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PREFACE 

No research of people could be named true science 
if it is not supported by a mathematical proof.  

Reliability of the assertions in different subjects is 
problematic when application of any mathematical 
domain is missing, i. e. when there is no connection 
with mathematics.  

Leonardo da Vinci 

The present book is devoted to students of the last school grades, university 
students, teachers, lecturers and all lovers of mathematics who want to enrich their 
knowledge and skills in complex numbers and their numerous applications in Euclidean 
Geometry. Few countries in the world include complex numbers in their secondary 
school curriculum but even if included the volume of the corresponding content is quite 
insufficient consisting of elementary operations and geometric representation at most. The 
significance of the complex numbers is far from a real recognition in known textbooks 
and scholar literature. The applications not only in mathematics but also in many other 
subjects are considerable and the present book is a strong proof of such a statement.  

Mainly, the book will be useful for outstanding students with high potentialities 
in mathematics preparing themselves for successful participation in mathematical 
competitions and Olympiads. Other target groups are not excluded, namely those, whose 
representatives like to meet real challenges, connected with unexpected circumstances in 
problem solving. 

The material in the book is divided into four chapters. The first one contains 
basic properties of the complex numbers, their algebraic notation, the notion of a 
conjugate complex number, geometric, trigonometric and exponential presentations, also 
interesting facts in connection with Reimann interpretation and the set Cn. The second 
chapter includes various transformations of complex numbers in the Euclidean plane 
like similarity, homothety, inversion and Mőbius transformation. The third chapter 
is dedicated to the geometry of circle and triangle on the base of complex numbers. 
Numerous theorems are proposed, namely: Menelau’s theorem, Pascal’s and Desargue’s 
theorem, Ceva’s and Van Aubel’s theorem, Stewart’s theorem, Ptolemy’s theorem and 
others. Exercises and problems are included in the Fourth chapter: 122 examples with 
solutions and 161 solved problems pare proposed. Together with all the 138 theorems, 
lemmas and corollaries accompanied by 64 examples and 88 figures, the book turns out 
to be a rather exhaustive collection of the complex number applications in Euclidean 
Geometry. 
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A high just appraisal of the book is due to the numerous non-standard problems 
in it taken from the National Olympiads of Bulgaria, China, Iran, Japan, Korea, Poland, 
Romania, Russia, Serbia, Turkey, Ukraine and others but also from Several International 
and Balkan Mathematical Olympiads. 

The authors express their sincere thanks to the Editorial House “Archimedes 2” 
for the decision to accept the manuscript and to support the appearance of the present 
book. Also, sincere thanks to the reviewers Prof. Dr. Lidia Ilievska and Assoc. Prof. 
Dr. Veselin Nenkov for their helpful criticism, removal of mistakes and well-wishing 
advices, which contributed to the final quality of the book. Of course, different lapses are 
possible and we will be grateful to the readers in case they notice such and bring them to 
the attention of the Editor.   

February, 2015 						     The authors 
Skopje and Sofia 
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CHAPTER I
COMPLEX NUMBERS

1.	 THE CONCEPT OF COMPLEX NUMBER,
BASIC PROPERTIES 

1.1. Definition. Complex number z a b= ( , )  is the ordered pair of real numbers 
a and b. 

The set of complex numbers is denoted by C, i.e. C R= ∈{( , ) | , }a b a b . 
The complex numbers (0,0) and (1,0) are denoted by n and e, respectively. 
The definition of a complex number directly implies that two complex numbers 

z a b1 1 1= ( , )  and z a b2 2 2= ( , )  are equal if a a1 2=  and b b1 2= .

1.2. Definition. Sum of two complex numbers z a b1 1 1= ( , )  and z a b2 2 2= ( , )  is 
the complex number 

z z a a b b1 2 1 2 1 2+ = + +( , ) .

1.3. Definition. Product of two complex numbers z a b1 1 1= ( , )  and z a b2 2 2= ( , )  
is the complex number 

z z a a b b a b a b1 2 1 2 1 2 1 2 2 1⋅ = − +( , ) .

1.4. Theorem. The addition and multiplication of complex numbers, satisfy the 
already known laws of arithmetic. Namely,:

i)	 z z z z1 2 2 1+ = + , commutative property of addition,
ii)	 ( ) ( )z z z z z z1 2 3 1 2 3+ + = + + , associative property of addition, 
iii) 	 z z z z1 2 2 1= , commutative property of multiplication, 
iv)	 ( ) ( )z z z z z z1 2 3 1 2 3= , associative property of multiplication, and
v)	 ( )z z z z z z z1 2 3 1 3 2 3+ = + , distributive property. 

hold true for all complex numbers z z z1 2 3, , .

Proof. i) Let z a b1 1 1= ( , )  and z a b2 2 2= ( , )  be any complex numbers. Thus,
( , ) ( , ) ( , ) ( , ) ( , ) ( ,a b a b a a b b a a b b a b a b1 1 2 2 1 2 1 2 2 1 2 1 2 2 1 1+ = + + = + + = + ))

i.e., z z z z1 2 2 1+ = + .
The properties ii), iii), iv) and v) can be proven analogously. ■

Let’s state that when proving Theorem 1.4 we explicitly used (by coordinates) 
the commutative, associative and distributive properties of addition and multiplication of 
real numbers. 
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1.5. Theorem. Any complex number z satisfies the following equalities:  
z n z+ = , z n n⋅ =  and z e z⋅ = . , where n denotes the additive identity, and e denotes the 
multiplicative identity.

Proof. Indeed, if z a b= ( , )  is an arbitrary comblex number, then
z n a b a b a b z+ = + = + + = =( , ) ( , ) ( , ) ( , )0 0 0 0 , 
z n a b a b a b n⋅ = ⋅ = ⋅ − ⋅ ⋅ + ⋅ = =( , ) ( , ) ( , ) ( , )0 0 0 0 0 0 0 0 , and 
z e a b a b a b a b z⋅ = ⋅ = ⋅ − ⋅ ⋅ + ⋅ = =( , ) ( , ) ( , ) ( , ) .1 0 1 0 0 1  ■

1.6. Theorem. If z z z z1 3 2 3+ = + , then z z1 2= . 

Proof. Let z a b z a b1 1 1 2 2 2= =( , ), ( , )  and z a b3 3 3= ( , )  be complex numbers. 
Then, 

z z a b a b a a b b1 3 1 1 3 3 1 3 1 3+ = + = + +( , ) ( , ) ( , )  and 
z z a b a b a a b b2 3 2 2 3 3 2 3 2 3+ = + = + +( , ) ( , ) ( , ) .
Since the given equality z z z z1 3 2 3+ = +  and the Definition 1.1 we get the fol-

lowing 
a a a a1 3 2 3+ = +  and b b b b1 3 2 3+ = + .

Furthermore, the properties of real numbersimply that a a1 2=  and b b1 2= , and since 
Definition 1.1. ■

1.7. Theorem. For each complex number z there exists one and only one com-
plex number w, so that z w n+ = . 

Proof. Let z a b= ( , )  be an arbitrary complex number, and w be defined as 
w a b= − −( , ) . We get, 

z w a b a b a a b b n+ = + − − = + − + − = =( , ) ( , ) ( ( ), ( )) ( , )0 0 .
So, we proved the existence of a complex number w. The uniqueness is directly implied 
by Theorem 1.6. ■

In our further consideration, the complex number w, so that z w n+ = , will be 
denoted by w z= − , and w is called to bean opposite complex number of z.

Let z and w be arbitrary complex numbers. The complex number z w+ −( )  is 
called to be a substraction of the numbers z and w, and is denoted by z w− . 

1.8. Theorem. For all complex numbers z1  and z2 , the equality 
( ) ( ) ( ) ( ) ( )− ⋅ = ⋅ − = − = − ⋅z z z z z z e z z1 2 1 2 1 2 1 2 ,

holds true and there is no ambiguity in the notation −z z1 2 . 

Proof. Let z a b1 1 1= ( , )  and z a b2 2 2= ( , )  be arbitrary complex numbers So, 
( ) ( , ) ( , ) ( , )

(

− ⋅ = − − ⋅ = − + − − =
= −

z z a b a b a a b b a b b a
a a

1 2 1 1 2 2 1 2 1 2 1 2 1 2

1 2 −− + = −b b a b b a z z1 2 1 2 1 2 1 2, ) ( ).
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But, the commutativelaw of multiplication holds true, therefore the above equality im-
plies that 

− = − = − = −( ) ( ) ( ) ( ).z z z z z z z z1 2 2 1 2 1 1 2

Finally, since the Theorem 1.5 and the already proved equalities we get that 
( )( ) ( ( )) ( ) ( ) ( )− = − = − = − = −e z z e z z z z z z z z1 2 1 2 1 2 1 2 1 2 . ■

1.9. Definition. The absolute value of the complex number z a b= ( , )  is defined 
by

| |z a b= +2 2 .
Thus, the absolute value of each complex number z is a non-negative real number. 

1.10. Theorem. a) If z n≠ , then | |z > 0  and | |n = 0 . 
b) | | | | | |z z z z1 1⋅ = ⋅ , for all complex numbers z and z1 . 

Proof. Let z a b= ( , )  and z a b1 1 1= ( , )  be any complex numbers
a) It is obvious that 

| |n = + =0 0 02 2 .
If z n≠ , then a ≠ 0  or b ≠ 0 , i.e. a2 0>  or b2 0> . Thus, 

| | .z a b2 2 2 0= + >
b) Since,

| | | ( , ) | ( ) ( )z z a a b b a b b a a a b b a b b a

a a b
1

2
1 1 1 1

2
1 1

2
1 1

2

1
2 2

1

= − + = − + +

= + 22 2
1
2 2

1
2 2

1
2

1
2 2 2

1
2 2b a b b a a b a b z z+ + = + + =( )( ) | | | | ,

we get that | | | | | |z z z z1 1⋅ = ⋅ . ■

1.11. Remark. Theorem 1.10. b) and the principle of mathematical induction 
directly imply the following: 
	 | ... | | | | | | | .z z z z z zn n1 2 1 2= ⋅ ⋅ ⋅ ■ 					     (1)

1.12. Theorem. If zw n= , then z n=  or w n= . 

Proof. If zw n= , then Theorem 1.10 implies 
| | | | | | | | .z w zw n⋅ = = = 0

But, | z | and | w | are real numbers, and thus | |z = 0  and | |w = 0 , i.e. z n=  or w n= . ■

1.13. Theorem. If z n≠  and zw zw= 1 , then w w= 1 . 

Proof. The given condition zw zw= 1  implies that − = −zw zw1 . So, 
n zw zw z w w= − = −1 1( ) .

Acording to Theorem 1.12, z n≠  implies that w w n− =1 , i.e. w w= 1 . ■
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1.14. Theorem. For each complex number z n≠  there exists one and only one 
complex number w, denoted by e

z , so that zw e=  holds. 

Proof. Firstly, we will prove the existence of the complex number w e
z= . Let 

z a b n= ≠( , )  be an arbitrary complex number . Let
w a

a b
b

a b
= ( )+

−
+2 2 2 2, ,

So,
zw a b ea

a b
b

a b
= ⋅ ( ) = =

+
−
+

( , ) , ( , ) .2 2 2 2 1 0

The uniqueness is implied immideately by Theorem 1.13. ■

1.15. Theorem. If z n≠ , then for each complex number w there exists one and 
only one complex number u, so that zu w=  holds. 

Proof. By Theorem 1.14, for any complex number z n≠  there exists one and 
only one complex number e

z , so that z ee
z⋅ =  holds. Let u we

z= ⋅ . Thus we get a unique 
complex number u such that satisfies the following

zu z w we
z= ⋅ = . ■

2.	 ALGEBRAIC NOTATION OF A COMPLEX NUMBER 

2.1. In the previous considerations we discussed the arithmetics of complex num-
bers, but the ususl symbol i was not presented, yet. Now, we will prove that the notation 
(a,b) is equivalent to the usual notation for a complex number a ib+ . 

The proofs of the stataments in Theorem 2.2 are elementary therefore the ones 
will not be done. 

2.2. Theorem. For all real numbers a and b the following equalities are satis-
fied:

a) ( , ) ( , ) ( , ),a b a b0 0 0+ = + 		
b) ( , )( , ) ( , )a b ab0 0 0= , 
c) | ( , ) | | |a a0 = , where | a | is the absolute value of the real number a, 

d) ( , )
( , )

,a
b

a
b

0
0

0= ( ) , for b ≠ 0 . ■

2.3. The statements given in Theorem 2.2 immideately imply that the mapping 
f : R C→  defined by f a a( ) ( , )= 0  is a bijection between R and A a a= ∈ ⊆{( , ) | }0 R C,  

and such that inhire the operations. So, the set of real numbers R might be reviewed as a 
subset of the set of complex numbers C. 
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According to this, the complex numbers e and n correspond to the notation 1 and 
0, respectively. So, they will be used in our further consideration 

2.4. Definition. The complex number i = ( , )0 1  is called to be imaginary unit. 
The imaginary unit satisfies the following equality

i2 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1= ⋅ = ⋅ − ⋅ ⋅ + ⋅ = − = −( , ) ( , ) ( , ) ( , ) .

2.5. The obvious equation 
( , ) ( , ) ( , )0 1 0 0⋅ =b b

implies that 
z a b a b a b a ib= = + = + ⋅ = +( , ) ( , ) ( , ) ( , ) ( , ) ( , )0 0 0 0 1 0

holds true for any complex number z a b= ( , ) .

Definition. The notation z a ib= +  is called to be an algebraic notation of the 
complex number z a b= ( , ) .

The addition and multiplication of complex numbers, by using the algebraic no-
tations of complex numbers, are written as following: 

( ) ( ) ( ) ( )a ib a ib a a i b b1 1 2 2 1 2 1 2+ + + = + + + , 
( ) ( ) ( ) ( ).a ib a ib a a b b i a b a b1 1 2 2 1 2 1 2 1 2 2 1+ ⋅ + = − + +

2.6. Definition. The components a and b of a complex number z a ib= +  are 
called to be real and imaginary part of z, respectively, and we use the following notations 
a z= Re  and b z= Im  to denote them.

3.	 A CONJUGATE COMPLEX NUMBER 

3.1. Definition. The complex number a ib−  is called to be the complex conju-
gate of z a ib= +  and is denoted as z . 

3.2. Theorem. a) z z= , for each complex number z. 
b) z z z z1 2 1 2+ = + , for all complex numbers z1  and z2 ,
c) z z z z1 2 1 2= ⋅ , for all complex numbers z1  and z2 , 
d) z z z+ = 2Re , for each complex number z, 
e) z z z− = 2Im , for each complex number z, and
f) z z a b z⋅ = + = ≥2 2 2 0| | , for each complex number z. 

Proof. The definition of a conjugate complex number, also addition and multili-
cation of complex numbers directly imply the validity of the above theorem. ■
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3.3. Remark. The equality z z z− = 2Im  directly implies that the complex 
number z is a real number if and only if z z= . 

3.4. Remark. The validity of the equality (1) can be proved since the equality 
z z z z1 2 1 2= ⋅  holds and also by applying the principle of mathematical induction, 
			   z z z z z z zn n1 2 3 1 2... ...= ⋅ ⋅ ⋅ ,				    (1) 
for each n∈N  and any complex numbers z z zn1 2, ,..., . If z zk =  for each k n=1 2, ,..., , 

then (1) implies that z zn n= . 

3.5. Remark Theorem 3.2. f) and а) holds, therefore it is true that 

| | | |z z z z z z2 2= ⋅ = ⋅ = , i.е. | | | |z z= .

Let z x iy= + . The equality | |z zz x y2 2 2= = +  directly implies the inequalities 
			   − ≤ ≤| | Re | |z z z  and − ≤ ≤| | Im | |z z z 			   (2) 

3.6. Example. Let

P z a z a z a z an n
n n( ) ...= + + + +−
−0 1

1
1

be a real polynomial. If w is a root of P(z), then w  is also a root of the same polynomial 
P(z). Prove it!

Solution. Since w is a root of the polynomial P(z), P w( ) = 0 . Further, 

P w a w a w a w a

a w a w a w a P w

n n
n n

n n
n n

( ) ...

... (

= + + + +

= + + + + =

−
−

−
−

0 1
1

1

0 1
1

1 )) .= 0

The latter means that w  is also a root of the same polynomial P(z). ■

3.7. Example. Let’s consider the polynomial 

P z a z a z a z an n
n n( ) ...= + + + +−
−0 1

1
1 , a0 0≠ ,

written as the following 
P z a z z z z z zn( ) ( )( )...( )= − − −0 1 2 ,

where z i ni , , ,...,=1 2  are the roots of P(z). 
The identity 

a z z z z z z a z a z a z an
n n

n n0 1 2 0 1
1

1( )( )...( ) ...− − − = + + + +−
−

implies that 
a z z z z z z z z a z a z an

n
n n

n
n n

0 1 2
1

1 2 0 1
11− + + + + −( ) = + + +− −( ... ) ( ) ... ... nn nz a− +1 .

By equating the coefficients of the corresponding degrees we get the following formu-
lae: 
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z z z

z z z z z z z z z z
n

a
a

n n n n

1 2

1 2 1 2 3 2 1

1

0
+ + + = −

+ + + + + + + = −−

...

... ... ...
aa
a

2

0
...................................................................................................

... ..z z zk1 2 + .. ... ... ... ( )+ + + = −− − + − +z z z z z zk n n k n k n
k a

a
k

1 1 1 2 1
0

.....................................................................................................

... ( )z z zn
n

1 2 1= − aa
a

n
0

These formulae are known to be the Vieta’s formulae. ■

3.8. Remark. In Theorem 1.15 we proved that if z n≠ , then for each complex 
number w there exists a unique complex number u so that zu w=  holds. The complex 
number u is called to be a quotient of the complex numbers w and z and is denoted by 
u w

z= . 
Hence, if z a ib= +2 2  and w a ib= +1 1 , then the quotient is expressed as the fol-

lowing

u w
z

wz
z z

a ib a ib
a ib a ib

a a b b
a b

= = = =+ −
+ −

+
+

( )( )
( )( )

1 1 2 2

2 2 2 2

1 2 1 2

2
2

2
22

2 1 1 2

2
2

2
2+ −

+
i a b a b

a b
.

For the quotient of the complex numbers z1  and z2  z
z

z
z

1

2

1

2
( ) =  holds. 

3.9. Example. If | | | |z z1 2 1= =  and z z1 2 1≠ − , then z z
z z

1 2

1 21
+

+  is a real number. 
Prove it! 

Solution. By multiplying both the numerator and the denominator by the conju-
gate of 1 1 2+ z z  we get 

z z
z z

z z
z z

z z
z z

z z z z
z z

1 2

1 2

1 2

1 2

1 2

1 2

1 2 1 2

1
1 1

1

1

1

1

+
+

+
+

+
+

+ +
+

= ⋅ = ( )( )

| 22
2

1 2 1 1 2 1 2 2

1 2
2

1 1

1 2
2

2 2

1 1 1

|

| | | | |
= = ++ + +

+
+

+
+

+
z z z z z z z z

z z
z z
z z

z z
z11 2

2z |
.

But both, z z1 1+  and z z2 2+  are real numbers, therefore z z
z z

1 2

1 21
+

+  is also a real num- 
ber. ■

3.10. Example. Prove that if the absolute value of a complex number is 1, than 
such a complex number can be expressed as c i

c i
+
− , where c is a real number.

Solution. If | |z =1  and c i z
z= +
−
1
1

, then z c i
c i= +
−  and c i

c i
+
− =1 , i.e. 

c i
c i

c i
c i

+
−

−
+

⋅ =1.

By reducing the last equality, we get that c c− = 0 . Hence, c∈R  and z c i
c i= +
− , 

which actually was supposed to be proven. ■
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3.11. Theorem. All complex numbers z and w ≠ 0  satisfy the equality 
z
w

z
w= | |

| | .

Proof. By applying the above stated we get the following, 
z
w

z
w

z
w

z
w

z
w

z z
ww

z
w

2 2

2= ⋅ ( ) = ⋅ = = | |

| |
, 

that is z
w

z
w= | |

| | . ■

3.12. Example. Determine all the complex numbers z such that satisfy the fol-
lowing equalities: 

z
z i
−
− =12

8
5
3  and z

z
−
− =4

8
1 .

Solution. Let z x iy= + . Since the given condition we get that 
z
z i

z
z i

x y
x y

−
−

−
−

− +
+ −

= = =12
8

2 12

8

12

8
25
9

2

2

2 2

2 2

| |

| |

( )

( )
 and z

z
z
z

x y
x y

−
−

−
−

− +
− +

= = =4
8

2 4

8

4

8

2

2

2 2

2 2 1| |

| |

( )

( )
.

By reducing we get the following system of equations 
2 2 27 50 38 0

6

2 2x y x y
x

+ + − + =
=







whose solutions are x y= =6 17,  and x y= =6 8, . Hence, the required complex num-
bers are z i= +6 17  and z i= +6 8 . ■

3.13. Example. If a, b and c are complex numbers such that 
| | | | | |a b c r= = = , r > 0

then
| | | |ab bc ca r a b c+ + = + + .

Prove it! 

Solution. Since r a aa2 2= =| | , we get that 1
2a

a
r

= . Analogously, 1
2b

b
r

=  and 
1

2c
c
r

= . Therefore,

ab bc ca abc abc a b ca b c
a
r

b
r

c
r

abc
r

+ + = + +( ) = + +( ) = ⋅ + +1 1 1
2 2 2 2 .

The latter implies that,
| | | || |ab bc ca a b c r a b cabc

r
+ + = + + = + +2

holds true, which actually was supposed to be proven. ■

3.14. Theorem. All complex numbers z1  and z2  satisfy the following
| | | | | |z z z z1 2 1 2+ ≤ +  and | | | | | |z z z z1 2 1 2− ≥ − .

Proof. Since Theorem 3.2, the following holds true for all complex numbers z1  
and z2 : 
		  | | ( )( ) | | | | Rez z z z z z z z z z1 2

2
1 2 1 2 1

2
2

2
1 22+ = + + = + + 		  (3) 
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		  | | ( )( ) | | | | Rez z z z z z z z z z1 2
2

1 2 1 2 1
2

2
2

1 22− = − − = + − .		  (4) 
tothe equalities (3) and (4), if we apply the first inequality in (2), imply the following 
inequalities:
				    | | | | | |z z z z1 2 1 2+ ≤ + 				    (5) 
				    | | | | | |z z z z1 2 1 2− ≥ − .				   (6)

The inequality (5) is known to be the triangle inequality. ■

3.15. Corollary. For all complex numbers z z zn1 2, ,...,  the following inequality 
holds true:

| | | |.z zi
i

n
i

i

n

= =
∑ ∑≤

1 1

Proof. The proof is directly implied by the inequality (5) and the principle of 
mathematical induction. ■

3.16. Example. For all complex numbers z1  and z2

			   | | | | | | | | .z z z z z z1 2
2

1 2
2

1
2

2
22+ + − = +( ) 		  (7) 

holds true. Prove it!

Solution. If we summarize the equalities (3) and (4) as given in Theorem 3.14 (the 
ones hold for all complex numbers z1  and z2 ) we get the required identity. This identity is 
known to be the parallelogram identity. ■

3.17. Example. Prove that all complex numbers z1  and z2  satisfy 

| | | | | | | | | |1 11 2
2

1 2
2

1 2
2

1 2
2− − − = +( ) − +( )z z z z z z z z .

Solution. The identity zz z= | |2 , directly implies the following 

	

| | | | ( )( ) ( )( )

(

1 1 1

1

1 2
2

1 2
2

1 2 1 2 1 2 1 2

1 2

− − − = − − − − −

= −

z z z z z z z z z z z z

z z ))( ) ( )( )1

1

2 1 1 2 1 2

1 2 2 1 1 1 2 2 1 1 2 2

− − − −

= − − + − − +

z z z z z z

z z z z z z z z z z z z z11 2 2 1

1 2
2

1
2

2
21

z z z

z z z z

−

= + − − =| | | | | |

	 = +( ) − +( )1 1 2
2

1 2
2| | | | | | ,z z z z

which was suppesed to be proven. ■

3.18. Theorem. Let z w i ni i, , , ,...,=1 2  be complex numbers. Thus, 

			   | | | | | |z w z wi i
i

n
i

i

n
i

i

n

= = =
∑ ∑ ∑≤

1

2 2

1

2

1
.				    (8)
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Proof. Let 

C w zi i
i

n
=

=
∑

1
, A zi

i

n
=

=
∑ | |2

1
 and B wi

i

n
=

=
∑ | |2

1
.

If A = 0 , then | |zi = 0 , for all i n=1 2, ,..., . that is, zi = 0 , for all i n=1 2, ,..., . So, 
also C = 0 . Thus, the inequlity (8) is satisfied. 

If A ≠ 0 , then the inequality (8) is implied by the obvious equality 

C z Aw C z Aw Cz Aw A AB Ci i
i

n
i i

i

n
i i− = − − = −

= =
∑ ∑

2

1 1

2( )( ) ( | | )

and the inequalities

C z Awi i
i

n
− ≥

=
∑

2

1
0 , A > 0 .

The inequality (8) is known to be the Cauchy-Schwarz-Bunyakovsky inequality 
for complex numbers. ■

4.	 GEOMETRIC PRESENTATION 
OF A COMPLEX NUMBER	

The Eucledian plane with Cartesian coordinates is denoted by R2 . Each com-
plex number z x iy= +  is an ordered pair of real numbers (x,y). Since it exists a one-

to-one correspondence between the set of the ordered 
pairs of real numbers (x,y) and R2 , we get that to each 
point A∈R2  may be adjoined a complex number  
z x iy= + , and conversely (figure 1). The complex 
number z such that it corresponds to the point A is 
called to be the affix of the point A. This correspond-
ence between the complex numbers and the points of 
the Euclidean plane is bijection. Thereby, the real part 
of the complex numbers mapps onto the points of the 
x-axis (abscissa), while the imaginary part of the com-
plex numbers mapps onto the points of the y-axis (ordi-

nate). So, the real numbers map onto the points onto the abscissa, and the pure imaginary 
numbers map onto the points of the ordinate. Thus, the abscissa is called to be the real 
axis, and the ordinate is called to be the imaginary axis. Thus, the Euclidean plane R2 , 
is naturaly called to be the complex plane, and the complex numbers to be points in this 
plane. 

