Solution. a) Since C coincides with the origin, ¢ =0. If A ABC'is positively oriented,
then B is obtained by rotation of the point 4 at E around the point C and therefore

1+l\/_

b= ae3—a

If o ABC is negatively oriented, then B' is obtalned by rotation of the point 4 at —%
around the point C and therefore

\/_

b'=ae '3 = ql=3
b) Since T coincides with the origin, t=0. If a ABC is positively oriented,
thenthe point B is obtained by rotation of the point 4 at %“ around 7 and therefore

2m i
b=ae 3 = a#. If a ABC is negatively oriented, then the point B' is obtained by

_j2n .
rotation of the point 4 at —2?” around C and therefore b'=qe ' 3 = a#.

¢) Since 4, coincides with the origin, a; =0. Due to 44 = E\/g , we obtain the
point B by rotation of the point 4 around 4; at % if A ABC is positively oriented, that is

—% if a ABC is negatively oriented and the both cases, the obtained results are divided

by V3. Thus, the given problem has two solutions: b = % and b'= 'T‘;’ ]
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26. If a, b, ¢ are the affixes of vertices of an equilateral triangle, then
a® +b% +c? =ab+bc+ca . Prove it!

Solution. Let 7 be affix of the centroid of an equilateral triangle, (with vertices whose
i21
affixes are a, b, ¢) such that a, b, ¢ are the affixes, of its vertices,and let u = ¢ 3 . Then

b=t+(a—tu and c=t+(a— t)u2 . The equality
a’ +b* +c* =ab+bc+ca
is equivalent to the equality

(a—b)? +(b-c)? +(c—a)* =0. (1)
We will prove the equality (1). Thus
(a=b)? +(b-c) +(c—a)® =[1-u)? +u—u®)? +@W? -1)*)(a-1)*

=[+u? + @+ 11 -u)?(a—1)*
=2(+u+ud)1-u)*(a-1)°
=2(1-u)1—-u)(a—1)?
=2(1-e*™1-u)(a—1)*
=2(1-1)(1-u)a—-1)>=0. m

2

=ab+bc+ca,
then either a=b=c or a, b and c are affixes of the vertices of an equilateral triangle.

27.1fa, b and ¢ are complex numbers so that they satisty A +b* +c

Prove it!

Solution. The equality a’ +b +c?

(b-c)*> =(c—a)a—b), and thus
\b—cP=|c—al-|a-b]|.
Analogously, it can be proven that
lc—al’=|a-b|-|b-c|and |a-b]*=|b-c|-|c—al.
If the last three equalities are multiplied by |b—c|, |c—a| and |a—b]|, respectively,
then, we obtain the following equalities
la=bP=|b-cP=|c-aP=|a=b||b~c|-|c~al,
The latter explaines the following |a —b|=|b—c|=|c—a|. The above means that either
a=b=c ora,b and c are affixes of the vertices of an equilateral triangle. m

=ab+bc+ca is equivalent to the equality

Comment. The statements in the Examples 26 and 27 can be transformed as fol-
lowing

A triangle ABC, where a, b, ¢ are affixes of its vertices is an equilateral triangle if
and only if a®+b* +c* =ab+be+ca holds true.
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Indeed, a triangle ABC is equilateral if it and only if it is directly similar with the
triangle BCA, that is if and only if =8, f=y, y=0 & a=f=y= % , which actually
means that if and only if

1 1 1
_ 2,,2, 2
a b cl=0=a" +b"+c"=ab+bc+ca. m

b ¢ a

28. On the sides of a triangle ABC three equilateral triangles are constructed, such
that the triangles 4'BC and B'AC are constructed on an interior side and C'A4B 1is
B’ constructed on an exterior side. If M is the center of

a triangle C'AB, then prove that the triangle A'B'M

is an isosceles triangle and furthermore £ A'MB'= 23—”

holds true.

Solution. Let a, b, ¢ be the affixes of vertices 4, B,
C respectively. Then the condition of the given problem

implies that
i% i%
1 _ b—ce ' _c—ae
a'="="=0, b'= = and
l-e3 l-e3
i T 2T
cl=b=ae’ _ '3 _ g0l
i
l-e3
Figure 22 Hence,
= Lali-d%) 4 11463)
=atbre’ _La\1—¢'3 )+ Lpl1+e's =%+ib%a\/§

Finally,

T
=—b+ce's +3at3btb=a  jhmaza=b [3

j T s 2m iL
=Cel§—a(_l+i£)zcel§_a617=C—ae3 =b'
2 2 T >

e_ig
the latter implies the statement of the given problem. m

29. Given a triangle 4; 4,45 and a point Ay on its plane. Let 4, = 4;_3, s=4. We
construct consecutive points A, P, F,... such that the point P, , under rotation around
. 2 _ . .
the point 4;,; at —?”, maps at Py;. If P13 =F,, then the triangle 44,45 is an
equilateral triangle. Prove it!
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Solution. By applying the given rotation, we obtain the following

-2 (P0) = P Sy, _an(P) =P Sy 2m(P2012) = Po s
thus :

S oS 0..08 oS =pp.
( o132 P Ay Ay, =204y, -2 (po)=Po

Further, 3(—%“) =-2m1, so the theorem 5.13 implies that

S oS oS =S, 1
O e T @
where S, is translation for a vector v. But,
671
S oS 0..08 oS =(S =S671y =S »
e e L P o A= 04 (5y) 671y = =w

re. S,,(py) = po- This means that S|, is a translation which has a fixed point. Now the

theorem 5.5. implies that S, is identity i.e. w=0, thus v=0, which according to (1)
means that S 4y 28 oS 4y = S PRELE The points 4; and 4, are fixed points for the
>3 >3 >3

rotations S 4 _om and S, -2 Thus

=5 25
j2n ( lzn) j2n ( l2n)

SAI,—%_‘Z Szell-e a andSAzy_%—e Szell-e 3 a,

which according to the theorem 5.13 means that an affix a3 of the center of rotation
S, 2n satisfies the following equality

43,3
() (o .
e l-e 3 Jay+\l-e 3 Ja; . ( —i—)_ -zl
3= —r ,le. az\l+e 3 /=e 3ap+a.
l-e 3e 3

The last equality is equivalent to the following equality

s
—ay=(ay—az)e?,
The latter implies that the triangle 4,4, 45 is an equilateral triangle. m

30. Determine the points ¢ and d, which together with the points @=1+i and
b =2+ 3i form such a square onto the Oxy plane, that a and b are its two adjacent vertices
and one of the other two vertices is placed on the second quadrant.

Solution. ¢c=4i and d=-1+2i. m

31.Thepoints a=1+i and c=—1+i J3 are opposite vertices of a square. Determine
the other two vertices of that square.

Solution. The affix of the center of that square is 0 =i-—"—>= 1+\/— , and hence

_ 31,303 _1=3 .—1+f
b—T+lT and d_T+lT
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32. The complex numbers @ =1+ and b =2+ 2i are adjacent vertices of a square.
Determine the other two vertices ¢ and dof that square.

Solution. The given problem has two possible solutions:
c'=1+43i,d'=2i and ¢"=3+i,d"=2 . m

33. Given a square 4ABCD and q as the affix of 4. Determine the affixes b, ¢, d of B,
C, D if the origin coincides with:

a) the vertex B,

b) the vertex C,

c) the center of the square.

Solution. a) The given problem has two possible solutions and in both of them
b=0.

If the square is positively oriented, then the point C is obtained by rotation of the
point 4 at —% around B, thus ¢'=—ia . Now, thereby AD = BC we getthat d'-a=c'-b,
thus d'=a+c'=(1-i)a.

If the square is negatively oriented, then the point C is obtained by rotation of a point
A at % around B, thus ¢"=ia and d"=a+c"=(+i)a.

b) The given problem has two possible solutions, and in both cases ¢ =0, since the
center O of the square is the midpoint of its diagonal, we get that the affix of the center

is o= % . If the square is positively oriented then the point B is obtained by rotation of 4
around O at % , and D by rotation at —Z | thus b= % + i% and d = % - i% . If the square

ABCD is negatively oriented, then b and d will only change their positions.

3n

¢) To determine the points B, C, D we only rotate the point 4 around O at % s TS

respectively, and thus b =ia, c=—a, d =—ia . m

34. Squares are constructed to the outside of
the parallelogram ABCD on each side. Prove that
their centers form a square.

Solution. Let the intersection of diagonals of a
square ABCD coincide with the origin and let a, b,
¢, d be the affixes of 4, B, C, D, respectively, and
a,b',c', d', be the affixes of A", B',C', D' (the
centers of the constructed squares), respectively
(see the figure 23). Then ¢ =—-a, d =-b, thus

' _l% 1 : 1 _ b+ai
(a—a%e 2+4+a'=b,ie. a'=ZF%L,

o 1+i
Figure 23 Similarly,
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v ctbi

, o'=4xcl gnd 4’ = 4tdi

1+i 1+i 1+ 2
and hence
b'= —a+bi c'= —b—ai d'= a—bi
. . 1+ ° 1+ 2 1+
Finally, since
b g = @O _ g0
1+i
and
-b—(b i .—(atb)+(b-a)i .
c—p'=4 1-(H.+a)z _ (a+ 1):—l( a)i =i(b'-a"),

we get that the quadrilateral is a square. =

35. Squares are constructed to the outside of the quadrilateral ABCD on each side. If
A', B', C'"and D' are centers of the squares constructed on the sides AB, BC, CD and
DA, respectively, E is the midpoint of 4'C"', F is the midpoint of BD, G is the midpoint
of B'D' and H is the midpoint of AC, prove that the quadrilateral EFGH is a square.

Solution. Let the affixes of points
be denoted by the appropriate lower case
letters. The properties of rotation and the
condition of the given problem, imply the
following

' _ a—bi v _b—ci _ c—di '_d—ai
a'=fo b= o= A=
Further,
_ a'+c' _ atc—(b+d)i
€= T T4
_b+d' _ b+d—(a+c)i
£§= 20-1)
f _ btd j = atc
27 2
Hence, Figure 24
foe=brd _ atc—(b+d)i _ b+d _ _a+c
2 2(1-1) 2(1-i)  2(1-i)°
g _btd—(a+o)i g4c _ b+d _ _a+c an
h= 2(1-i) 2 T 201 2(-0)° d

_brd—(ato)i _p+d _ b+d ey
g-l="Z0m 2 =Gay 2 =i -9,

therefore quadrilateral EFGH is a square. m
36. Squares centered at P, O, R are constructed to the outside of the triangle ABC on

each side. Squares centered at 4", B', C' are constructed to the inside of the POR on each
side. Prove that the points A', B', C' are midpoints of the sides of the triangle ABC.
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Solution. Let the affixes of points be
denoted by appropriate lower case letters
and let 4', B', C' be centers of the squares
constructed on the sides OR, RP, PQ,
respectively (see the figure 25). Then, the
condition of the given problem and the
properties of rotation imply that

—b-—ci _c-ai ,_a=bi
p_ 1-i ° q_ 1-i ° r =i ° (1)
a'=" b =B o= (2

1-i ’ 1-i 1-i
If we substitute the expressions for p, ¢, , in
(2) we get that
q'=btc pr_cta .1_ath
2 b

27 27
Figure 25 which was supposed to be proven. m

37. Let a, b be complex,but not real numbers, and are such that they satisfy the
following |a—b| =2 and ab =1. Prove that the quadrilateral ABCD whose vertices have
affixes —1, a, 1, b, respectively, is an isosceles trapezoid.

Solution. Since AC=|1-(~1)|=2=|b-a|=BD it is sufficient to prove that the
quadrilateral ABCD is a cyclic. But,

[b-(=DI(-a) _ 1-a+b—ab _ _b-a _ 1
[—CDlb=a) — 20b-a) ~20-a) -2 R>

thus, the remark 3.6 b) implies that the points —1, a, 1, b are placed on a same circle,

but they are not on a same line, because in that case it must be the real axis, which is
contradictory with the given condition. Hence, the quadrilateral ABCD is an isosceles
trapezoid. m

38. Let ABCD be a cyclic quadrilateral and let H,, Hg, H- and Hp be the
orthocenters of the triangles BCD, CDA, DAB and ABC, respectively. Prove that the
quadrilaterals ABCD and H 4H gH ~H , are congruent.

Solution. Without loss of generality we assume that the circumcircle of the

quadrilateral ABCD is the unit circle. So, we have that
hy,=b+c+d, hy=c+d+a, h.=d+a+b, hy=a+b+c.
To prove that quadrilaterals ABCD and H 4HgH-Hp, are congruent it is sufficient to
prove that for all x,ye {a,b,c,d}
[ x=y[=|hy=hy|
holds true (why?), which is easy to be proven. Indeed, for example
h,—hy|=|b+c+d—(c+d+a)|=|b-a|=|a-b|.m
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39. Let a, b, ¢ be complex numbers such that they satisty the following
a+b+c=0 and |a|=|b|=]c]|.
Then a, b, c are vertices of an equilateral triangle. Prove it!
Solution.
la—bP=(a-b)a—b)=aa—ab-ba+bb=4-aa—ab—ba—bb
=4—(a+b)Ya+b)=4—|a+bP=4—|—c|P=4—|c[*=3.
Hence, |a—b]| =3. Similarly, it can be proven that |b—c]| =3 and lc—al =3,
which actually means that a, b, ¢ are vertices of an equilateral triangle. m

40. Let the complex numbers a, b, ¢ have equal modules and let a, b, ¢ be affixes of
vertices of an equilateral triangle. Prove that the complex numbers ab, bc, ca are also the
affixes of vertices of an equilateral triangle.

Solution. Let |a|=|b|=|c|=7 and |a—-b|=|b—c|=|c—a|=x hold true.
Hence,
|lab—bc|=|b|-|a—c|=xr,
|bc—ca|=|c|-|b—a|=xr,
|ca—ab|=|a||c—b|=uxr,
the above imply that ab, bc, ca are affixes of vertices of an equilateral triangle. m

41. The squares BCDE, CAFG and ABHI are constructed to the outside of the triangle
a ABC, on each side BC, CA and 4B. Let GCDQ and EBHP be parallelograms. Prove
that the o APQ is an isosceles right angled triangle.

Solution. The point / is obtained by rotation of a point @ around b at % in a positive
direction, which means that

h=a+((b-a)e'?=(1-i)a+ib.
Similarly, d =(1-i)b+ic and g =(1-i)c+ia . The quadrilateral BCDE is a square, thus
the midpoints of sides CE and BD coincide with each other, whichimpliesthat d + b=e+ ¢,
thus e =(1+i)b —ic. Analogously, g = (1+1i)c —ia . Further, the quadrilaterals BEPH and
CGQD are parallelograms, thus p+b=e+h and c+g=g+d , thatis p=ia+b—ic

and g =—ia+ib+ c. Finally, by rotation of the point p around a at % we get that
s
a+(p—a)el2 =a+i(ia+b—ic—a)=a—-a+ib+c—ia=—ia+ib+c=gq.

Finally, the point Q is obtained by rotation of the point P around A4 at %, hence the
triangle a APQ is isosceles right angled triangle.m

42. The equilateral triangles BCB;, CDC;, DAD, are constructed to the outside of
a convex quadrilateral ABCD, on each side BC, CD, DA. If the points P, Q and R are the
midpoints of the sides B|C}, C;D; and 4B, respectively, prove that the triangle POR is
an equilateral triangle.

179



Solution. The points By, C;, D; are obtained by rotation of the points B, C, D around

2l
C, D, A at % in a positive direction, respectively. Hence, by letting the €= e3 we get
that
by=c+(b-c)e, c;=d+(c—-d)e, dy=a+(d—-a)t.
Further, thereby P is the midpoint of B;C; we get that
_ bte _ bete+(1-€)d
-2 7 2 ’

. Clearly, r = aTer . Hence,

ce+d+(1-€)a

Similarly, ¢ = 3

F 4 (p—r)e = a+b + (b£+c+(1—£)d _m)g

2 2
B ce+a(1—e)+d(e—82)+b(1—z—:+£2)
B 2
_cetd+(1-€)a _
=

thereby e2—e+1=0 , (why?). Hence, the point Q is obtained by rotation of the point P
around R. Therefore, the triangle POR is equilateral triangle. m

43. Let ABCD be a convex quadrilateral so that AC = BD. On the exterior side of
the quadrilateral on its sides are constructed equilateral triangles. Let Oy, O,, O3, O4 be
the centers of triangles constructed on the sides AB, BC, CD, DA, respectively. Prove that
the lines 0,05 and O,0, are perpendicular to each other.

Solution. Since, a point 4 is obtained by rotation of B around O, at ZT”

in a positive

21'c
direction, and by taking that €= e3 we get that a=o0;+(b—-0))E, 1.e. 0 = "llég.

Analogously, 0, = bl =, 03 =£ _‘f and 04 = d 9% . Further, to prove that 0|03 L 0,04

it is sufficient to prove that 25
(4] _03 0) _04

a—c—(b-d)e _ _ b-d—(c-a)e
a—c—(b—d)e b—d—(c—a)e ’
We can be directly assured in the validity of the latter by using the ee =1, i.e. € =% and

(a—c)a-c)=|la—cl=|b-d?=(b-d)b-d).m

—27% e 1t is sufficient to prove that

44. Let M and N be two distinct points on a plane of a triangle a ABC so that

AM :BM :CM = AN : BN :CN .
Prove that the line MN passes through the circumcenter of the triangle o ABC.

Solution. Without loss of generality we consider the circumcircle of the triangle
a ABC as the unit circle. Then 0=0 and a=- 1 b=% and c¢=-. The proportion
AM : BM = AN : BN is written as following
1= |a—ml|{|b—n|
la=nl{p—m]| °
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thus,
_ la=mPlp=n® _ (a=m)(a-m)(b=n)(b-n)

2 (1)
Further, la—n| |b—m| (a— n)(a n)(b m)(b m)
(a—m)(Zz—E)(b—n)(i?—%)=(1—%—aE+mE)(1—g—b£+nZ),
(a - n)(a—n)(b—m)b—m) =(1—§—a2+n5)(1—%—b%+m%)
If we substitute in (1) we obtain the following equality
(1—%—a%+m%)(l—%—bﬁ+nﬁ) =(1—%—aﬁ+nﬁ)(l—%—ba+m%)
After reducing and dividing the latter by a—b we get that
m_ (atbymn _ pn = (atbymn == g — =
oy m ab+ p T oy Tmmn+ S mnn=0. 2)

Analogously, since the proportion AM : CM = AN :CN , whereby in (2) b is substitute by
¢, and thereby symmetry we get that

- a+c)mn = (a+c)mn
n i n @OW @t

ac ac ac ac

If we subtract (3) from (2), after reducing and dividing the so-obtained equality by b—c
we get the following

+ mmn+ 88— = 0. 3)

_m_ gy n_ _mn_ mmn | mn_mon _ 4)
abc ~ abc  bc abc bc  abc
Further, thereby the symmetry, re reapplyrng the same procedure to the proportions

AM : BM = AN : BN and BM :CM = BN CN we obtam the following equality
_m_ , _n _ mn mmn mn _ mnn _
~ abc + abc  ac + b abc toac ac  abc =0 ®)

Finally, if we subtract (5) from (4), and further the so-obtained equality we divide by

L __L e get that mn—nm =0, which is equivalent to

ac bc
m—o _ n—o
9
m—-o n—o

therefore, the points M, N and O are collinear. m

45, The quadrilateral ABCD is inscribed into a circle, such that AC is its diameter.
Lines AB and CD meet at M, and the tangents at B and D meet at N. Prove that
MN 1L AC.

Solution. Let the quadrilateral ABCD be inscribed into a unit circle. Since AC is a
diameter we have that ¢ = —a . Further, thereby Remark 3.13 holds true we have that affix
of M is

(a+b)cd (c+d)ab 2bd+ad—ab
cd—ab d+b

and affix of Nis n =204 Further since

b+d _
=1 -1 =1
a=-, b 5 and d y,
we get that
__a(d-b) o _a(d-b) _ p-d
m-n=—p o andm-n=—-—t=_0""0
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The latter means that

m=n _ ;2
m—n
But,
ac=_2a__g2,
a-c 2a
Therefore, the complex gradient of MN and AC holds true
m-n — o2 = _a=c
m-—n a—c

which means that MN 1. AC . m

46. Let H be the orthocenter of o ABC and let P be placed on its circumcircle. Let £
be the foot of the altitude BH, the quadrilaterals PAOB and PARC be parallelograms and
AD and HR meet at X. Prove that EX and AP are parallel.

Solution. Without loss of generality we get that the circumcircle of A 4BC is the unit
circle. Since Theorem 15.2 we have that 2 =a+ b + ¢, and since solution of Example 1.9

we get that the affix of £ is the following e = %(a +b+c— %) . Further, the equilateral

PAQB is parallelogram, and therefore the midpoints of the line segments PO and 4B
coincide, i.e. ¢ =a+b— p. Analogously, since the quadrilateral PARC is parallelogram
we have that r =a+c— p. But, 4, O, X are collinear, and therefore
x-a 074 _pb__ pbta —ax
x-a a—-q p-b ' abp
Analogously, the points H, R, X are collinear, and therefore
. _, _ ptb - x—a—-b— c+p+bp+bp

A2 =L =L _=pbh,ie x=
x=h  h-r p+b p ab

By equating the obtained equalities for x we express x
=1 e
= 2(2a+b+c P, )
Finally, to prove that EX and AP are parallel, it is sufficient to prove that
ex _47P__,
=—=====-ap
e-x a-p
holds true. The latter can be directly checked if we consider that

RV | bp _ (btc)(bp—ac)
e x‘z(p+c a- b) ¢ ™

47. Let ABCD be a cyclic quadrilateral. The points P and Q are symmetric to C
with respect to the lines 4B and 4D, respectively. Prove that PO passes through the
orthocenter of the triangle ABD.

Solution. Without loss of generality we can consider that the quadrilateral ABCD is
inscribed into the unit circle. Since the solution of Example 1.9, the affixes of P and O
are

p=a+b- ,q a+d- (1)
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The Theorem 15.2 implies that the orthocenter of a ABD has affix h=a+b+d, and
therefore (1) implies that
p—h _ a+b———a—b—d _ abd a+d—%—a—b—d q—h

L L_L_L_l_i c 1yl e 1 1.1 7
e A Wtiaa v a 47N

The latter means that the line PQ passes through the orthocenter of the triangle ABD. m

48. Let ABC be a given triangle, H be the orthocenter, O be the sircumcenter and R
be the circumradius of its circumcircle. Let the point D be symmetric to A with respect to
the line BC, the point £ be symmetric to B with respect to CA and F' be symmetric to C

with respect to 4B. Prove that the points D, E and F are collinear if and only if OH =2R.
Solution. Without loss of the generality we can consider that the triangle is inscribed

into the unit circle. Then 0 =0, R=1 and since 15.2 we have h=a+b+c. Thereby
Example 1.9 the affixes of the points D, £ and F are the following

d= b+c—— e= a+c—— f=a+b- (D
Further, the points D, £ and F are collinear if and only if
f e
d —e f —e 2)

holds true. If (1) is substituted in (2), and after reducing we get that the points D, E and
F are collinear if and only if
(c—a)(abc— a’b-ab® —a’c—ac* —b*c- bcz) =0,
Thereby ¢ —a # 0, we get that the points D, E and F are collinear if and only if
abc—a’b—ab® —a*c—ac* —b’c-b* =0 &
a’b+ab®+abc+a’c+ac® +abe+b’c+bc? +abe

abc =4 &
ab(a+b+c)+ac(a+b+c)+bc(a+b+c) _
abc =4 & L
(a+b+c)(%+%+%)=4 & (a+b+c)a+b+o)=4 &

|\h—o’=hh=4R*> < OH=2R.m

49. Let ABC be a triangle so that the tangent of its circumcirle at the vertex 4 meets
the midsegment of a triangle (parallel to BC) at 4;. The points B; and C; are defined
analogously. Prove that the points 4;, B; and C; are collinear and moreover the line
which passes through these points is perpendicular to the Euler line of A ABC.

Solution. Without loss of generality we can consider that the triangle a ABC is
inscribed into the unit circle. Then, A=a+ b+ ¢ and according to 17.4 the equation of

the Euler line is the following z = %E . Further, if A4', B', C' are the midpoints of the line

segments BC, CA, AB respectively, then their affixes are

—btc pr_—cta _ath

a'=%%, 2 2
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Therefore, the equation of the midsegment B'C' parallel to BC is

_cta — _po(,_atc
2 €4 o _pe(z- L), (1)
And the equation of the tangent at the vertex 4 is

z+a*z=2a. 2)
Since (2) we obtain the following expression z= 237 and by substituting in (1) we get

the following equation
L _cta :—bc(z"‘z _a_+c)

2 a? 2ac
2 —
whose solution a; = %ﬁ;abc is the affix of the point 4;. Symmetrically,
a —bc
by = b (a+b+c)-3abe and ¢ = c*(a+b+c)-3abc
262 —ca) ! AP-ab)

Further,

_a*(a+b+c)-3abe b (a+b+c)-3abc _ c(a-b)’ (a+b+c)
@ == 2d=be)  2bP-ca) 2 —bo)(b —ca)
it is easy to check that following holds true
ﬂ—ﬁ —_ (a+b+c)abc __h

a—b, ab+bc+ca h

b

the latter means that the line 4B, is perpendicular to the Euler line. Symmetrically, the
line BC; is perpendicular to the Euler line, and therefore the points 4;, By and C; are
collinear. m

50. Let H be the orthocenter of A ABC. Prove that the Euler circles of the triangles
ABC, ABH, BCH, CAH coincide.

Solution. Without loss of generality we can consider that the triangle a ABC is
inscribed into the unit circle. The center of the Euler circle of the triangle A ABC is the
point £ with affix e = %’”c . The solution of Example 17.9 implies that the circumradius
of the triangles ABC and ABH are congruent and the point O' with affix o'=a+b is the
circumcenter of the triangle ABH. Thereby CH 1 AB and BC L AH , C'is the orthocenter
of the triangle ABH. If E' is the center of the Euler circle of the triangle ABH, and H'(h")

is its orthocenter, we get that 4#'=c¢ and E' is the midpoint of the line segment O'H ', i.e.

0'C, and therefore its affix is e'= % = ¢ . The latter means that the points £ and E'

coincide. But, the radius of the Euler circle is half of the length of the circumradius. The
above stated implies that the Euler circles of the triangles ABC and ABH coincide.
Analogously, it can be proven that the Euler circles of triangles ABC and BCH, i.e. of
triangles ABC and CAH coincide.
Finally, the above stated implies that the Euler circles of triangles ABC, ABH, BCH,
CAH coincide. m

184



51. Let ABCD be a cyclic quadrilateral. Prove that

a) the Euler circles of the triangles ABC, BCD, CDA, DAB meet at a unique point.

b) the centers of the Euler circles of the triangles ABC, BCD, CDA, DAB are vertices
of a cyclic quadrilateral.

Solution. a) Without loss of generality we can consider that the quadrilateral ABCD
is inscribed into the unit circle. The quadrilateral ABCD is cyclic, and therefore the cen-
ters of circumcircles of the triangles ABC, BCD, CDA, DAB coincide. If Ey, E,, E3, E4
are the centers of the Euler circles of the triangles ABC, BCD, CDA, DAB, then their af-
fixes will be

e =

atbtc , _b+ctd , _ctd+a , _dtath
2 227 2 3Ty A 2

respectively. If Hy, H,, Hy, H, are the orthocenters of the triangles ABC, BCD, CDA,
DAB, then their affixes will be

h=a+b+c, h=b+c+d, y=c+d+a, hy=d+a+b,
respectively. The point E with affix e= W is midpoint of line segments
DH,, AH,, BH5, CH, and the following hold true

|e_el|=|a+b;c+d_a+g+c|:‘%‘:%,
|e—ez|:|a+b;c+d—b+§+d _ % :%’
le—e3| = a+b-5c+d_c+g+a :‘% :%,
le—ey | = a+b£c+d_d+§z+b|: ¢ :%'

The above means that it belongs to the Euler circles of the triangles 4BC, BCD, CDA,
DAB.

b) The proof is directly implied by the following equalities

le—ej|=|e—ey|=|e—e5|=|e—ey|=1 . m

52. Let A4, BB; and CCj be the altitudes of » ABC and let AB# AC . Let M be
the midpoint of BC, H be the orthocenter of 4 ABC and D be the point of intersection of
BCand B,C;. Prove that DH 1 AM .

Solution. Let the circumcircle of A ABC be the unit circle. The condition of the
given problem implies that

blz%(a+b+c—%) and clzé(a+b+c—“c—b), mzb—;c and h=a+b+c.

The equation of the line BC'is z—b = %(; —l;) ,1.e.
o

z—b=—bcz+c. (1)
The equation of the line B,C; is z—b; = 2 _% (z—b), ie.
C1—
z=by=—a’(zby). @)
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Since (1), z= % . By substituting in (2) and after reducing we obtain the following

expression for the affix of D
d= a’b+a’crab®+ac* —b*c—bc* ~2abc )
2(a’-bc)
Finally, to prove that DH 1 AM it is sufficient to check that

d-h  m-a
where d — h = (bre=2a)(abtbeca+a®)
2(a*-bc)

and m—a= % . The details are left as an

exercise. m

53. Let ABC be an acute triangle, so that BC > CA and let O be the circumcenter, H
be the orthocenter and F be the foot of the altitude CH. If the line through F, perpendicular
to OF, intersects the side CA at P, then prove that L FHP = ZBAC .

Solution. Without loss of generality we consider the circumcircle of triangle o ABC
as a unit circle. The affix of F'is the following f = (a +b+c- —) The equation of the

line CA4 is the following

z—a=%%(z—-a),ie. z+acz=a+c,
c—a

and the equation of the line which passes through /" and is perpendicular to OF is the
following

z—f=—§é—7»
By solving the system of the last two equations we obtain the affix of P as following
= f 2ac f~(a+c) _ (a+b+c—@)c

ac?— f b2+c?
Let LPHF =¢ and £ZBAC =o.. Then
f=h _p-h ﬁ 2ip and & a:é;ﬂezia’
f-h p-h c-a b-a
Le.
Q200 _ U=hp=h) 4 e _ (c=a)(b=a) _ ¢
(f=h)p=h (c=a)(b-a) D~
Then thereby
2
—h= bab+bc+ca+c , h ¢ abtbctcatce
b2 +c? p ab(b2+c )
2 - = 2
f—h= ab+bc2+cca+c and f—h= ab+b2-]i)—§a+c
it is true that €?™® = b =¢?® . The latter implies that @¢=0 or a=@+m. But,

a ABC is an acute triangle, and therefore o=@+ m is not possible. So, p=0a, i.e
/FHP=/BAC .m
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54. If a Symson line /(P,ABC) passes through Q which is diametrically opposite of
P, then it passes through the centroid of 2 ABC. Prove that!

Solution. Without loss of generality we consider the circumcircle of triangle a ABC
as the unit circle. According to the condition of a problem, the line /(P,4BC) consists

of a point QO with affix ¢ =—p . Further, according to Example 24.4 the line /(P,ABC)

consists of a point O,, with affix o0, = arbictp , and the centroid 7 of o 4BC has affix

p 2
tz%b“. Then,

t-q 7a+§+c+17 _2atbte3p 2

0,4 _chwﬂ, T 3atbtet3p 3

Since Corollary 1.4. we get that points O, T'and are collinear, which actually means that
T is placed on the line /(P,ABC). m

55. Prove that the Symson line of any point P (P is a point placed on a circumcircle
of a ABC) bisects a line segment PH where H is the orthocenter of a » ABC.

Solution. Without loss of generality we consider the circumcircle of the triangle

A ABC as a unit circle. The orthocenter H of A ABC has affix h=a+ b+ ¢, and therefore
a+b+c+p

R which obviously satisfies

the midpoint Q of the line segment PH has affix g =
the equation
z—z‘;%b+‘;—[;f(a+b+c+p)—%(a+b+c+p)=0

of the Symson line /(P,ABC). The latter means that /(P,4ABC) bisects the line segment
PH. m

56. Let o ABC be a triangle and let D be on the circumcircle of the triangle o ABC.
Determine the locus of meeting points of the Symson lines /(4,BCD), /(B,ACD), [(C,ABD),
I(D,ABC), when D moves on a circumcircle of A ABC.