Clearly, the points z and −z  are symmetric with respect to the origin, and z  and 
z are symmetric with respect to the real axis. Namely, if z x iy= +  then

Figure 1
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− = − + −z x i y( ) ( )  and z x y i= + −( ) .
Obviously, the complex number z corre-
sponds to the vector with tail in the origin 
point O and head in the point z. Clearly, 
this correspondence between the complex 
numbers and the vectors in the complex 
plane with tails in O is bijective. Thus, 
the vector which determines a complex 
number z, will be denoted by the same 
letter z. 

By using the vector interpretation 
of the complex numbers we can demon-
strate the addition and the subtraction of 
complex numbers. Since 1.2 we get that 
the number z z1 2+  corresponds to the 
vector obtained by adding the vectors z1  
and z2  (figure 2). The vector z z1 2−  is 
constructed as the sum of the vectors z1  
and −z2  (figure 3). 

The already stated and also using 
figure 3 implies that the distance between 
the points z1  and z2  is equal to the length 
of the vector z z1 2− , i.e. it is equal to 
| |z z1 2− . Clearly, the absolute value | z | 
is equal to the length of the correspond-
ing vector of the point z If we consider 
the triangles whose vertices are 

O z z z, ,1 1 2+  and O z, ,1  z z1 2− ,
then the geometric sence of the inequalities (5) and (6) from paragraph 1 is obvious. 

4.2. Dividing a line segment in a given ratio. Let A and B be given points 
with affixes z1  and, z2  respectively, and C be a point on the line segment AB, such 
that C divides AB in a given ratio λ µ: ≠ −1 , i.e. µ λAC CB

   

= . Since AC z z
 

= − 1  and  

CB z z
 

= −2 , we get that µ λ( ) ( )z z z z− = −1 2 . Hence, the affix of C is z z z= +
+

λ µ
λ µ
2 1 . If 

λ µ: =1  then z z z= +2 1
2

 is an affix of C, the midpoint of the line segment AB. 

Example А. Let a i= +1  and b i= +3 5  be the affixes of the endpoints of the line 
segment AB. Then 

c ia b i i= = = +⋅ + ⋅
+

+ + +1 1
1 1

1 3 5
2

1 3( ) ( ) . 

is the affix of C, the midpoint of the line segment AB. ■

Figure 2

Figure 3
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Example B. Let ABCD be a quadrilateral and M, N, P, Q, K, L be the midpoints 
of the line segments AB, BC, CD, DA, BD, CA, respectively. Show that the line segments 
MN, NQ, KL concur at such a point T that bisects each of them. 

Solution. Let the affixes of the points A, B, C, D, M¸ N, P, Q, K, L are denoted 
by lowcase letters a, b, c, d, m, n, p, q, k, l, respectively, then 

m n p q k la b b c c d a d b d a c= = = = = =+ + + + + +
2 2 2 2 2 2

, , , , , .

The affixes of the midpoints  of MP, NQ, KL are 
t t ta b c d b c a d b d a c= = =+ + + + + + + + +

4 1 4 2 4
, , ,

respectively and since t t t= =1 2 , we get that MP, NQ, KL are concurrent at the point 
which bisects each of these segments. ■

4.3. Example. а) The set of points z, such that satisfy the equation | |z z R− =0 ,  
is a circle centered at z0  and radius R. Namely, | |z z− 0  is the distance between the 
points A and B with affixes z and z0 , respectively. 

b) The equation 
| | | |z z z z a− − − =1 2 2 ,

where 
a z z< −1

2 1 2| | ,

is a hyperbola, whose foci are at points whose affixes are  z1  and z2   and a real semi-axis 
whose length is a, (why?). 

c) The set of points z, such that satisfy the equation
| | | |z z z z− = −1 2 ,

is a set of points equidistanced form  z1  and z2 . Thus, 
| | | |z z z z− = −1 2

is an equation of the bisector of the segment, whose extremities have affixes z1  and z2 .
d) The set of points z, such that satisfy the equation 

| | | |z z z z a− + − =1 2 2 ,
where a z z> −1

2 1 2| | , is an ellipse with focal points z1 , z2 , and major semi-axis a, there-
by | | | |z z z z− + −1 2  is the sum of the distances between the point M with affix z and the 
points A and B with affixes z1  and z2 , respectively. ■

4.4. Example. Determine the set of points, which corresponds to such complex 
numbers z, that satisfy the following condition

| | | |2 1 2z z≥ + .

Solution. Let z x iy= + . Thus,

1 1 1 42 2 2 2 2 2 2+ = + + = + − +z x iy x y x y( ) ( ) .
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Hence,
	 4 1 2 2 2 42 2 4 4 2 2 2 2 2 2( )x y x y x y x y x y+ ≥ + + + − − + ,
	 1 2 2 2 4 04 4 2 2 2 2 2+ + − − + − ≤x y x y x y y ,
	 ( )x y y2 2 2 21 4 0+ − − ≤ ,
	 ( )( )x y y x y y2 2 2 21 2 1 2 0+ − − + − + ≤

or
	 x y x y2 2 2 21 2 1 2 0+ − −( ) + + −( ) ≤( ) ( ) .

The last inequality is satisfied if and only if 
	 x y2 21 2 0+ − − ≥( )  and 
	 x y2 21 2 0+ + − ≤( )

or
	 x y2 21 2 0+ − − ≤( )  and 
	 x y2 21 2 0+ + − ≥( ) .

The required set of points is shown in figure 4. ■

5.	 EXTENDED COMPLEX PLANE. REIMANN INTERPRETA-
TION OF COMPLEX NUMBERS

5.1. Stereographic projection. In Euclidean space R3  with Cartesian coordi-
nates ξ, η, ζ, consider the sphere S which is centered at 0 0 1

2
, ,( )  and its radius is 1

2
: 

			   ξ η ζ ζ2 2 2 0+ + − = .					     (1)
The plane ζ = 0  coincides with the complex plane C, the real axis Im z = 0  coincides 
with the axis η = 0 , ζ = 0 , and the imaginary axis Re z = 0  coincides with the axis  
ζ = 0 , ξ = 0 . 

We draw a line through P(0,0,1), 
such that it meets the sphere S at a point 
M(ξ,η,ζ), which differs from P. The in-
tersection of the line PM and the complex 
plane is denoted by z x iy= + . The point 
M(ξ,η,ζ) is called to be the stereographic 
projection of the complex number (point) 
z onto the sphere S with pole P (figure 5). 
	 The stereographic projection de-
fines a bijection between the points in the 
complex plane C and the points on the 
sphere S, except the pole P. Therefore, 
each point of the sphere S, except the pole 

Figure 4

Figure 5
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P, may be considered as a point in the complex plane. Such the interpretation of complex 
numbers is called to be Reimann interpretation of complex numbers, and the sphere S is 
called to be Reimann sphere.

The points P(0,0,1), M(ξ,η,ζ) and z are collinear, so 
ξ η ζ
x y= = −

−
1
1

or 
		  x y z i= = =− −

+
−

ξ
ζ

η
ζ

ξ η
ζ1 1 1

, , .				    (2)

Hence, | |
( )

z 2

1

2 2

2= +
−

ξ η
ζ

. If we substitute in (1) we get | |z 2
1

= −
ζ
ζ , i.e.

 			   ζ =
+
| |

| |

z
z

2

21
. 						      (3)

If we substitute in (2) and also have on mind the fact that x yz z z z
i= =+ −

2 2
,   we get 

 			   ξ η= =+
+

−
+

z z
z

z z
i z2 1 2 12 2( | | ) ( | | )

, . 				    (4)

The formulae (3) and (4) are known to be formulae of the stereographic projection. 

5.2. Extended complex plane. In 5.1 we defined a bijection between the com-
plex plane and the Reimann sphere S without the pole P. If we add the “ideal complex 
number” z = ∞  to the set of complex numbers C, and complete the complex plane by 
adjoining the unique infinity point, denoted by ∞, then it exists a bijection between the 
Reimann sphere S and the set C∪ ∞{ } , whereby the pole P corresponds to the infinity 
point ∞.

The complex plane, together with the infinity point, is called to be an extended 
complex plane and is denoted by C C∞ = ∪ ∞{ } . Let us state that the infinity point is not 
involved in the algebraic operations with complex numbers. 

5.3. Distance in the extended complex plane. In the complex plane C the dis-
tance between the points z and z '  is defined by | ' |z z− . In C∞  we define the distance 
between the points z and z ' , d z z( , ')   as a distance between appropriate stereographic 
projections of the points z and z ' . Namely, if M(ξ,η,ζ) and M '( ', ', ')ξ η ζ  are the stere-
ographic projections of the points z ≠ ∞  and z ' ≠ ∞ , respectively, then 

 
d z z z z

z z
( , ') ( ') ( ') ( ') | '|

| | | '|
= − + − + − = −

+ +
ξ ξ η η ζ ζ2 2 2

1 12 2

and if z ' = ∞ , then
d z

z
( , )

| |
∞ =

+
1

1 2
.

5.4. Theorem. Under the stereographic projection each circle in the complex 
plane maps to a circle on the Reimann sphere,such that it does not pass through the pole, 
and conversely. 
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Proof. Let
 			   x y Ax By C A B C2 2 0+ + + + = ∈, , , R 		  (5)
be any circle in the complex plane xOy. Since (2) and (5) we get that
ζ
ζ

ξ
ζ

η
ζ1 1 1

0− − −+ + + =A B C , i.e.

			   A B C Cξ η ζ+ + − + =( )1 0 .				    (6)
The equation (6) is the equation of a plane which does not pass through the pole P(0,0,1). 
So, the coordinates ξ, η, ζ satisfy the equalities (1) and (6). Thus, the points (ξ,η,ζ) lie on 
the sphere (1) and the plane (6), i.e. they create a circle on the Reimann sphere such that 
it does not pass through the pole. 

Conversely, each circle on the Reimann sphere (1) such that it does not pass 
through the pole by the stereographic projection is mapped to a circle in the complex 
plane,thereby, by using arbitrary numbers A, B, C the equation of the intersecting plane 
may be expressed as (6). ■

5.5. Theorem. Each line in the complex plane under the stereographic projection 
maps to a circle through the pole and vice versa. 

Proof. Let
 			   Ax By C A B C+ + = ∈0, , , R 				    (7)
be any line in the complex plane xOy. Since the identities (2) and (7), we get that

A B Cξ
ζ

η
ζ1 1

0− −+ + =  
i.e. 
 			   A B C Cξ η ζ+ + − + = 0 .					    (8)
The equation (8) is the equation of a plane such that it passes through the pole P(0,0,1). 
Therefore, the coordinates ξ, η, ζ satisfy the equalities (1) and (8). So, the points (ξ,η,ζ) 
lie on the sphere (1) and in the plane (8), i.e. they create a circle on the Reimann sphere 
which passes through the pole. 

Conversely, each circle on the Reimann sphere (1) which passes through the 
pole by the stereographic projection is mapped to a circle in the complex plane, thereby 
the arbitrariness of numbers A, B, C allows the equation of the intersecting plane to be 
represented as (8). ■

5.6. Let l and q be two distinct curves on the Reimann sphere (1) such that they 
meet at a point M. Through such a point it can be drawn tangents to the curves l and q. 
Let α be the angle formed by the tangents. Let l q', '  and M '  be the images of l, q and 
M, respectively, under the stereograph projectionon the complex plane. It is easy to prove 
that the angle create by the tangents to the curves l '  and q '  through M '  is congruent 
to α. The proof of this statement will not be elaborated, thereby, it is beyond our main 
considerations.
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6.	 TRIGONOMETRIC ENTRY 
OF A COMPLEX NUMBER 

6.1. Argument of a complex number. The angle ϕ created by the positive part 
of the real axis and the position vector of the point z, is called to be the argument of 

the complex number z, and is denoted as 
ϕ = Arg z , (figure 6). The argument is either 
positive or negative, depending on the orien-
tation of the angle ϕ. The argument is called 
to be positive if it is oriented from the posi-
tive direction of the real axis to the positive 
direction of the imaginary axis or negative if 
the one is oriented from the positive direction 
of the real axis to the negative direction of the 
imaginary axis.

For z = 0  the argument is not specified. So, in our further discussion about argu-
ments, we assume that z ≠ 0 . 

The position of the point z in the complex plane is uniquely determined by its 
Cartesian coordinates x, y and by its polar coordinates r z= | |  and ϕ = Arg z . The rela-
tion between these two types of coordinates is given by the following formulae: 
 		  x r= cosϕ , y r= sinϕ .						     (1) 

For a given point z, its absolute value is uniquely determined, while the argument 
is determined by accuracy of up to a summand 2kπ, k = ± ±0 1 2, , ,... . The value of the ar-
gument, such that it satisfies the condition 0 2< ≤Arg z π  is called to be the main value 
of the argument and is denoted by arg z. Most commonly, in our further considerations 
we will use the main value of the argument. 

6.2. Trigonometric entry of a complex number. Using formulae (1), which 
refer to the Cartesian and polar coordinates of z, we get the so called trigonometric rep-
resentation of a complex number 
 		  z z z i z= +( )| | cos(arg ) sin(arg ) .					    (2)
By the notation (2) for the product of two complex numbers 

z z i1 1 1 1= +| | (cos sin )ϕ ϕ  and z z i2 2 2 2= +| | (cos sin )ϕ ϕ
we get 
 		  z z z z i1 2 1 2 1 2 1 2= ⋅ + + +( )| | | | cos( ) sin( )ϕ ϕ ϕ ϕ . 			  (3)
Further, by 1.10 and the definition for the argument of a complex numbers it is true that 

z z z z z z i z z1 2 1 2 1 2 1 2= ( ) + ( )( )| | cos arg( ) sin arg( ) .
The above statement implies that
 		  arg( ) arg argz z z z k1 2 1 2 2= + + π , k = ± ±0 1 2, , ,...  		  (4)

Figure 6
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Analogously, by the equality z z z1 2 3= , for z2 0≠ , using 3.11 we get

arg arg arg
z
z z z k1

2
1 2 2= − + π , k = ± ±0 1 2, , ,...  

6.3. De Moivre’s formula. Using mathematical induction, the formulaes (3) and 
(4) could be easily generalized for a finite number of multiples z z zn1 2, ,...., . Namely, 
 	 arg( ... ) arg arg ... argz z z z z z kn n1 2 1 2 2= + + + + π , k = ± ±0 1 2, , ,...  	 (5)
Particularly, for z z zn1 2= = =...  we get 

| | | |z zn n=  and arg argz n z kn = + 2 π , k = ± ±0 1 2, , ,...  
i.e.
 		  z z n z i n zn n= +( )| | cos( arg ) sin( arg ) . 				    (6)
The formula (6) is known to be the De Moivre’s formula. 

6.4. Example. Compute the difference 

− +( ) − +( )1 3 1 3
9 9

i i .

Solution. Since,
− + =1 3 2i  and arg − +( ) = +1 3 22

3
i kπ π , k = ± ±0 1 2, , ,...

we get 
− + = +( )1 3 2 2

3
2
3

i icos sinπ π .
Using De Moivre’s formula, we obtain: 

− +( ) = ⋅ + ⋅( ) =1 3 2 9 9 2
9 9 2

3
2
3

9i icos sinπ π .
Analogously, 

1 3 2 2
9 9 9

3
9
3

9+( ) = +( ) = −i icos sinπ π .
Hence, 

− +( ) − +( ) = − −( ) =1 3 1 3 2 2 2
9 9 9 9 10i i . ■

6.5. Example. а) Find the exact value of the expression:

1 3 1
3 10−( ) +i i( ) .

b) Let
f n i n i n

( ) = ( ) + ( )+ −1
2

1
2

.

Determine the sum f f( ) ( )1990 1994+ . 

Solution. а) We have that:
1 3 2

3 3
− = −( )i icos sinπ π  and 1 2

4 4
+ = +( )i icos sinπ π .

Therefore, 

1 3 1 2 2

2 1 0

3 10 3 5 5
2

5
2

8

−( ) + = − ⋅ +( )
= − − ⋅

i i i i

i

( ) (cos sin ) cos sin

(

π π π π

))( ) .0 256+ = −i i  
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b) Since, 
1

2 4 4
+ = +i icos sinπ π  and 1

2 4 4
− = −i icos sinπ π

we express the function f in terms of cos as follows
f n n( ) cos= 2

4
π .

Hence, 
f f( ) ( ) cos cos cos cos1990 1994 2 2 2 21990

4
1994

4
995

2
997

2
+ = + = + =π π π π 00 . ■

6.6. Example. If z z+ =1 1 , then find the exact value of 
z z

z
158 152 2

122+ + .

Solution. The given condition z z+ =1 1  implies z z2 1 0− + = , i.e. 

z i i= ± = ±( ) + ±( )1
2

3
2 3 3

cos sinπ π .
Thus,
z z i i

z
158 152 2 158

3
158

3
152

3
158

3122 2+ + = ± + ± − −cos sin cos sin coπ π π π ss sin

cos sin cos sin cos

122
3

122
3

2
3

2
3

2
3

2
3

2
3

2

π π

π π π π π

±( )
= ± + ± − −

i

i i ±±( )isin 2
3
π

   = = −4 22
3

cos π .■ 

7.	 ROOTS OF A COMPLEX NUMBER 

7.1. Definition. Let z ≠ 0  be given complex number and n be a positive integer. 
The n-th root of z is defined as such a complex number w that 
 			   w zn = .							      (1)
We denote w zn= . 

Since applying the De Moivre formula
z z n z i n zn n= +( )| | cos( arg ) sin( arg )  

and the trigonometric notations 
z z z i z= +( )| | cos(arg ) sin(arg )  and w w w i w= +( )| | cos(arg ) sin(arg )

we get 
| | cos (arg ) sin (arg ) | | cos(arg ) sin(arg )w n w i n w z z i zn +( ) = +( )  

i.e. 
 		  | | | |w zn=  and n w z k(arg ) arg ,= + 2 π  k = ± ±0 1 2, , ,... 		   (2)
Therefore, 

| | | |w zn= , arg argw z k
n= +2 π , k = ± ±0 1 2, , ,... ,

i.e.
		   w z z in n z k

n
z k
n= = +( )+ +| | cos sinarg arg2 2π π ,   			   (3) 
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By letting k n= −0 1 2 1, , ,...,  in (3), we obtain n distinct complex numbers w w wn0 1 1, ,..., −  
as w for k n= , and also thereby the periodicity of the trigonometric functions we obtain  
w0 , etc. Thus, the n-th root of the complex number z has exactly n distinct values, ob-
tained by the formula (3) for k n= −0 1 2 1, , ,..., . 

7.2. Example. Find 27 53 i . 

Solution. Since, 
 i i i i i5 4

2 2
= ⋅ = = +cos sinπ π

we get

27 27 27 3

3

53 3
2 2

3
2

3

2

3
2 2i i i i

k k
= = +( ) = +( )
=

+ +
cos sin cos sin

co

π π π ππ π

ss sin ,( ) ( )4 1
6

4 1
6

k ki+ ++( )π π
 

for k = 0 1 2, , .  ■

7.3. Example. Prove that all complex numbers a and b satisfy
 2 2 2| | | | ,a b a b ab a b ab+( ) = + − + + +

where ab  denotes one of the two roots of ab.

Solution. Since, 

2 2
2 2

| | | |a b a b+( ) = +( )  
we obtain

2

2 2

2 2

2 2

| | | |

.

a b a b a b

a b a b

a b ab a b ab

+( ) = + + − =

= +( ) + −( )
= + + + + −  

So, the required equality is proved. ■

7.4. Example. Prove that all complex numbers a and b satisfy 

| | | |a b a b a a b a a b+ + − = + − + − −2 2 2 2 ,

where a b2 2−  denotes one of the two roots of a b2 2− . 

Solution. By example 3.16, we get 

	

a a b a a b

a a b a a b a a b a a b

a a

+ − + − −( ) =

= + − + − − + + − ⋅ − −

= +

2 2 2 2
2

2 2
2

2 2
2

2 2 2 22

22 2
2

2 2
2

2 2 2

2 2 2
2

2 2 2

2

2 2 2

− + − − + − −

= + −




 + = +( ) +

b a a b a a b

a a b b a b

( )

22

2

2 2

2 2 2

a b

a b a b a b a b a b a b

−

= − + + + − ⋅ + = − + +| | | | | | | | (| | | |)
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a a b a a b

a a b a a b a a b a a b

a a

+ − + − −( ) =

= + − + − − + + − ⋅ − −

= +

2 2 2 2
2

2 2
2

2 2
2

2 2 2 22

22 2
2

2 2
2

2 2 2

2 2 2
2

2 2 2

2

2 2 2

− + − − + − −

= + −




 + = +( ) +

b a a b a a b

a a b b a b

( )

22

2

2 2

2 2 2

a b

a b a b a b a b a b a b

−

= − + + + − ⋅ + = − + +| | | | | | | | (| | | |)

i.e.

| | | |a b a b a a b a a b+ + − = + − + − −2 2 2 2 . ■

7.5. Example. Solve the equation 
( ) ( )x i x in n+ + − = 0 , n n∈ >N, 1.

Solution. Since, x i≠ , the given equation is equivalent to 
x i
x i

n+
−( ) = −1 .

Therefore, 
x i
x i

n n k
n

k
ni i k n+

−
+ += − = + = + = −1 0 1 12 2cos sin cos sin , , ,...,π π π π π π .

By using the last equation we get that 

 
x i
x i

k
n

k
ni+

−
+ +− = + −1 12 2cos sin ,π π π π

 
2 2

2
2

2
1 22i

x i
k

n
k

n i
k

ni−
+ + += −( )sin cos sin ,π π π π π π

 
x i k

n
k

n
k

ni
− = + + ++( )

1
2

2
2

2
2sin cos sin

,π π π π π π

 
x i

k
n

k
n

k
n

i
− =

+ +

+

−cos sin

sin
,

π π π π

π π

2
2

2

2
2

x i ik
n− = −+ctg π π2

2
.

that is,
x k

n= +ctg π π2
2

, k n= −0 1 1, ,..., . ■

7.6. The n-th roots of the unity. In 7.1 we discussed roots of complex numbers. 
If z =1,  then arg z = 0  and by using (3) the n different roots of the unity are expessed 
as 
 			   u i k nk

k
n

k
n= + = −cos sin , , , ,..., .2 2 0 1 2 1π π 		  (4)

If 

 u u in n= = +1
2 2cos sin ,π π

then, since the DeMoivre’s formula 
u u k nk

k= = −, , ,..., .0 1 1  

Let us consider that in geometric terms, for n ≥ 3,  the points in the of complex 
plane with affixes the n-th roots of unity, form a regular n-gon inscribed in the unit circle 
and one of the polygon’s vertices coincides to the point with affix z =1.



27

7.8. Example. Let S up k
p

k

n
=

=

−
∑

0

1
 be the sum of the p-th exponents of the n-th 

roots of the unity and n∈N . Prove that 

S
n n p

n pp =
/





, |

, | .

for  

for0  
Solution. Since, 

u u k nk
k= = −, , ,...,0 1 1 

and
u in n= +cos sin ,2 2π π  

we get 
 			   S u u up

p p n p= + + + + −1 2 1... .( ) 			   (5)

If n p|  and p
n m= ,  then 

u u up mn n m m= = = =( ) 1 1  
and moreover, thereby (5) we deduce that S np = .  

Let n p/| . Thus
u unp n p p= = =( ) 1 1 holds.

Since n p/| , it follows that u p − ≠1 0.  Therefore,

S u u up
p p n p u

u

np

p= + + + + = =− −
−

1 02 1 1
1

... .( )  ■

7.9. Example. Prove the following identities 
а) cos cos ... cos ( )2 4 2 1 1π π π

n n
n
n+ + + = −− , for n = 2 3, ,...  and

b) sin sin ... sin ( )2 4 2 1 0π π π
n n

n
n+ + + =−  for n = 2 3, ,...

Solution. The equation zn − =1 0  has n roots. The before stated roots are the 
n-th roots of the unity 

u u k nk
k= = −, , ,...,0 1 1 and u in n= +cos sin2 2π π .

Example 7.8 implies that their sum is equal to zero. Hence, 

uk
k

n

=

−
∑ =

0

1
0 ,

i.e. 

cos cos ... cos sin sin ... sin( ) ( )2 4 2 1 2 4 2 1π π π π π
n n

n
n n n

ni+ + + + + + +− − ππ
n( ) = −1 .

The latter is equivalent to a) and b). So, the required identities are proven. ■

7.10. Definition. The complex number u is called to be primitive n-th root of the 
unity, if un =1  and there is no any lower exponent of u, which is equal to 1. 
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7.11. Example. Let 
u u k nk

k= = −, , ,...,0 1 1 
be the n-th roots of the unity. Prove that uk  is the primitive n-th root of unity if and only 
if n and k are co-prime numbers. 

Solution. Let n and k be co-prime numbers and let there exists r n<  such that 
satisfies uk

r =1.  According to the De Moivre’s formula we get 

 1 2 2= = +u ik
r kr

n
kr
ncos sin .π π

According to the last equality, we get

 cos , sin .2 21 0kr
n

kr
n

π π= =

Hence, kr
n ∈Z  and since, n and k are co-prime numbers, we get that n r| ,  which is con-

tradiction, thereby r n< . Thus, uk  is the primitive n-the root of the unity. 
Conversely, let uk  be the primitive n-th root of the unity. Let assump the greatest 

common divisor of n and k is d, d > 1. Let k k d= 1 ,  n n d= 1 . Then 

u u u u u uk
n k n n k k dn k n n k k1 1 1 1 1 1 1 1

1 1 1 1 1 1 1= = = = = = =( ) ( ) .  
The latter contradicts to the fact that uk  is a primitive n-the root of unity, thereby  
n n1 < . ■

8.	 EXPONENTIAL ENTRY 
OF A COMPLEX NUMBER

8.1. In our previous discussion we have presented the algebraic and trigonomet-
ric representations of complex numbers. In this section we will focus on the so called 
exponential entry of complex numbers. 