Solution. Without loss of generality we consider the circumcircle of triangle o ABC
as a unit circle. If a, b, ¢, d are the affixes of 4, B, C, D, respectively, then according
to the Example 23.4 the point of intersection of lines /(4,BCD), I(B,ACD), I(C,ABD),

I(D,ABC) has affix x= %(a +b+c+d) So, the required locus of points is a set of all
points x=%(a+b+c+d), when d moves on a circle. That actually is a circle with

radius 1 and center €42+¢ je. it is a circle centered at the midpoint of the line segment

2 2
whose ends are the orthocenter and the circumenter of A ABC, and the radius is congruent

to half of the circumradius.m

57. Let a ABC be such a triangle that AB # AC and let D be a point of intersection
of the tangent to the circumcircle of a ABC at A and the line BC. If E and F are such
points of bisectors of line segments 4B and AC, respectively, that the lines BE and CF are
perpendicular to BC, then the points D, E and F are collinear. Prove it!
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Solution. Without loss of generality we consider the circumcircle of triangle a ABC
as a unit circle. The equation of the line BC is the following

z—b:%(z—é),i.e. z+bcz=b+c,
o
and the equation of the tangent at 4 is z + a’z=2a. By solving the system of the last

two equations we obtain d, the affix of point of intersection between the line BC and the
tangent to the circle at 4, as following

d= a2(b+c)—2abc

a’—be
The point £ is placed on the bisector of the line segment 4B, and thus OFE 1 AB,
therefore €2 =—-4=2 je. e—— Further, BE 1 BC implies that €2 =—¢=2 and
e—o a=b ab e—b c—=b
therefore é:%. So, £ =t =b | thus e= L2 ( ) . Analogously, f —M.
Finally,
_ az(b+c)—2abc a(b—c) _ ab(a c)(b+c— 2a)
d-f= 2 "~ b-a
a“—bc (ﬂ —bc)(b—a)
d _ az(b+c)—2abc a(c—b) _ ac(a-b)(b+c—2a)
e= 2 T a2
a“—bc c—a (a”=bc)(c—a)
imply

d—f _bla=c)’ _ a’b’e(c=a)’ _ bla=c)’ _ d—
d—e  c(a=b)* Ea*b(b-a)®  c(a=b)? d-
the above means that the points D, E and F are collinear. m

-/
—e

b

58. (Brokar theorem). Let ABCD be a cyclic quadrilateral. The lines 4B and CD
intersect at £, the lines AD and BC intersect at /' and the lines AC and BD intersect at

G. Prove that the circumcenter O of the quadrilateral coincides to the orthocenter of
A EFG.

Solution. Let assume that ABCD is inscribed into the unit circle. According to the
Remark 3.13 c) the affixes of £, F"and G are

_ ab(c+d)—cd(a+b) f _ ad(b+c)-bc(a+d) ac(b+d)— bd(a+c) (1)
- ab—cd > S ad—bc 0 87 ac—bd

To prove that O is the orthocenter of a EFG it is sufficient to prove that OF L EG and
OG L EF . Since (1) it is easy to find that
f 0 ad(b+c)—bc(a+d)

f—o a+d—(b+c) > @)
_ (a=d)(b-0o)[(b+c)ad—(a+d)bc]

€"8= (ab—cd )(ac—bd) G)

- = _ (a=d)(b=c)(b+c—(a+d))

€T 8= b—cd)acbd) - 4

Now, (2), (3) and (4) imply that
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(a=d)(b=c)[(b+c)ad—(a+d)bc]

e-g _ (ab—cd)(ac—bd) _ (b+c)ad—(a+d)bc _  ad(b+c)—bc(atd) _

T (a=d)b=c)bte—(atd)) T b+c—(a+d) - a+d—(b+c) B
(ab—cd)(ac—bd)

The latter means that OF L EG . Since the symmetry we conclude that OG L EF ,i.e. O

is the orthocenter of o EFG. m

o
- N
-g )

[

S
f-

59. Let ABC be an isosceles triangle, AB=AC . Let Pbe a point on the extension
of the side BC and X and Y be the points on the sides 4B and AC, respectively, so that

PX || AC, PY || AB . If T is the midpoint of the arc BC ,then PT 1 XY . Prove it!

Solution. Let the circumcircle of the triangle a ABC be the unit circle and a=1.

Then c=b and t=-1. Further, since P is on the line BC, its affix p satisfies the following

1+b—x
b

; =b+ % — p . Further, since X'is a point on the side 4B it is true that x= , and since

PX || AC we get that x= 1_9 +bp—bx. So, x= % thereby the last three equations.
Analogously, ; = HCT_y and ; = 1_9 +cp—cy,thus y= 5—:11 . Finally,
(p+1)(b-1)
o b ptl_ pt
x—=y _(p+D(b-1) p+l p—t ’
b+l

implies that PT L XY . m

60. Let ABCD be a cyclic quadrilateral and let K, L, M, N be the midpoints of the
sides AB, BC, CD, DA, respectively. Prove that the orthocenters of the triangles AKN,
BKL, CLM, DMN form a parallelogram.

Solution. Let the circumcircle of a quadrilateral be the unit circle. The affixes of the
points K, L, M, N are

_atb j_ btc _ctd _d+a
k= 2,1 7o, m=SE, n=54,

We have to determine the affix 7 of the orthocenter H; of the triangle AKN. Since
KH, L AN, NH; 1 AK , the following holds true

—]f_ﬁ:—u:—g_g:ad and,i:—g_lfz—f_ab,
. k—hy a-n a—d n—h a—k a-b
that is
7 _ kad—k+h nab—n+h
1= ] nd hl = b ,
which imply that
By = 2a+b+d
1~ 2 :

Analogously, the affixes of the orthocenters of the triangles BKL, CLM, DMN are

— 2b+cta — 2ctbtd — 2d+a+tc
h2 - 2 5 h3 - 2 5 h4 2 5
respectively. Finally, since

hy+h hy+h
S =atbtet+d="",
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the midpoints of the diagonals of the quadrilateral coincide. The latter means that the
quadrilateral is a parallelogram. m

61. The incircle of a A ABC centered at O tangents the sides AB, BC, CA at M, K, E. If
P=MK N AC ,then OP L BE . Prove it!

Solution. Let the incircle of 4 ABC be the unit circle. Then, according to the Remark

3.13 d), it is true that

a=2em and p=2mk
e+m m+k
Since P is on the chord MK we get that P, M, K are collinear, and therefore their affixes

satisfy the following

— _m+tk-p

T omk

Further, Pis on the line AC. Thereby this line tangents the circle at £, we get that PE 1 OF ,

and therefore

[
=

2e-p
2

_ 2 . —
:—g:—e . 1.C. p:
e—o e

o |
|

holds true. By equating the last two expressions for E and after reducing, we obtain that
the affix of P is the following
_ (m+k)e*—2mke
B &> —mk '
Finally, it is easy to be checked that the affixes o, p, b, e of the points O, P, B, E
satisfy the following
P=0 _ _e-b

=—=

p—o
(check it!). The latter means that OP L BE . m

Q|

62. A circle centered at O is incircle of a quadrilateral ABCD and tangents the sides
AB, BC, CD, DA at K, L, M, N respectively. The lines KL and MN meet at S. Prove that
OS LBD.

Solution. Let the incircle be the unit circle. Then Remark 13.3 implies that

_2nk 3 _2K . _2im g _2mn _ K(m+tn)-mn(k+l)
a_n+k’b_k+l’ _l+m’d_m+n’s_ kl-mn ’
Further,
E_ kl(m+n)-mn(k+l) _ k+I—(m+n)
- T —mn = kl-mn
g _ 2K(m+n)—2mn(k+I)
b-d === Noem  and
T = 2(min)=2(k+)
b-d= (k+1)(m+n)

and therefore
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kl(m+n)—mn(k+1) 2kl(m+n)=2mn(k+1)

s—0 __ H-mn____ _ _K(mtn)—mn(k+l) _ " ktD(mtn) __b-d
> ke l—(m+n) (m+n)—(k+1) 20m+m)=2(k+1) b-d’
kl—-mn (k+1)(m+n)

The latter actually means that OS L BD . m

63. Let ABC be an acute triangle, whose incircle tangents the sides AB and AC at Q
and R, respectively. Let X and Y be the points of intersection between the bisectors of the
angles £ ACB and £ ABC with the line OR, respectively and let Z be the midpoint of
the line segment BC. Prove that the triangle XYZ is an equilateral triangle if and only if

LBAng.

Solution. Without loss of generality we consider the incircle of the triangle as a unit
circle. Let P be the point where the line BC tangents the incircle. Then,
a:%, b:%, c=% and z:b—;c=%+%.

Since the bisector of £ ACB passes through the center of the incircle, we get that the points

B, O and X are collinear, and therefore the affix x of the point X satisfies the following

x=occ=oc%, o€ R. Similarly, the affix y of ¥ is y:Biﬁj, Be R. Further, the

constants o and 3 are determined by the following given conditions that X,Y e QR , i.e.
the points X, O, R are collinear likewise Y, O, R. So,
4 xr Y=g
qg-r x-r qg-r  y=q
By direct calculation we get that,

o = Pralar) g B= (p+r)(g+r)

2q(p+r) 2r(ptq)
thus
=Pt o4 y= plg+r)
ptr +q
We have to prove that
L BAC = % if and only if o XYZ is an equilateral triangle.

2T

The first condition is equivalent to £LQOR = 27” ,l.e g= re' 3 . The second condition is

sl
equivalentto y—z=(x— z)el 3. So,

_ p(q+r)_( o, 1 ) pr(r-q)

YE= g T\ T ord )T ora) o)

7= Plan) _(1 rq )= pa(q-r)
pr p+r - ptrq) (pra)(p+r)’

Therefore,
(xS pri—q)  __pa(g-r) i

ymz=(xmae Pra)or) D)o ©
i j2n

r=—qe’?® & g=vre 3,
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i2m
The last equivalence is implied if the equation before the last is multiplied by ¢ 3 and

also having on mind that M=—1.m

64. (Newton theorem). Let ABCD be a cyclic quadrilateral. Let M and N be the
midpoints of the diagonals AC and BD and S be the center of its incircle. Prove that M,
N and S are collinear.

Solution. Let the quadrilateral be inscribed into the unit circle and let P, O, R, S be
the points where the circles tangents the sides AB, BC, CD, DA, respectively. Then,

_2ps p_2p4 ._29r 5 _ 2rs
p+s’ p+q’ q+r’ r+s
and therefore
m = ate _ pqs+ prs+pqr+qrs % __ptqtrts
2 (p+s)g+r) ° (p+s)g+r)’
"= b+d _ pqrtpgstprstqrs ; _ _ptgtrts
2 (p+q)(r+s)  ° (p+q)(r+s)
Thus,
m—o _ par+pgs+prs+qrs _ np—o
m-o pratres o’

The latter actually means that M, N and S are collinear. m

65. Let ABCD be a quadrilateral and let its incircle tangents the sides 4B, BC, CD,
DA atpoints M, N, P, O, respectively. Prove that the lines AC, BD, MP, NQ are concurrent
(meet at a unique point).

Solution. Let the incircle of the quadrilateral ABCD be the unit circle. Therefore,

b = 2mn _2pq
m+n’ p+q

If X =MPnNNQ, then
_ mp(n+q)=nq(m+p)

mp—nq
So,
mn(p+q)=pq(m+n) b _ g _nprq=(m+n)
b=d=2 (m+n)(p+q) ° b-d (m+n)(p+q)°
b — x = (m=mlmn(p+q)—pg(m+n)] b — x = (m=mlptg—(m+n)]
(m+n)(mp—ngq) ’ (m+n)(mp-ng) ~’
Thus,
o mn(p+q)=pg(m+n)
b—x _ mn(p+q)—pq(m+n) _ = (min)pte)  _ b—d
b—x prq—(m+n) p Prq=(min) b-d’
(m+n)(p+q)

The above means that X is placed on the line BD. Further, by applying the symmetry, we
conclude that X is placed on the line AC. The above stated means that the lines AC, BD,
MP, NQ are concurrent. m
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66. The incircle of a triangle ABC tangents the sides BC, CA, AB at D, E, F,
respectively, and X, Y, Z are the midpoints of the sides £EF, F'D, DE, respectively. Prove
that the center of incircle is placed on the line determined by the circumcenters of the
triangles XYZ and ABC.

Solution. Let the incircle of a ABC be the unit circle. According to the Remark
22.13 the affix o of the circumcenter of the triangle ABC is the following

_ 2def (d+e+f)
(d+e)(e+ f)(f+d)
Further, the affixes of points X, Y, Z are
x:e-;f’ y:d-lz—f, Z:%ﬁ

thereby the Remark 3.4 and Example 3.3 b),the affix o' of circumcenter of a XYZ is:

o' = x;(z:y)-ty;pc:z)tz;(}—x) _dterf

xXy+yz+zx—xy—yz—zx 2
So,
_ 2def(d+e+f) —_;.Z 2(de+ef + fd)
~(dre)etf)(f+d)’ (d+e)(e+f)(f+d)”’
y . d+e+ — . detef+fd
0O—i=—75"— f, o _l:—z({eff R
thus,

o-i _ def (d+e+f) _o-i

o—i  deref+fe o’
The above means that the points 7, O, O' are collinear, which actually was supposed to
be proven. m

67. The incircle of a triangle ABC, centered at /, tangents the sides BC, CA4, AB at
D, E, F, respectively. Let AINEF =K, EDNKC=N and DF " KB =M . Prove that
MN || BC.

Solution. Let the triangle ABC be inscribed into the unit circle. Then,

2k -2 i -2
Further, the affix of the midpoint of the line segment EF is # and since
29 Sre_
el el v
Py 2
we get that k= f . Further, the equations of the lines DF and KB are
z- d—ff(z d) and z—k=kLz k), (1)

respectively, and if we substitute for

_etf _2fM
k= 5 adb—m,

by reducing the system (1) we obtain the following expression for the affix of M
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_defldefdt-etd? - 12 f2d* - fe
m =
6efd—e*d—ed’—ef >—e* f—d* f—df?
The equations of the lines £D and KC are

d—e k—c
respectively, and if we substitute the following expressions for k = # and ¢ = % ,

and by solving the system (2) we obtain the following expression for the affix of N

= 4e? fd+efd®— f2d?>—e* f2-2e*d* - f
6efd—e*d—ed’—ef>—e* f—d* f-df?

Finally, it is sufficient to prove that MN L ID , namely to prove that
mn —d=o — g2

d-o

S |

3|

Details are left as your exercise. m

68. Let o ABC be any triangle, with orthocenter H, circumcenter O, incenter /
and K the point where the side BC tangents the incircle of a ABC. If IO||BC, then
AO|| HK . Prove it!

Solution. Let the incircle of A ABC be the unit and let it tangent BC, CA, AB at K, L,
M, respectively. According to the Remark 22.13 it is true that

__2MmlktAm) 22 +1Pm K +kdm(k+1+m))
O = D (l+m)(mrk) 4= G D) Trm)(m k)
Further, /0 || BC implies that /O L KL, and therefore
o=i__k=i__j2
o0—i k—i
By substituting for o and o, and after reducing we obtain that
klm(k+l+m)+k2(kl+lk+mk)=O. (1)

We will prove that if the condition (1) is satisfied, then 4O || HK . The affix of 4 is the
following a = % , thus

o _2ml _ 2km(k+ltm) 2m21? - = 2k
a-o=-"1 D (I+m)mtk) (k+l)(l:—nm)(m+k) and a-o= Gt D)(A+m)(mtk) °
On the other hand, if we use the condition (1) we get that
= (kl+Im+mk)*[(k+1+m)> +k>] and 7—F = (k+1+m)? +k? ‘
(k+1+m)? (k+1)(I+m)(m-+k) (k+D)(I+m)(m+k)
Thus,
Ik _ Ck+lm+mk)* _ . _m _ao
ok ey (acording to (1)) 2 T ao
So, AO||HK . m
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69. Let AH,, BH,, CH5 be the altitudes of an acute triangle a 4ABC. The incircle
of the a ABC tangents the sides BC, CA4, AB at points Tj, T5, T3, respectively. Let the
lines /, I, I3 be symmetric to the lines HyH3, H3H,, HjH, with respect to the lines
I,T;, 3T, i1, , respectively. Prove that the lines /, /5, /5 form a triangle whose vertices
are on the incircle of the a ABC.

Solution. Let the incircle of the a ABC be the unit circle. Thus c:tzt%tz. Let’s
1742

determine the affix A3 of the point Hj. Since the given conditions H3T3 1 73/ and
H;C|| T3] itis true that
h3—t t3—0 2

=—=—==-13 and

h3 —C _ t3 —0
h3—t3 t3 —0 h3 —C [3—0

=13 .

By solving the system of the last two equations we get the following expression for /;

_1 2N — =15
h3 —5(21‘3 +C—Ct3)—f3 +W.

)
Analogously i, =t, + % . Further in order to determine the line /; which is symmetric
1403

to H,H; with respect to the line 7,73, it is sufficient to determine the points P and
Py which are symmetric to H, and H5 with respect to the line 7,73, respectively. The
equation of the line 7,73 is

Z—ty = ?‘?(E—t}) .
2
Since the example 1.9, the affix of P, is

— — 2,2
_ )ttty _ 4(6H+E5)
ty—l3 [2(t1+t3)

Analogously, the affix of B is
_ Is(-t) 0=ty _ 4(5+53)
Lt 5(n+t)

D3
Further,
2.0 2.2 2,22
_nBH3) _ 4(348) _ (6551 —t)
Lhts)  H+,) LG+ (G+E) °

thus, the equation of the line / is

P2~ P3

Y
P2—P3

zZ=p) D2)s

1.€.

(1

Analogously, the equation of the line /, which is symmetric to H3H; with respect to the

2,2 2,2
(45 +t 5+t
z 1(2 3)_ tz(Z 23 )

Lh+ts) bty (t+t3)

line I37; is

B+ 2 B (1 +4)

2.2 _ 2,2
Z—tZ(t3+t1)——t2(z 15+ ) (2)
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By solving the system of the equations (1) and (2) we get that m; = ;
3

is affix of the point

of intersection of the lines /; and /, . Analogously, m, = t2t—3 is affix of point of intersection
1

of the lines /, and /3 has affix and m; = ?i is affix of the point of intersection of the
2
lines /3 and /. Finally, the statement is implied by the fact that |my | =|my |=|m3|=1.

Prove it m

70. Let O and R be the circumcenter and the circumradius of A ABC, and Z and r be
the incenter and the inradius of a ABC, respectively. If K is the centroid of the triangle
whose vertices are the points where the incircle tangents the sides of a ABC prove that
Z € OK and also that ﬁ:ﬁ:%.

Solution. Let the incircle of the triangle A ABC be the unit circle and let d, e, f'be
the affixes of its tangent points with the sides BC, CA, AB respectively. According to

it __2def(drer]) _ dberf
the Remark 22.13 it is true that o= @1 et N +d) ° Since Theorem 15.8, k= 3
Thus,
2def (d+e+f) d+e+f_0
0—z _ (d+e)(e+[)(f+d) —def __ 3 —k=z
o—z - 2d+e+f) - d+e+f_0 - k—z
(d+e)e+ /) ([ +d) 3def
Therefore the points K, Z and O are collinear. Further,
o 2def (d+e+f)
0Z _ lo=z| _ [d+e)e+/)f+d)| _ 3 _3R
ZK ==kl dret/ d+eyerf)f+a)) v

The latter was supposed to be proven. m

71. Let P be the intersection of the diagonals of a convex quadrilateral ABCD so

that AB=AC =BD and let O and I be the circumcenter and the incenter of a ABP,
respectively. Prove that if O # /1, then O L CD .

Solution. Let o ABP be inscribed into the unit circle and let u, v, w be complex
numbers as given in Theorem 22.14, so that a = u2, h=v? , p= w2 , hold true. Then,

according to the stated theorem i=-uv—vw—wu. But, AB=AC, and therefore for
a=ZLCAB it is true that

c—a:eia(b—a), (1)
(make a figure). Further, the points 4, C and P are collinear, and therefore

o=~/LCAB = ZPAB . The latter means

7 oL
e _ 2
—vw—u? 2 v

<

vV —u
By substituting in (1) we get ¢ —u’ = —%(v2 —u? ,1.e.
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u2w+u2v—v2w (2)
—V .

Cc=
Analogously,
d= v2W+v2u—u2w . (3)
u
Finally, (2) and (3) imply

22
(u”=v" ) uv+vw+wu)
c—d=
uv

therefore

The latter means that O L CD . m

72. Let I be the circumcenter of a ABC, AB # AC . The point O; is symmetric to
O, the circumcenter of a ABC, with respect to the line BC. Prove that the points 4, / and
O, are collinear if and only if ZBAC =60°.

Solution. Let the circumcircle of a ABC be the unit circle. According to the Theorem
22.14 there exist complex numbers u, v, w so that

a:uz,b:vz,c:w2 and i=—-uv—vw—wu .

According to the Example 1.9, the affix of O is the following

0(b—c)+be—bc
0| = 0bmvberbe _ o= y? 4P
b—c
Further, the points 4, / and O are collinear if and only if
L9 —at
a-o, a-i ’
i.e. if and only if
v2+w2—u2 u2+uv+vw+wu
—_— I — — <:>
v2+u2—u2 M2+MV+VW+WM
2 iw? 2 +v+w)+
. vz+w2 u . 2u2v2w2 _ u(u+v+w) vwz/ usz -
u (VoW )—vw ywHuw+uv+u

2 2 2
S SR —yww=1 &
u“(veHwo)—vw

WV3 ‘|'V2W‘|'VW3 _un2 —u2v2 —M2W2 =0 &

(wv—uz)(vw+v2 +w2) =0.

That is, the points 4, I and O; are collinear if and only if either u? =vw or

w2 +w? =0, If u? =yw, then

2 —(—
L_g :u4 =V2W2 :M’
u?—o o—=(-vw)

which means that 4, O and O, are collinear, thus AB # AC , which is contradictory. So,
the points 4, O and Oy are collinear if and only if the following holds true
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vw+v2+w2=0,

1.e.
v+w 2 =y,
thus AB # AC, which is contradictory. So, the points 4, O and O; are collinear if and

only if the following holds true

vw+v2+w2=0,

1.€.
v+ w)2 =ww,
therefore

lvewP=lw|=1 & |[w+w’|=|w|=1 & [w —(=w)|=|o-(=ww)],

i.e. if and only if the triangle with vertices wz, —ww, o is an equilateral, that is if and only
if ZBAC=60°.m

73. Let o ABC be any triangle. Let 4;, B, C; be the midpoints of the sides BC, C4,
AB, respectively, P, O, R be the points where the incircle & tangents the sides BC, CA, AB;
R, Oy, R, be the midpoints of the arcs OR, RP, PQ and P, O,, R, be the midpoints of
arcs OPR, RPQ, PRQ, respectively. Prove that both lines 4 A, BjQ; and C{R,, and lines
AP, BO, and C|R, are concurrent.

Guidelines. Let the incircle be a unit circle. Since Theorem 22.14 there exist complex
numbers u, v, w so that
p=u2, q:vz, r=w? and P =—VW, g =—WU, § =—Uv.
The points P, O, R, are symmetric with respect to the center of k£ with the points

Pl, Q], Rl,thus
Dy =VW, gy = WU, I =UV.

Further,
a= 2v2iw? b= 2whu? — 2u?v?
9 b 9
viaw? w?+u? u?+v?
therefore,
a = whu? + u>V? b= viw? + u>? c= whu? + viw?
1 2, 2" 2 20 2, 2 ' 2, 20 2,2 2, 2°
w-+u u - +v VW u-+v w”tu Vi+w

Use that the equations of lines 4 F, B|Q; are
z-ay =2 (z-a) and z-hy =L (z b)),
a-p b—q,
Determine the affix n of the point of intersection and verify whether it satisfies the
equation of the line CiR; .
The second part of the statement should be proved analogously. m

74. The squares ABB'B", ACC'C" and BCXY are constructed on the outside of a

triangle a ABC. Let P be the center of the square BCXY. Prove that the lines CB", BC"
and AP are concurrent.
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Solution. Let the point 4 coincide with the origin, i.e. a =0. Thus

c"—a =elTE/2

(c—a),ie. c"=ic.
Similarly,
b"=-ib, x—c=em/2(b—c), ie. x=(1-i)c+ib
And since P is the midpoint of BX we get that
_ 1+ 1-i
p = Tb + TC .

The equation of the lines BC" and AP are

z—b:%(é—z) (1)
z—a=%2L(z-q) )
a-p

By solving the system of equations (1) and (2), we obtain the affix of O, point of
intersection between the lines BC" and AP as following
_ (be+bo)[(1+0)b+(1-i)c]
(b—ic)(b+ic) '
The equation of line B"C is following
z-b"=L=¢(z-p") 3)
b"-c

By solving the system of equations (2) and (3), we obtain the affix of Q', the point of
intersection of the lines B"C and AP as following
i (be+be)[(1+i)b+(1-i)c]
(b—ic)(b+ic)
Finally, the statement of the given problem is implied by the equality ¢'=¢g . m

75. Let ABCD be any quadrilateral, O be the intersection of its diagonals, M be the
midpoint of the side 4B and N be the midpoint of the side CD. Prove that if OM L CD
and ON L 4B, then ABCD is a cyclic quadrilateral.

Solution. Let the intersection of the diagonals coincide with the origin, i.e. 0 =0
. The points 4, O and C are collinear and also the points B, O and D are collinear, and
thus ac=ca and bd =db. Further, m=”—J2’b and n =%. Thereby, OM 1 CD and

ON L1 AB the following holds true

1e.
da(ab-2bb+ab) and ¢ = da(ab+2bb+ab) ’
b(ab—2aa+ab) b(ab+2aa+ab)
therefore
(ab+ab)(aa—-bb)=0. (1)
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We have to prove that the condition (1) is sufficient for the points 4, B, C, D to be on a
same circle, which according to Remark 25.3 means that the condition (1) is sufficient to

(c—d)(b—a) :
me R , that is
(c=d)(b-a) _ (b—d)(c—a)

(c=d)(b—a)  (b—d)(c—a) @)
The points B, O and D are collinear, and thus g_—g :% and also points 4, O and C are

collinear and thus << =2 If gb+ab=0 , then
a—c a

c—d=d-2aD)_
L b(ab—2aa+ab)
and if aa—bb =0, then
d= d(a=b)(ab+ab)

b(ab—2aa+ab)
By direct checking we assure that in both cases the condition (2) is satisfied. The latter
means that the points 4, B, C, D are placed on the same circle. Details are left as your

exercise. m

c—

76. Let F be the point on the base 4B of a trapezoid ABCD, such that DF =CF ,
E=ACNBD and O, and O, be the circumcenters of the triangles ADF and FBC,
respectively. Prove that FE 1 0,0, .

Solution. Let the origin coincide with the point F,i.e. f =0 andlet d = c.CD || AF
implies that

ie. a=—a and similarly, b=-b. Further, the above statated and the Example 3.3 imply
that

oy = 9W=0) _ clat) o o, = Dleh) _ cletd) |
ad—ad ct+c bc—bc ct+c
The equations of the lines AC and BD are
z—a=4%(z—a) and z—b=2L(z-b).
c—a d-b
The solution of the system consists of the last two equations is the affix of the point £,
thus

e =_ac=hc
. a+c—b—c
Finally,
ca—ch
0] —0p) =42
127 e

By direct checking we get that the following holds true
a=0 __e/
e

therefore FE 1 0,0, . m
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77. Let the diagonals of a convex quadrilateral ABCD meet at O and let 7 and T,
be the centroids of the triangles AOD and BOC, and H; and H, be the orthocenters of
the triangles AOD and BOC, respectively. Prove that {7, 1 H{H, .

Solution. Let the point O and the origin coincide. Then the affixes of the orthocenters
Hy and H, and centroids 7} and 7, are

I = (a=b)(ab+ab) b = (c=d)(cd+cd)
! ab-ab cd—cd

The points A, C and O are collinear, and also B, D and O are collinear, therefore c=

a+d
3

bte

and £, = 3

’tlz

Q|

C

ol

and c_l:%l;,that 18

ab—ab
Further,
d—b—c)(ab+ab) +d—b—c
By — hy, = aFd=bcX , t —t, =atd=b=c
) b 170 3
By direct checking we obtain that
h=ty _ _h-h

h—ty ek
therefore 77, 1 H H, . The details are left as your exercise. m

78. Let the tangents of a circle I at points 4 and B meet at C. The circle I'y is such
a circle that passes through C, tangents the line 4B at B and meets I" at M. Prove that the
line AM bisects the line segment BC.

Solution. Let I" be the unit circle. Then ¢ = z—fr[;). Let O; be the center of the circle
I'; . Then OB L AB, thus

ﬂ = —Q—_lz =ab
0,—b a-b ’
. — -b .
So, we obtain that o] = ° J;‘Z . Further, |0 —b| =]0; —c|, and by squaring we get

(o1 =)oy =)= (01— )0 —¢) . Le. o =4 — s

Thus,
ota-b _ o __ab

ab  p2 blath)’ "

. 01:%+b.

The point M is placed on the unit circle I, therefore m= % and since it is placed on the

circle whose radius is O;B and is centered at O; we get that
a
b
holds. The solutions of the last quadratic equation are m and b, and thereby the Viet
formulas it is true that

oy =b|=loj~m|.ic. oym® (% +orb)m+0; =0

b+m=22+b, ie m=b2atl
ob a+2b
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Further, the affix of the midpoint of the line segment BC is b—'z“" . Finally, to prove that the
line AM bisects the line segment BC it is sufficient to prove that
_b+c

2 _a-m =—am

;_b+c a—m

a

b

The validity of the latter could be easily checked. Details are left as your exercise. m

79. Let I be a given circle, and 4B be its diameter. Let P be an arbitrary point on "
distinct of 4 and B. The projection of the point P to 4B is a point Q. A circle centered at
P and radius PO meets I" at points C and D. The lines CD and PQ intersect at a point £.
Let F be the midpoint of 4Q, and G be the foot of the perpendicular at £ to CD. Prove
that the points 4, G and P are collinear and furthermore

EP=EQ=EG.
Solution. Let I" be the unit circle and let b=1. Then @ =-1 and thereby Pe " we
get that ; =% . Further, the affix of the point Q is g = %( p+ %) , and the affix of F'is
1 1
sty
f== =" ()
The point C is placed on the circle centered at P and radius PQ, thus | p—q|=|p—c|,
The latter implies that

(P-9)p-9)=(p—c)p-0). )
But, Ce I, and thus c= % and thereby
—g=1{,_1
Pmq=3 (p p)
by substituting in (2) we obtain that
4pcz—(p4+6p2+l)c+4p3=0. 3)

The equation (3) is a quadratic equation with variable ¢ and since the point D satisfies the
same conditions as the conditions applied when determined the affix of C, we get that d
is the second solution of (3). Now, by applying the Viet roles we get the following

ctd= prr6p?+
4p3
The point G is placed on the chord CD, therefore C, D, G are collinear, thus we get that
g= C+Cdd_g , and thereby FG L CD we have that

g—f c—d
By solving the system consisting of the last two equations where fis the expression given

in (1), we get that

,cd=p2.