Theorem. Let the function f : R C→  be defined by 
f i( ) cos sinα α α= + , for each α∈R .

Then, 
a)	 f ( )0 1=   and f ( )α ≠ 0 , for each α∈R .
b)	 f f f( ) ( ) ( )α β α β+ = , for all α β, ∈R .
c)	 f f( )

( )
− =α α

1 , for each α∈R .

Proof. а) Clearly, f i( ) cos sin0 0 0 1= + = . Let there exist α∈R , such that 
f ( )α = 0 . Thus, it exists α∈R , so that cos sinα α+ =i 0 , i.e. cos sinα α= = 0 , which 

contradicts to the basic trigonometric identity 
cos sin2 2 1α α+ = .
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b) For all α β, ∈R
f i

i
( ) cos( ) sin( )

cos cos sin sin (sin cos cos

α β α β α β
α β α β α β

+ = + + +
= − + + αα β

α α β β α β
sin )

(cos sin )(cos sin ) ( ) ( ).= + + =i i f f  
c) For each α∈R   

  

f i i
i i

( ) cos( ) sin( ) cos sin
(cos sin )(cos sin )

− = − + − = −

= − +

α α α α α
α α α α

ccos sin cos sin ( )α α α α α+ += =i i f
1 1 . ■

8.2. In the previous theorem we proved that the function f satisfies the ordi-
nary properties of the exponential function, so it is natural to introduce the notation  
f ei( )α α= , for each α∈R . Therefore, the properties b) and c) of the theorem could be 

stated as the following: 
  				    e e ei i iα β α β= +( ) 				    (1)

			   e i
ei

− =α
α

1 .					     (2)

By using the identities (1) and (2) and also the principle of mathematical induction, we 
obtain that 
 			   ( ) ,e ei n inα α=  for n = ± ±0 1 2, , ,... . 			   (3)
	

8.3. Euler’s formulae. The above stated, implies that each complex number z, 
such that | |z =1  and ϕ = arg z  may be denoted as 

			   z i ei= + =cos sinϕ ϕ ϕ  . 			   (4)

Thus, e e e i e ii i i i
2 1 1 2

3
2π π π π

= = − = = −, , , . If we change ϕ by −ϕ we obtain that 

			   cos sinϕ ϕ ϕ− = −i e i . 				    (5)
By using the dentities (4) and (5) we obtain the well known Euler’s formulae: 

 			   cos , sinϕ ϕ
ϕ ϕ ϕ ϕ

= =+ −− −e e e ei i i i

2 2
. 			   (6)

These formulae allow the trigonometric functions cos and sin to be expessed in terms of 
the exponential function. 
	 At the present moment we shall state that in Theorem 1 we did not give the proof 
of the formula (4)., we only gave its “acceptable” explanation.

8.4. The formula (4) and the trigonometric form of complex numbers imply that 
each complex number z ≠ 0  may be written as 

 			   z rei= ϕ , 					     (7)
where r z= | |  and ϕ = arg z . The notation (7) of a complex number z ≠ 0  is called to be 
exponential representation of z.
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Using formulae (1) and (2), we obtain the exponential forms of the formulae for 
multiplication and division of complex numbers, i.e.

		  z z r e r e r r ei i i
1 2 1 2 1 2

1 2 1 2= = +ϕ ϕ ϕ ϕ( ) ,			   (8)

 			   z
z

r e
r e

r
r

ii

i e1

2

1
1

2
2

1

2

1 2= = −ϕ

ϕ
ϕ ϕ( ) .				    (9)

Let z rei= ϕ . Since (4) and (5) the expression for z_ is the following z re i= − ϕ . 
Hence, if ϕ = arg z , then − =ϕ arg z . 

8.5. Example. Find the sums: 
a)	 A x x x x n= + + + + + + +cos cos( ) cos( ) ... cos( )α α α2 , and
b)	 B x x x x n= + + + + + + +sin sin( ) sin( ) ... sin( )α α α2 . 

Solution. Let S A iB= + . Thus 

 

S e e e e

e e e e

ix i x i x i x n

ix i i in

= + + + +

= + + + +

+ + +( ) ( ) ( )...

...

α α α

α α α

2

21(( ) = + −( )
−

e e
e

ix i n

i

( )
.

1 1

1

α

α

Since, A S= Re  and B S= Im . by applying the last formula we express A and B. If the 

numerator and the denominator be divided by eiα
2 , then thereby the Euler’s formulae we 

get that the denominator is 2
2

isin α , and the numerator is 

cos cos sin sin

sin

x n x i x n x+ +( )( ) − −( ) + + +( )( ) − −( )( ) =
=

1
2 2

1
2 2

2

α αα α

(( ) sin cos .n n nx i x+ − +( ) + +( )( )1
2 2 2
α α α

 
Hence, 

A
n nx

=
+ +( )sin cos

sin

( )1
2 2

2

α α

α  and B
n nx

=
+ +( )sin sin

sin

( )1
2 2

2

α α

α . ■

8.6. Remark. If x = 0  in example 8.5 we get 

1 2
1
2 2

2

+ + + + =
+ +

cos cos ... cos ,
sin cos

sin

( )

α α α
α α

αn
n n

 and

sin sin ... sin
sin sin

sin

( )

α α α
α α

α+ + + =
+ +

2
1
2 2

2

n
n n

. ■

8.7. Let E be the point with affix 1. Consider the points A and A '  with affixes 
a ei= ρ θ  and a ei' ' '= ρ θ ,

respectively (figure 7). The product b aa= '  corresponds to a point B, obtained as the 
third vertex of the triangle OA B' , if this triangle is constructed as a similar one to the 
triangle OEA. 



31

Indeed, the similarity of these triangles implies ∠ =∠EOA A OB' , i.e. arg 'b = +θ θ
. For the same reason ρ ρ: | |: ''1= b  holds, i.e. b = ρρ '  holds. Therefore, b aa= ' . 

The point Z whose affix is the 
complex number z a

a= '  is obtained by 
construction the triangle OZA '  similar 
to the triangle ОЕА. 

Indeed, the similarity of these 
triangles implies az a= ' . Therefore, 
z a

a= '  (figure 8). 

By using the relation a a an n= −1  
and consecutively applying the proce-
dures for constructing the affixes of the 
product and the quotient of two complex 
numbers, we obtain the points 

..., , , , , , , ,...A A A E A A A− − −3 2 1 1 2 3  
whose affixes are the complex numbers 

..., , , , , , , ,...a a a a a a a− − −3 2 1 0 1 2 3 ,
respectively.

Let be r >1  and 0 < <α π . The 
points A A2 3, ,...   (figure 9), with affixes 
a a2 3, ,...  are obtained by a consecutive 
construction of the similar triangles 

OEA OA A OA A1 1 2 2 3, , ,... .
Constructing the similar triangles 

OEA OA E OA A OA A1 1 2 1 3 2, , , ,...− − − − −  

Figure 7 Figure 8

Figure 9
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by applying the same procedure, but in the opposite direction, we get the points 

A A A− − −1 2 3, , ,...  
with affixes 

a a a− − −1 2 3, , ,... . 
For ρ θ α= =r nn ,  and after eliminating n in the above equations we obtain that  

ρ
θ
α= r . Thus, each powers an  lie on the curve, which is presented in polar form by the 

previous relation. This curve is known to be the logarithmic (Bernoulli) spiral. Clearly, 
in the previous considerations the absolute values of the powers increase or decrease like 
a geometric progression, while the arguments – like an arithmetic progression. 

Obviously, for r <1  and 0 < <α π , or r >1  and − < <π α 0 , the logarithmic 
spiral is in opposite direction of the spiral given in figure 9 and it wraps around the origin 
when θ decreases. Likewise if  r <1  and − < <π α 0 , then the logarithmic spiral has the 
same appearance as shown in figure 9. 

9.	 THE SET Cn

9.1. Definition. The notation a = ( , ,..., )a a an1 2 , for ai ∈C , and i n=1 2, ,...,  is 
called to be an ordered n-tuple of complex numbers.

Thereby, we accept the notation 
C Cn

n ia a a a i n= ∈ ={( , ,..., ) | , , ,..., }1 2 1 2 .

9.2. Definition. Let a = ( , ,..., )a a an1 2  and b = ( , ,..., )b b bn1 2  be two ordered n-
tuples of complex numbers, i.e. a b C, ∈ n . The sum of a and b is the ordered n-tuple 
c = + + +( , ,..., )a b a b a bn n1 1 2 2 . 

Thereby, we accept the notation c a b= + . 

9.3. Theorem. а) a b b a+ = + , for all a b C, ∈ n . 
b) ( ) ( )a b c a b c+ + = + + , for all a b c C, , ∈ n . 
c) There exists o C∈ n  such that a o a+ = , for each a C∈ n . 
d) For each a C∈ n  there exists b C∈ n  sothat a b o+ = . 

Proof. а) Let a = ( , ,..., )a a an1 2  and b = ( , ,..., )b b bn1 2 . By applying the com-
mutative and the associative lows of the addition of complex numbers, the definition 9.2 
implies

a b

b a

+ = + + +
= + + +
= +

( , ,..., )

( , ,..., )

.

a b a b a b
b a b a b a

n n

n n

1 1 2 2

1 1 2 2
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b) The proof is analogical to the previous one. We should use the associative law 
of addition of complex numbers. 

c) For an ordered n-tuple o = ( , ,..., )0 0 0  and for each a C∈ n   
a o+ = +

= + + +
=

( , ,..., ) ( , ,..., )

( , ,..., )

( ,

a a a
a a a
a a

n

n

1 2

1 2

1 2

0 0 0

0 0 0

,,..., ) .an = a
holds true.

d) Let a = ( , ,..., )a a an1 2  be a given ordered n-tuple. By letting 
b = − − −( , ,..., )a a an1 2 , we get

a b
o

+ = − − −
= =

( , ,..., )

( , ,..., ) .

a a a a a an n1 1 2 2

0 0 0

Hence, for each a C∈ n  ther exists b C∈ n  so that a b o+ = . Moreover, the ordered n-
tuple b is called to be an opposite n-tuple of a and is denoted by b a= − . ■

9.4. Definition. Let  be an ordered n-tuple and λ∈C . The product of the ordered 
n-tuple a and the complex number λ is the ordered n-tuple c = ( , ,..., )λ λ λa a an1 2 . 

Therefore we accept the notation c a= λ . 

9.5. Theorem. а) λ λ λ( )a b a b+ = + , for all a b C, ∈ n  and λ∈C . 
b) ( )λ µ λ µ+ = +a a a , for all λ µ, ∈C  and a C∈ n . 
c) ( ) ( )λµ λ µa a= , for all λ µ, ∈C  and a C∈ n . 
d) 1⋅ =a a  for each a C∈ n . 

Proof. а) Let a = ( , ,..., )a a an1 2 , b = ( , ,..., )b b bn1 2  and λ∈C . Since the defini-
tion 9.4 and by applying the distributive laws of addition and the multiplication to the 
coordinates it follows that 

 

λ λ
λ

( ) ( , ,..., ) ( , ,..., )

( , ,...,

a b+ = +( )
= + +

a a a b b b
a b a b

n n1 2 1 2

1 1 2 2 aa b
a b a b a b

a b a b

n n

n n

+

= + + +( )
= + +

)

( ), ( ),..., ( )

( , ,

λ λ λ
λ λ λ λ

1 1 2 2

1 1 2 2 ...., )

( , ,..., ) ( , ,..., )

( , ,

λ λ
λ λ λ λ λ λ
λ

a b
a a a b b b
a a

n n

n n

+
= +
=

1 2 1 2

1 2 ...., ) ( , ,..., ) .a b b bn n+ = +λ λ λ1 2 a b

The proofs for the other statements are analogous. While proving them it is nec-
essary to apply the distributive and the associative lows and also the fact that 1⋅ =z z , for 
each z∈C . ■



34

9.6. Definition. Scalar (inner) product of an ordered n-tuples a = ( , ,..., )a a an1 2  
and b = ( , ,..., )b b bn1 2  is the complex number 

f a b a b a bn n= + + +1 1 2 2 ... . 
Therefore we accept the notation f = = ⋅( , )a b a b . 
9.7. Theorem. а) ( , )a a R∈ +  for each a C∈ n . 
b) ( , ) ( , )a b b a= , for all a b C, ∈ n . 
c) ( , ) ( , ) ( , )a b c a c b c+ = +  for all a b c C, , ∈ n . 
d) ( , ) ( , ) ( , )a b c a b a c+ = +  for all a b c C, , ∈ n . 
e) ( , ) ( , )λ λa b a b=  and ( , ) ( , )a b a bλ λ=  for all a b C, ∈ n  and λ∈C . 

Proof. а) Let a = ( , ,..., )a a an1 2 . Then

 ( , ) ... | | | | ... | |a a R= + + + = + + + ∈ +a a a a a a a a an n n1 1 2 2 1
2

2
2 2 .

b) By using the properties of conjugate complex numbers we obtain 

( , ) ...

... ( , )

a b

b a

= + + +

= + + + =

a b a b a b

a b a b a b

n n

n n

1 1 2 2

1 1 2 2 . 

The proofs of the other statements are direct implications of the scalar product 
definition, the distributive and the associative laws of the operations in the set of comlex 
numbers and the statement b). ■

9.8. Remark. The sum of ordered n-tuples and also the product of an ordered n-
tuple and real numbers are ordered n-tuples. On the other hand the scalar product of two 
ordered n-tupes is a complex number. 

9.9. We define the mapping T: Cn  → Cn  by 
T a a a ana = ( , ,..., , )2 3 1 , for each a = ( , ,..., )a a an1 2 .

By induction we determine T TTm ma a= −1 , for m ≥ 2 . For example, 
T T a a a a a a a a an n

2
2 3 1 3 4 1 2a = =( , ,..., , ) ( , ,..., , , ) .

We define a mapping T1  from Cn  to Cn , such that each ordered n-tu-
ple a = ( , ,..., )a a an1 2  maps to an ordered n-tuple T a a an n1 1 1a = −( , ,..., ) . Obviously, 
T T TT1 1a a a= = , for each a C∈ n , i.e. the mappings T and  T1  are inverse to each other. 
Therefore, T T1

1= −  and by induction we determine 
T T Tm m− − − −=a a1 1( ) , for m ≥ 2 .

9.10. Theorem. а) T T T( )a b a b+ = +  for all a b C, ∈ n . 
b) T T( )λ λa a=  for each  and each λ∈C . 
c) If a = ( , ,..., )α α α , α∈C , then Ta a= . 
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d) T Tn na a a= =− , for each a C∈ n , (or more generally T Tnk nka a a= =−  for 
each a C∈ n  and each k∈N ). 

e) ( , ) ( , )T T T Tm s m k s ka b a b= + +  for all a b C, ∈ n  and all m k s, , ∈N . 

Proof а) Let a = ( , ,..., )a a an1 2  and b = ( , ,..., )b b bn1 2  be arbitrary elements of 
Cn . Then, 

 

T T a a a b b b
T a b a b

n n( ) ( , ,..., ) ( , ,..., )

( , ,...,

a b+ = +( )
= + +

1 2 1 2

1 1 2 2 aa b
a b a b a b a b
a a a a b

n n

n n

n

+
= + + + +
= +

)

( , ,..., , )

( , ,..., , ) (
2 2 3 3 1 1

2 3 1 22 3 1, ,..., , )

.

b b b
T T

n
= +a b

The other statements can by proved analogously, by applying the definition of the map-
ping T and the properties of the arithmetic operations in Cn . ■

9.11. Corollary. For each a C∈ n  
( , ) ( , ) ...T T Ta a a a= =2  holds.

Proof. The proof is directly implied by Theorem 9.10. e). ■ 
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CHAPTER II
TRANSFORMATION IN EUCLEDIAN PLANE 

In this chapter we will firstly discuss few elementary transformations in the complex 
plane.Special attention will be paid to the similarities, their group propertiesand classification. 
Furthermore, the inversion and the Möbius transformation, treated as the most important 
elementary transformation of the complex plane, will be elaborated in separate paragraphs.

1.	 LINE EQUATION. PARALLEL 
AND PERPEDNICULAR LINES 

1.1. Let the line (p) do not pass through the origin and let the point A, with affix 
a, be symmetric to the origin O with respect to (p). Then, a point B, with affix z, is on the 
line (p) if and only if OB AB= , i.e. | | | |z z a= − , that is 

zz z a z a= − −( )( ) . 
The last equality may be transformed and rewritten as the following 

	 az az aa+ = . 				    (1)
If (p) passes through the origin and the points A and A ' , with affixes a and a ' , 

respectively, are symmetric to each other with respect to the origin O and to the line (p), 
then any arbitrary point B with affix z, such that B lies on (p) satisfies the following rela-
tion AB A B= ' , i.e. | | | |z a z a+ = − , that is 

( )( ) ( )( )z a z a z a z a+ + = − − .
The last equality may be transformed and rewritten as the following 

	 az az+ = 0 . 					     (2)
If a rei= ϕ , then a re i= − ϕ . Hence, if we divide the equalities (1) and (2) by a  

we obtain the following equations 
 	 z z a= +η 					     (3)

and
	 z z= η ,					     (4)

where η ϕ= − = −a
a

ie2 . The number η is called to be complex gradient of the line (p), and 
the point A is called to be mirror point of the line (p). Obviously, each line (p), which 
does not pass through the origin, is determined by the mirror point A, with affix a rei= ϕ  
and the complex gradient η ϕ= −e i2 . Each line (p), which passes through the origin, is 
uniquely determined by its complex gradient. It is easy to prove that in both cases, the 
angle between the line (p) and the positive part of the real axis is α ϕ π= −

2
. 
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The above stated implies the validity of the following theorem. 

Theorem. If A, with affix a, is a symmetric point to the origin with respect to a 
given line (p), such that it does not pass through the origin and if ϕ is the oriented (directed) 
angle between the real axis and the line through the origin and perpendicular to (p), then 
the equation of (p) is given by (3), where η ϕ= −e i2 . If (p) passes through the origin, then 
its equation is given by (4). ■ 

1.2. Theorem. The equation of a line (p), which passes through two distinct 
points A and B with affixes z0  and z1 , respectively, is 

	 z z z zz z
z z

− = −−
−0 0

1 0

1 0
( ) 				    (5)

and its complex gradient is 

	 η = −
−

z z
z z
1 0

1 0
.					     (6)

Proof. Let z0  and z1  be the affixes of A and B, respectively. By substituting 
these affixes into the equation (3) we get that z z a0 0= +η  and z z a1 1= +η . Further, by 
subtracting the last two equalities we obtain the complex gradient of the line as following 

η = −
−

z z
z z
1 0

1 0
, i.e. the equality (6) holds true. If the so obtained expression for complex 

gradient η is substitute z z a0 0= +η  we obtain the following :
a z zz z

z z
= − −

−0 0
1 0

1 0
,

Moreover, if the above determined values for η and a, we substitute into the equation (3) 
we get the equation (5). ■

1.3. Corollary. The points z0 , z1  and z2  are collinear if and only if 

	 z z
z z

z z
z z

2 0

1 0

2 0

1 0

−
−

−
−

= .					     (7)

Proof. According to Theorem 1.2, the equation of a line (p), such that it passes 
through z0  and z1 , is given by (5). The points z0 , z1  and z2  are collinear if and only if 
z2  satisfies the equality (5), that is if and only if the equality which is equivalent to (7).

z z z zz z
z z2 0 2 0
1 0

1 0
− = −−

−
( ) , 

is satisfied. ■

1.4. Corollary. The points z0 , z1  and z2  are collinear if and only if z z
z z
2 0

1 0

−
−  is a 

real number. 

Proof. The proof is directly implicated by Corollary 1.3 and the properties of the 
complex numbers.■
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1.5. Remark. Since | |η = −
−

z z
z z
1 0

1 0
, the equation (5) can be rewritten as 

	 z z z z− = −0 0η( ) , | |η =1 	���� ��			   (8)
Conversely, �����������������������    ����������������������    each equation of type (8) is a line equation. 
Indeed, thereby | |η =1 , it follows that it exists ϕ π∈[ , )0  so that η ϕ= e i2 . Thus, the 

equation of the line through z0  and z z ei
1 0= + ϕ , shall be as (8). 

1.6. Remark. According to theorem 1.1 the equation of a line which passes 
through the origin and the point z0 0≠  is the following

	 z z= η , η ϕ= =z
z

ie0

0

2 				    (9)

The line (9) passes through points whose affixes are the square roots of the complex 
gradient η. 

Indeed, by substituting one of the two values of the square root of η into (9) we 
obtain the following 

η η η η η η η= = ⋅ =
2 2

,
i.e. the points with affixes η  satisfy the equation (9). 

1.7. Theorem. The oriented angle ϕ between the lines (p) and (q) with complex 

gradients η ϕ
1

2 1= −e i  and η ϕ
2

2 2= −e i , respectively, is given by the formula e i2 1

2

ϕ η
η= . 

Proof. Let ( ')p  and ( ')q  be perpendicular to (p) and (q), respectively. Then, ac-
cording to theorem 1.1 the lines ( ')p  and ( ')q  and the positive part of the real axis create 
oriented angles ϕ1  and ϕ2 , respectively. Thus, the oriented angle of the above lines is 
ϕ ϕ ϕ= −2 1  and it is congruent to the angle of (p) and (q) (as angles with perpendicular 
rays). Thus, the statement given in the theorem is implicated by the relation

η
η

ϕ ϕ ϕϕ

ϕ
1

2

2 1

2 2
2 12 2= = =−

−
−e

e
i ii

i e e( ) . ■

1.8. The equality ϕ = 0  is equivalent to the equality η η1 2= , and ϕ π=
2

 is equiv-
alent to η η1 2= − . Hence, the following corollary holds true. 

Corollary А. а) Two lines are parallel if and only if their complex gradients are 
equal. 

b) Two lines are perpendicular if and only if their complex gradients are opposite 
numbers. ■ 
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Corollary B. а) Let the points M ii , , , ,=1 2 3 4  have affixes zi ,  i =1 2 3 4, , , . The 

lines M M1 2  and M M3 4  are perpendicular to each other if and only if z z
z z i1 2

3 4

−
− ∈ R*,

where R R* \{ }= 0 .
b) The lines M M1 2  and M M3 4  are perpendicular to each other if and only if 

z z
z z i1 2

3 4

−
− ∈ R*,.

Proof. а) The complex gradients of the lines M M1 2  and M M3 4  are z z
z z
1 2

1 2

−
−

 and 
z z
z z
3 4

3 4

−
−

, respectively. Since Corollary А, the lines M M1 2  and M M3 4  are perpendicular 

to each other if and only if z z
z z

z z
z z

1 2

1 2

3 4

3 4

−
−

−
−

= − , i.e. if and only if z z
z z

z z
z z

1 2

3 4

1 2

3 4

−
−

−
−= − , that is if 

and only if z z
z z i1 2

3 4

−
− ∈ R*,.

b) The proof is a direct implication of the statement a). ■

Corollary C. а) The equation of a line ( ')p  through a point M with affix m and 
is such that it is parallel to ( ) :p z z a= +η  is the following z m z m− = −η( ) .

b) The equation of a line ( ')p  through a point M with affix m and is such that it 
is perpendicular to ( ) :p z z a= +η  is the following z m z m− = − −η( ) .

Proof. The proof is a direct implication of Remark 1.5 and Corollary А. ■

1.9. Example. Let A and B be two distinct points in the complex plane with 
affixes z1  and z2 , respectively. Determine the affix p '  of the point P ' , symmetric to P 
with affix p, with respect to the line AB. 

Solution. Through the point P we draw the line l, perpendicular to the line AB and 
we find P1 , the point of intersection () of l and AB. Thus, P p1 1( )  is the midpoint of the line 
segment PP ' , i.e. p p p

1 2
= + '  that is p p p' = −2 1 , and the point P1  is the projection of P 

onto the line AB. 
The equation of the line through the points А ����and B is the following 

	 z z z zz z
z z

− = −−
−1 1

2 1

2 1
( ) . 				    (10)

The complex gradient of the line l is η1
2 1

2 1
= − −

−
z z
z z

. Thus, its equation is 

	 z p z pz z
z z

− = − −−
−

2 1

2 1
( ) . 			   	 (11)

If we add the last two equations (10) and (11) we obtain the affix p1  of the point P1 : 

	 p p z z z z z p z
z z1 2

1 2 1 2 1 1

2 1
= − − + − +

−
( )( ) ( )( )

( )
.			   (12)
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By substituting the so obtained expression for p1  in p p p' = −2 1 , we find the affix p '  
of the point P′: 

p p z z z z z z
z z

'
( )= − + −

−
2 1 2 1 2 1

2 1
. ■

1.10. Example. Determine the locus of the points which are equidistant from two 
given points A and B. 

Solution. Let a and b be the affixes of the points A and B, respectively, and let 
the point M with affix z belong to the required locus. Then | | | |z a z b− = −2 2  thereby 
MA MB= . The last equation is equivalent to 

z za b b a
b a

a b− = − −( )+ −
−

+
2 2

.

Thus, the required locus is a line which passes through the midpoint of the line segment 
AB and is perpendicular to AB. ■

1.11. Example. Let ABC be a given triangle and let K and H be such points on the 
sides AB and AC, that AK ABp= 1  and AH ACp= +

1
1

, respectively. Prove the following 
statement: for each p, p > 0 the lines KH passthrough a unique point. 

Solution. Let 0, b, c, k, h be the affixes of A, B, C, K, H, respectively. Then 
k hb

p
c

p= = +,
1

. Since Corollary 1.4, the point M with affix z lies on the line KH if and only 

if z k
h k t−
− = ∈R . Hence, 

z b c b p bp
t

p= + − −( )( )+
1

1
( ) .