_p3p’-ptl
= ry .
To prove that the points 4, G and P are collinear it is sufficient to prove that
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£4-_ TP p,
g-a  a-p
The last can be easily checked if we consider that

3,42
_ P +3p°+3p+l d _p +3p +3p+l
g-a="——g ~—an g a= T
The point £ is placed on the chord CD, therefore C, D and E are collinear, i.e
e= C%‘e .So, PE L AB implies that

EP—_ah—_ je e=p+l-e.
e—p a-b
That 1s,
1 _ S _ctd—e
p+p e=e==_—,
therefore
3p2+l
4p
Now,
_o_ta o 1p? _p- _pp
e-p=Tg,TP=7, €7 q= L and e- g=
Further, since | p| =1, we get that

le-p|=le—q|=|e-g|,ic. EP=EQ=EG.m

80. Let H be the orthocenter ofa a ABC. The tangents at A to the circle whose diameter
is BC touch the circle at P and Q. Prove that the points P, O and H are collinear

Solution. Let the circle over the diameter BC be a unit circle and let 5 =—1. Then
¢ =1 and the origin is the midpoint of the line segment BC. The point P lies on the unit
circle, thus p = % and since PA L PO we get that

a-p _  p—0 _ 2
—===-p

-p p-

Q|

The latter implies

Q|

b

ap2—2p+a=0. (H
The equation (1) is a quadratic equation with a variable p and thereby the point Q satisfies
the same conditions as the ones used when determining the point P, we get that ¢ is the
second solution of (1). Now, by applying the Viet formulae we get the following

p+q=2, pg=4

Let H' be the intersection of the line through A perpendicular to the side BC and the line
PQ. the points P, Q and H' are collinear, so
rq a
But, AH' 1 BC , therefore

The latter means that 4'=a+a—h'. Thus
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a+a-h'=h'= 2”}",
a

So, we find

hv — a5+ai—2

a—a ’

We will prove that &= h', therefore the statement in the given problem shall be implied.
In order to do that, it is sufficient to prove that CH' L AB , that is, to prove that

eh' — _azb

c—h' a-b’
holds true (why?). We can be assured in validity of the last equality by direct checking if
we use that

h—c=h'—1= a;+a2—g—a+; — (a+1)(ata_2) and a-b=a+1
a—a a—a ’

Details are left as an exercise. m

81. Let P be a point on the extension of the diagonal AC of a rectangle ABCD
through the point C, so that £ BPD = ZCBP . Determine the ratio PB: PC .

Solution. Let the intersection of diagonals O of the rectangle be the orlgln and let the
line 4B be parallel to the real axis. Then a+¢=0, b+d =0, c= b and d =a. Further,
the points P, 4, O are collinear, and therefore

P_a ;. , b

=4 je. p=-Lp.
p a a
Let £DPB=/PBC=¢. Then,
ﬂl:ezi“’[f_ﬁ and,—_é 2l(p§l,7.
d-p b— p—b c—b

If we multiply the last two equalities, and express the obtained equality in terms of @ and
b, we get
p+b _ a(p+b)?
bp+a2 B (bp—az)2 '
Further, if we express the above equality as a polynomial of p we get the following

(b-a)[bp> +(a* +3ab+b*)p* —a(a® +3ab+b*)p—a’b]=0,

ie.
bp® +(a® +3ab+b%)p? —a(a® +3ab+b*)p-a’b=0. (1)
But the point A satisfies £ DAB=ZABC =%, thus one of the points which satisfies

the given condition in the given problem is the point 4. So, a is one of the roots of the
polynomial (1). The latter implies that the polynomial can be divided by p—a andpisa
root of the such obtained quotient (why?), i.e.

bp* +(a* +4ab+b*)p+a*b=0. 2)
holds true. Finally, by applying the condition (2) we get
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PB’ _Ip=b2 _ (p-b)(p-b) _ (P-B)-hp+a)
PC Ip-c’  (p=Xp=<)  (pra)-Lp-b)

_ bpP—(a*+b?) p+a*h _ —2(a’+4ab+b?)p
bp*+2abp+a’*b —(a*+2ab+b*)p

The latter implies that PB:PC=2.m

82. In a convex quadrilateral ABCD the diagonal BD is not a bisector neither of
Z ABC nor of ZCDA . Apoint P placed into the ABCD is such that £ PBC = ZDBA and

ZPDC = ZBDA . Prove that the quadrilateral ABCD is cyclic if and only if AP=CP.

Solution. Let the quadrilateral ABCD be cyclic and let the circumcircle be the unit
circle. If LZPBC=/ZABD =¢ and £LPDC=/BDA=0, then

d=b _ 29 a=b c=b_ 210 P=D c=d _ 20 p=d p-d _ 210 a=d
d-b a=b’ c=b p-b  c—d p— -d’ b-d a—d
and thereby a= %, b= %, c= %, d =% by using the first equality, we obtain that
0 = d , and since the fourth one, > Q . By substituting at the second and the third
equality we get that
4L o peand L2 = —cq,
p-b a4 p—d
since which
_ actbd
b+d
Further,
_ 5 = abtad—ac=bd  _ " _ bctcd—ac—bd
A=P="pra > 4TPT utra)
_ = betbd—ac=bd . _ " _ ab+ad—ac—bd
c-p bid > ST PT T actra)y

thus,

— _ abtad—ac=bd  bctcd—ac—bd

AP |a p| _(a p)(a p) b+d ac(b+d)

_ betbd—ac=bd . ab+ad—ac=bd _ (,. _ N7 _ T\ = | o — n 2= P

- b+d ac(b+d) _(C p)(C p)_lc p| _CP>
i.e. AP=CP.

Let AP=CP,i.e.
la=pl|=lc-p| *)

and let suppose that the circumcircle of the triangle ABC is the unit circle. This means
that a = %, b= 11) , ¢ =1 The condition (*), after squaring and reducing, implies that

ap+§=cp+§,

that is

(a-o)(p-L)=0.
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therefore ; = ﬁ . Let D' denote the intersection of a side CD and a unit circle. Then

cd_cd — _oq,
-d c-d'

(\\Q

thus
d=ctd—d
d= o
Thereby the condition of the problem, we have that
ZCBP=4DBA=¢ and £LPDC=2A4ADB =90,
thus
ash_ 20dch b 0 ch esd L 20 P bed 20 ad )
a—b d-b’ p-b b’ p-d’ b-d d’
Thereby the first two equations in (1) we get that
P=bd-b _a-bc-b _ abz

QR

p—b d-b a-b c—b

And by substitution for d and ; , and after reducing we obtain following

bdd '+acd'~abd'~abc+abd-b>d" @)
cd'd—b*d'+b*d—b*c

Now, the third and the fourth equality in (1) and ﬂ =—cd' imply

p=c

Cdva—d p—a db d (3)

a-d p-d b-d '
If in the latter we substitute the above expression for p and 1_9, then after reducing
we obtain a polynomial of P(d), which is obviously at most quartic. By comparing

the coefficients of d* we get that the polynomial P(d) is exactly a cubic polynomial.
Clearly, two of its zeros are a and b. We shall prove that its third zero is d', and therefore
d =d', i.e. the quadrilateral ABCD is cyclic. Indeed, if d =d"', then

ad - g, bd = _pg and 2L = 24 qeq-,
a—d b—d p-d pd ~ac?
Thus the equality (3) is equivalent to the p = “;Tbg , which is obviously satisfied, and is

obtained by letting d =d"' in (2). m

83. Three triangles KPQ, QLP and PQOM, so that LQOPM =/ZPQL=q,
ZPOM =/QPK = and ZPQOK =/QPL=y for a<f<y and oo+ +7y=180°, are
constructed on a same side of a line segment PQ. Prove that the triangle KLM is similar
to, and moreover, is the same oriented with the triangles KPQ, QLP and POM.

Solution. Let p=0 and ¢ =1. Since LMPQ =0
m-p _ 210( qa-p P

m=p q- p
holds thus 2 = ¢?® . Further, / POM = imphes
" 2zB m—q _ p=q
5 =4’
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thus e*P @—'} =1. If we remember that 2 (®+B+1) = , then by solving the system
2ia —_m
m
ezjB m-l
-1
we get
_ e2i(0c+y)_1
e2iy 1
2B+ 4 e2ia+B) . .
Analogously /= BT and k= e According to the theorem 4.9 in order to
e - e -

prove that the triangle KLM is simmilar and same oriented as the triangle KPQ, it is
sufficient to prove that
kel _kp
I-m  p—q
in which we can be convinced by immediate validation. Finally, since the triangles KPQ,
QOLP and POM are similar and same oriented, we get that each of the four triangles is
similar and same oriented as the other ones. m

b

84. Prove that the area of the triangle whose vertices are feet of the perpendiculars
at any vertex of a cyclic pentagon to its sides does not depend on the choice of the vertex
of the pentagon.

Solution. Let the circumcircle of the pentagon ABCDE be the unit circle and let X, Y,
Z be the feet of the perpendiculars at the vertex 4 to the sides BC, CD, DE, respectively.

Then x=%(a+b+c—%c), y=%(a+c+d—%) and z=%(a+d+e—%),thus

a+b+c—2 gipte-Le |

X 1 a a

Poyyz =%4|y l|=ttla+tctd-<L a+ctd-4 |
1

N %
| =

z ate+d-4 gre+d-¢ |
a a
a+btc—b gibre—be |
a a
— (a—c)(d-b) (a—c)(d-b) 0
—16 a a
(e=c)(a—d) (e=c)(a—d) 0
a a
a+b+c— gipye-be |
a a
_ (a—c)(d—b) (a—c)(d-b)
- i% a bed 0
(e=c)(a—d) (e=c)(a—d) 0
a ced
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a+b+c-4 a+bte-be 1
z(a—c)(d—b)(e—c)(a d) 1 _1 0
16 a bed
1 1
: w0
z(a—c)(d —b)(e—c)(a— d)( _ )
16 aced  abcd
z(a c)(c—e)(e=b)(b—d)(a— d)
16abcde

Therefore, the area is the sixteenth of the product of the pentagon diagonals, so it does not
depend on the choice of the pentagon vertex. m

85. The points 4;, By, C; are positioned on the altitudes of the 2 ABC plotted at the
vertices 4, B, C, respectively, and H is the orthocenter of A ABC. If
B, apc, + Lapcay + Faca, = Laasc (1
prove that the quadrilateral 4, B|C\H is cyclic.

Solution. Let the circumcircle of the o ABC be the unit circle. Let 4' be the foot of
the perpendicular at the vertex A4 to the side BC. Then

P,pca =3 BC- A A = o= and P, gpc = 1BC.aq=Lodlezal,
thus
Popcay _ |ay—al la—a'\Ha—a;| _ la—ay| a-a
= == - =1- =1- =
Foapc  la=a la—a'| la—a a-a
The latter means that the equality (1) can be transformed and rewritten as the following
a—a
L+ —L s =2. 2)
Further,
a'=%(a+b+c—b‘),
thus
d—a (a=b)(a—c)
2a
Analogously,

pobr= ) i (o)
C

If we substitute in (2), and after equivalent transformations, we get that the above
condition is equivalent to
aay(b—c)+bb(c—a)+cc(a-b)=0. 3)
According to the Remark 25.3, in order to prove that the quadrilateral 4 B8,C{H is
cyclic, it is sufficient to prove that
a—¢; b=h _ b—¢ a—h o)

a—C bl_h bl—cl al—h ’

holds.
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The point H is the orthocenter of the o ABC, thus A =a+b+c and since 4H L BC
we get that @h __b-c _pe and similary bk _ e, Further, thereby A4 AL BC, we

a —h b—c N l_h )

get g-a _ b, thus a_l _ bc+c;a1—a ac+bb1 and ¢ ~_ abtee—c .
a-a ab

Finally, if we apply the obtained equalities and the condltlon 4), we immideatly check

the validity of (4), which means that the quadrilateral 4,B;C;H is cyclic. The details are

left as an exercise for the reader. m

and similarly b_l

86. The feet of the altitudes at the vertices 4, B and C of a a ABC are D, E and F,
respectively. The line through D is parallel to EF and meets the lines AC and 4B at Q and
R, respectively. The line EF meets the line BC at P. Prove that the circumcircle of A POR
consists of the midpoint of the side BC.

Solution. Let the circumcircle of the A ABC be the unit circle. So,

d= ;(a-i-b-i-c—b—c),e—2(a+b+c—7),f ;(a+b+c—b—c),a1:b—zc,

where 4, is the midpoint of BC. Since Q is placed on AC we get that c_]= %. But,

OD || EF , thus
= 4 = —az
q—d e=f '
By solving the system consisting of the last two equations, we get that

\‘Q
Il =

— a>+a’b+abe—b*c

q 2ab
Similarly,
p= &> +a’crabe=bc?
2ac ’
Moreover, Pe BC , thus
— _ btc—p
pP= bc
And since Pe EF , we get that
pe_eof o 2
p—e e f

By solving the system of the last two equations, we obtain
btc . ab=c)’
=otey 2220
P=" 2(a*-be)
We have to prove that the points P, O, R and 4, are concyclic, which according to
Remark 25.3 means that we have to prove the equality

P4 g7 474 P
p=ay q-r  q-aj p=r’
in order to do this it is sufficient to apply that

g-r= a(c—b)(a2+bc) p—r= (512—(:2 )(b2c+abc—a3—azc)
2abc ’ 2ac(a2 —bc) ’
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a(b—c)?
2(a*-be)

3.2 2 2
g—a; =2 +a bz—al;)c—ab and p—a; =

The details are left to the reader as an exercise. m

87. Given two circles I'} and I', on the plane. Let 4 be their common point. On the
circles Iy and I',, with constant velocities the points M; and M, move, respectively.
They pass through A4 at the same moment of time. Prove that it exists a fixed point P
which at every moment in time is on a same distance of the points M and M, .

Solution. Let B and C be the centers of the circles I} and I'y and let BC be the real
axis. If the points M; and M, move in the same direction, then
my —b=(a-b)e® and my —c =(a—-c)e'®.
The existance of a point P with the desirable property is consecutively equivalent to
the following conditions

| p—my|=|p=my|, (p—m)p—m)=(p—my)(p—my),

my my—niy niy — p(my —my ) )
my—n;y '

p:

Let ¢®=z. If we apply that b=b, c=c and z=1, we get that the condition (1) is

z b
equivalent to
(b+c—a-p)z> —[2(b+c)—a-a—p—plz+b+c—a-p=0, 2)
The latter means that the right side of the polynomial, in (2), with a variable Z must be
identically equal to null. Therefore all of its coefficients must be nulls. Since the free

term, we find that p=b+c— a and clearly the coefficients of the linear and the quadratic
terms are null.(Check it!)

The completely identically procedure is applied in case when the points M; and
M, move in opposite directions. The details are left for reader as an exercise. m

88. Given a square ABCD and a circle I" with diameter AB. Let P be any point on the
side CD, M and N be the points where the line segments AP and BP meet I" which differs
from A4 and B, and Q be the intersection of the lines DM and CN. Prove that Qe I' and

further that @ : E =DP:CP.
Solution. Let I' be the unit circle and let a=-1. Then b=1, ¢=1+2i and
d =—1+2i . Further, the points 4, P, M are collinear, therefore

a—p _a-m

—L =M= —gm=m,
. . a-p a-m
the latter implies that
- +1-m
p=
But the points C, D, P are collinear, therefore
P _c=d
c—p c¢—d ’
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therefore ; = p—4i. That s,

p“—m—; p—4i,ie. p———l.
Similarly, the points B, N, P are collinear, and therefore
&P _cd -
. c-p c¢—d ’
that is
_ b-p _ m(1-2i)-1
n=———=
b-p 14+2i—-m
Let Q'=T"'mDM . So,
q q_':l and —g_ﬂ :—1_T :—q'm R
d-m '—m
therefore
' __m+l1=2i
4 = T (e2i)41
Further,
g'=c_ v4q'=¢ _ _m+l=2i m(d=20-1_ ., _ g‘—g
g g T m@w2 Te2iem ng'= v

The latter means that the points Q' C, N are collinear, which implies that
O0'=CNNnDM = Q

The equality AQ : B_Q =DP:CP is equivalent to the equality

lg=al-|p—c|=|d-pl|-[b-ql,
Its validity can be proven by immediate checking and by applying the following

o — | _m+1=-2i _ m+l 4lm m(i—1)+1+i

K al_‘m(l+2i)+1+1‘_2‘m(1+2i)+1 lp—cl=[a-1-1- 2’ 2‘ m-1 |’
4im - m+1=2i | _ m(l+i)+1—i|

|d=pl= ‘Hz’ +1‘ 2‘ 1D q|_‘1+m(1+2i)+1|_ ‘m(l+2i)+l|

and apply that
i(m(+))+1-i]l=m(i-1)+i+1.m

89. Given a a ABC and a circle such that it passes through B and C and remeets the
sides 4B and AC at the points C' and B' respectively. Prove that the lines BB', CC' and
HH' are concurrent (H and H' are the orthcenters of the triangles ABC and A'B'C",
respectively).

Solution. Let the circumcircle of the quadrilateral BCB'C' be the unit circle. The
intersection of lines BB' and CC' is a point X with affix
_ bb'(c+c")—cc'(b+b")
bb'-cc' ’
Further, since BH 1. CB' and CH L BC' we get

l,)_k :——ll'_g :—bc' and g :—é_g' :bc'
b—h b'—c c—h b—c' ’

therefore

bh—b>+cb' _ ch=c’+bc'
h= e and & = e
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So,

bh=b*+cbh' _ h= ch=c*+be'

b'c'(b—c)+b*c'-b'c?
bb'c bc'c '

bc'—ch'

,le h=

Analogously,
= beb'=c)+b 2 e—be?
b'c—c'b ’
Finally, in the order to prove the statement, it is sufficient to prove that the points
H, H', X are collinear, i.e. to prove that
ok hex
h=h'  h-x’
holds true. We can be convinced in the validity by immediate check if we use that
v (b+b'—c—c")(bc'+cb' b'e'(b*—c*)(b'+b—c'—c
h=h'={ bc‘—)c(b' L and h-x= (Eyc'—cb’))((bb'—cc') :
The details are left to the reader as an exercise. m

90. Let ABCDEF be a convex hexagon such that

/B+/D+/F=360° and AB-CD-EF =BC-DE-FA .
Then

BC-AE-FD=CA-EF-DB .
Prove it!
Solution. Let ZA=a, £LB=p, LC=vy, £LD=06, LZE=¢, ZF=¢. So,
c=b Bab e-d :ei5 c=d_ a-f =l e~f
le=bl la=b|” le—d| le=d| " la=f le=/1
If we multiply the last three equalities and consider that
B+3+¢@=360° and |a—b|-|c—d|-le—f|=|b-c|-|d—e]|-|f—a]
we get

=e

(c=b)e—d)a~f)=(a=b)c—d)e-[).

So, it is easy to conclude that

(b=c)a-e)(f-d)=(c—a)e~[f)d-b),

If we take modulus in the last equality we obtain the required equality. m

91. Given a triangle a ABC and points X and Y on the sides BC and C4, respectively.
Let R=AXNBY and 4 =p AR _,4 for
YP RX

—

0 < p <gq. Determine the ratio %

Solution. Let consider the 2 AXC. The points
B, R and Y are Menelaus’ points of the sides CX, AX
and AC, respectively. The are collinear thereby the
condition R = AX N BY (figure 26). According to
the Menelaus’ theorem it is true that

A
Figure 26 RY BC YA
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So,
XB RX YA p
and thereby BC=BX+XC and XB=-BX by substitution in the last equality we get

that is

92. Given a right angled triangle 2 ABC whose right angle is at B and sides AB =4,
BC =3. A point E is the midpoint of the side 4B, and the point D is on placed the side

AC and moreover DA =1. Let F'=DE N BC . Determine the length of the line segment
BF.

Solution. Let’s consider the triangle o ABC
(figure 27). The points D, E and F are Menelaus’
points of the sides CA, AB and BC, respectively,
so they are collinear. The Menelaus’ theorem
implies

Since the condition of the given problem,
FC=FB+CB=FB+3,
DA=1and AE=EB=2.
Moreover the Pithagora’s theorem implies Figure 27
CA= \/R‘z + Ez =5. Due to this, CD=CA-DA=4 and if we substitute in (2) and
after reducing, we get that FB=1.m

C

93. Let AyA Ay A3 A4 A5 Ag be a regular heptagon. Prove that

L -_L L (1)
A Ay Ay

Solution. Without loss of generality, we consider the case the regular heptagon
is inscribed into the unit circle and (1,0) is the affix of the vertex A;. So, the affixes
of the vertices 4;, £=0,1,2,3,4,5,6 are a; = wh , k=0,1,2,3,4,5,6, respectively, for

21
w=e' 7 . Further, since the properties of the regular heptagon, we get that if the point 4;
2n 2n

is rotated at 4, around 7 14

and the point A4, is rotated at 4, around
P27

which are collinear with the points 4y and 4;. Let e=e' 14, w=¢? thus

we get points

a'| =1+(q—1)w and a'y =1+ (a; —1)e.
To prove the equality (1) it is sufficient to prove that
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1 __ 1 1
a'l—l - a'z—l + a3—1 ?

(why?). The last equality is equivalent to the equality
1 1 1
= + s
e2(e?-1)  ee*-1)  €°-1
Which after reducing, can be rewritten as below

86+84+82+1=85+83+8.

But,

e =—¢2, & =0 e=—¢b.

Therefore the last equality is equivalent to the equality

812+810+88+86+84+82+1=0,

i.e. to the equality
w6+w5 +w4+w3 +w2 +w+1=0,

which is obviously true thereby w =1.m

94. Let AyA,...Aj34;14 be aregular 15-gon. Prove that

L =L+ L L (1
Ad Aol Aoy Ay

holds.
Solution. Without loss of generality we consider a; =wk k=0,1,2,....14, for
i2n
w=e¢ 15 . Further, by rotation of the points 4, 4,, 4; at A, around 62", ?’5"', %,

respectively, we get points with affixes a'i, a'5, a'4 which are collinear with the points
Ay and A4y . Therefore, to prove the equality (1) it is sufficient to prove that

L -1 4 1 4 1 )

a'l -1 0'2 -1 074—1 ar -1

holds. We set that

and obtain that
a'y =1+(a -1’ a's =1+(ar —~1)&° and a'y =1+ (a4 - 1)e>,
The latter means that the equality (2) is equivalent to the following equality

| WA R L
86(82—1) 85(84—1) 83(88—1) elo-1

If the last is multiplied by g2 -1 0, and after reducing we obtain the following
equality
e 16?4610+ e840 et 162 +1=e(ss12 +ed et +1)+83(88 +1)—822. 3)

But, e =M =—1=—-¢3 , therefore gk = _g30-k , which implies

132628 0 o2 5o 20 oo gl6 gl _g26 (3 _ I8

so0, the equality (3) is equivalent to the equality
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828+826+824+822+820+818+816+814+812+810+88+86+84+82+1=0,

30
which is obviously true, thereby the left side of the last equality is equal to 82—_11 =0.m
2

95. Given a cyclic quadrilateral ABCD. The points A4', B', C', D' are the centroids of
the triangles BCD, ACD, BAD, ABC, respectively. Prove that the quadrilateral 4'B'C'D'
is also a cyclic quadrilateral.

Solution. The quadrilateral ABCD is cyclic, so Z;_Z-%e R *. Further, a'= %,
p'=atctd v atb+d gr_ atbtc

3 3 3

¢=b' a=d'_ 3 .3

a'-b' c¢'-d' b=a d-c

3 3

, C , SO

b—c

U

IS}

_c=b a-d %
T a-b dER’

c—

the latter implies that the quadrilateral 4'B'C'D' is cyclic. m

96. Given a triangle ABC and points P, N, M positioned on the sides 4B, BC, CA,
respectively. Prove that the circumcircles of the triangles APN, BMP, CNM meet at a
unique point.

Solution. Let QO be the other point of intersection

of the circumcircles of the triangles APN and BMP
(see the figure 28). The points 4, P, O, N are on a same

circle, thus £-£.4=1c R*  gsimillary a=m b=p o g%

a-p q-n b-m q-p
_ . b - 4y q-m b .
So, ™ .a=n 27P _47P a=n 97" D7P o R* hich
g—n a-p b-m a-p q-n b-m q-p

Figure 28

arg(2=¢.n-a . L __ =arg%+argﬁ+argm—j;

=ZMCN + ZLNAP + ZPBM

=ZABC+ £ZBCA+ ZCAB=m,
thus m=¢.n=a.P=b R*, which means that £==.2=C ¢ R* j.e. the points O, M, N, C
n-c p—a m—=b q-n m—c

lie on a same circle. Finally, the circumcircles of the APN, BMP, CNM meet at Q. m

97. Four distinct lines intersect each other, so that they form four triangles. Prove
that the four circumcircles of these triangles have a common point.

Solution. Since the condition of the given problem, three of the given lines are not
concurrent. Let 4, B, C, D, E, F, be the point of intersection of the lines, see the figure.
Let the circumcircles of the triangles ABC and EF'C intersect at the point P. We will prove
that the points E, P, A, D are concyclic. It is true that,

p=a b-c =f €7D R
b—a p-c’e-f c—pER ’ (0
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F By dividing these two numbers, we get
p=a b-c oS c R Further, the points E, F,

b—a e-p c—f
Jid D are collinear, and so are the points B, A, D
therefore d=te R* and 22 =¢'e R*. If the
e—d d-a

last two equalities we substitute in (1) we obtain

a-p e-d b-—c .t *Q .
e—p a-d f—c € R*. Since the points B, C, F

e—d

i b=—c * 4P  e-d *
7 B are collinear, =€ R * holds, thus p a-d < R*,
which means that the points 4, D, E, P are concyclic.
Analogously, it can be proven that the points B, D,

F, P are concyclic. So, the four circles consist of the
point P. m

Figure 29

98. In a convex quadrilateral ABCD the sides 4B and CD are congruent.

a) The lines AB and CD with the line which connect the midpoints of the sides AD
and BC form congruent angles. Prove it!

b) The lines AB and CD with the line which connect the midpoints of the diagonals
AC and BD form congruent angles. Prove it!

Solution. a) Let 0, , ¢, d where re R, ¢,d e C, be the affixes of 4, B, C, D. The

points N and M are the midpoints of the line segments 4D and BC, respectively, thus

.y _r+c
n=45 and m > . So,

(b—a)o(m_n) Z,,..r+c2—d =§+ }"o(é—d)

therefore | ¢ —d | =7 implies

r+c— o(c—d —dP
(c=d)e(m—n)=(c—d)-"4 =1 (f; ) L 2d\

re(c—d 2
=D 2= (b-a)e(m—n)

and since |¢—d |=|b—a|=r and the previously stated implies
Z(AB,NM )= Z(NM,DC) .
b) Let L and K be the midpoints of AC and BD, respectively. Then /=< and

2
k:% . Thus,

¢ (k=1)s(m—n)="rtd=c rie=d

_ 2 (e=d)(d=o)
D M =7t—7

|C_4d|2 — 0’

so, KL 1 MN . The latter and the statement a)
A \ B imply
Figure 30 L(AB,KL)=ZL(KL,DC).m

Il
IR
|
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99. In an acute triangle ABC, the orthocentar H satisfies the following HC=AB .
Determine the angle at C.

Solution. Let the triangle be inscribed into the unit circle. Then, A=a+b+c
therefore HC =|a+b| and AB=|a—-b|. Hence,

la+b=|a-bP,ie. (a+b)e(a+b)=(a—b)e(a—b),
therefore, a«b =0, that is that O4 L OB ,1.e. LAOB =% . But, the triangle 4BC is an

acute triangle, and thereby the measure of inscribed angle is half of the measure of its
corresponding central angle, we get that £ ACB = % .u

100. In a convex quadrilateral ABCD the points P and Q are the midpoints of the
diagonals AC and BD, respectively. Prove that
2 —=2 ==2 —2 —=2 —=2 —2
AB +BC +CD +DA =AC +BD +4PQ .
Solution. The points P and Q are midpoints of the diagonals AC and BD, thus
p= “T“Lc and g = % . Further,

—2 —2
AB  =|b-alP=(b-a)(b—a)=|al’ —2a+b+|b[>, BC =|b|> = 2bec +|c |,
CD” =|cf - 2¢ced +|d|>, DA"=|dP —2dea+|al,
AC” =|a? = 2asc +|c[>, BD =|b —2bed +|d P,
4PQ’ =4(g- p)(g-p)=(b+d —a—c)=(b+d —a—c)
=laP +|bP +|cl* +|d > + 2asc+2bsd —2asb—2bec—2c+d —2a-d,
thus
—_—2 —=2 —=2 2 2 2 2 2
AB +BC +CD +DA =2|al"+2|b]"+2|c|"+2|d] -
—2aeb—2bec—2ced —2a+d
—AC’ +BD" +4P0Q",
which was supposed to be proven. m

101. Let H be the orthocenter of an acute triangle ABC. A circle through H and
centered at the midpoint of the line segment BC, meets the line BC at points 4; and
A4, . Analogously, a circle through /1 and centetred at the midpoint of the line segment
CA4, meets the line CA at points B; and B, , a circle through / and centetred at the mid-
point of the line segment 4B meets the line AB at points C; and C,. Prove that the points
A, 4, By, By, Cj, C, lie on a same circle.

Solution. Let the triangle be inscribed into the unit circle, 4, be the midpoint of
the line segment BC and let a, b, ¢, ay, a;, ap, h be the affixes of points 4, B, C, 4,
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Ay, 4y, H, respectively. Then, h=a+b+c, aa=bb=cc=1 and ag = b—;c . Since the
triangles 044y and 4,04, are right angled triangles,

OA} =043 =04 + AgAf = OAG + 4H

ﬁ-”%+(a+b+c—b%)<a+b+c—b%)

ST

n % + % n al;+;b+b23-2b+c;+ga

_ 9 4 ab+abtbctch+catea
> :

The last expression is symmetric by a, b, ¢, and by cyclic substitution of the variables we
obtain the following 0A12 = OA% = 0812 = OB% = 0C12 = OC% , which means that the
points 4, 4y, By, By, Cj, C, are on a same circle. m

a

102. Let / be the incenter, and I" be the circumcircle of a triangle » ABC. Let the line
Al meets I' at points 4 and D. Let £ be a point on the arc BDC , and F be a point on the
line segment BC such that £ BAF = ZCAE < %ABAC holds true. Let G be the midpoint
of the line segment /F. Prove that the intersection of DG and E belongs to I

Solution. Let o ABC be inscribed into the unit circle. Since Theorem 13.3 there
2

b

exist complex numbers a, b, ¢ such that the points 4, B, C have affixes az, bz, c
respectively, and the midpoints of the arcs BC , 64, AB which do not consist of the
points 4, B, C have affixes —bc, —ca, —ab , respectively and the incenter / has affix
s =—ab—bc—ca . Therefore [ is the orthocenter of the triangle whose vertices are the
midpoints of the arcs ZB_C\' , 64, AB which do not consist of the points 4, B, C.

Without loss of generality we get that the points B and C are symmetric with respect
to the real axis. Let F' be the point of intersection of AF and I', which differs from
A and let the points D, E, F, F', I have affixes d, e, f, f', s, respectively. Hence,

la|=|b|=|c|=1, c=b, d=-1, f'=%=% and s=—1—a(b+b). Thereby F is a
point of intersection of the lines 4F and BC we get that

2 -2 2 1
I Py g £
f-b~ b -b f-a~ b-L
which imply the following f + f =b% +b° and f+§?=a2 +1, thus
=2
f@®>-e)=a’>(b*+b" )-da%e-1.

Let y be the affix of the point of intersection of /E and I' (which differs from £), and
x be the affix of the point of intersection of DG and I' (which differs from D). Then

-1 ;-1
X=_,y y,thus
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Further, re
2

2

—a(b+5)=1+s a’s=-a’ -

2b2b_1 a? +5,a

—e=Ll_1__
a2 e
(f+S+2)(a —-e)=a (b2+b) a’e—1+2a’ +sa® —es— 26
=a (b+b) —1+a? (s—e)—2e—es

=(1+S)2 —1—2e—es+a2(s—e)=(s—e)(2+s+a2),

(f+s+2)(a*—e)=(s—e)2+s+a’)=— les 2a2+a’s+1

aZ
_ l—es . 2% +1-a’+s+1 —_ (1—63)(2+s+a2)
e a2 e
imply the following
oo bt gt _ T fesi2 _ (fs2)@’=e) _ 1 (fs+2)(d’=e)
gt Srag o S (frsid)al-e) @ (fase2)(at-e)

1 (sme)2+s+a®) e _
e 5 T e
a“e _(l-es)(2+s+a”) l—es

a%e

which actually was supposed to be proven. m

103. Let P be a point in the inner part of a triangle ABC and let the lines AP, BP, CP
remeet the circumcircle I of the triangle ABC at points K, L, M, respectively. The tangent
of the circle T at C meets the line AB at S. Let SC = SP . Prove that MK = ML .

Solution. Without loss of generality we consider that the triangle 4BC is inscribed
into the unit circle and let 1 be the affix of ABC. If to the points correspond the affixes
denoted by the appropriate lower case letters then |a|=|b|=|k|=|l|=|m|=1=c,

L AP —ak , thus k=-2"Z and symmetrically /= b mzp—il.

a-p a— k l—ap —b p’ I-p
the point of intersection of the line 4B and the tangent to I at C, thus s+s=2 and
s+abs=a+b, therefore we obtain that s = L_f“b. Let 7 be the midpoint of PC, i.e.