If t p= +1 , then we get that z c b= − . Therefore, each line KH consists of the point X 
with affix c b− . ■

2.	 DISTANCE FROM A POINT TO A LINE

2.1. Lemma. The line equation

z z z zz z
z z

− = −−
−0 0

1 0

1 0
( )

can be written as 
	 Az Bz C+ + = 0 , where C∈R  and B A= ≠ 0 . 		  (1)

Conversely, each equation as (1) is a line equation. 

Proof. Let be given the equation 

z z z zz z
z z

− = −−
−0 0

1 0

1 0
( ) .
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So, 
z z z z z z z z z z( ) ( )1 0 1 0 0 1 0 1 0− − − + − = .

If we multiply the latter by i, we get that 
i z z z i z z z i z z z z( ) ( ) ( )1 0 1 0 0 1 0 1 0− − − + − = .

Let 
A i z z B i z z C i z z z z= − = − − = −( ), ( ), ( )1 0 1 0 0 1 0 1 ,

the equation of a line through the points M and N with affixes z0  and z1 , respectively is 
as (1). 

Conversely, let the equation (1) be given. If (1) is divided by A and and then set 
that η = − = −B

A
C
Aa, , we obtain the equation as z z a= + =η η, | | 1 . Since Theorem 1.1, 

the letter is a line equation. ■

2.2. Definition.The line equation (1) is called to be a self-conjugate line equa-
tion. 

2.3. Let line (p) be given by its self-conjugated equation (1) and the point z0 . If 
(1) is rewritten as 

z zB
A

C
A= − − , 

then the complex gradient of an arbitrary line perpendicular to (p) is η ' = B
A . Thus, the 

equation of (q) such that it passes through the point z0  and is perpendicular to (p) is the 
following

z z z zB
A− = −0 0( ) ,

i.e.
	 Az Bz z A z B− − + =0 0 0 . 			   (2)

By adding the equations (1) and (2), we obtain that 2 0 0Az Az Bz C' = − −  is the intersec-
tion of (p) and (q), i.e. the projection z0  of onto the line (p), that is 

z Az Bz C
A' = − −0 0

2
.

Thus,

z z Az Bz C
A0 2

0 0− = + +
' ,

so, the distance from a point z0  to a line (p), given by its self-conjugate equation (1) is 

d z p Az Bz C
A0 2

0 0,( )
| |

| |( ) = + + . 
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3.	 CIRCLE EQUATION

3.1. As already stated, | |z z R− =0  is the equation of a circle centered at S (with 
affix z0 ) and radius R. In this section we will discuss circles in the complex plane. 

3.2. Example. Let P1  and P2  be arbitrary points in the complex plane with 
affixes z1  and z2 , respectively. Prove that the circumcircle of the line segment P P1 2 , 
viewed as its diameter, has the following equation 

		  | | | |2 1 2 1 2z z z z z− − = − . 				    (1)

Solution. Since, the radius of a circumscircle of the line segment P P1 2 , 

viewed as its diameter, is R z z= −| |1 2
2

 and P0  (the midpoint of the line segment P P1 2 ,  

with affix z z z
0 2

1 2= + ) is its center, we get that the equation of the considered circle is 

z z z z z− =+ −1 2 1 2
2 2

| | . If we multiply the last equation by 2, then we obtain the equation 

which is equivalent to the latter, that is we obtain the equation (1). ■
 
3.3. Example. Let A, B and C be three distinct points in a plane. Determine the 

locus of the points equidistant to points A, B and C. 

Solution. Let a, b and c be the affixes of the points A, B and C, respectively. Since 
Example 1.10, the locus of the points equidistant to the points A and B, B and C, A and C, 
are the bisectors of the line segments AB, BC and CA and their equations are 

 			   z za b b a
b a

a b− = − −( )+ −
−

+
2 2

				    (2)

 			   z zb c b c
b c

b c− = − −( )+ −
−

+
2 2

				    (3)

 			   z za c a c
a c

a c− = − −( )+ −
−

+
2 2

				    (4)

respectively. We will discuss two cases: 
а) If the points A, B and C are collinear, then Corollary 1.3 implies that the bisec-

tors of the line segments AB, BC and CA have equal complex gradients, and since Corollary 
1.8 it implies that the lines are parallel. But, the fact that the points A, B and C differ from 
each other, implies that the midpoints of the line segments AB, BC and CA, also differ from 
each other. The latter means that it does not exist any point such that it satisfies the given 
conditions. 

b) If the points A, B and C are non-collinear, then the bisectors of the line segments 
AB, BC and CA parwise intersect . If we subtract the equations (3) from (2), we obtain the 
affix o of O, the point of intersection of the bisectors of the segments AB and BC, 

o aa c b bb a c cc b a
ab bc ca ab bc ca

= − + − + −
+ + − − −

( ) ( ) ( ) .

By direct checking we prove that the point O lies on the line CA. Therefore, the required 
locus is the point O with affix o. ■
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3.4. Remark. In the previous example, we actually proved that through three dis-
tinct non-collinear points A, B and C it passes exactly one i.e. a unique circle which is cen-
tered at O and whose radius is R a o= −| | . That is we proved that for each triangle there 
exists a unique circumcircle, and the center of the such circle is the point of intersection of 
the side bisectors of the given triangle. 

3.5. Example. Prove that all complex numbers so that | | | |z z− = +1 2 1  is satis-
fied, lie on a same circle. Determine the centre and the radius of that circle. 

Solution. For any complex number z x iy= + , its absolute value is given by 

| |z x y= +2 2 .
This fact applied to the given identity | | | |z z− = +1 2 1  implies that 

( ) ( )x y x y− + = + +1 2 12 2 2 2 .

After reducing, we obtain the following expression: x y+( ) + = ( )5
3

2 2 4
3

2
, which obvi-

ously is the equation of a circle centred at −( )5
3

0,  and whose radius is 4
3 . ■

3.6. As above stated, the equation of a circle with centre z0  and radius R is 
| |z z R− =0 . But, it is useful also to emphasize the circle equation similar to the self-
conjugate line equation. Therefore, we will show that
 		  zz Az Az B B A A B+ + + = ∈ ∈ − >0 02, , , | |R C 		  (5)
is a circle equation.

Indeed, if 
z A0 = −  and R z z B A B2

0 0
2 0= − = − >| | ,

and we substitute in (5) we obtain the following 
zz z z zz z z R− − + =0 0 0 0

2 ,
i.e. the equation | |z z R− =0 , which is the equation of a circle with centre z0  and ra-
dius R. Hence, the equation (5) is the equation of a circle with centre z0  and radius 

R A B= −| |2 , which is called to be a self-conjugate circle equation.

3.7. Remark. In the above discussions , in chapter 1, we proved that the ste-
reographic projections of a line and a circle in the extended complex plane, i.e. their 
Reimann interpretation, are circles which consist of or do not consist of the pole, respec-
tively. This is one of the reasons the lines and the circles in the extended complex plane 
are called as circles, and the circles in the complex plane are called as true circles. In the 
following example we will give one more argument which enforces this terminology. 

3.8. Example. (Apollonius circle). Let A and B be arbitrary points in the plane. 
The locus of the point M so that MA MB k k k: , ( , )= > ≠0 1  is a circle. Prove it! 
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Solution. We will consider the case where k >1 . Firstly, let set a coordinate sys-
tem xOy such that the x-axis coincides with the line AB, and the origin with the midpoint 
of the line segment AB. Hence, A(a,0) and B(−a,0), i.e. the affixes of the points A and 
B are z a1 =  and z a2 = − , respectively. If the point M, which belongs to the considered 
locus, has affix z, then the given condition implies that k z a

z a= −
+

| |
| |

, i.e.

 			   zz a z z ak
k

+ + + =+
−

2

2
1
1

2 0( ) .			   (6)

The constants

A a B ak
k

= =+
−

2

2
1
1

2,  
satisfy the condition 

| |A B2 0− > .
Therefore, (6) is the equation of a circle with centre 

z a k
k0

1
1

2

2= − +
−

, 
and radius 

R A B ak
k

= − =
−

| |2 2
12 .

The case where 0 1< <k  can be considered analogously. ■

3.9. Relationship between a line and a circle. Let z z z z− = −0 0η( )  and 
| |z z R− =1  be the equations of a given line (p) and a circle (K), respectively. Through 
the centre of the circle with affix we draw the line ( ')p  perpendicular to (p). The line 
equation of ( ')p  is z z z z− = − −1 1η( ) . If we add the equations of the lines (p) and ( ')p  
then we find the affix of the point of intersection of these two lines 

z z z z z
*

( )= − + +η 1 0 1 0
2

.

So, the distance between the centre of the circle and the line (p) is the following

d z z z z z z z z
( *, ) | * |

( )
0 0 2

1 0 1 0= − = − + −η .

The above stated implies that:

- if η( )z z z z R1 0 1 0

2
− + − = , then the line (p) is tangent to the circle (K) and the point 

of touching has affix z*; 

- if η( )z z z z R1 0 1 0

2
− + − < , then the line (p) and the circle (K) have two points of 

intersection; 

- if η( )z z z z R1 0 1 0

2
− + − > , then the line (p) and the circle (K) do not have any 

common points.



45

3.10. Example. Determine the relationship between the line (p) and the circle (K) 
whose equations are z z i= + 3  and | |z i+ − =4 2 3 , respectively. 

Solution. Since the line equation z z i= + 3 , we get that z i
0

3
2

= . Further, since 
the circle equation 

| |z i+ − =4 2 3 ,
we obtain that z i1 4 2= − +  and R = 3 . Therefore,

d Rz z z z i ii i

= = = = > =− + − − − +( )+ − + −( ) −η( ) | |1 0 1 0
3
2

3
2

2

4 2 4 2

2
8

2
4 3 ,

and thereby 3.9, the line (p) and the circle (K) do not have any common points i.e. they 
do not have any points of inetrsection.■

3.11. Example. Let (K): | |z z R− =0  be a given circle and z1  be a point which is 
placed on the circle. Find the equation of the tangent to the circle (K) at the point z1 . 

Solution. The equation of a line (p), such that it passes through points z0  and  
z1 , is the following

z z z zz z
z z

− = −−
−0 0

1 0

1 0
( ) . 

So, the equation of the tangent ( ')p  to (K) at the point z1  is the following

z z z zz z
z z

− = − −−
−1 1

1 0

1 0
( ) . ■

3.12. Remark. а) If (K): | |z =1  is the unit circle and z1  is a point on (K), then 
the equation of the tangent to (K) at the point z1  is the following z z z z+ =1

2
12 .

b) If A, B, C and D with affixes a, b, c and d, respectively, are on the unit circle  
(K): | |z =1 , then a a b b c c= = =− − −1 1 1, ,  and d d= −1 . Thereby Corollary 1.8, the 
chords AB and CD are parallel if and only if 

( )( ) ( )( )b a d c b a d c− − = − −  
holds true, that is if and only if ab cd= . Analogously, the chords AB and CD are perpen-
dicular to each other if and only if ab cd+ = 0 . 

Apparently, if A and B with affixes a and b, respectively are points on the unit 
circle, then a a b b= =− −1 1, , and therefore 

a b
a b

a b
a b

ab−
−

−
−

= = −− −1 1 .

Further, if M with affix m is a point on the chord AB, then by Corollary 1.3 it is true that 
m a
b a

m a
b a

m a
a b

mab b
b aab−

−
−
−

−
−

−
−= = = − ,

and by equivalent transformations, we express m  as the following m a b m
ab= + − .

c) Let A, B, C and D with affixes a, b, c and d, respectively, be points on the 
unit circle (K): | |z =1 , and AB CD S∩ ={ } . The equations of the lines AB and CD are 
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z abz a b+ = +  and z cd z c d+ = + , respectively. By eliminating z  from the last two 
equations, we obtain that the affix of S is s a b cd c d ab

cd ab= + − +
−

( ) ( ) .
d) Let A and B, with affixes a and b, respectively, be points on the unit circle, so 

that the line segment AB is not its diameter. According to the statement a), the equations 
of tangents ( )tA  and ( )tB  are z a z a+ =2 2  and z b z b+ =2 2 , respectively. If we elimi-
nate z  from the last two equations, we get that s ab

a b= +
2 , is the affix of the intersection 

point S t tA B= ∩( ) ( ) .
e) Let the line (p) meet the unit circle at two points A and B, whose affixes are a 

and b, respectively, and let M, whose affix is m, be an arbitrary point on the plane. It is 
easy to prove that the affix of the orthogonal projection of M onto the line (p), is given 
by c a b m abm= + + −

2
.

4.	 DIRECT SIMILARITIES
	
4.1. Definition. The mapping S :C C→  defined by 

 			   w S z az b a b a= = + ∈ ≠( ) , , ,C 0 			   (1)
is called to be a direct similarity.
 

4.2. Theorem. The set of the direct similarities DS under the operation composi-
tion of mappings is a noncommutative group. 

Proof. If S ,S1 2 ∈DS , then
S z az b a b a1 0( ) , , ,= + ∈ ≠C  and S z cz d c d d2 0( ) , , ,= + ∈ ≠C .

Hence, 
S S z S cz d a cz d b ac z ad b ac ad b ac1 2 1 0( ( )) ( ) ( ) ( ) ( ), , ,= + = + + = + + + ∈ ≠C  

i.e. S S1 2 ∈DS . Thus, the set  DS is closed with respect to the composition of mappings 
and in general the following holds true

S S z ac z ad b ac z bc d S S z1 2 2 1( ( )) ( ) ( ) ( ) ( ) ( ( ))= + + ≠ + + = .
Let S ,S S1 2 3, ∈DS . With direct checking the following could be proved 

S S S z S S S z1 2 3 1 2 3   ( )( ) ( ) )( )= , for each z∈C . 
Therefore, S S S S S S1 2 3 1 2 3   ( ) ( )= , i.e. the associative law holds true. 

The mapping E z z( ) = , for each z∈C  is an element of DS and further 
E S S E S = = , for each S∈DS . 

Let S z az b a b a( ) , , ,= + ∈ ≠C 0  be an arbitrary direct similarity. The mapping 
defined by S z za

b
a1

1( ) = −  is a direct similarity and furthermore, the following holds 
true

S S z S S z1 1( ) ( )( ) = ( ) , for z∈C , i.e. S S− = ∈1
1 DS . ■
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4.3. Theorem. Each direct similarity is uniquely determined by two pairs of cor-
responding points. 

Proof. Let S be an arbitrary direct similarity so that S z w( )1 1=  and S z w( )2 2= .  
Then S z az b( ) ,= +  where a b a, ,∈ ≠C 0  are coefficients which should be obtained. 
Since Theorem 4.2 each direct similarity is bijection, and therefore z z1 2≠  implies that 
w w1 1≠ . By substituting in S z az b( ) = +  we get the following system of linear equations 
of the variables a and b 

 			 
w az b
w az b

1 1

2 2

= +
= +





					     (2)

By solving the system (2) with respect the variables a and b, we obtain 

a w w
z z= −
−

1 2

1 2
, b z w z w

z z= −
−

1 2 2 1

1 2

and a ≠ 0 , i.e. the coefficients a and b of the direct similarity S z az b( ) = +  are com-
pletely determined by two pairs of corresponding points z S z1 1, ( )( )  and z S z2 2, ( )( ) . ■

4.4. Theorem. а) The image of a line (p) under a direct similarity is a line ( ')p . 
b) Two parallel lines under direct similarity map to parallel lines. 
c) Two perpendicular lines under direct similarity map to perpendicular lines. 

Proof. а) Let be given the direct similarity (1) and a equation of (p) as z z c= +η .  
According to (1), we get that z w b

a= −  and if we substitute in the line equation we get 

w w ac ba
a

ab
a

= ( ) + + −η η .

Further, a
a

η =1  implies that an image of line (p) under a direct similarity is the line 

( ')p  with complex gradient a
a

η . 

The proofs of the statements b) and c) are direct implications of the statement a) 
and Corallary 1.8 A. ■

4.5. Theorem. The image of a circle (K) under direct similarity is a circle ( ')K . 

Proof. Let be the given direct similarity (1) and a circle (K) with equation 
| |z c R− = . According to (1), we get that z w b

a= −  and if we substitute in the circle 
equation we obtain | ( ) | | |w ac b a R− + = . The latter actually means that the image of the 
circle (K) under the given similarity (1) is the circle ( ')K . The centre of the image circle 
has an affix ac b+ , and the length of its radius is | |a R . ■

4.6. Theorem. If A, B are arbitrary distinct points, A B', '  are their images under 
the direct similarity (1), respectively, and if a rei= ϕ , then A B r AB' ' = , and the lines AB 
and A B' '  form an oriented angle ϕ. 
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Proof. Let z z w w1 2 1 2, , ,  be the affixes of the points A, B, A B', ' , respectively. 
Hence, z z ABei

2 1− = α  and w w A B ei
2 1

1− = ' ' α , where α and α1  are the angles formed 
by the real axis and the vectors AB

 

 and A B' '
 

, respectively. By the equalities w az b1 1= +  
and w az b2 2= + , we get the following equality 

w w a z z2 1 1 2− = −( ) ,
i.e. the equality 

A B e r ABei i' ' ( )α α ϕ1 = + ,
which implies that A B r AB' ' =  and ϕ α α= −1 . ■

The real number r is called to be the ratio of the direct similarity (stretching 
factor or direct similarity coefficient) (1), and the angle ϕ is called to be an angle of the 
direct similarity (1). 

4.7. Definition. Two figures are said to be directly similar if there exists a direct 
similarity under which one of the figures is mapped to the other one. 

4.8. Corollary. If ABC and A B C' ' '  are directly similar triangles, then 
A B A C AB AC' ' : ' ' :=  and ∠ =∠A B C ABC' ' ' . 

Proof. The proof is directly implicated by Theorem 4.6.. ■

4.9. Theorem. Let z z z1 2 3, , ,  w w w1 2 3, , ,  be the affixes of A, B, C, A B C', ', '  
respectively. The triangles ABC and A B C' ' '  are directly similar if and only if 

 		  z w w z w w z w w1 2 3 2 3 1 3 1 2 0( ) ( ) ( )− + − + − = 		  (3) 
holds. 

Proof. The triangles ABC and A B C' ' '  are directly similar if and only if there 
exists a direct similarity (1) so that w az bi i= + , for i =1 2 3, , . The last equalities imply 
the following 

w w a z z1 2 1 2− = −( )  and w w a z z1 3 1 3− = −( ) .
If we divide the first equality by the other one, we actually obtain the following equality 

 				    w w
w w

z z
z z

1 2

1 3

1 2

1 3

−
−

−
−= .					     (3’)

The latter is equivalent to (3). ■

4.10. Remark. The condition (3), i.e. the condition (3’) of the previous Theorem 
is equivalent to the following condition

1 1 1

01 2 3

1 2 3

z z z
w w w

= .
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Indeed, the condition (3’) and the properties of the determinants imply 
1 1 1

1 2 3

1 2 3

1 2 1 3

1 2 1 3

1 2 1 3 1 3

z z z
w w w

z z z z
w w w w

z z w w z z

=
− −
− −

= − − − −( )( ) ( ))( ) .w w1 2 0− =  

4.11. Definition. A point z is said to be a fixed point under the direct similarity 
(1) if it satisfies the condition z az b= + . 

Apparently, for a ≠1 , the direct similarity (1) has a unique fixed point and its 
affix is z b

a1 1
= − . If a =1 , then b = 0 , i.e. the direct similarity (1) is the identity mapping 

and each point of the complex plane is a fixed point. 
The point C with affix c b

a= −1  is said to be center of the direct similarity 
S z az b( ) = + . 

4.12. Let (p): z z z z− = −0 0η( )  be a tangent to the circle (K): | |z z R− =1  and 
let w S z az b a b a= = + ∈ ≠( ) , , ,C 0  be a direct similarity. Since 3.9 , 

 				    η( )z z z z R1 0 1 0

2
− + − = 				    (4)

holds. Further, according to Theorem 4.5 the image of the circle (K) is a circle ( ')K  with 
equation | ( ) | | |w az b a R− + =1 . Analogously to the proof of Theorem 4.4 а) if we sub-
stitute that z w b

a= −  in the equation of (p) and we get that the image of a line (p) is a line 
( ')p  with the following equation

w az b w az ba
a

− + = − +( ) ( )0 0
η .

By using the equation (4) we find that the circle ( ')K  and the line ( ')p  satisfy the fol-
lowing 

η η

η

a
a

a
a

az b az b az b az b a z z a z z

a

( ) ( ) ( ) ( )

| |

1 0 1 0 1 0 1 0

2 2

+ − + + + − + − + −
=

= (( ) ( )
| |

z z z z a R1 0 1 0

2
− + − =  

Hence, 3.9 implies that the line ( ')p  is tangent to the circle ( ')K . 
Thus, we proved the following theorem. 

Theorem. Let (p) be a tangent line to the circle (K) and ( ')p  and ( ')K  be their 
images under the direct similarity (1), respectively. Then ( ')p  is a tangent line to the 
circle ( ')K . ■

4.13. Example. Let ABCD be a given parallelogram. On its sides CD and CB, 
similar and same oriented triangles (directly similar) CDE and FBC, are constructed. 
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Prove that the triangle FAE is similar and is also the same oriented to the triangles CDE 
and FBC. 

Solution. Let the origin be the point of intersection of the parallelogram diago-
nals. Then c a= −  and d b= − . The triangles CDE and FBC are similar and a same ori-
ented. Thus, Theorem 4.9 implies that c b

b f
e d
d c

−
−

−
−= . Therefore,

f be c bc cd
e d

be a
e b= =+ − −

−
+
+

2 2
.

Hence,
f a b a e a

e b− = − −
+

( )( ) , c d c b− = + , d e b e− = − +( )  and b a c d− = − ,
therefore 

f a
a e a e

b a
e b

c d
d e

b a e a
e b−

− −
−

− +
−
−= = =

− −
+

( )( )

( )
,

The latter according to Theorem 4.9, means that the triangles FAE and CDE are directly 
similar.■ 

Example 4.14. On the sides AB, BC and CA of a triangle ABC, such pairwise 
similar triangles ABK, BCL and ACM are constructed, 
that the first two are out of the triangle ABC and the 
third one is in (see figure 1). Prove that the quadrilateral 
BLMK is parallelogram.

Solution. The triangles AKB and BLC are di-
rectly similar. Therefore, 

k a
b a

l b
c b

−
−

−
−= , i.e. l b k a c b

b a= + − −
−( ) .

The triangles AKB and AMC are directly similar, and 
therefore k a

b a
m a
c a

−
−

−
−= , i.e. 
m a k a c a

b a= + − −
−( ) .

Thus, 
BL l b k a c b

b a

 

= − = − −
−( )  

and 
KM m k a k a k k a k ac a

b a
c a
b a

c b
b a

 

= − = + − − = − −( ) = −−
−

−
−

−
−( ) ( ) ( )1 ,

i.e. BL KM
   

= . The latter means that the quadrilateral BLMK is parallelogram. ■ 

Figure 1
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5.	 MOTIONS 

5.1. In the previous section we considered and discussed the direct similarities 
and we also proved several properties about them. In this section the focus of our interest 
is one of the most important classes of direct similaritiesand their classification. 

5.2. Definition. The direct similarity S z az b a( ) , for | |= + =1 , for | |a =1   is 
said to be motion. 

5.3. Theorem. The set of motions D under the operation composition of mappings 
is a subgroup of the direct similarity group DS. 

Proof. If S S1 2, ∈D , then 
S z az b S z cz d a d1 2 1( ) , ( ) , | | | |= + = + = = .

Thus, 
S S z S cz d a cz d b ac z ad b ac1 2 1 1( ) ( ) ( ) ( ) ( ), | |( ) = + = + + = + + = ,

therefore, S S1 2 ∈D . The latter means that the set D is closed under the composition of 
mappings. 

If S S S1 2 3, , ∈D , then S S S1 2 3, , ∈DS , therefore 
S S S S S S1 2 3 1 2 3   ( ) ( )= ,

i.e. the associative law holds true. 
If a b= =1 0,  then 1 0⋅ + = ∈z E z( ) D . 
Let S z az b a( ) , | |= + =1  be an arbitrary motion. The mapping 

S z za
b
a1

1( ) = − , 1 1 1a a= =
| |

is motion and moreover the following holds true
S S z S S z z1 1( ) ( )( ) = ( ) = , for each z∈C , i.e. S S− = ∈1

1 D . ■

5.4. Definition. The motion S z z b( ) = +  is said to be translation for the vector 
b, and it is denoted by Sb . 

5.5. Theorem. The translation which is not identity mapping has no fix points. 

Proof. The proof is directly implicated by 4.10. ■

5.6. Theorem. The set of translations T under the composition of mappings is a 
commutative subgroup of the group of motions D. 

Proof. If S S1 2, ∈T , then S z z b S z z d1 2( ) , ( )= + = + . Thus, 
S S z S z d z d b z d b1 2 1( ) ( ) ( ) ( ),( ) = + = + + = + +

therefore, S S1 2 ∈T . The latter means that the set T is closed under the composition of 
mappings. 
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If S S S1 2 3, , ∈T , then S S S1 2 3, , ∈D , Hence, 
S S S S S S1 2 3 1 2 3   ( ) ( )= ,

i.e. the associative law holds true. 
Let S S1 2, ∈T , then S z z b S z z d1 2( ) , ( )= + = + . Hence, 

S S z S z d z d b z b d

S z b S S z
1 2 1

2 2 1

( ) ( ) ( ) ( )

( ) ( ) ,

( ) = + = + + = + +

= + = ( )
for each z∈C , i.e. the commutative law holds true.

If b = 0  then 1 0⋅ + = ∈z E z( ) T . 
Let S z z b( ) = +  be translation. The mapping S z z b1( ) = −  is also translation and 

furthermore the following holds true
S S z S S z z1 1( ) ( )( ) = ( ) = , for each z∈C , i.e. S S− = ∈1

1 D . ■

5.7. Definition. The direct similarity with ratio 1 and angle π is said to be a point 
reflection. 

The shape F is said to be a point reflection iff there exists such a reflection S, that 
S( )F F= . 

Thus, S z az b a b a( ) , , ,= + ∈ ≠C 0  is a point reflection if a = −1 . Due to the last, 
S z b z( ) = −  denotes a point reflection.

Moreover 4.10, implies that the point reflection S z b z( ) = −  has center C with 
affix c b=

2
 and is denoted by S SC= . In our further considerations the set of point reflec-

tions will be denoted by CS. 
Let A(a) be any arbitrary point in a plane. The image of that point under the point 

reflection S z b z( ) = −  is the point A b a'( )− . Since the centre C of the point reflection 
has an affix c b=

2
, we get that 

AC a b a CAb b   

= − = − − =
2 2

( ) ' .

So, the centre C of the point reflection is the midpoint of the line segment AA ' . 

5.8. Theorem. а) The composition of two point reflections is translation. 
b) The composition of a point reflection and a translation is point reflection. 

Proof. а) Let S z b z1( ) = −  and S z d z2( ) = − , b d, ∈C  be arbitrary point reflec-
tions. Then, 

S S z S d z b d z z b d1 2 1( ) ( ) ( ) ( )( ) = − = − − = + − .
So, the composition S S1 2  is translation for the vector b d− . 

б) Let S z b z1( ) = −  and S z z d2( ) = + , b d, ∈C  be arbitrary point reflection and 
translation, respectively. Therefore, 

S S z S z d b z d b d z1 2 1( ) ( ) ( )( ) = + = − + = − −
and

S S z S b z d b z b d z2 1 2( ) ( ) ( )( ) = − = + − = + − ,
i.e. S S1 2  and S S2 1  are point reflections with centers b d−

2
 and b d+

2
, respectively. ■ 



53

5.9. Definition. The mapping S :C C→  is said to be involuntary iff the mapping 
is invertible, i.e. there exists such S−1  that S S− =1 . 

5.10. Theorem. The direct similarity which is not identity is involuntary if and 
only if it is a point reflection. 

Proof. Theorem 4.2 implies that the direct similarity is involuntary if and only 
if 

az b z b
a+ = − , for each z∈C ,

i.e. if and only if a a= 1  and b b
a= − . The last two equalities are satisfied if and only if 

a = −1 . Therefore, S is involuntary if and only if S is a point reflection. ■

5.11. Corollary. The set T CS∪  under the operation composition of mappings 
is a non-commutative subgroup of the group of motions D. 

Proof. The proof is a directly implicated by Theorem 5.6 and Theorem 5.8. ■

5.12. Definition. The motion which is not translation is said to be rotation. 
Thereby each rotation S z az b a( ) , | |= + =1  satisfies that a ≠1 , we deduce that 

each rotation has center C with affix c b
a= −1 . If C and α are the center of the rotation and 

the angle of the rotation, respectively,we use to say that we have a rotation about C with 
angle α and we use to write S SC= ,α . In our further discussion the set of the rotations 
will be denoted by R. Apparently, the point reflections are rotations with angle π, and 
therefore CS R⊂ . 

Let S z az b a( ) , | |= + =1 , a ≠1  be rotation about C with angle α. Then, the in-
verse mapping S−1  defined by S z az ab− = −1( )  is rotation about C with angle −α. 

5.13. Theorem. а) The composition of two rotations is either rotation or transla-
tion. 

b) The composition of rotation and translation is rotation. 

Proof. а) Let
S z az b a1 1( ) , | |= + = , a ≠1  and S z cz d c2 1( ) , | |= + = , c ≠1

be two rotations. So, 
		  S S z S cz d a cz d b ac z ad b1 2 1( ) ( ) ( ) ( ) ( )( ) = + = + + = + + .	 (1)
Apparently, if ac =1 , then S S1 2  is translation; if ac ≠1 , then S S1 2  is rotation about 
C, with affix ad b

ac
+

−1 , and with angle α α1 2+ , where α1  and α2  are the angles of the 
rotations S1  and S2 , respectively.

b) Let 
S z z b1( ) = +  and S z cz d c2 1( ) , | |= + = , c ≠1

be an arbitrary translation and a rotation, respectively. 
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Since,
S S z S cz d cz d b1 2 1( ) ( ) ( )( ) = + = + +

it follows that S S1 2  is rotation about C with affix d b
c
+
−1  and with angle α2 . Further, 

S S z S z b cz d bc2 1 2( ) ( ) ( )( ) = + = + +  

implies that S S2 1  is rotation about C '  with affix d bc
c

+
−1  and with angle α2 . ■ 

5.14. Consider the rotations
S z az b a1 1( ) , | |= + = , a ≠1  and S z cz d c2 1( ) , | |= + = , c ≠1 .

While proving Theorem 5.13 we established that the composition S S1 2  is either rotation 
or translation, depending on whether ac ≠1  or ac =1 , respectively. Apparently, 
 		  S S z S az b c az b d ac z bc d2 1 2( ) ( ) ( ) ( ) ( )( ) = + = + + = + + ,	 (2)
implies that  S S2 1  is either rotation or translation, too, depending on whether ac ≠1  or 
ac =1 , respectively. Logically the following question arises: whether and under which 
conditions S1  and S2  commute under to the composition of mappings, i.e. when does 
the following relation hold true
 			   S S z S S z2 1 1 2( ) ( )( ) = ( ) , for each z∈C . 			  (3)
If we substitute (1) and (2) into (3), after reducing, we obtain that S1  and S2  commute 
if and only if ad b bc d+ = + . The latter actually means that S1  and S2  commute if and 
only if b

a
d

c1 1− −= . So, we proved the following theorem. 

Theorem. Two rotations commute if and only if their centers of rotations 
coincide. ■ 

5.15. Consider the rotations about a common centre. Let 
S z az b a1 1( ) , | |= + = , a ≠1  and S z cz d c2 1( ) , | |= + = , c ≠1 ,

be so that b
a

d
c1 1− −=  holds. Then,

S S z ac z bc d2 1( ) ( ) ( )( ) = + + , a ≠1 , c ≠1 , | |a =1  and | |c =1 .
Obviously, | |ac =1 . If ac =1 , then | |c =1  implies cc =1 , and therefore a c c= = 1 . By 

substituting in b
a

d
c1 1− −= , we obtain that bc d+ = 0 , that is S S z z E z2 1( ) ( )( ) = = . If 

ac ≠1 , then the condition b
a

d
c1 1− −=  is equivalent to bc d

ac
d

c
+
− −=

1 1
, i.e. the composition 

S S2 1  is rotation with center which coincides with the centers of the rotations S1  and 
S2 . Finally, if have on mind the fact that the identity mapping can be understood as a 
rotation about an arbitrary centre, then the previous considerations and also Theorem 
5.14 imply the validity of the following Theorem. 
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Theorem. The set of rotations about a common centre under the operation com-
position of mappings is a commutative sub-group of the group of motions D. ■

5.16. Example. Let ABCDEF be a regular hexagon, K be the midpoint of the 
diagonal BD, and M be the midpoint of the side EF. Prove that  AMK is an equilateral 
triangle. 

Solution. Let the hexagon ABCDEF 
be inscribed into the unit circle (figure 2). Then 

1 3
2
3

4
3

5
3, , , , ,e e e e ei i i i iπ π π ππ  are the affixes of the ver-

tices C, D, E, F, A, B, respectively. Thus the affixes 
of the points K and M are

k e e
i i

= =+
π π
3

5
3

2
1
2

 and m ie e
i i

= = − ++
2
3

2
3
4

3
4

π
π

,

respectively. Further, 

    

( )k a e a e e e

e e e i

i i i i

i i i

− + = −( ) + =

= − + = − +

π π π π

π π π

3
4
3 3

4
3

3
5
3

4
3

1
2

1
2

3
4

33
4
= m,  

i.e. ( )k a e m ai− = −
π
3  implies, that the side MA of  AMK is obtained when the side AK 

is rotated about the vertex A with angle π
3

. So,  AMK   is an equilateral triangle. ■

5.17. Example. Let M kk , , , ,=1 2 3 4  with affixes zk ,  k =1 2 3 4, , , , respectively, 
be given distinct points in the complex plane. Prove the following statement: 

The identity 
 				    z z i z z2 1 4 3− = ± −( ) 				    (1)
holds true if and only if 
 			   M M M M1 2 3 4=  and M M M M1 2 3 4⊥  			   (2)

Solution. Since the condition (1) we get | | | |z z z z2 1 4 3− = − , that is 
M M M M1 2 3 4= . Likewise, 

z z i z z e z zi
2 1 4 3 4 3

2− = ± − = −±
( ) ( )

π
,

that is the number z z2 1−  is obtained by rotation of the number z z4 3−  about the origin 
O with angle ± π

2
. Thus, M M M M1 2 3 4⊥ . Therefore, the condition (2) is implied by the 

condition (2). 
Conversely, since

M M z z1 2 2 1= −| | , M M z z3 4 4 3= −| |  and M M M M1 2 3 4=  

the following is satisfied z z re z z reit is
2 1 4 3− = − =, . Therefore 

			   z z e z zi t s
2 1 4 3− = −−( ) ( ) . 			   (3)

Figure 2
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The second condition in (2) implies 
t s k k− = ± + ∈π π

2
2 , Z .

By substituting in (3) we get z z i z z2 1 4 3− = ± −( ) . Thus, the condition (2) implies the 
condition (1). ■

6.	 HOMOTHETY

6.1. Definition. The direct similarity with angle 0 or π, which is not translation 
is called to be homothety. 

Due to this, the direct similarity S z az b a b a( ) , , ,= + ∈ ≠C 0  is homothety 
if and only if a∈R \ { , }0 1 . Ratio of homothety is a real (not a complex number as it 
was for generally directly similarities) number a, such that a a, ( , )≠ 0 1 . Apparently, the 
point reflections are homotheties with ratio 1

a . Theorem 4.2, implies that the inverse 
mapping of a homothety with ratio a is also a homothety, but the ratio is 1

a . In our further 
considerations the set of the homotheties will be denoted by H. 

6.2. Theorem. а) The composition of two homotheties is either a homothety or 
a translation. 

b) The composition of homothety and translation is homothety.

Proof. а) Let
S z a z b a1 1 1 1 0 1( ) , \ { , }= + ∈R

and
S z a z b a2 2 2 2 0 1( ) , \ { , }= + ∈R  

be two homotheties. Then,
S S z a a z a b b2 1 1 2 2 1 2( )( ) = + + .

Obviously, if a a1 2 1= , then S S2 1  is translation for the vector a b b2 1 2+ , and if  
a a1 2 1≠ , then S S2 1  is homothety with center C and a ratio of homothety a a1 2 . The 

affix of such the center is a b b
a a

2 1 2

1 21
+

− .

b) Let the homothety and the translation be given by 
S z a z b a1 1 1 1 0 1( ) , \ { , }= + ∈R  and S z z b2 2( ) = + , respectively. 

Thereby,
S S z a z b b2 1 1 1 2( )( ) = + + , a1 0 1∈R \ { , }

holds true, we get that S S2 1  is homothety with center C, the affix of the center is  
b b

a
1 2

11
+
− , and the ratio of the homothety is a1 . Since,

S S z a z b a b1 2 1 1 1 2( )( ) = + + , a1 0 1∈R \ { , }
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holds true,we get that S S1 2  is a homothety with center C, the affix of the center is 
a b b

a
1 2 1

11
+

−  and the ratio of the homothety is a1 . ■

6.3. Corollary. The set T H∪  is a non-commutative subgroup of the direct 
similarity group DS under the composition of mappings. 

Proof. The proof is directly implied by Definition 6.1 and Theorems 4.2, 5.6 and 
6.2. ■

6.4. Theorem. Any two homotheties and their composition, if it is not transla-
tion, have collinear centers. 

Proof. а) Let
S z a z b a1 1 1 1 0 1( ) , \ { , }= + ∈R  and S z a z b a2 2 2 2 0 1( ) , \ { , }= + ∈R

be two homotheties with centers C1  and C2 , whose affixes are c b
a1 1
1

1
= −  and c b

a2 1
2

2
= − , 

respectively, and also let the composition 
S S z a a z a b b2 1 1 2 2 1 2( )( ) = + +  

be homothety with center C, whose affix is a b b
a a

2 1 2

1 21
+

− . Then,

c c
c c

b
a

a b b
a a

b
a

a b b
a a

a a a2

1

2

2

2 1 2

1 2

1

1

2 1 2

1 2

1 2 21 1

1 1

1
−
−

−
− +

−

−
− +

−

−= = −−a2

 
is real number, and thereby Corollary 1.4, the points C1 , C2  and C are collinear. ■

6.5. Theorem. The line (p) under a direct similarity S z az b( ) = +  is mapped to a 
parallel line ( ')p  if and only if the direct similarity is either homothety or translation. 

Proof. If the line (p) has complex gradient η, then its image ( ')p  under the direct 
similarity S z az b( ) = +  has complex gradient η a

a
.The straight lines (p) and ( ')p  are 

parallel if and only if η ηa
a
= , i.e. if and only if a a= , or in other words if and only if  

a∈R . Hence, the direct similarity S z az b( ) = +  maps the line (p) to a parallel line ( ')p  
if and only if the direct similarity is either a homothety or a translation. ■

6.6. Let | |z c R− =1 1  and | |z c R− =2 2  be the equations of circles ( )K1  and 
( )K2 , respectively. 

If R R1 2≠ , then the mapping S :C C→  defined by 

 			   w S z zR
R

R c R c
R= = + −

( ) 2

1

1 2 2 1

1
				    (1)

is a homothety with ratio R
R

2

1
 and center R c R c

R R
1 2 2 1

1 2

−
− . Since (1), we obtain the following 

expression for z 
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z R w R c R c
R= − +1 1 2 2 1

2  
and if we substitute it into the ( )K1  circle equation, we get the following equation

R w R c R c
R c R1 1 2 2 1

2
1 1

− + − = ,

which in fact is equivalent to the ( )K2  circle equation. 
If R R1 2= , the mapping (1) is translation for the vector c c2 1−  and furthermore 

it maps ( )K1  onto ( )K2 .
Analogously, the mapping S :C C→  defined by 

 			   w S z zR
R

R c R c
R= = − + +

( ) 2

1

1 2 2 1

1
				    (2)

is homothety with ratio − R
R

2

1
 and center R c R c

R R
1 2 2 1

1 2

+
+ , and furthermore it maps ( )K1  onto  

( )K2 .
The above statement implies the validity of the following Theorem. 

Theorem. Any two circles are homotethic, i.e. there exists a homotethy which 
maps one of the circles to the other one. ■

6.7. Example. Let B and C be arbitrary distinct points on a given circle, such that 
they are not diametrically opposite and let the tangents to the given circle at these points 
intersect at point A. Let P be an arbitrary point on the circle. Let A B1 1, ,  C1  be the feet 
of the perpendiculars from P to the lines BC, CA, AB, respectively. 

Hence, PA PB PC1
2

1 1= ⋅ . Prove it!

Solution. Without loss of generality we may assume that the given circle is the 
unit circle, and 1 is the affix of P (why?). 

Let b and c be the affixes of the points B and C, respectively. According to Remark 
3.12 e) and d) it follows, that the affixes of the points A and A1  are the following 

a bc
b c= +
2  and a b c bc

1
1

2
= + + − ,

respectively. In order to determine the affix b1  of the point B1  we will use the fact that the 
point B1  is on the line AC and furthermore that PB1  is perpendicular to AC. So,

b c
a c

b c
a c

1 1−
−

−
−

=  and b
a c

b
a c

1 11 1−
−

−
−

= .

By substituting the expression for a in the last two equations, and after reducing, we get 
the following system:

b b c c

b b c c
1 1

2

1 1
2 2

2

1

+ =

− = −







therefore b c c
1

1 2
2

2
= + − . Analogously, c b b

1
1 2

2

2
= + − . Due to this,
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PA a bc b c b c

b c

1
2

1
2 1

4
2 1

2
2 1

2
2

1 1

1 1 1 1

1 1

= − = − − + = − ⋅ −

= − ⋅ −

| | | | | | | |

| | | | == ⋅PB PC1 1. 

6.8. According to Theorem 5.5 and Definition 4.11, the direct similarity which 
is neither identity nor translation, has exactly one fixed point, and such fixed point is the 
center of the direct similarity. The line (p): z z c= +η  is called to be a fixed line for the 
direct similarity S if S p p( ) = , i.e. if the direct similarity maps (p) to itself. The circle 
(K): | |z c R− =  is called to be a fixed circle for the direct similarity S if S K K( ) = . 

6.9. Theorem 4.5 implies that the image of the circle (K): | |z c R− =  under the 
direct similarity w S z az b= = +( )  is the circle ( ')K : | ( ) | | |z ac b R a− + = ⋅ . So, the circle 
(K) is fixed under the direct similarity if and only if | |a =1  and c b

a= −1 , i.e. if and only if 
S is a motion which is not a translation and the center of the such motion coincides with 
the center of the circle.

So, we proved the following theorem.

Theorem. а) The direct similarity has a fixed circle if and only if the direct 
similarity is a motion which is not translation. 

b) The The only fixed circles under a motion which is not translation, are the 
circles centered at the center of the motion. ■

6.10. Theorem 4.4 implies that the image of the line (p): z z c= +η  under the 
direct similarity w S z az b= = +( )  is the line ( ')p : 

w w b ac ba
a

a
a

= ( ) + + −η η .

Therefore, the line (p) is fixed under the direct similarity S if and only if 
a
a
η η=  and b ac b ca

a
+ − =η ,

i.e. if and only if a∈R  and
b ac b c+ − =η .

The already stated assertion implies that the line (p): z z c= +η   is a fixed line 
under the direct similarity if and only if a =1  and b b= η  or a ≠1  and b b c

2 2
= +η , i.e. if 

and only if either S is translation and the line (p) is parallel to the translation vector or S 
is a homothety and the line (p) passes through its center. 

Thus, we proved the following theorem.

Theorem. A fixed line under a direct similarity exists if and only if the direct 
similarity is: 

а) translation – the fixed line is each line parallel to the translation vector,
б) homothety – the fixed line is each line which passes through its center. ■
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6.11. Remark. The proof of Theorem 6.6 implies that two concentric circles 
have one and only one center of similarity which coincides 
with the center of the circles (figure 3), and non-concentric 
circles have either one or two centers of similarity, depending 
on either their radii are congruent or not, respectively. In case 
when the radii of non-concentric circles are not congruent, the 
center of similarity of homothety (1) is said to be an outer 
center of similarity, and the center of homothety (2) is said to 
be an inner center of similarity (figure 4). 

	 6.12. Remark. By Theorem 6.5, each homothety an arbitrary line maps to a par-
allel line. This statement enables the center of similarity of a homoethety to be construct-

ed in case where we have non-concen-
tric circles ( )K1  and ( )K2 . Through 
the center S1  we draw a diameter AB of 
the circle ( )K1  and through the center 
S2  we draw a radius  S C2  parallel to 
the diameter AB (figure 4). If R R1 2≠ , 
then the lines AC and BC meet the line 
S S1 2  at points O1  and O2 , which are 

an outer and an inner center of the considered homotheties, respectively. If R R1 2= , then 
AC is parallel to S S1 2 , and the lines BC and S S1 2  intersect at the inner center of similar-
ity. 

For the common tangent (t) to the circles ( )K1  and ( )K2 , we get:
1.	 If R R1 2= , then (t) is parallel to S S1 2 , and
2.	 If R R1 2≠ , then (t) passes through one of the centers of similarity (why?). 

So, if R R1 2≠ , then in order to construct the common tangents to ( )K1  and 
( )K2 , we should firstly determine their centers of similarity and then draw 
the tangents to one of the circles. 

6.13. Consider the circles ( ), , ,K ii =1 2 3  given by the following equations 
| | , , , ,z c R ii i− = =1 2 3  

respectively, R Ri j≠ , for i j≠ , and their centers are not collinear (figure 5). The proof 
of Theorem 6.6 implies, that 

R c R c
R R

R c R c
R R

1 2 2 1

1 2

2 3 3 2

2 3

−
−

−
−,  and R c R c

R R
1 3 3 1

1 3

−
−

are the affixes of the homothety centers S S12 23,  and S13 , where ( )K1  is mapped to 
( )K2 , ( )K2  to ( )K3 , and ( )K1  to ( )K3 , respectively. Further,

Figure 3

Figure 4
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R c R c
R R

R c R c
R R

R c R c
R R

R c R c
R R

1 3 3 1
1 3

1 2 2 1
1 2

2 3 3 2
2 3

1 2 2 1
1 2

−
−

−
−

−
−

−
−

−

−
== ∈−

−
R R R
R R R

1 2 3

2 1 3

( )
( )

R .

So, by corollary 1.4, the points 
S S12 23,  and S13  are collinear. 
Analogously, the following can 
be proven: 

-	 the points S S S12 23 13, ' , '  
are collinear

-	 the points S S S' , ' ,12 23 13  
are collinear 

-	 the points S S S' , , '12 23 13  
are collinear. 

Hence, we proved the following 
theorem. 

Theorem. If the centers of the circles ( ), , ,K ii =1 2 3 , whose radii are not 
congruent, are non-collinear, then the centers of homothety S S S12 23 13, , , S S S' , ' , '12 23 13  
are on four lines, so that each line consists of exactly three of themy. ■

6.14. Example. Construct a circle which passes through a given point and touches 
two different given lines. 

Solution. Let (a) 
and (b) be given lines and 
A be a given point. We will 
consider only the case where 
the lines (a) and (b) intersect, 
and the point A is on neither 
one of the lines (a) and (b). A 
is also not on the bisector of 
the angle formed by the lines 
(a) and (b) (as shown in fig-
ure 6). The other cases are left as exercises.

Let S a b= ∩( ) ( )  and let K(O,r) be the required circle. Since (a) and (b) are outer 
tangents to the circle (K), it is true that the center O of the circle is on the bisector (s) of 
the angle formed by the lines (a) and (b), (we consider the angle for which A is an inner 
point). If Η is a homothety with center S and arbitrary ratio of homothety, then  Η( ) ,a a=  
Η( )b b=  and Η( )K K=  is a circle which touches the lines (a) and (b). So, if we want to 
construct the circle (K), we must firstly construct an arbitrary circle ( )K  which touches 

Figure 5

Figure 6
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the lines (a) and (b). Let A1  and A2  be the points where the circle ( )K  meets the line 
SA. If Η1  and Η2  are homotheties with center S and ratio of homotheties OA OA: 1  
and OA OA: 2 , respectively, then Η1 1( )A A=  and Η2 2( )A A= . Therefore, the circles 
Η1( ) 'K K=  and Η2( ) ''K K=  pass through the point А ���������������������    and touch the lines (a) and (b). 
Their centers are Η1( ) 'O O=  and Η2( ) ''O O= , respectively. Due to this, it is necessary 
to draw parallel lines to the lines OA1  ����and OA2 . The points where these parallel lines 
intersect the line (s), are actually the points O '  ����and O '' . 

According to the previous considerations we conclude that the given problem has 
two solutions.■ 

7.	 INDIRECT SIMILARITY

7.1. Definition. The mapping S :C C→  ���������� defined by
 		  S z az b a b a( ) , , ,= + ∈ ≠C 0 				    (1)

is said to be indirect similarity. In our further discussion the set of indirect similarities 
will be denoted by IS. 

7.2. Theorem. ������������������������  The indirect similarity S :C C→  ���������������������������������     defined as (1) is bijection. Its 
inverse mapping S− →1 :C C  ��������������  is defined by 

 			   S z z a b a
a

b
a

− = − ∈ ≠1 1 0( ) , , ,C , 		  (2)

and furthermore S− ∈1 IS . 

Proof. If S z S z( ) ( )1 2= , ����then
az b az b1 2+ = + ,

therefore z z1 2= , i.e. S is an injection. If w∈C , then z w b
a

= −  satisfies 

S z S a b ww b
a

w b
a( ) = ( ) = + =− −

 
i.e. S is a surjection. So, S is a bijection. 

The mapping S z z
a

b
a1

1( ) = −  is an indirect similarity and furthermore the fol-

lowing holds true S S z S S z z1 1( ) ( )( ) = ( ) = , i.e. S S− = ∈1
1 IS . ■

7.3. Theorem. The composition of two indirect similarities is also direct similarity, 
and the composition of a direct and an indirect similarity is indirect similarity. 

Proof. If S S1 2, ∈ IS , then the following holds true
S z az b a b a1 0( ) , , ,= + ∈ ≠C  and S z cz d c d c2 0( ) , , ,= + ∈ ≠C .
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Thus, 
S S z S cz d a cz d b ac z ad b1 2 1( ) ( ) ( ) ( ) ( ),( ) = + = + + = + +  

where ac ad b ac, ,+ ∈ ≠C 0 , i.e. S S1 2 ∈DS . 
So, the composition of two indirect similarities is a direct similarity. 
If S1∈DS  and S2 ∈ IS , then 

S z az b a b a1 0( ) , , ,= + ∈ ≠C  and S z cz d c d c2 0( ) , , ,= + ∈ ≠C .
Hence, 

S S z S cz d a cz d b ac z ad b1 2 1( ) ( ) ( ) ( ) ( ),( ) = + = + + = + +  
where ac ad b ac, ,+ ∈ ≠C 0 , i.e. S S1 2 ∈ IS . Analogously, S S2 1 ∈ IS . 

So, the composition of a direct and an indirect similarity is indirect similarity.  ■

7.4. Both the direct and indirect similarities are commonly said to be similarities. 
In our further discussion the set of the similarities will be denoted by S. With direct 
checking, the associative law for similarities with respect to composition of mappings can 
be proved. The above stated assertion and Theorems 4.2, 7.2 and 7.3 imply the validity 
of the following Theorem. 