The point S is

t =+— . Since the condition of the problem SC = SP ,thatis T'is the foot of the perpendicular
at Sto PC, i.e. to MC, which implies that ; domdl -y oand EE=—E oy e

p+1=2t=m+1+s- ms, i.e. p=m+s— ms=m+s— m2-s)y=s—m+ms.
Thereby

it is true that
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p—s=sp—p—-s+1+(p- s)p ie. p—Lpl.

p—s
Thus,
P e Y atplah _ (I-ab)p—a—b+2ab _ _(1-ab)p—a—b+2ab
s=1 - axb=dab_j a+b—-2ab-1+ab (I-a)1-b)
ab
+b-2ab
k= Pa __ (pma)p=s)  _ (p-a)( P 3)
1-g: 2221 p=2ap+a+(ap=l)s — p-2ap+a+(ap-1)-+t2=2b

p-s
(p—a)l(1-ab) p—a—b+2ab)]
p—2ap+a—abp+2a2bp—a2b+a2p+abp—2a2bp—a—b+2ab

_ (p—a)[(1—ab) p—a—b+2ab] _ (p—a)l(1-ab) p—a—b+2ab)

 p-lap+dip-a*b-b+2ab  p(-a)’-b(1-a)*

_ (p=a)[(d—ab) p—a—b+2ab]

(p=b)(1-a)’
and symmetrically,
(p b)[(1—ab) p—a—b+2ab]
(p-a)(1-b)*

So, m? =kl , which implies the statement of the problem.m

b

104. Let ABC be an acute scalene triangle so that AC > BC, O be the circumcenter
H be the orthocenter and F be the foot of the altitude at the vertex C. Let P be a point on
the line 4B, which differs from 4, so that AF = PF , and M be the midpoint of the line
segment AC. Let X be the point of intersection of the lines PH and BC, Y be the point of
intersection of the lines OM and FX, and Z be the point of intersection of the lines OF and
AC. Prove that the points F, M, Y and Z lie on a same circle.

Solution. Without loss of generality we consider the case where the triangle ABC is
inscribed into the unit circle. Let the affixes of the points 4, B, C, H, F', P, Xbe a, b, c, h,
£, p, x, respectively. So, h=a+b+c and |a|=|b|=]|c|=1, holds true.

Thereby F is placed on 4B, and CF is perpendicular to AB we get that
J7a _ba__gp=-S"C¢ je fiabf=a+b and f-abf=c—abc, thus

f-a b-a -’
f =w p=2f—a=b+c—abc, thereby AF =FP . The point X is placed on
BC, hence %= IZ) = % =-bc, i.e. x= l"*b% . But, Xis placed on PH, hence
X— C
=X _ p=h _ bte-gbe=a=b-c _ _ 4<(b*c) _ g%
p—x p-h b-c—abc—a—b—c —ab(c+b) c’
therefore
2 = - —= 2, 2 2 2 2
_._ab _ _btc—x\_ —ac*+a‘x _ ¢ ptact _ 2fc
p-x=5 (b+c abc be )— 2 » 1.6 X = 2 Bl
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T
=

—-
(¢}

It is sufficient to prove that OF L FX , which is equivalent to %=—

\ls\
= |

x7 +x f=2|f |2 , which is obviously true, thereby

-2

— =, 2f* =, 2fc _ 2 2

xf+xf_a2+czf+72+72f_2|f| (a2+cz+
a +c

2 2
2acz):2|f| ..

105. Let o ABC not be an isosceles triangle and let AD, BF and CF be the bisectors
of its angles (D€ BC, E€ AC, Fe AB). Let K,, K;, K. be points of incircle
of the triangle a ABC such that DK,, EK;, FK,. are tangents of the incircle and
K,e BC,K,¢ AC,K.¢& AB . Let A4, By, C; be the midpoints of sides BC, CA4, 4B,
respectively. Prove that lines 4, K,, B|K}, C;K, concure at the incircle of the triangle
a ABC.

Solution. Without loss of generality we consider the incircle of the triangle » ABC as
the unit circle and let the circle tangents the sides BC, CA, AB at A', B', C', respectively.
Let Sbe the incenter whose affix is 0. If the affixes of the points are denoted by correspond-

ing lowercase letters, we get that |a'| =|b'|=|c'|=1 and a = 2b'et p=2ac . —2a'b
b'+c a'+c a'+b
Vz ) |2 ] VLY 0 . . . .
thus a =2t¢=a"btatctlab'c’ gince DK, is a tangent of an incircle we get that

2 (a'+b)(a'+c))

ZASK, =/ A'SA and thereby |k, | =1, it implies that "7:(%) s0, ky =54 =L

. The point of intersection X, of the incircle and the line 4K

. satisfies the following

x—k, x—k, 1
|x]=1 and = —(a1 ka) that is (al k) (x-k,)= ( E)(al—ka), and thereby
x#k,, it is true that a; —k, _—%(a1 —k,) . Since

2 2 2 '
_ 7 _a%b+a”c'+2a'b'e’ _b'e' _ (a"-b'c)a'b'ta'c'+b'c’)
ar = ke == i pyaee) '  alatb)a +c) and
b'c'—a'2 a'+b'+c' 5
T =y @V (b'e—a®)(a'+h'+e)
a = " (a+b)atc) b'c'(a'+b)(a'+c') °

a”b'c
and @ #b'c' , since a ABC is not an isosceles triangle,

1. aky _ababcre'al
k, a—k, a'+b'+c'

xX=-

Thereby the obtained expression is symmetric at a', b', ¢', the lines BK; and CiK
meet the incircle at X. m
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4. EXERCISES (CHAPTER 2 AND 3)

1. Dermine the relationship between the points A and B with affixes a and b,
respectively, if given that
a) Reab=0, b) Imab=0,
¢) Reah=0, d) Imab=0.

A

2. Let A' be the projection of a point
A on a real axis. Determine the
point A" such that it is symmetric
to A' with respect to the line OA4 -

(figure 31). ?T

3. Let OA=1 be the diameter of a semicircle (fig-
ure 32). At B and C such that OB = ) and OC =%
are drawn perpendiculars to x-axis and £ and D are
the points of intersection of these perpendiculars
and the semicircle. Find the complex number such

that it is the affix of M, the point of intersection of
the lines OF and BD. Figure 32

4. Let be given a point C with affix ¢= Ze%. Determine the affixes a and b of the
points A and B such that they are symmetric with respect to the line OC, the distance
between each of them and the point C is 1 unit and satisfy the following:

a) la-b|=2, b) la—b|=+2.

5. Given the points 4, B, C and Z with affixes a, b=a+eia, c=a+eiB and z,
respectively. Determine the distance between the symmetric points Z' and Z" to
the point Z with respect to the lines AB and AC.

6. We shall say that a is a viewing angle for a line segment 4B of a point M a line
segment AB is viewed at an angle o of a point M if LAMB=a . Let be given
points 4 and B with affixes a and b, respectively. Let /¥ be the point on the bisector
of AB and furthermore the viewing angle for the line segment 4B be a. Prove that

O
w= ”e;a _lb 1s the affix of W.

e —
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10.

11.

12.

13.

14.

15.

16.

17.

18.

The square of the diagonal is equal to the sum of the square of the leg and the
product of the length of the bases in an isosceles trapezoid. Prove it!

Let a quadrilateral ABCD be parallelogram and let N be the point of intersection
of the semilinze AD 2and the circumcircle of the triangle ABC. Prove that
AD-AM = AC - AB .

A circle (K) is a circumcircle of a regular pentagon ABCDE. Let M be a point on the
arc AE . Prove that
MA+MC+ ME =MB+ MD -

Construct a trapezoid if given all its sides.

Given circles K'(o',R") and K"(0o",R") and a line segment 4B. Construct a line
segment CD parallel and congruent to 4B, such that Ce (K'") and De (K").

Given a line (p), a circle (K) and a line segment AB. Construct a line segment CD
parallel and congruent to AB, such that Ce (K) and De (p).

Given lines (p) and (¢) and a line segment 4B. Construct a line segment CD parallel
and congruent to 4B, such that Ce (p) and De (q).

Let A, B, C, D be four given points and let
S4(D)=Dy, Sp(Dy)=D,, Sc(Dy)=Ds,
S4(D3) =Dy, Sg(Dy)=Ds, Sc(Ds)=Dg.
Prove that D = Dg!

Given points O;, i=1,2,3,4 and a line segment AyB,. Let §;, i=1,2,3,4 be a
point reflection centered at O;, i=1,2,3,4 and let

AlBl = Sl (Al—lBl—l ), i= 1, 2,3,4 .
Prove that @4 = B734 .

Does the figure F = {4, B,C} have a center of reflection?
In which case a figure consisting of two semilines is a point reflective figure?

Given circles K'(O',R") and K"(O",R"). In which case a figure consisting of the
circles (K') and (K") is a point reflective figure?
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19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.
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If a figure F is point reflective, then it has either a unique or, infinitely many centers
of reflection. Prove it!

Given circles K'(O',R") and K"(O",R") and point 4. Draw a line (a) through
A so that 4 is the midpoint of the line segment MN, for M e (a)N(K") and
Ne(a)n(K").

Given four distinct points 4, B, C, D on a circle (K) and a point M on the chord CD.
Determine a point X on the circle (K), so that the lines 4X and BX on the chord CD
intercept a line segment S7 for which M is the middle point.

Given a rotation S¢ o, o # 0,7 . Are there any lines which are fixed lines under this
rotation?

Given a rotation Sc . Prove that a circle K(O,R) is fixed if and only if O=C.

Given lines (p) and (g). In which case there exists a rotation Sc, so that
SC,OL (p)=q?

Given circles K(O,R) and K'(O',R"). In which case there exists a rotation S¢ g, s0
that S¢ o (K)=K"?

Given two circles (K') and (K") and a point 4. Construct an equilateral triangle
ABC, so that Be (K'") and Ce (K").

Given three parallel lines (p), (¢) and (7). Construct an equilateral triangle ABC, so
that A€ (p), Be (q), Ce (r).

Given three concentric (K'), (K") and (K"). Construct an equilateral triangle
ABC, so that Ae (K'), Be(K"), Ce(K").

Given a line (p), a circle (K) and a point O. Construct an equilateral triangle 4BC
centered at O, so that two of its vertices are on (p) and (K), respectively.

Given two circles (K), (K" and a point O. Construct an equilateral triangle 4BC
centered at O, so that two of its vertices are on (K) and (K"), respectively.



31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

In a triangle ABC inscribe a thombus with acute angle o.=60°, so that its two
adjacent vertices are on the side AB, and the other two on the sides BC and AC,
respectively.

In a circle K(O,R) inscribe a triangle ABC, which is similar to a given triangle
POR.

Given intersecting lines (p), (¢) and a circle (K). Construct a circle so that it tangents
both lines (p) and (¢) and a circle (K).

Let H and H; be homotheties with a common (mutual) center O and coefficients
a and qay, respectively. Prove that HoH; is also a homothety and HoH; =H; oH
holds true.

a) Prove that the composition of a point reflection and a homothety with coefficient
a #—1 is homothety.

b) Prove that the composition of a homothety with coefficient a #—1 and a point

reflection is homothety.

Prove that a composition of rotation around o #0°180° and a homothety is a
similarity such that it is not a homothety.

Prove that a composition of two reflections is either translation or rotation.
Prove that each translation can be expressed as a composition of two reflections
Prove that each rotation can be expressed as a composition of two reflections.

Let (a), (b) and (c) be three parallel lines. Prove that the composition of the reflections
6,4, 0p and o, is areflection.

Prove that a composition of a reflection and a homothety is similarity such that it is
not homothety.

Prove that there does not exist any similarity such that it is not: movement, ho-

mothety, composition of rotation and homothety, composition of reflection and ho-
mothety.
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43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
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If z;, z», z3 and z, are four distinct points on a circle, then their 1Bopasmep is a real
number. Prove it!

z+2i

Determine the set of points z such that under the M6bius transformation w = 22"

map to the following set {w||w|=1}.
Detrmine such a Mobius transformation that a semiplane {z|Imz>0} maps
to the circle {z||z|<1} and furthermore the points z=i and z=co under that

transformation will be mapped to w=0 and w=-1, respectively.

Find a condition which has to be satisfied, so that under the Mdobius transfor-

mation wzﬁ, the circle circle {z||z|<1} will be mapped to the semiplane
{z|Imz >0} .

Determine the Mobius transformation so that the points 0, —i, —1 map at i, 1, 0,
respectively.

Determine the Mdbius transformation so that the points i, —i, 1 map at 0, 1, oo,
respectively.

Prove that any three distinct points on a circle are not collinear.

Given the chords 4B and CD of a circle so that AC = BD. Prove that either or
AB||CD or AD|| BC.

In an acute triangle ABC, B' and C' are feet t of the altitudes at the vertices B and
C, respectively. The circle with diameter 4B meets the line CC' at M and N, and the
circle with diameter AC meets the line BB' at P and Q. Prove that the quadrilateral
MNPQ is cyclic.

Let ABCD be a quadrilateral such that the inner angles at the vertices 4, B and C
are congruent. Prove that the point D, the circumcentar and the orthocenter of the
triangle ABC are collinear.

In a circle k is inscribed a hexagon ABCDEF, so that the sides 4B, CD and EF are
congruent with the radius of k. Prove that the midpoints of the other three sides are
vertices of an equilateral triangle.



54.

5S.

56.

57.

58.

59.

60.

61.

62.

Isoscaled triangles BCD, CAE and ABF, whose bases are BC, C4 and AB, respectively,
are constructed on the outer part of a triangle o ABC. Prove that the perpendiculars
drawn at the vertices 4, B and C to the lines EF, FD and DE, respectively, are
concurent.

Let the quadrilateral ABCD be a cyclic and let £ and F'be the feet of the perpendiculars
plot at the intersection of diagonals to the sides 4B and CD, respectively. Prove that
the line EF is perpendicular to the line which passes through the midpoints of the
sides AD and BC.

Prove that the midpoints of the altitudes of a triangle are collinear if and only if the
triangle is right angled triangle.

The feet of the perpendiculars in an acute triangle a ABC are A', B' and C'. If
A", B" and C" are the touching points of the incircle of the triangle a A'B'C", then
prove that the Euler lines of A ABC and a A"B"C" coincide.

Let ABCD be a convex quadrilateral such that its diagonals AC and BD are
perpendicular to each other and let £ = AC n BD . Prove that the points symmetric
to £ with respect to the lines AB, BC, CD and DA form a cyclic quadrilateral.

Let AK, BL, CM be the altitudes ofa triangle ABC, H be its orthocenter and P the
midpoint of the line segment AH. If BHNMK =S and LPNAM =S, then
TS 1 BC . Prove it!

Let AD, BE, CF be the altitudes of a triangle ABC. Let 4', B', C' be such that
AA'=kAD, BB'=kBE, CC'=kCF ,foreach k€ R, k#0. Determine all k£ such
that for any non-isoscale triangle ABC the triangles ABC and A'B'C" are simillar.

Given a triangle a ABC and points D, E, F on its altitudes BC, CA, AB, respectively,

so that
BD _ CE _ AF _1-k
DC=Ei~FB = % > KER.
Determine the locus of points of the circumcenters of DEF for k€ R.

Let H' and H" be the feet of the perpendiculars at the orthocenter H of a ABC to
the bisector of the outer and the inner angle at C. Prove that the line H'H" consists
of the midpoint of the side AB.
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63.

64.

65.

66.

67.

68.

69.

70.

71.
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Given an acute triangle 4BC and a point D on its inner part, so that

/ ADB =/ ACB+90° and AB-CD = AD - BC . Determine

AB CD
AC-BD

Tangents AM and AN and a line which crosses the circle at k£ and L are constructed
on a circle & at the point 4 (which is positioned out of the circle k). Let / be any line
which is parallel to AM and let KM and LM meet [ at the points P and Q, respectively.
Prove that the line MN bisects the line segment PQ.

On the sides BC, C4 and AB of a triangle ABC are given points D, E and F,
respectively, so that BD =CE = AF . Prove that the triangles ABC and DEF have
common circumcenter if and only if the triangle ABC is an equilateral triangle.