Theorem. The set of the similarities S is non-commutative group under the 
composition of mappings. ■ 

7.5. Theorem. Each indirect similarity is exactly determined by two pairs of 
corresponding points. 

Proof. Let S be an arbitrary indirect similarity such that S z w( )1 1=  and 
S z w( )2 2= . So, S z az b( ) ,= +  where a b a, ,∈ ≠C 0  are coefficients that should be 
determined. According to Theorem 7.2 each indirect similarity is a bijection, and therefore 
z z1 2≠  implies w w1 2≠ . By substituting in S z az b( ) = + , we get the following system 
of equations

 				  
w az b

w az b
1 1

2 2

= +

= +






					     (3)

By solving the system (3) with respect to a and b, we get

a w w
z z

= −
−

1 2

1 2
, b z w z w

z z
= −

−
1 2 2 1

1 2
 and a ≠ 0 ,

i.e. the ratios of the indirect similarity are completely determined by two pairs of 
corresponding points z S z1 1, ( )( )  and z S z2 2, ( )( ) . ■

7.6. Theorem. The image of a line (p) under indirect similarity is the line ( ')p . 

Proof. Let S z az b a b a1 0( ) , , ,= + ∈ ≠C  be an indirect similarity and  
(p):  z z c= +η  be a given line. Hence, z w b

a
= −  and by substituting into the line equation 
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of (p), we get that line (p) is mapped to the line ( ')p  with the following line equation 

w w b aca
a

ab
a

= ( ) + − −( )η η η . ■

7.7. Theorem. The image of a circle (K) under an indirect similarity is the circle 
( ')K . 

Proof. Let S z az b a b a1 0( ) , , ,= + ∈ ≠C  be an indirect similarity and  
(K): | |z c R− =  be a given circle. Hence, z w b

a
= −  and by substituting into the circle 

equation of (K), we get that the circle (K) is mapped to the circle ( ')K  with the following 
circle equation 

| ( ) | | |w b ac R a− + = ⋅ . ■

7.8. Theorem. If A, B are arbitrary distinct points and A B', '  are their images, 
respectively, under the indirect similarity (1) and if a rei= ϕ , then A B r AB' ' = . 
Furthermore, if α and α1  are the directed angles between the real axis and the lines AB 
and A B' ' , respectively, then α α ϕ+ =1 .

Proof. Let z z w w1 2 1 2, , ,  be affixes of the points A, B, A B', ' , respectively. The 
following equalities are satisfied, 

z z AB ei
2 1− = ⋅ α  and w w A B ei

2 1
1− = ⋅' ' α ,

where α and α1  are the angles formed by the real axis and the vectors AB
 

 and A B' '
 

, 
respectively. Thereby w az b1 1= +  and w az b2 2= + , we get the following equation

w w a z z2 1 2 1− = −( ) ,
i.e. 

A B e r AB ei i' ' ( )⋅ = ⋅ −α ϕ α1 ,
which implies that A B r AB' ' =  and α α ϕ+ =1 . ■

7.9. Definition. Two forms are indirect similar if there exists an indirect similarity 
so that under that similarity one of the forms is mapped to the other one. 

The real number r given in the previous theorem is called to be the ratio of the 
indirect similarity (1). 

7.10. Corollary. If ABC and A B C' ' '  are indirect similar triangles, then 
A B A C AB AC' ' : ' ' :=  and ∠ = −∠A B C ABC' ' ' . 

Proof. The proof is directly implicated by Theorem 7.8. ■

7.11. Theorem. Let z z z1 2 3, , ,  w w w1 2 3, ,  be affixes of the points A B C A B C, , , ', ', '
A B C A B C, , , ', ', ', respectively. The triangles ABC and A B C' ' '  are indirectly similar if and only 

if the following holds true
			   z w w z w w z w w1 2 3 2 3 1 3 1 2 0( ) ( ) ( )− + − + − = . 		  (4)
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Proof. The triangles ABC and A B C' ' '  are indirectly similar if and only if there 
exists an indirect similarity like (1) such that the following holds true

w az bi i= + ,  for i =1 2 3, , .
By the last equations we obtain the following 

w w a z z1 2 1 2− = −( )  and w w a z z1 3 1 3− = −( ) .
After dividing and reducing the last two equations we get: 

w w
w w

z z
z z

1 2

1 3

1 2

1 3

−
−

−
−

= ,

which is equivalent to (4). ■

7.12. Example. Let ABCD be a given rectangle and M and N be the midpoints of 
the sides AD and BC, respectively. Let P be a point on the extension of DC through D and 
Q is the intersection point of the lines PM and AC. Prove that ∠ =∠QMN MNP . 

Solution. Let the origin coincides with the point 
N and B x C x( ), ( ),−  B x C x( ), ( ),−  D x iy A x iy( ), ( )+ − + D x iy A x iy( ), ( )+ − + , P x iz( )+   
(figure 7). Hence, M(iy) and the equation of the line PM is 
z x ip iy z x ip iy ixy( ) ( )− + − + − − =2 0 , i.e. 

 		  z z x ip iy
x ip iy

ixy
x ip iy− − =+ −

− + − +
2 0 . 		  (*)

Let S iy
2( )  be the intersection of the lines MN and AC. 

Then AC coincides to AS, thus the equation of AC is 

z x z x ixyiy iy+( ) − −( ) − =
2 2

0 , i.e. 

 		  z z x iy
x iy

ixy
x iy− − =−

+ +
2
2

2
2

0 . 			  (**)

Since Q AC PM= ∩ , by utilizing the identities (*) and (**) we 
find the affix of Q to be the following

q ixy
y p

yp
y p= ++ +2 2

, i.e. q ixy
y p

yp
y p= −+ +2 2

.

Further, if K denotes the projection of the point Q on the x-axis, then its affix is  
k xy

y p= +2
. In order to prove the statement, we should only prove that the triangle CPN is 

indirectly similar to the triangle KQN. Therefore by Theorem 7.11 it is sufficient to check 
the validity of the following equality 

x ip x
x

ixy
y p

yp
y p

xy
y p

xy
y p

+ −
−

+ −

−
= + + +

+
0 0

2 2 2

2

,

which is obviously satisfied. ■

7.13. Definition. An indirect similarity with ratio | |a =1  is called to be an 
indirect isometry. The motions and the indirect isometries are called to be isometries. 

Figure 7
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In our further discussion the set of the direct isometries will be denoted by II, 
and the set of the isometries by I. The already stated assertion implies the validity of the 
following Theorem. 

Theorem. The set I of the isomeries with the composition of mappings is a non-
commutative group. ■

7.14. Theorem. The indirect similarity is involutory if and only if it is a reflec-
tion.

Proof. Let the indirect similarity S :C C→  be involutory. Hence, S z S z( ) ( )= −1 ,  
for each z∈C , and therefore 

az b z
a

b
a

+ = −1  , for each z∈C .

The latter implies | |a =1  and b
b

a= − . Thus, the equation z az b= +  is a line equation. 
Let us consider the point z and its image w S z= ( ) . We have w az b= + , and according to 
Example 1.9 the points are symmetric with respect to the line z az b= + , i.e. S :C C→  
is a reflection. 

Conversely, it is enough to apply Example 1.9 directly. ■

7.15. The point z is fixed point of the indirect similarity (1) if and only if  
z az b= + . Hence, z az b= +  and applying the previous equation we get 

			   z aa ab b( )1− = +  . 				    (5)
There are three possibilities:
1)	 If aa ≠1 , then (1) is not an isometry and it has only one fixed point z, 

z ab b
aa

= +
−1

.

2)	 If aa =1  and ab b+ ≠ 0 , then (1) is an indirect isometry, but it is not a 
reflection and there are no fixed points. 

3)	 If aa =1  and ab b+ = 0 , then | |a =1  and b
b

a= − . By the proof of Theorem 
7.13 we deduce that (1) is a reflection. Furthermore, z az b= +  implies that 
the point z is on the line of reflection. 

The above statement implies the validity of the following Theorem. 

Theorem. The indirect similarity which is not an isometry has a unique fixed 
point  z ab b

aa
= +

−1
. If the indirect isometry is not a reflection, then there are no fixed points. 

If the indirect isometry is a reflection, then the only fixed points are points on the line of 
reflection. ■
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7.16. Definition. If the indirect similarity (1) is not an isometry, then the fixed 

point ab b
aa
+

−1
 is called to be a center of the indirect similarity. 

7.17. Definition. The line (p): z z c= +η  is called to be a fixed line under the 
indirect similarity (1) if S p p( ) = , i.e. if the indirect similarity maps the line (p) to itself. 
The circle (K): | |z c R− =  is called to be a fixed circle under the indirect similarity (1) 
if S K K( ) = . 

7.18. Theorem. а) If the indirect similarity (1) is a reflection, then the line of 
reflection and its perpendicular lines are the only fixed lines under (1). 

b) If the indirect similarity (1) is a reflection, then only the circles with center on 
the line of reflection are fixed circles under (1). 

Proof. а) Let (1) be a reflection, (p): z az b= +  be the line of reflection, | |a =1 ,  
b
b

a= −  and (q): z z c= +η  be an arbitrary line. Hence w az b= + . We obtain z w b
a

= − . 
Now, substituting in the equation of (q) we get 

w b
a

w b
a c− −= +η  

i.e.
w w ba

a
b
a

c
a

= + + −
η η η

.

The line (q) is fixed line under the reflection (1) if and only if 
a
aη

η=  and b
a

c
a

b c
η η

+ − = .

Since a
aη

η=  and | |a =1 , we have η = ±a . Furthermore, if η = a , then 
b
a

c
a

b c
η η

+ − =

implies that b c= . If η = −a , then the equation 
b
a

c
a

b c
η η

+ − =  

is satisfied for each c∈C  and ( ) ( )q p⊥ . 
b) Let (1) be a reflection with a line of reflection (p): z az b= + , | |a =1 , b

b
a= −  

and let (K): | |z c R− =   be an arbitrary circle. Since w az b= + , we obtain z w b
a

= − . By 
substituting in the equation of the circle (K), we get | ( ) |w b ac R− + = . The circle (K) is 
fixed under the reflection (1) if and only if c ac b= + , or in other words if and only if its 
center is on the line of reflection. ■

7.19. Example. Construct a circle which passes through two distinct given points 
and touches a given line.  
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Solution. Let the points A, B and the line (c) be given. Obviously, if A and B are in 
different semi-planes with respect to the line (c) or both are on the line (c), then the given 
problem has no solution. If A c∈ ( )  and B c∉ ( ) , then the problem has a unique solution. 

The center O of the required circle will be the 
intersection of the bisector of the segment AB 
and the line (p), which passes through A and 
is perpendicular to (c). If the points A and B 
are in the same semi-plane with respect to 
the line (c) and AB is parallel to (c), then the 
given problem has two solutions. The one is 
the circle which passes through the points A, 
B and M, where M is the intersection of the 
bisector of the segment AB and the line (c). 
The other one is the line AB (figure 8). 

Let the points A and B be in the same 
semi-plane with respect to the line (c) and the 
line AB be not parallel to the line (c) (figure 9). 
Since, the required circle K(O,R) passes 
through the points A and B, its center will 
be on the bisector (l) of the segment AB. Let 
σl  be a reflection with a line of reflection (l). 
By the previous theorem, σl K K( ) = . Since 
the line (c) is tangent to the circle K(O,R), 
Corollary 7.10 implies that σl c c( ) '=  is 
tangent to K(O,R) . If the lines (c) and ( ')c  
are not parallel, then the problem can be 
transformed to Example 6.14. 

If the lines (c) and ( ')c  are parallel, 
then the point A is between them. Let d be 
the distance between the lines (c) and ( ')c . 
The circle K A d,

2( )  meets the bisector (s) in 
points O1  and O2 . So, the required circles are  
K O d

1 1 2
,( )  and K O d

2 2 2
,( ) , (figure 10). ■

7.20. It is naturally to wonder, if there are any fixed lines under an indirect 
similarity, which is not a reflection, i.e. | |a ≠1 . 

According to Theorem 7.6, the image of the line (p): z z c= +η  under the indirect 
similarity (1) is the line ( ')p  with equation 

w w b aca
a

ab
a

= ( ) + − −( )η η η .

The lines (p) and ( ')p  coincide if and only if 
a
a
η η=  and b ac cab

a
− − =η η .

Figure 8

Figure 9

Figure 10
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Reducing the last two equalities, we get 

η2 2

2= =a
a

a
a| |

, i.e. η1 = a
a| |

, η2 = − a
a| |

and 

c ba b a
a a1 1

= −
+

| |

( | |)
, c ba b a

a a2 1
= +

−
| |

( | |)
,

respectively. Thus, the indirect similarity which is not an isometry has two fixed lines 
( )p1  and ( )p2  such that 

( )p1 : z za
a

ba b a
a a

= + −
+| |

| |

( | |)1
 and ( )p2 : z za

a
ba b a
a a

= − + +
−| |

| |

( | |)1
. 

According to Corollary 1.8. А b) the lines   and   are perpendicular. 
Since

a
a

ab b
aa

ba b a
a a

a
a

ba b
a

ba b a
a| |

| |

( | |) | | | |

| |

( |
+

−
−
+

+
−

−
+( ) + = +

1 1 1 12 aa

a ba b ba b a a
a a

ba baa
a a

b

|)

| |( ) ( | |)( | |)

( | | )

( | | )

=

= =

+ + − −
−

+
−

1

1

1

2

2
++
−

ba
a1 2| |  

we get that the center b ba
a
+
−1 2| |

 of the indirect similarity (1), which is not an isometry, is on 

the line ( )p1 . Analogously, 

− ( ) + = − ++
−

+
−

+
−

+a
a

ab b
aa

ba b a
a a

a
a

ba b
a

ba b a
a| |

| |

( | |) | | | |

| |

(1 1 1 12 −−

− + + + +
−

+
−

=

=

| |)

| |( ) ( | |)( | |)

( | | )

( | |

a

a ba b ba b a a
a a

ba baa
a a

1

1

1

2

2)) | |
= +

−
b ba

a1 2  
i.e. the center b ba

a
+
−1 2| |

 of the indirect similarity (1), which is not an isometry, is on the line  
( )p2 . 

Thus, we proved the following theorem. 

Theorem. The indirect similarity (1), which is not isometry, has such two 
perpendicular fixed lines that pass through the center of similarity. ■

7.21. Definition Let (1) be an indirect similarity, which is not isometry. The lines   
( )p1  and ( )p2  with equations

z za
a

ba b a
a a

= + −
+| |

| |

( | |)1
 and z za

a
ba b a
a a

= − + +
−| |

| |

( | |)1
,

respectively, are called to be lines of the indirect similarity (1). 
Clearly, by Theorem 7.19 the lines of the indirect similarity are the only fixed 

lines under indirect similarity which is not an isometry. 
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8.	 INVERSION

8.1. Let m∈R , m > 0  and a∈C  and let I a a: \ { } \{ }C C→  be a mapping 
defined by
 				    I z a m

z a
( ) = +

−
. 				    (1)

i) If I z I z( ) ( )1 2= , then 
a am

z a
m

z a
+ = +

− −1 2  
implies z z1 2= , i.e. I is an injection. 

ii) For w a∈C \ { } , there exists such z a m
w a

= +
−

 that I z w( ) = , i.e. I is a surjec-
tion.

Now, i) and ii) imply that I is a bijection. 

Definition. The mapping
I a a: \ { } \{ }C C→  

defined by (1) is called to be an inversion with center a and radius m . 

8.2. The point z is fixed point under the inversion (1) if and only if the following 
equality is satisfied

z a m
z a

= +
−

,

or in other words, if and only if 
| |z a m− = .

Thus we proved the following theorem.

Theorem. The point z is fixed point under the inversion (1) if and only if z is on 
the circle | |z a m− = . ■

8.3. Definition. The circle ( )K0 : | |z a m− = , is called to be the inversion 
circle of (1). 

8.4. Theorem. The inversion is involutory mapping. 

Proof. Let an inversion be defined by (1). Thus, for each z∈C  the following 
holds true 

I I z I a a z E zm
z a

m
a am

z a
( ) ( )( ) = +( ) = + = =

− + −−  
i.e. I E2 =  and since I is a bijection, then I I= −1 , i.e. the inversion is involutory. ■ 

8.5. Let O be the center of  inversion  (1), A  be an arbitrary point in the plane, 
such that A differs from O, and Ι( ) 'A A= . Let a, z and z* be the affixes of the points O, 
A and A ' , respectively. Thus, it holds true 

z a a a z am
z a

m
z a

m
z a

* ( )
| |

− = + − = = −
− − − 2  .
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The latter implies 
arg( * ) arg( )z a z a− = −  and | * | | |z a z a m− ⋅ − = . 

Thus, we have proved the following theorem. 

Theorem. а) Under inversion each point A, distinct from O (the center of the 
inversion (1)), is mapped to (inverts to) a point A '  which is on the ray OA→  and 
 				    OA OA m⋅ =' . 					     (2)

b) The points A and A ' , with affixes z and z*, respectively, are inverse with respect 
to the circle | |z a m− =  if and only if 

( * )( )z a z a m− − = . ■

8.6. Theorem. Each inner point of a referent circle inverts to an outer point of the 
referent circle, and vice versa. 

Proof. If A is an inner point of the referent circle K O m0 ,( )  and Ι( ) 'A A= , 
then OA m<  and according to (2) it follows, that OA m' > . So, A '  is an outer point 
for the circle K0 . 

The converse statement can be proved analogously. ■

8.7. Let us explain the construction of A '  as an inverse of A under the inversion 
(1). Let A , with affix z0 , be an inner point of a referent circle K O m0 ,( ) . Therefore, 
| |z a m0

2− < . The equation of the line OA is 

z a z az a
z a

− = −−
−

0

0
( ) .

Through the point A we draw a line (q) perpendicular to OA. The equation of that line is 
the following 

z z z zz a
z a

− = − −−
−0 0

0

0
( ) .

The points of intersection of the line (q) and the circle K O m0 ,( )  are obtained as 
solutions of the following system 

z z z z

z a m

z a
z a

− = − −

− =







−
−0 0

0

0
( )

| |  
One of them is the point T with affix 

z z i z am z a
z a1 0 0

0
2

0
= + −− −

−
| |

| |
( ) .

Through the point T we draw a tangent (t) to 
the circle K O m0 ,( ) . The equation of that 
tangent is Figure 11
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z z z zz a
z a

− = − −−
−1

1

1
1( ) .

Further, we determine the point B, as intersection point of the tangent (t) and the line OA. 
Its affix is 

z a m
z a

= +
−0

.
Thus, Ι( ) 'A B A= = . 

Let A be an outer point for the circle K O m0 ,( ) . According to Theorem 8.4 the 
following holds true Ι2 = E . The latter implies the construction Ι( ) 'A A= . We draw the 
tangent (t) to the circle K0  through the A. The orthogonal projection of T, the point where 
the tangent (t) touches K0 , on the line OA is the point Ι( ) 'A A= .

8.8. Let c and b, be the affixes of the points A and B respectively. The affixes of 
their images under the inversion (1) are the following: 

c a m
c a

' = +
−

 and b a m
b a

' = +
−

,

respectively. The complex gradients of the 
lines OA, OB, AB, OA ' , OB '  and A B' '  
are

η η η

η η η η

η

1 2 3

4 1 5 2

6

= = =

= =

=

−
−

−
−

−
−

− −

c a
c a

b a
b a

b c
b c

b a c a b

, , ,

, ,

( )( )(

 

−−
− − −

c
b a c a b c

)

( )( )( )  

respectively. Since η
η

η
η

2

3

6

4
=  and η

η
η
η

1

3

6

5
=  

and also theorem 1.7, we deduce, that 
(figure 12): 

∠ =∠OBA B A O' '  and 
∠ =∠OAB A B O' ' .

Thus, we have proved the following theorem. 

Theorem. Let O be the center of the inversion (1), А ����and B be arbitrary points 
and A '  and B '  are their images under the inversion (1). Then, 

∠ =∠OBA B A O' '  and ∠ =∠OAB A B O' ' . ■

8.9. Under the inversion (1) the line ( )p  with a self-conjugate equation 
Az Bz C C B A+ + = ∈ =0, ,R  

is mapped to the curve with equation 
 				    Aa Ba C Am

w a
Bm
w a+ + + + =

− − 0 . 		   	  (3)

Two following cases are possible:

Figure 12
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i) If Aa Ba C+ + = 0 , i.e. the line passes through the inversion center, then (3) 
implies that the image of (p) is the line 

Aw Bw C C B A+ + = ∈ =0, ,R .
The latter is actually the equation of the line (p). 

ii) If Aa Ba C+ + ≠ 0 , i.e. the line does not pass through the inversion center, 
then (3) implies that the image of (p) is the  circle 

ww A w A w B+ + + =1 1 1 0 ,
where

A a B aaBm
Aa Ba C

Aam Bma
Aa Ba C1 1= − = −

+ +
+

+ +
, .

By direct checking we get aa A a A a B+ + + =1 1 1 0 . The latter means that the image of a 
line (p) which does not pass through the center of the inversion (1) is circle which passes 
through the inversion center. 
The above stated assertion implies the validity of the following Theorem. 

Theorem. Each line through the inversion center O is mapped to itself, and each 
line, which does not pass through O is mapped to a circle through O. ■

8.10. If the line (p) does not pass through the inversion center O, then the proof of 
Theorem 8.9 implies that the center O1  of the circle, in which (p) maps to, has affix 

z A a Bm
Aa Ba C1 1= − = −

+ +
. 

Let P be the orthogonal projection of the O on the line 
(p). According to 2.3 the affix of the point P is 

z Aa Ba C
A0 2

= − − ,  
Therefore the affix of its image P P' ( )= Ι  is 

z a Bm
Aa Ba C

* = −
+ +
2 .

Since,

 
z a Bm

Aa Ba C
a z*+

+ +
= − =

2 1

we deduce that O1  is the midpoint of OP ' . 
The above stated assertion defines 

the construction of the circle Ι(p) if the 
line (p) does not pass through the center 
O of an inversion Ι. Firstly, we determine 
the orthogonal projection P of the inversion 
center O on the line (p). Thus we get the point 
P P' ( )= Ι , (figures 13 and 14). Further, we 
construct a circle with diameter OP ' . So, 
we get the circle Ι(p). 

Figure 13

Figure 14
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8.11. Example. Let (p) and (q) be given lines. Is there an inversion Ι such that 
Ι( )p q= ? 

Solution. According to Theorem 8.9 such an inversion exists if and only if the 
lines (p) and (q) coincide. Further, for each inversion with center on (p) and arbitrary 
radius the following holds true Ι( )p q= . ■

8.12. Theorem. If a circle K1  passes through the center O of the inversion Ι, then 
Ι( )K1  is a line which does not pass through О. 

Proof. ���������������������������������������������       ��������  ������ The proof is directly implicated by Theorems 8.4 and 8.9. ■

8.13. Example. Given are a line (p) and a circle K O R1 1( , ) . Is there an inversion 
Ι such that Ι( )p K= 1? 

Solution. According to Theorem 8.9 if the required inversion Ι exists, then its 
center O is on the circle K O R1 1( , )  and the line OO1  is perpendicular to the line (p). 

The following three cases are possible: 
i) The line (p) and the circle K1  meet at points M and N. Starting from the center 

O1  of the circle K1  we draw a line (q) perpendicular to (p) and find the points О ����and O '  
as intersections of (q) and K1 . The discussion in 8.10, implies that the inversions Ι and Ι1  
determined by the circles K O OM( , )  and K O O M'( ', ' )  satisfy the given conditions. 

ii) The line (p)  touches the circle K1  at the point M. Starting from the center 
O1  of the circle K1  we draw a line (q) perpendicular to (p). The point O is found as 
intersection of (q) and K1 . The discussion in 8.10 implies that the inversion Ι determined 
by the circles K O OM( , )  satisfies the given conditions. 

iii) The line (p) and the circle K1  
have no common points. Starting from the 
center O1  ��������������  of the circle K1   ���������������   we draw a line 
(q) perpendicular to (p). The point P is 
determined as intersection of (q) and (p). 
The points O and P '  are the intersection 
of (q) and K1  such that  O1 , P ' , P are 
positioned in that order (figure 15). We 
construct a semicircle with diameter OP, 
through P '  we draw a line perpendicular 
to OP and determine the point T as their 
intersection. The discussion in 8.10 implies 
that the inversion Ι determined by the circle 
K O OT( , )  satisfies the given conditions. ■Figure 15
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8.14. Now, we have to consider the image of the circle K O R1 1( , )  under inversion 
Ι when K1  does not pass through the inversion center O. 

Let  K1 : | |z b R− =  be a given circle, which does not pass through the center of 
the inversion (1), i.e. | |a b R− ≠ . By substituting 

z a m
w a

= +
−  

in the equation of the circle K1 , and after equivalent transformations we get that the 
circle K1  inverts to a circle Ι( )K1  with equation 

ww A w A w B+ + + =1 1 1 0 ,
where

A a B am b a
R b a

m ma b a ma b a
R b a1 1

2
2 2

2

2 2= − = −−
− −

+ − + −
− −

( )

| |

( ) ( )

| |
, | |  

.
With direct checking we get 

aa A a A a B+ + + ≠1 1 1 0 .
The above implies the validity of the following Theorem. 

Theorem. If a circle K1  does not pass through the center O of the inversion Ι, 
then Ι( )K1  is circle such that it does not pass through O. ■

8.15. If the circle K1  does not pass through the inversion center O, then the proof 
of Theorem 8.14 implies that the center O '1  of the circle Ι( )K1  has affix

z A a m b a
R b a1 1 2 2= − = − −

− −
( )

| |
.

The affixes z a1,  a and b of the points  O '1 , O and O1  satisfy 
z a
b a

m
b a R

1
2 2

−
− − −

= ∈
| |

R .

According to Corollary 1.4, the above means that they are collinear. But, the line OO1  
is fixed under  the inversion Ι. Therefore according to the discussion in 8.5 we conclude 
that the diameter of K1  which is on this line inverts to a diameter of Ι( )K1  which is on 
OO1 . 