Let be given a cyclic quadrelateral ABCD. Prove that the incenters of the triangles
ABC, BCD, CDA, DAB are vertices of a rectangle.

Let 7 be the incenter of atriangle ABC and let D and E be the midpoints of the
sides AC and AB, respectively. Let ABNDI=S and ACNEI=(Q. Prove that
AP-AQ = AB- AC ifand only if ZCAB=60°.

Let M be a point of the interior part of the square ABCD and A', B',C', D' be
the intersections of the lines AM, BM, CM, DM and the circumcircle of the square
ABCD, respectively. Prove that

A'B'-C'D'=A'D'-B'C".

Let ABCD be a cyclic quadrilateral and let ¥ =ACNBD and E=ADNBC. If
M and N are the midpoints of the sides 4B and CD, respectively, then prove that
MN _ 1 AB _CD|

EF  2|cD  4B|

The points A', B', C' are symmetric to the points 4, B, C with respect to the sides
BC, C4, AB, respectively. Determine the type of the triangle ABC, so that the triangle
A'B'C' is an equilateral triangle?

Let O be the circumcenter and R be the circumradius of a triangle ABC. The in-
circle of the triangle ABC, with radius r, touches the sides BC, CA, AB at points
A', B', C", respectively. Let the lines determined by the midpoints of the line
segments AB' and AC', BA' and BC', CA' and CB' intersect at C", A" and



72.

73.

74.

75.

76.

71.

78.

B". Prove that the circumcenter of the triangle 4"B"C" is O and the circumradius
is R+%.

Let the trapezoid ABCD, AB| CD, AB>CD, not be isoscaled and let it be
circumscribed about a circle centered at /. The incircle tangents the side CD at E.
Let M be the midpoint of the side 4B and moreover M/ and CD intersect at F. Prove
that DE = FC if and only if AB=2CD .

Given a cyclic hexagon ABCDEF so that AB=CD = EF and the diagonals AD, BE

and CF are concurrent. If p=AD N CE , then CP _ (ﬂ)z . Prove it!

PE CE
Given a triangle ABC. A', B', C' are the midpoints of the arcs 23?7, 64, AB , such
that each of them does not consist of the point 4, B, C, respectively. The lines
A'B', B'C", C'A" divide the sides of the triangle in six parts. Prove that “the middle”
parts are congruent if and only if the triangle ABC is an equilateral triangle.

Let a ABC be such a triangle that £ ABC =60°. Let the line /F be parallel to AC
(I is the incenter, and F lies on the side 4B). The point P is on the side BC and
3BP =BC . Prove that L BFP = %LABC .

The angle at A4 is the smallest angle in a o ABC. The points B and C divide the
circumcircle of the triangle in two arcs. Let U be the interior point of the arc between
B and C which does not consist of 4. The bisectors of the line segments 4B and AC
meet the line AU at points V" and W, respectively. The lines BV and BW meet at T.
Prove that AU =TB+TC .

Let ABCD be a convex quadrilateral so that 4B is not parallel to CD and 4D is not
parallel to BC. The points P, O, R, S are such chosen on the sides 4B, BC, CD, DA,
respectively, that the quadrilateral PORS is parallelogram. Find the locus of the
intersections of all such quadrilaterals PORS.

The incircle of a triangle ABC tangents the sides BC, CA, AB at the points E, F, G,
respectively. Let 44", BB', CC' be the intercepts of the bisectors of the inner angles
of the triangle ABC. Let K 4, Kg, K~ be the points where the second tangents to
the incircle drawn at A', B', C', respectively. Let P, O, R be the midpoints of the
sides BC, CA, AB, respectively. Prove that the lines PK 4, OKpg, RK concure on
the incircle of the triangle ABC.
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80.

81.

82.

83.

84.

8S.
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Let AD, BE, CF be the altitudes of thejiangle ABC, and A', B', C' are points on

=BB' = CC' _ | holds. Determine each values of k so
BE CF

that the triangles ABC and A'B'C" are similar.

them respectively, so that %

(Gauss’s theorem). If the line / meets the lines which consist of the sides BC, CA,
AB of the triangle ABC at A', B', C"', respectively, then prove that the midpoints of
the line segments AA4', BB', CC" are collinear.

Given a triangle ABC and a point 7. Let P and Q be the feet of the perpendiculars at T’
to the lines AB and AC, respectively, and let R and S be the feet of the perpendiculars
at A to the lines 7C and 7B, respectively. Prove that the intersection of the lines PR
and QS lies on the line BC.

Let PORS be a cyclic quadrilateral, such that the lines PO and RS are not parallel.
Consider the set of all circles through P and Q and the set of all circles through R
and S. Determine the set of all touching points between the circles which belong to
these two sets.

Given a circle £ and a point P positioned in the outer part of the circle. A variable
line s, such that it consists of the point P, meets the circle at the points 4 and B. Let
M and N be the midpoints of the arcs determined by the points 4 and B and let C be

_2 R —
a point positioned on the line segment 48 so that PC = PA- PB holds. Prove that
the angle ZMCN does not depend on the choise of the line s.

Two circles k; and k, touch at a point M. The radius of k; is greater than the radius
of k,.Let A be any point on the circle k, such that it is not placed on the line which
connects the centers of the circles, B and C be points on k; so that AB and AC are
its tangents. The lines BM and CM remeet k, at E and F, respectively, and D is the
intersection of the tangent to k, at 4 and the line EF. Prove that the locus of the
point D, when 4 moves on k,, is a line.

On a plane are given two circles k; and k, such that they meet at points 4 and B.
The tangents to & at 4 and B intersect at K. Let M be any point of the circle &; and
let

MANky ={4,P}, MK Nnk; ={M,C} and CAnk, ={4,0}.
Prove that the midpoints of the line segment PQ is placed on the line MC and PQ
passes through a fixed point when M moves round the circle 4 .



86.

87.

88.

89.

90.

91.

92.

Let ABC be a triangle so that L ACB =2/ ABC and let D be a point on the line

segment BC so that CD =2BD holds. The line segment 4D is extended through D

to the point £ so that AD = DE holds. Prove that the following is satisfied
ZECB+180°=2ZEBC.

Given a triangle 4;4,4; and a line p which passes through a point P and meets
the sides A,A;, 434, 44, at Xi, X,, X3, respectively. Let A4;P meetthe
circumcircle of the triangle 4,4, 45 ata point R;, for i =1,2,3. Prove that the lines
XiRy, XoRy, X3R5 concur at a point which belongs on the circumcircle of the
triangle A; 4y 4.

Two circle with defferent radii meet at points 4 and B. Their mutual tangents are
MN and ST. Prove that the orthocenters of the triangles AMN, BMN, AST, BST are
vertices of a rectangle.

Given a cyclic quadrilateral ABCD. The lines AD and BC meet at a point £, so that
C is between B and E. The diagonals AC and BD meet at F. Let M be the midpoint
of CD and let N #M be the point on the circumcircle of the triangle ABM such that

AN — AM proye that points £, F and N are collinear.
BN BM

The diameter of a circle kis placed on a line /. Let C and D be points on k. The tangents
to k at C and D consecutively meet the line / at B and 4, so that the center of the
circle is between B and 4. Let £ = AC N BD and F be the foot of the perpendicular
at £ to /. Prove that EF’ is the bisector of ZCFD .

Let ABCD be a convex quadrilateral whose sides BC and 4D are congruent, but not
parallel. Let £ and F be interior points of the sides BC and AD, respectively, so that
BE = DF . The lines AC and BD intersect at P, the lines BD and EF intersect at O
and the lines £F and AC intersect at R. Let’s consider the triangles POR which are get
for all points £ and F. Prove that the circumcircles of these triangles have a common
point, such that it differs from P.

Let O be an interior point for the acute triangle a ABC. The circles centered at the
midpoints of the sides of the triangle a ABC, such that each of them passes through
O, concur at K, L, M (K, L, M differ from O). Prove that O is the incenter of the
triangle  KLM if and only if O is the circumcenter of the triangle o 4BC.
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93. Let M and N be points of the interior of a triangle o ABC such that L MAB = Z NAC
and ZMBA = 2ZNBC hold. Prove that
A | BUEN | GICN .
AB-AC  BA-BC CA-CB

94. Let a ABC be such a triangle that £4=90° and £B < ZC hold. The tangent at
A of its circumcircle I' meets the line BC at D. Let E be the image of 4 under line
symmetry with respect to the line BC, X be the foot of the perpendicular at 4 to BE
and Y be the midpoint of the line segment AX. Let the line BY remeets I” at a point Z.
Prove that the line BD is a tangent to the circumcircle of the a 4DZ.

95. Given a ABCandpoints 4 € BC, By AC, Cy€ AB suchthat a ABCand a 4;B,C;
are simmilar. If the orthocenters or the incenters of A ABC and a 4, B,C; coincide,
then a ABC is an equilateral triangle. Prove it!

96. Let be given points A, B and C. Determine the locus of a point D so that

DA-DB-AB+DB-DC-BC+DC-DA-CA=AB-BC-CA
holds.

97. Prove that the length of the side of a regular nonagon is equal to the difference of the
lengths of its longest and shortest diagonal.

98. Prove that for any regular n-gon inscribed into a circle with radius r the, product of
n n(n-1)

all sides and diagonals is equal to n2r 2

99. On the circumcircle of a regular 2n-gon 4 A4,...4,, is chosen an arbitrary point P.
Prove that the sum of the squared distances between the point P and the vertices
whose indexis are even numbers is equal to the sum of the squared distances between
the point P and the vertices whose indexis are odd numbers.

100. Let AyA4A4,...Ay, be aregular polygon, P be an arbitrary point of the smaller arc
AyAy,, ofits circumcircle and m be a positive integer, 0 <m < n . Prove that

n n
D 4 2m+l D 4 2m+l
Y PAs T =Y PAST .
k=0 k=1

101. Let Ay4,...A,_; be aregular n-gon inscribed in a circle whose radius is ». Prove
that for any point P of the circumcircle and a positive integer m<n,
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102.

103.

104.

105.

106.

107.

108.

—1 —32

2 P4, " —(%nm)nrzm
k=0

holds true.

Let Ay, hy,..., h, be the distances between an arbitrary point P of the smaller
arc AyA,_; of the circumcircle of regular n-gon Ay4;..4,_; and the lines
Ay4y, A4 4,,..., 4,1 Ay . Prove that

1 1 1
+Ll4..+ €L
W h oy

Given a regular n-gon 4;4,...4,, and a point P of the smaller arc 4;4,, . Let d; be
the distance between the points P and 4 . Prove that

1 1 1 1
+ +...+ = .
didy  dyds dyd, did,

Let P be any point on the circumcircle of a regular 2n-gon A4,..4y,. If
D1>D2,--» P2y, are the distances between the point P and the lines which consists
of the sides 44y, Ay 45, ..., Ay, 4, respectively then p;ps3..pr,_1 = PrPa---Doy -
Prove it!

Letnbeaprimenumberandlet H; beaconvexn-gon. Thepolygons H,, Hs,..., H,
are constructed consecutive: the vertices of the polygon H,; are obtained by
applying the the symmetry through the 4-th adjacent vertex to the vertices of the
polygon Hj in a positive direction. Prove that the polygons H; and H, are

similar.

Let Ay, A;,..., 4y, be cosequtive points on a circle, such that they divide the circle
in 2k +1 congruent arcs. The point 4 is plot by chords with each other points.
These 2k chords divide the circle in 2k +1 parts. These parts are alternately colored
with white and black color, such that the number of the white parts is greater for
one than the number of the black ones. Prove that the black area is greater than the
white one.

The vertices of a regular n-gon are coloured with a few colors (each vertex with
only one colour) so that the vertices coloured with the same colour form a regular
polygon. Prove that two of these polygons are similar.

Let the points 4, B, C, D and E be such that ABCD is a parallelogram, and BCED
is a cyclic quadrilateral. Let / be a line which consists of the point 4 and intersects
the line segment DC at an inner point F, and the line BC at C. If EF = EG=EC,
then / is the bisector of the angle DAB. Prove it!
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110.

111.

112.

113.

114.

115.
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Let H be the orthocenter of acute triangle ABC. The circle centered at the midpoint
of the line segment BC, such that it consists of the point /7, meets the line BC at 4,
and A, . Analogously, the circle centered at the midpoint of the line segment C4,
such that it consists of the point /, meets the line C4 at B; and B, , and the circle
centered at the midpoint of the line segment 4B, such that it consists of the point
H, meets the line AB at C} and C,. Prove that the points 4;, 4,, By, B,, C; and
C, belong on a same circle.

Let ABCD be convex quadrilateral so that BA# BC and ky and k, be the incircles
of the triangles ABC and ADC, respectively. Let it exists a circle £ such that it
touches the extension of the side B4 at 4 and the extension of the side BC at C, and
it likewise touches the lines AD and CD. Prove that the common outer tangents to
the circles k; and k, intersect at a point on the circle 4.

Let O be the circumcenter of triangle ABC, P and Q be inner point for the line
segments CA and AB, respectively, K, L and M be the midpoints of the line segments
BP, CQ and PQ, respectively and I be a circle which consists of the points K, L
and M. If the line PQ is a tangent to the circle I', then oP= OQ Prove it!

Let 7 be the incenter, and I" be the circumcircle of a triangle o ABC. Let the line A/
intersect I at 4 and D, and let £ be a point on the arc BDC , and F be a point on
the line segment BC so that

ZBAF = ZCAE <% ZBAC .

Let G be the midpoint of the line segment /F. Prove that the lines DG and E/
intersect at a point of the circle I'.

Let P be a inside point of triangle o ABC and the lines AP, BP and CP remeet the
circumcircle I' of the a ABC at K, L and M, respectlvely The - tangent to the circle I at
the point C meets the line AB at S. Let SC = SP . Prove that MK = ML .

Let ABC be an acute triangle and let I be its circumcircle. Let / be any tangent to
the circle I' and let /,, [, and /. be lines symmetric to / with respect to BC, CA
and AB, respectively. Prove that the circumcircle of the triangle determined by the
lines /,, I, and /. touches the circle I'.

Let ABC be a scalene acut triangle such that AC > BC satisfies. Let O be the
circumcenter, / be the orthocenter, and F the foot of the altitude at the vertex C.



116.

117.

118.

119.

120.

Let P be a point on the line 4B, such that it differes from A4, and AF = PF holds,
and M be the midpoint of the line segment AC. Let X be the intersection of PH and
BC, Y be the intersection of OM and FX, and Z be the intersection of OF and AC.
Prove that the points F, M, Y and Z are on a same circle.

In a ABC, M and N are points on the sides 4B and AC, respectively, so that the line
MN is parallel to the side BC. Let P be the intersection of the lines BN and CM. The
circumcircles of the triangles A BMP and a CNP meet at two distinct points P and
Q. Prove that L BAQ =ZCAP.

Let o ABC be not isoscaled triangle. Let AD, BE, CF be the bisector of the angles
of this triangle (De BC, E€ AC, Fe AB). Let K,, K;, K. be points on the
incircle of the a ABC so that DK, , EK,, FK, are tengents to the incircle and
K, & BC, K¢ AC, K.& AB. Let 4, B, C; be the midpoints of the sides BC,
CA4, AB. Prove that the lines 4K, BjK;, C|K_ are concurrent on the incircle of
a ABC.

Let a ABC not be isoscaled triangle and £ be its incircle centered at S. The circle
k tangents the sides BC, CA, AB at points P, O, R, respectively. The line OR meets
BC at M. Let a circle which consists of the points B and C touches k at N. The
circumcircle of the triangle MNP meets the line 4P at L which differes from P.
Prove that the points S, L and M are collinear.

In an acute triangle a ABC a point M is the midpoint of the side BC, and points D,
E, F are feet of the altitudes at vertices 4, B, C, respectively. Let H be the ortho-
center of the triangle o ABC, S be the midpoint of the line segment 4H, and G be
the intersection of the line segments FE and AH. If N is point of intersection of the
median AH and the circumcircle of the o BCH, prove that £ HMA = ZGNS .

In a ABC, M and N are points on the sides 4B and AC, respectively, so that the
line MN is parallel to BC. Let P be the point of intersection of BN and CM. The
circumcircles of the triangles A BMP and A CNP meet at two distinct points P and
Q. Prove that L BAQ =ZCAP.
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