The above stated assertion implies the following construction of the circle  
Ι( )K1 , when K1  does not pass through 
the center O of the inversion Ι. We draw a 
straight line  OO1 , we find the points M, N 
(points where K1  meets OO1 ) and further we 
obtain M M' ( )= Ι  and N N' ( )= Ι . After that, 
we construct a circle with diameter M N' ' . 
Hence, we get the circle Ι( )K1  (figure 16). 

Figure 16



76

8.16. Example. Given are the circles K O R1 1( , )  and K O R2 2( , ) . Is there an 
inversion Ι so that Ι( )K K1 2= ? 

Solution. Let the equations of the circles K1  and K2  be | |z c R− =1 1  and 
| |z c R− =2 2 , respectively. We will consider five cases: 

i) If c c1 2= , i.e. the circles are concentric, then the mapping 

Ι( )z c R R
z c

= +
−1
1 2

1  
is inversion, so that Ι( )K K1 2= . Clearly, c1  is the center of such the inversion and R R1 2  
is the radius. The referent circle can be constructed if we draw an arbitrary half-line and 
use the fact that the common points of the circles K1  and K2  are inverse. 

ii) If c c1 2≠ , R R1 2≠  and | | | |c c R R1 2 1 2− ≠ − , then the mapping 

Ι( )

( ) | |

( )z c R c R
R R z

R R R R c c

R R
c R c

= +−
− −

− − −

−
−

1 2 2 1

2 1

1 2 2 1
2

1 2
2

2 1
2

1 2 2RR
R R

1
2 1−  

is such an inversion, that Ι( )K K1 2= . We notice that the inversion center coincides with 
the outer center of homothety, given by 6.6, which can be constructed as explained in 
Remark 6.7. When constructing the inversion circle, it is necessary to follow the procedure 
given in Example 8.13. 

iii) If c c1 2≠ , R R1 2≠  and | | | |c c R R1 2 1 2− = − , then the mapping

Ι( )

( ) | |

( )z c R c R
R R z

R R R R c c

R R
c R c

= ++
+ −

+ − −

+
+

1 2 2 1

2 1

1 2 2 1
2

1 2
2

2 1
2

1 2 2RR
R R

1
2 1+  

is such an inversion, that Ι( )K K1 2= . We notice that the inversion center coincides with 
the inner center of homothety, given by 6.6, which can be constructed as explained in 
Remark 6.7. When constructing the inversion circle, it is necessary to follow the procedure 
given in Example 8.13. 

iv) If c c1 2≠ , R R R1 2= =  and | |c c R1 2 2− < , then the mapping 

Ι( )
| | |

z c c R

z

c c

c c
= ++ −

−

−

+
1 2

2 1 2
2

4

1 2
2

2
 

is such an inversion, that Ι( )K K1 2= . We notice that the inversion center is the midpoint 
of segment O O1 2 , and the common points of the circles K1  and K2  are fixed. So, we 
can construct the referent circle. 

v) If c c1 2≠ , R R R1 2= =  and | |c c R1 2 2− > , then Theorem 8.4 implies that the 
required inversion does not exist.■

8.17. Consider the following theorem. 

Theorem. If two lines, a line and a circle, or two circles have no common points, 
they are tangent, or they have two common points, then their images under the inversion 
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Ι have no common points, they are tangent, or they have two common points, respec-
tively. ■

8.18. Definition. Let the line (p) and the circle K meet in the points M and N. We 
draw a tangent (t) to the circle K through M. Let α be the smaller angle between (p) and 
(t). The angle α is called to be angle of intersection of the circle K and the line (p).

Let the circles K and K* meet in the points M and N. We draw tangents ( )t1  and 
( )t2  to the circles K and K* through M. Let α be the smaller angle between the lines ( )t1  
and ( )t2 . The angle α is called to be angle of intersection of the circles K and K*.

We say that the circle K meets the circle K* orthogonally if the measure of the 
angle of intersection of K and K* is π

2
. K and K* are said to be orthogonal.

Theorem 8.2 proves that the fixed points under the inversion Ι with circle K0  
are the points on K0  only. This means that the circle   is fixed under Ι. Theorem 8.8 
implies that there does not exist any line which is fixed under Ι, but each line through the 
inversion center is fixed under Ι. 

The question now is whether there exist 
any other circle (different from K0 ), which is fixed 
under the inversion Ι. By Theorem 8.6, it follows 
that if there exists such a circle K z b R1 : | |− = ,  
then it is mandatory to meet the reference circle 
K0 . Therefore, it must have two fixed points. One 
of them is denoted by T with affix z1  (figure 17). 
Now, the proof of Theorem 8.14 implies that 
K z b R1 : | |− =  is fixed under inversion (1) if and 
only if 

b a m b a
R b a

= − −
− −
( )

| |2 2 ,

i.e. if and only if m R b a+ = −2 2| | . The last equality is equivalent to z a
z a

z b
z b

1

1

1

1

−
−

−
−

= − . Due 

to this, K1  is fixed under inversion (1) if and only if the tangents to K1  and K0  through 
T are perpendicular to each other.

So, we proved the following Theorem. 

Theorem. A circle K1 , different from K0  is fixed under inversion Ι if and only 
if K1  intersects K0  orthogonally. ■

8.19. Theorem. An angle between two lines, a line and a circle or between two 
circles is preserved under inversions. 

Proof. Let an inversion be given by (1) and let (p) and (q) be two lines with the 
following self-conjugate equations:

Az Bz C B A C+ + = = ∈0, , R  and A z B z C B A C1 1 1 1 1 10+ + = = ∈, , R
respectively. The following two cases are possible: 

Figure 17
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i) Let the lines (p) and (q) pass through the inversion center. It follows by the 
proof of Theorem 8.9, that (p) and (q) are fixed, and therefore the angle between them is 
preserved. 

ii) Let one of the lines, for example (p), passe through the inversion center and 
let the other one (q) does not pass through the inversion center. The proof of Theorem 8.9 
implies that the line (p) is fixed, and the line (q) inverts to the circle 

Ι( ) :
| |

| |
q z a B m

A a B a C
m A

A a B a C
− + =

+ + + +
1

1 1 1

1

1 1 1
.

	 Let the line (p) and the circle Ι(q) meet at the inversion center with affix a. The 
equation of the tangent ( )q1  to the circle Ι(q) through a is the following

A z B z C aA aB1 1 1 1 1 0+ + − − = .
We check directly that the complex gradients η η η1 2 3, ,  of the lines (p), (q), ( )q1  satisfy  
η
η

η
η

1

2

1

3
= . Further, the statement given in this Theorem is implied by Theorem 1.7. 

iii) The lines (p) and (q) do not pass through the center of inversion. The proof 
of Theorem 8.9 implies that the inverses of the lines (p) and (q) are circles with the 
following equations

z a Bm
Aa Ba C

m A
Aa Ba C

− + =
+ + + +

| |

| |
 and z a B m

A a B a C
m A

A a B a C
− + =

+ + + +
1

1 1 1

1

1 1 1

| |

| |
, 

respectively. The circles Ι(p) and Ι(q) meet in the inversion center with affix е a. The 
equations of the tangents ( )p1  and ( )q1  to the circles Ι(p) and Ι(q) through a are the 
following

Az Bz C aA aB+ + − − = 0  and A z B z C aA aB1 1 1 1 1 0+ + − − = ,
respectively. The complex gradients η η η η1 2 3 4, , ,  of the lines (p), (q), ( )p1 , ( )q1  

satisfy the following equality ηη
η
η

1

2

3

4
= . Due to this, Theorem 1.7 implies the validity of 

the given Theorem. 
The remaining part of Theorem is proved analogously, using Theorems 8.9 8.12 

and 8.14. ■

	 8.20. Example. Let the line (p) and the circle 
K(O,R) have no common points. Prove that there exists 
an inversion Ι such that Ι(p) and Ι(K) are two concentric 
circles. 

Solution. Through the center O of the circle K we 
draw a line (q) perpendicular to (p) and let P p q= ∩( ) ( ) ,  
(figure18). Let T be an arbitrary point on the circle K, so 
that T is not on (q), and S be one of the common points of 
the circle K P PT1( , )  and the line (q). 

Figure 18
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We define an inversion Ι with center S and arbitrary radius. According to Theorems 
8.9 and 8.14, the inverses (images) Ι(p) and Ι(K) are circles. We have to determine their 
centers.

The line (p) meets orthogonally the line (q) and the circle K1 . Due to this, 
Theorem 8.19 implies that Ι(p) meets orthogonally Ι(q) and Ι( )K1 . Theorem 8.9 implies 
that Ι( )q q= , and Theorem 8.12 implies that Ι( )K1  is a line. Since, the lines (q) and 
Ι( )K1  meet the circle Ι(p) orthogonally, we get that its center O ''  is a common point of 
these two lines. Hence, O q K'' ( ) ( )= ∩ Ι 1 . 

The circle K meets orthogonally the line (q) and the circle K1 . Due to this, 
Theorem 8.19 implies that Ι(K) meets Ι(q) and Ι( )K1  orthogonally. This means that Ι(K) 
meets (q) and Ι( )K1  orthogonally. Hence, the center O '  of the circle Ι(K) is obtained as  
O q K' ( ) ( )= ∩ Ι 1 . 

Finally, O O' ''≡ , i.e. Ι(p) and Ι(K) are two concentric circles.■

8.21. We solve the problem below by applying homothety (Example 7.18). In 
this section we will give the solution by applying inversion.  

Example. Construct a circle which passes through two given points and touches 
a given line. 

Solution. Let points A and B and a 
line c be given. We suppose that the points 
A and B lie in the same semi-plane with 
respect to the line c and that the line AB is 
not parallel to the line c. 

Let Ι be an inversion with center A 

and radius AB2 . Hence, Ι( )B B=  and Ι(c) 
is the circle K1  which passes through A. 
The required circle K passes through the 
point А, ����������therefore Ι(K) is a line which passes 
through B and touches the circle K1 , i.e. 
Ι(K) is the tangent to the circle K1  through 
the point B. The already stated assertion 
implies the following construction (figure 19): 

-	 We define an inversion Ι with center A and radius AB2 . 
-	 We construct the circle K c1 = Ι( ) .
-	 Through B we draw the tangents ( ')t  and ( '')t  to the circle  . 
-	 The required circles are K t' ( ')= Ι  and K t'' ( '')= Ι . ■

Figure 19
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9.	 MÖBIUS TRANSFORMATION

9.1������������� . Definition. The mapping  
 			   S z ad bcaz b

cz d( ) ,= − ≠+
+ 0 , 				    (1)

where a, b, c, d are complex numbers, is called to be a Möbius transformation. 
The Möbius transformation is determined for each z d

c≠ − ∞, . If c = 0 , then 
the Möbius transformation is determined for each finite z. If c ≠ 0 , then we extend the 
definition by 
 			   S d

c−( ) = ∞  and S a
c( )∞ = . 				    (2)

If c = 0 , then it is sufficient to let S( )∞ = ∞ . ������Thus, S : C C∞ ∞→  is a well defined 
mapping. 

Note that, the condition ad bc− ≠ 0  is equivalent to S(z) is an injection (show 
it!). 

9.2. Example. Determine the image of the unit circle | |z =1  under the 
transformation 

w u u vz v
vz

= ∈−
−1

, , C  and | |v ≠1 .

Solution. Since
ww uu z z vz zv vv

vvz z zv zv
= − − +

+ − +1  
for zz =1  we get ww uu= . That means, that the unit circle is mapped to the circle 
| | | |w u= . ■

9.3. Theorem. The Möbius transformation defined by (1) and (2) is a bijection 
from C∞  to C∞ . 

Proof. Let S be a Möbius transformation defined by (1) and (2). 
If w∈C  and w a

c≠ , then since w az b
cz d= +
+  we get z dw b

cw a= −
− + . So, when w a

c≠ ∞,  
there exists z dw b

cw a= −
− +  such that S z w( ) = . 

If w = ∞ , then S d
c−( ) = ∞ , and if w a

c= , then S a
c( )∞ = . Due to that, S is 

surjection. But, we already noted that S is injection, and therefore S is bijection. 
The above stated implies that the mapping S− ∞ ∞→1 : C C  defined by 

S z dz b
cz a

− −
− +=1( ) ,  if z a

c≠  and by S d
c

− ∞ = −1( ) , S a
c

− ( ) = ∞1

is well defined, and furthermore 
S S z S S z z− −( ) = ( ) =1 1( ) ( )  holds.

Finally, S−1  is the �������������������  inverse mapping to S and since 
ad b c ad bc− − − = − ≠( )( ) 0  

we get that it is Möbius transformation. ■
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9.4. Theorem. The family M of all Möbius transformations under the  composi-
tion of mapping is a group. 

Proof. Let
S z ad bcaz b

cz d1 0( ) ,= − ≠+
+  and S z eh fgez f

gz h2 0( ) ,= − ≠+
+

be two Möbius transformations. Then,

S z S S z S S z S ez f
gz h

a b

c

ez f
gz h
ez f
gz

( ) ( )( ) ( )= = ( ) = ( ) =+
+

++
+
+
+

1 2 1 2 1

hh d
ae gb z af bh
ce gd z cf dh+
+ + +
+ + += ( ) ( )

( ) ( )  
and

( )( ) ( )( ) ( )( )ae gb cf dh af bh ce gd ad vc eh fg+ + − + + = − − ≠ 0 .
So, the mapping S S S= 1 2  is Möbius transformation, i.e. ( , )M   is a groupoid. 

а) Associativity. For all S S S1 2 3, , ∈M  we have
 			   S S S S S S1 2 3 1 2 3   ( ) ( )= .				    (3)
Namely, both sides of (3) are equal to the Möbius transformation S S S z1 2 3( )( )( ) . 
Therefore, ( , )M   is a semi-group. 

b) Existence of identity. Obviously, the identity mapping E z z( ) =  is Möbius 
transformation, that E z z( ) =  is an identity in the semi-group ( , )M  . 

c) �����������������������������������������������������         Thereby Theorem 9.3, it is true that each element of ( , )M   �����������������  has its inverse. 
So, statements a), b) and c) imply that ( , )M   is group. ■

9.5. Remark. The group ( , )M   is a non-abelian. 
Indeed, for

S z z a a1 0( ) ,= + ≠  and S z z2
1( ) =

the following holds true
S S z az1 2

1( )( ) = +  and S S z z a2 1
1( )( ) = + , i.e. S S S S1 2 2 1 ≠ .

9.6. Theorem. If S is Möbius transformation, then S is a composition of elemen-
tary transformations in a  complex plane. 

Proof. Let
S z ad bcaz b

cz d( ) ,= − ≠+
+ 0  

be an arbitrary Möbius transformation. 
If c = 0 , then

S z za
d

b
d( ) = + .

Therefore, if 
S z za

d1( ) =  and S z z b
d2( ) = +

we get S S S= 2 1 , i.e. S is a composition of elementary transformations. 
If c ≠ 0 , then for 

S z z S z S z z S z zd
c z

bc ad
c

a
c1 2

1
3 4( ) , ( ) , ( ) , ( )= + = = = +−  

we get S S S S S= 4 3 2 1   . Thus, also in this case S is composition of elementary trans-
formations. ■
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9.7. Example. Let w i z
i z= −
+  be a given transformation. Determine the image of: 

а) the real axis, 				   b) the circle | |z =1
under the given transformation. 

Solution. The given transformation can be rewritten as w i
i z= − + +1 2 . 

а) The equation of the real axis is z z− = 0 , and under the transformation 
w z i1 = + , it is mapped to the line w w i1 1 2− = . Further, the line w w i1 1 2− =  is mapped 
to the circle w i

2 2
1
2

+ =  under w w2
1
1

= , and under the transformation w iw3 22=  the 

circle w i
2 2

1
2

+ =  is mapped to the circle | |w3 1 1− = . Finally, under the transformation 

w w= − +1 3  the circle | |w3 1 1− =  is mapped to the circle | |w =1 . The above means that 
the given transformation maps the real axis to the circle | |w =1 . 

b) The translation w z i1 = +  maps the circle | |z =1  to the circle | |w i1 1− = .
Further, the transformation w w2

1
1

=  maps the circle | |w i1 1− =  to the line 
w w i2 2− = − , and the transformation w iw3 22=  maps the line w w i2 2− = −  to the line  
w w3 3 2+ = . Finally, the transformation w w= − +1 3  maps the line w w3 3 2+ =  to the 
line w w+ = 0 . The above  means that the given Möbius transformation maps the circle 
| |z =1  to the line w w+ = 0 . ■

9.8. Consider the Möbius transformation (1). The mapping S z d
c z d

c
1

1( ) = − +
+

 

is an inversion with respect to the circle z d
c+ =1, and the mapping S z pz q2( ) = + ,  

where 
p qbc ad

c
bc ad

c
d
c

a
c= = +− −

2 2,  
is an indirect similarity. Further, since

 

S S z S d
c z

bc ad
c

d
c z

bc ad
c

d
cd

c
d
c

2 1 2
1 1

2 2( ) ( )( ) = − + = ⋅ − +




+ +

+
−

+
− aa

c

bc ad
c

d
c z

bc ad
c

d
c

a
c

bc ad
c

d
c

bc ad
c

d
c

= ⋅ − +




+ +

= − +

−
+

−

− −

2 2

2

1

22
1d

c
bc ad

c cz d
a
c

bc ad a cz d
c cz d

az b
cz d

+ +

= =

−
+

− + +
+

+
+

( )
( )

,

it follows the validity of the following Theorem. 

Theorem. The Möbius transformation (1) can be expressed as composition 
S S S= 2 1  of the inversion S z d

c z d
c

1
1( ) = − +
+

 with respect to the circle z d
c+ =1 and 

the indirect similarity S z pz q2( ) = + , where 
p qbc ad

c
bc ad

c
d
c

a
c= = +− −

2 2, . ■
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10.	 GEOMETRIC PROPERTIES OF A
MÖBIUS TRANSFORMATION

10.1. Theorem��. Arbitrary Möbius transformation maps each circle of C∞  to a 
circle of C∞ . 

Proof. According to Theorem 9.6, each Möbius transformation is a composition of 
elementary transformations in the complex plane and moreover the elementary transforma-
tion S z z2

1( ) =  given in the proof of Theorem 9.6 is composition of the inversion I z
z

( ) = 1  

and the reflection S z z( ) = . Then, the validity of the Theorem����������������������������      is ������������������������   implied directly by the 
previously proved properties of the elementary transformations in the complex plane. ■

10.2. Applying the properties of elementary transformations in a complex plane, 
analogously to the proof of Theorem 8.19, can be proved the following very important 
Theorem. 

Theorem. Arbitrary Möbius transformation preserves the angle between circles 
in the extended complex plane C∞ . ■

10.3. Definition. Consider the circle K(O,R). The points M and M* are said to be 
symmetric with respect to the circle K, if Ι( ) *M M= , where Ι is an inversion determined 
by the circle K. 

10.4. Before discussing the properties of the symmetric points with respect to 
a circle, and related to the Möbius transformation we will give the following Lemma, 
which characterizes the symmetric points M and M* ���������������������������    with respect to the circle K(O,R). 

Lemma. The points M and M* are symmetric with respect to the circle K(O,R) if 
and only if each circle γ through these points meets orthogonally the circle K(O,R). 

Proof. Let the points M and M* be symmetric with respect to the circle K(O,R) 
(figure 20). 

Consider the circle γ through the 
points M and M* and K P∩ =γ { } . According 
to Theorem 8.14, the circle γ under inversion Ι, 
determined by the circle K, is mapped to a circle 
γ1 , which passes through the points M, M* and 
P. Therefore, the circles γ and γ1  coincide, i.e. 
the circle γ is fixed under the inversion Ι. Now, 
the validity of the given Theorem is directly 
implicated by Theorem 8.18. 

Conversely, let each circle γ, which 
passes through the points M and M*, meets Figure 20
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orthogonally the circle K (figure 20). The Theorem 8.18 implies that the circle γ is fixed 
under the inversion Ι, determined by the circle K. Then the line (in the extended complex 
plane viewed as a circle), which passes through the points M and M*, also  meets the 
circle K orthogonally i.e. the line passes through the center O of the circle K. But, γ 
is fixed under the inversion Ι, and therefore Ι( ) *M M= , i.e. the points M and M* are 
symmetric with respect to the circle K. ■

10.5. Theorem. A Möbius transformation maps a pair of symmetric points with 
respect to a circle, to a pair of symmetric points with respect to the image of that circle. 

Proof. Let the points z and z* be symmetric with respect to the circle K and let 
w S z= ( )  be an arbitrary Möbius transformation. According to Theorem 10.1 the image 
K ~  of the circle K is a circle. We have to prove that the points w and w* are symmetric 
with respect to K ~ . According to Lemma 10.4 it is sufficient to prove that each circle  
γ~ , which passes through the points w and w*, crosses K ~  at right angle. 

The inverse image of the circle γ~  under the Möbius transformation w S z= ( )  
is a circle which passes through the points z and z*. This circle crosses the circle K at 
right angle������������� . �����������Therefore, γ~  crosses K ~  at right angle, because Theorem 10.2 states that 
the Möbius transformation preserves the angle between intersecting circles at any point 
in the extended complex plane. ■

10.6. Further, we will prove one important Theorem about Möbius transforma-
tion.

Theorem. A Möbius transformation S :C C∞ ∞→   maps the unit circle | |z ≤1  
to the unit circle | |w ≤1  if and only if 

 		  w S z e v vi z v
vz

= = ∈ ≤ < <−
−

( ) , , , | |ϕ ϕ π
1

0 2 1C . 		  (1)

Proof. Let z z∈ ≤C, | | 1 . Likewise, the following holds true: 

| | | |

| |
w ww e ei z v

vz
i z v

zv
z v

vz
2

1 1 1

2

2 1= = = ≤−
−

− −
−

−
−

ϕ ϕ ,

i.e. the Möbius transformation (1) maps the unit circle | |z ≤1  to the unit circle | |w ≤1 . 
Conversely, let S :C C∞ ∞→  be Möbius transformation such that it maps the 

unit circle | |z ≤1  to the unit circle | |w ≤1  and let us suppose that there exists such a 
point v v v, , | |≠ <0 1  that is mapped to the point w = 0 . The point symmetric to null 
with respect to the circle | |w =1  is the  infinity distanced point. According to Theorem 
10.5 it follows that w = ∞  when z

v
= 1 , and therefore the required Möbius transformation 

is the following
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w k z v
z

v

= −
−1

,

where k is a constant. The latter  can be transformed and rewritten as it follows 
 				    w kv kz v

vz
z v

vz
= − =−

−
−
−1 1

' . 				    (2)

Since z z= 1  when | |z =1  we get 

| | | | | |1 1− = − = − = −vz v z v z vz .

But, the circle | |z =1  is mapped to the circle | |w =1 , and therefore | ' |k =1, i.e.  
k ei' = ϕ , for some 0 2≤ <ϕ π , i.e. the formula (2) transforms to (1). Clearly, likewise the 
formula (2) holds true when v = 0 . ■

10.7. Definition. A point z is said to be a fixed point under the Möbius transfor-
mation 

S z az b
cz d( ) = +
+  if z S z= ( ) , i.e. z az b

cz d= +
+ .

Clearly, z is a fixed point under the Möbius transformation  if S z az b
cz d( ) = +
+

		   		  cz d a z b2 0+ − − =( ) . 				    (3)
If c ≠ 0 , then the fixed points are the following:

 				    z a d a d bc
c1 2

4
2

2

/
( )= − ± − + . 			   (4)

If c = 0 , then the fixed points are z b
d a1 = −  and z2 = ∞ . Further, if b c= = 0  and a d= ,  

then the Möbius transformation is the identity mapping S z z( ) =  and therefore each point 
of C∞  is  fixed point. 

By (4), if ( )a d bc− + =2 4 0 , then z z1 2= . The last means that we have a re-
peated or a double fixed point i.e. the two fixed points coincide. When c = 0 , the condition 
for repeated points implies that a d= , and in this case we get that z = ∞  is a double fixed 
point for the  translation S z z b

d( ) = + . 

10.8. Comment. When defining the Möbius transformation  
S z az b

cz d( ) = +
+ , ad bc− ≠ 0 ,

four complex numbers a, b, c and dare used. But, one of c or d differs from 0, and therefore 
if we divide both, the numerator and the denominator, by this number, we get that the 
Möbius transformation can be expressed using three coefficients. Therefore, it is naturally 
to expect that the images of three given points determine a unique Möbius transformation.
The following Theorem confirms our assumtion..
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10.9. Theorem. There is a unique Möbius transformation S, such that the points
z z z z z i ji j1 2 3, , ( , )≠ ≠  

under such transformation, are mapped to the points w w w w w i ji j1 2 3, , ( , )≠ ≠ , respec-
tively. 

Proof. Existence. The mappings S1  and S2  defined by 

 		  S z z z z z
z z z z1

1 3 2

2 3 1
( )

( )( )
( )( )

= − −
− −  and S w w w w w

w w w w1
1 3 2

2 3 1
( )

( )( )
( )( )

= − −
− − , 		  (5)

map the points z z z1 2 3, ,  in the plane z and the points w w w1 2 3, ,  in the plane w, to the 
points 0, ∞, 1 in the plane ς , respectively. Finally, the mapping

 				    S S S= −
2

1
1 					     (6)

which is determinedfrom the plane z to the plane w, S z w( ) = , as 

 			   z z
z z

z z
z z

w w
w w

w w
w w

−
−

−
−

−
−

−
−⋅ = ⋅1

2

3 2

3 1

1

2

3 2

3 1
				    (7)

is Möbius transformation, which maps the points z z z1 2 3, ,  to the points w w w1 2 3, , , 
respectively. 

Uniqueness. Let λ λ, ( ) , , ,z w ii i= =1 2 3  be an arbitrary Möbius transformation. 
Consider the mapping µ λ= −S S2 1

1
  , where S1  and S2  are mappings defined by (5). 

Clearly, µ is  Möbius transformation and the points 0, ∞, 1 are fixed points under this 
transformation. Since  the condition µ( )∞ = ∞  it follows that µ ς ας β( ) = + . The condi-
tion µ( )0 0=  implies that β = 0 , and the condition µ( )1 1=  implies that α =1 . Therefore,  
µ ς ς( ) = , i.e. 

S S E2 1
1

 λ − = .
Since ( , )M   is a group, we get λ = −S S2

1
1 , i.e. λ = S . ■

10.10. Remark. In the equality (7),  each of the points zi  and wi  appears 
exactly twice, once in the numerator and once in the denominator. It is easy to prove 
that the equality holds true when one of the points zi  or wi  (either one zi  �������� and one wi ) 
is the infinity point. Then, it is necessary the numerator and denominator, where this point 
appears, to be replaced by 1. For example, if z w2 1= = ∞ , then the formula (7) can be 
transformed and rewritten as 

z z
z z w w

w w−
− −

−⋅ = ⋅1

3 1 2

3 2
1

1 1
1

.

Therefore, Theorem 10.9 holds true for any point in the extended complex plane C∞ . 

10.1������������� 1. Corollary. It exists a unique Möbius transformation S, such that it maps 
the points z z z z z z i ji j1 2 3 4, , , ( , )≠ ≠  to the points w w w w1 2 3 4, , ,  ( , )w w i ji j≠ ≠  if 
and only if 
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 			   z z
z z

z z
z z

w w
w w

w w
w w

4 1

4 2

3 2

3 1

4 1

4 2

3 2

3 1

−
−

−
−

−
−

−
−⋅ = ⋅ . 			   (7’)

Proof. Let the equality (7’) be satisfied and let S be such the Möbius transformation 
that maps the points z z z z z i ji j1 2 3, , ( , )≠ ≠  to the points w w w1 2 3, ,  ( , )w w i ji j≠ ≠ , 
respectively. Then the Möbius transformation is defined by (7), and therefore 

z z
z z

z z
z z

S z w
S z w

w w
w w

4 1

4 2

3 2

3 1

4 1

4 2

3 2

3 1

−
−

−
−

−
−

−
−⋅ = ⋅( )

( )
.

Thus, 
S z w
S z w

w w
w w

w w
w w

w w
w w

( )
( )

4 1

4 2

3 2

3 1

4 1

4 2

3 2

3 1

−
−

−
−

−
−

−
−⋅ = ⋅ ,

i.e. S z w( )4 4= . 
If there exists a Möbius transformation with the stated properties, then that 

transformation maps the points z z z z z i ji j1 2 3, , ( , )≠ ≠  to the points w w w1 2 3, ,  
( , )w w i ji j≠ ≠ , and therefore the Möbius transformation is as (7)������ , and S z w( )4 4= . So, 
(7’) holds true. ■

10.12. Remark. Theorems 10.9 and 10.1 imply that each circle K in C∞  can be 
mapped to a circle K* in C∞ . It is sufficient  to map any three distinct points of K to any 
three distinct points of K*. 

10.13. Example. Determine the Möbius transformation such that it  maps the 
points − +1 1, ,i i  to the points 

а) 0 2 1, ,i i− ; 				   б) i, ,∞ 1 , 
 respectively. 

Solution. According to Theorem 10.9 and Remark 10.10 the required Möbius 
transformations are 

а) w i z
z i= − +

− − −
2 1
4 1 5

( ) , 			   б) w i z i
z i= + + −
−

( )
( )

1 2 6 3
5

. ■

10.14. Remark. The proof of Theorem 10.9 implies that each  Möbius transfor-
mation S have up to two fixed points z z1 2, , �����������������  i.e. such points z z1 2, , �������� so that S z z( )1 1= ,  
S z z( )2 2= , when S E≠ . The Möbius transformation with two fixed points z z1 2,  is 
determined by 

 			   w z
w z

z z
z zA z z−

−
−
−= ≠ ∞1

2

1

2
1 2, , 				    (8)

or 
 			   w z A z z z− = − = ∞1 1 1 2( ), .				    (9)
The coefficients A and A1  are given by 
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 			   A Az z
z z

w z
w z

w z
w z= ⋅ =−

−
−
−

−
−

3 2

3 1

3 1

3 2

3 1

3 2
, ,				    (10)

and they do not depend on the choice of z3  when w az b
cz d3

3

3
= +

+ . It is easy to express the 

coefficients A and A1  in terms of a, b, c and d, if (10) holds true and we set w b
d3 =   

when  z3 0= . 

10.15. At the end of this section we will provide a proof of the following Theo-
rem. 

Theorem. The set of Möbius transformations F such that  the unit circle | |z ≤1  
they mapped to the unit circle | |w ≤1  is a subgroup of the group of Möbius transforma-
tions. 

Proof. Let S S1 2, ∈F . Then, Theorem 10.6 implies that
S z e ai z a

az1 1
1( ) , | |= <−

−
α  and S z e bi z b

bz2 1
1( ) , | |= <−

−
β ,

therefore, 

S S z ei e ab
e ab

zi

i

ei b a
ei ab

ei b a
ei ab

1 2
1

( ) ( )( ) = − +
+

−

−

+
+

+
+

α β β

β

β
β

β
β




z
,

 
where

e b a
e ab

b ae
ae b

i

i

i

i

β

β

β

β
+
+

+
+

= <
1

1  and ei e ab
e ab

i

i
( )α β β

β
− +

+
=1 .

Applying Theorem 10.6 once again, we get  that S S1 2 ∈F . So, the set F is closed under 
the composition of mappings. 

Let S S S1 2 3, , ∈F . Then S S S1 2 3, , ∈M , therefore 
S S S S S S1 2 3 1 2 3   ( ) ( )=  

i.e. the associative law holds true. 
Letting v = 0  and ϕ = 0  in Theorem 10.6 we get

F ∋ = = ⋅ −
− ⋅

E z z ei z
z

( ) 0 0
1 0

. 

Let S∈F . Then, S z e vi z v
vz

( ) , | |= <−
−

ϕ
1

1 . Consider the transformation

S z e vei z ve

ve z
ii

i1
1

1( ) , | |( ) ( )

( )
= − <− − −

− −
ϕ ϕϕ

ϕ
.

Clearly, S1∈F  and the following holds true 
S S z S S z1 1( ) ( )( ) = ( ) , i.e. S S− = ∈1

1 F . ■
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CHAPTER III 
GEOMETRY OF CIRCLE AND TRIANGLE 

1.	 CENTRAL AND INSCRIBED ANGLES

1.1. Definition. An angle whose vertex coincides with the center of a given circle 
K is called a central angle. 

1.2. Theorem. If two central angles in a same circle are congruent, then their 
corresponding arcs are congruent, too. 

Proof. Without loss of generality, we consider 
K as a unit circle. Let ∠ =∠AOB COD  (figure 1) and 
the affixes of points A, B, C and D be a, b, c and d, 
respectively. Therefore 

b
a

d
c= , i.e. c

a
d
b= .

Since
S a a cc

a( ) = =  and S b b b dc
a

d
b( ) = = =

we get that under the mapping S z zc
a( ) = , which in 

fact is a rotation around ∠ AOC , the point A maps to a 
point C, and B to D. Therefore, the arc AB maps to the arc CD. ■

1.3. Similarly the reverse theorem of theorem 1.2 can be proved. The proof is left 
as an exercise. 

Theorem. If two arcs in a same circle are congruent, then their corresponding 
central angles are congruent, too. ■

1.4. Definition. An angle whose vertex is on a given circle K, and its rays meet 
the circle is called an inscribed angle. 

1.5. Theorem. The size of an inscribed angle is 
half of the size of its corresponding central angle. 

Proof. Without loss of generality, we consider K 
as a unit circle. Let consider the arc AB  where points A 
and B has affixes 1 and eiϕ , ϕ π∈ ( , )0 , respectively. Then,  
∠ =AOB ϕ . Let M be a point of the complementary arc 
of the circle (figure 2), i.e.it has affix eiθ , θ ϕ π∈ ( , )2 . 

Figure 1

Figure 2
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Then,

∠ = =

=

−
−

−

−

−

AMB e e
e

e e e

ie

i i

i

i i i

i
arg arg

ar

( )

sin

( )
ϕ θ

θ

ϕ ϕ θ ϕ

θ
θ1

2

2 2 2

2
2

gg

arg

( )

sin

sin( )

sin

( ) ( )
e e e

i

i

i i i

e

ϕ θ ϕ θ ϕ

θ

ϕ θ ϕ

θ

2 2 2 2 2

2

2 2 2

2

2

− − −
−

−
= == =argeiϕ ϕ2

2  
i.e. ∠ = ∠AMB AOB

2
. ■

1.6. Corollary. �����������������������������������������������������������         All inscribed angles with congruent arcs in a given circle K, are 
congruent. 

Proof. The proof is directly implied by Theorem 1.5. ■

1.7. Corollary (Thales’ Theorem). Each inscribed angle on a diameter of a 
circle is a right angle. 

Proof. The proof is directly implied by Theorem 1.5. ■

1.8. Remark. In paragraph II 8.7 during the construction of the image of an 
arbitrary point under inversion, we have drawn a tangent to a circle at point which is 
out of that circle. The effective construction of the tangent is implied by the Thales’ 
Theorem. 

Let a circle K(O,R) and a point M which 
is outer for the circle K be given. The tangent at 
M to K is constructed with the following proce-
dure (figure 3). 

а) we construct the midpoint O1  of the 
line segment OM, 

b) we construct a circle K O MO1 1 1( , ) , 
c) we find the intersecting points 

K K T T∩ =1 1{ , }  and
d) we draw lines MT and MT1 . 

1.9. The above discussed line segments MT and MT1 , are called tangent segments 
to the circle K(O,R) at point M. The tangent segments satisfy the following Theorem. 

Theorem. Let M be a point out of the circle K(O,R). If MT and MT1  are tangent 
segments drawn at point M to the circle K, then MT MT= 1 . 

Figure 3
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Proof. Without loss of generality we consider K as a unit circle (why?). Let the 
affixes of points T and T1  be t and t1 , respectively. The lines MT and MT1  are tangents, 
and since Remark II 3.13, their equations are 

z t z t+ =2 2  and z t z t+ =1
2

12

and affix of M is m tt
t t= +
2 1

1
. Finally, 

MT m t t ttt
t t

t t t
t t

t t t
t t

tt
t t= − = − = = = − =+

−
+

−
+ +| | |

( ) ( )2 2
1

1

1

1

1

1 1

1

1

1
mm t MT− =1 1| . ■

1.10. Theorem. ��������������������������    The angle between a chord AB and the tangent to the circle (t) 
drawn at one of the points A or B is congruent to the inscribed angle on the chord AB. 

Proof. Without loss of generality we can consider the unit circle K(O,R). Let 
affixes of points A and B be a and b, respectively. The equation of the tangent (t) drawn 
at the point B is as following 

z b z b= − +2 2 ,
And the equation of a line AB is 

z abz a b= − + + .
Therefore, the angle β between line А�B and the tangent (t) 
satisfies the following e i b

a
2 β = . Since the proof of Theorem 

II 1.4, the inscribed angle α satisfies that
e ei b

a
i2 2α β= = ,

So, α β= . ■

2.	 POWER OF A POINT WITH RESPECT TO A CIRCLE

2.1. Let K(O,R) be a given circle and M be an arbitrary point of a plane. Through 
M we draw an arbitrary line (p) which meets the circle K at points A and B. We will prove 
that the product MA MB⋅  does not depend on the choice of the line (p).

If the point M is on a circle K, then M is one of the points А ���or B. Therefore one 
of MA  or MB  is null. So, MA MB⋅ = 0 .

Let point M be out of the circle K (figure 
5) and (t) be one of the tangents to K drawn 
at M, and T be the tangent point. The circle 
K M MT1( , )  orthogonally crosses the circle K, 
therefore K is fixed under the inversion defined 
by the circle K1 . Therefore, from the definition 
of inversion we have that

Figure 4

Figure 5
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MA MB MD MC MO R MO R MO R⋅ = ⋅ = − + = −( )( )
2 2 . 

In this case, since the properties of inversion (Theorem 8.5), it is true that

MA MB MT⋅ =
2

.
Let the point M be an inner point for the circle K and let (p) be an arbitrary line 

which passes through M. Without loss of generality we assume that the center of the 
circle coincides with the origin. Then, if m is an affix of M, the equation of line (p) is 
the following z m z m− = −η( ) , and the equation of the circle is the following zz R= 2 .  
From the equation of (p) we express z , and when we substitute in the equation of the 
circle we obtain a quadratic equation as following 

η ηz m m z R2 2 0+ − − =( )  
whose solutions 

 
z m m m m R
1 2

4

2

2 2

/
( )= − + ± − +η η η

η
are the affixes of the points A and B, points of intersection between the line and the circle. 
Due to this,

MA MB m z m z mm R R MO⋅ = − ⋅ − = − = −| | | | | |1 2
2 2 2

.
The arbitrariness of (p) implies that the product MA MB⋅  does not depend on the choice 
of the line (p) through the point M. 

The already stated implies that the product MA MB⋅  does not depend on the 
choice of the line (p) through M. It depends only on the length of the radius R of a circle 
K and on a distance d MO=  between the point M and the center O of the circle K. The 
value (the real number) d R2 2−  is called as power of the point M with respect to the 
circle K. Clearly, if M is a point on K, then the power is 0, furthermore if M is point 
outside the circle K, then the power is a positive real number, and if M is within the circle 
K, then the power is a negative real number. 

2.2. Definition. Let K O R1 1 1( , )  and K O R2 2 2( , )  be given circles and let Η be 
homothety with center S so that Η( )K K1 2= . If (p) is line such that it passes through S and 
meets the circles K1  and K2  at points P P1 2,  and Q Q1 2,  respectively and if Η( )P Q1 1= ,  
Η( )P Q2 2= , then the points P1  and Q2  ( P2  and Q1 ) are said to be antihomothetic 
(figure 6). 

If the circle K touches the circles 
K1  and K2 , both internally or externally, 
then we shall say K touches K1  and K2  
in a same way, and if it touches one 
internally and the other one externally , 
then we shall say that K touches K1  and 
K2  in a different way. 

Figure 6
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2.3. Lemma. The product of the distances between the center of homothety of 
two circles and two antihomothetic points is a constant value. 

Proof. Let S be external center of a homothety Η of the circles K O R1 1 1( , )  
and K O R2 2 2( , ) , ( R R1 2≠ ) and let points P1  and Q2  ( P2  and Q1 ) be antihomothetic 
(figure 6). Then, the homothety ratio is 

a SQ
SP

SQ
SP

= =1

1

2

2
 

So, 

SP SQ SP SP SP SP aSQ
SP1 2 1 2 1 2

2

2
⋅ = ⋅ ⋅ = ⋅ ⋅ = const  

Thus, SP SP1 2⋅  is a power of the point S with respect to the circle K1 . ■

2.4. Lemma. Let K(O,R) be such a circle that touches the circles K O R1 1 1( , )  and 
K O R2 2 2( , ) . Then, 

а) if K touches K1  and K2  in a same way, then the points where K touches K1  
and K2  are antihomothetic with respect to the external center of similarity S for circles 
K1  and  K2 , 

b) if K touches K1  and K2  in a different way, then the points where K touches 
K1  and K2  are antihomothetic with respect to the internal center of similarity S for 
circles K1  and K2 , 

Proof. b) Let a circle K touches the circles K1  and K2  at points P1  and Q2  in 
a different way, respectively (figure 7) and let the affixes of O O O P, , ,1 2 1  and Q2  be   
c c c p, , ,1 2  and q, respectively. Then the affix of internal center of homothety is 

s R c R c
R R= +
+

1 2 2 1

1 2
.

The points O O P, ,1 1  are collinear and it holds true that O P R1 1 1= , therefore the following 
equalities are satisfied 

p c p cc c
c c

− = −−
−1 1

1

1
( )   

and
( )( )p c p c R− − =1 1 1

2  
By reducing we get 

( )p c Rc c
c c

− = −
−1

2
1
21

1
,

i.e.

( )
( )

| |
p c Rc c

c c
− = −

−1
2

1
21

2

1
2 .

Thus, the affix p of the point P1  is as following 

p c R c Rc c
c c

c c
R R= − = −−

−
−
+1 1 1 1

1

1

1

1| |
.

Analogously, the affix q of point Q2  is as following

Figure 7
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q c R c Rc c
c c

c c
R R= + = +−

−
−
−2 2 2 2

2

2

2

2| |
.

Finally, 
s p
s q

R R R
R R R

−
−

−
+= − ∈1 2

2 1

( )
( )

R ,

i.e. the points S P, 1  and Q2  are collinear. Due to this, the points P1  and Q2  are antiho-
mothetic.

The statement а) can be proved analogously. The details are left to be proven as 
an exercise. ■

2.5. Lemma. Each center of homothety of circles K O R1 1 1( , )  and K O R2 2 2( , )  
has equal power with respect to each circle which touches the circles K1  and K2 . 

Proof. Since Lemma 2.4, if points where K touches the circles K1  and K2  are P1  
and Q2  respectively, then P1  and Q2  are antihomothetic points (figure 23 and figure 24). 
If S is homothety center, then due to Lemma 2.3 the product SP SQ1 2⋅  is a constant 
value, and that is actually the power of a point S with respect to the circle K. ■

2.6. Example. Construct a circle such that it runs through the points A and B and 
touches the line (c). 

Solution. We will consider the most general case when the points A and B are on 
a same semi-plane with respect to the line (c) and furthermore, the lines (c) and AB are 
not parallel to each other (figure 8). 

Figure 8

The power of the point M AB c= ∩ ( )  with respect to the arbitrary circle which 

crosses through the points A and B is MA MB⋅ . If K O AB,
2( )  and if (t) is a tangent to (K) 

drawn at the point M, then MT
2

 is a power of M with respect to (K), and therefore it is 
actually the power of M with respect to the required circle. That means, the points P1  and 
P2  where the line (c) meets the circle ( , )M MT  in fact are points where line (c) meets 
the circles which passes through the points A and B. If ( )p1  and ( )p2  are perpendicular 
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to (c) and P1  and P2  respectively, are foots of perpendicular and if (s) is a bisector of 
the line segment AB, then ( ) ( ) 'p s O1 ∩ =  and ( ) ( ) ''p s O2 ∩ =  are centers of required 
circles. Clearly, the given problem has two solutions. ■ 

3.	 RADICAL AXIS AND RADICAL CENTER 

3.1. ����������������  Let two circles K O R'( ', ')  and K O R''( '', '')  be given. Let’s determine the 
locus Γ such that it has an equal power with respect to the circles ( ')K  and ( '')K . 

Let affixes of the centers O '  and O ''  be c1  and c2 , respectively. Clearly, M ∈Γ  
if and only if 

MO R MO R' ' '' ''
2 2 2 2− = − ,

i.e. if and only if 
| | ' | | ''z c R z c R− − = − −1

2 2
2

2 2 .
The last equality is equivalent to 

z zc c
c c

c c R R
c c

= − +−
−

− + −
−

2 1

2 1

2
2

1
2 2 2

2 1

| | | | ' '' .

Finally, the required locus is a line perpen-
dicular to O O' ''  (figure 9). This line shall be 
called the radical axis of K1  and K2 . 

3.2. Lemma. ��������������������������������������������������������������������             A radical axis of two circles with no common points and also a part 
of a radical axis of two crossing circles (outer for the intersecting circles) is a locus of the 
centres of circles which orthogonally crosses the given circles. 

Proof. ���If K(O,R) orthogonally crosses the circles K O R'( ', ')  ����and K O R''( '', '') , 
then the tangents at O to ( ')K  ����and ( '')K  ��������������������  are congruent, i.e. O ������������������������    has an equal power with 
respect to ( ')K  ����and ( '')K . �������Hence, O ��������������������������     is on the radical axis of ( ')K  ����and ( '')K , figure 10. 

Figure 9

		           a)						      b)
Figure 10

Let K(O,R) be a circle centred at a point on the radical axis of the circles ( ')K  
and ( '')K  ����and 
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R T O T O= =' '' .
Therefore, OT '  ����and OT ''  ����������������  are tangents to ( ')K  ����and ( '')K , ���������������������������   respectively, the circles (K) 
and ( ')K , ����������  and also (K) and ( '')K  ����������������������������     cross at right angle, i.e. (K) orthogonally crosses ( ')K  
and ( '')K . ■

3.3. Definition. ����������� The circle K(O,R) halves the circle K O R'( ', ') , ���� if (K) intersects 
( ')K  ����������������������������������    at two diametric opposite points. 

Let us state that if the circle K(O,R) crosses 
the circle K O R'( ', ')  ���������������������������������    at two diametric opposite points 
A and B (figure 11), ����������������������������     then the power of the point O '  �����with 
respect to the circle K(O,R) implies that 

O C O D O A' '⋅ = 1
2

 
Therefore, when writing d O O= '  �����������  we get ����that

( )( ) 'R d R d R− + = 2 , �����i.e. R R d2 2 2= +' .

3.4. Lemma. The inner part of a radical axis of intersecting circles K O R'( ', ')  
and K O R''( '', '')  is a locus of the centers of circles (K), such that both ( ')K  and ( '')K  
halve (K).

Proof. Clearly, if M is a center of 
circle which is halved by two given circles 
( ')K  and ( '')K , then M must be an inner 
point for circles ( ')K  and ( '')K  (figure 
12), therefore, such a circle exists only if 
( ')K  and ( '')K  intersect each other. The 
comment after definition 3.3 implies that

R R d2 2 2= −' '  and R R d2 2 2= −'' '' ,
thus

R d R d' ' '' ''2 2 2 2− = − ,
i.e. M has the equal power with respect to the both circles ( ')K  and ( '')K , i.е. M is placed 
on the inner part of the radical axis of ( ')K  and ( '')K . ■

3.5. Let be given three circles K O Ri i i( , ) , i =1 2 3, , . We will determine the locus 
of points in a plane which has an equal power with respect to the three given circles. Let 
p12,  p p23 13,   be the radical axis of ( )K1  and ( )K2 , ( )K2  and ( )K3 , ( )K3  and ( )K1 , 

respectively. Hence, if there is any point P with an equal power with respect to the circles   
( )K1 , ( )K2  and ( )K3 , then that point must be on a radical axis ( )p12  and ( )p23 . Two 
cases are possible. 

а) If centers Oi , i =1 2 3, ,  of the circles are not collinear (figure 13), then the 
radical axis ( )p12  and ( )p23  intersect each other. The point P p p= ∩( ) ( )12 23  has an 
equal power with respect to the circles ( )Ki , i =1 2 3, , . Therefore the radical axis ( )p13  

Figure 11

Figure 12
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which passes through the point P, a point with equal power with respect to the circles 
( )Ki , i =1 2 3, , . This point is to be called a radical center of ( )Ki , i =1 2 3, , . 

b) If the centers Oi , i =1 2 3, , ,   of the circles are collinear, then the racial axes are 
parallel, and furthermore each of them is either different or coincide. When the first case 
is satisfied, there is no any point with required property, when the second case is satisfied 
the required locus is a line. 

3.6. The already stated implies 
the effective construction of radical axis 
of two circles. Namely, if circles ( )K1  
and ( )K2  intersect at A and B, then the 
radical axis is a straight line AB (figure 
14), and if circles touch at T, then the 
radical axis is a common tangent to 
( )K1  and ( )K2  at T (figure 15). 

If circles ( )K1  and ( )K2  do not 
intersect, then we construct an arbitrary 
circle ( )K3  such that it intersects both 
( )K1  and ( )K2 . The intersecting point 
of radical axes ( )p13  and ( )p23  is a 
radical center P of the circles ( )Ki , 
i =1 2 3, , , and therefore the radical axis   
is a line which passes through P and is 
perpendicular to O O1 2  (figure 16). 

3.7. Remark. Let us notice that we can discuss about a radical axis of a point and 
a circle, and likewise about a radical axis of two points. Clearly, the radical axis of two 
points A and B is a bisector of the line segment AB. When talking about the radical axis of 
point A and circle ( )K1 , if A K∈ ( )1 , then it is a tangent at the point A, and if A is outside 
the circle, then the radical axis can be constructed by using the radical center of A, ( )K1  

			   Figure 13				    Figure 14

Figure 15

Figure 16
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and a circle ( )K3  such that it passes 
through A and intersects ( )K1  (figure 
17). Namely, the radical axis of A and 
( )K3  in fact is a tangent (t) to ( )K3   at A, 
and the radical axis ( )p13  passes through 
the points of intersection M and N. So, 
the radical center P is an intersection of 
(t) and ( )p13 , and therefore the required 
radical axis of A and ( )K1  is a straight 
line (n) at P, perpendicular to AO1 .

Analogously, we can discuss about the radical center of a point and two circles, 
of two points and a circle and also about radical center of three points. Clearly, the radical 
center of three non-collinear points A, B and C is a center of circle which passes through 
A, B and C. 

3.8. Lemma. If K O Ri i i( , ) , i =1 2 3, ,  ����������������������������������������������      are three not concurrent circles with centers 
which are not collinear, then it exists a unique circle (K) such that either (K) intersects all 
three circles or all three circles halve the circle (K). 

Proof. ����Let P be a radical center of K O Ri i i( , ) , i =1 2 3, , . Then, P is either inside 
or outside of each three circles. When the first case is satisfied the power of the circle 
is −m2  and the circle K(P,m) halves the circles K O Ri i i( , ) , i =1 2 3, , , and when the 
second case is satisfied the power of the circle is m2  and the circle K(P,m) orthogonally 
intersects the circles K O Ri i i( , ) , i =1 2 3, , . ■

3.9. Example. Construct a circle which passes through the points A and B and 
touches ( )K1 . 

Solution. Through the points A and B, we draw an arbitrary circle (K) such that 
(K) meets the circle ( )K1  at C and D (figure 18). 
Then, the radical axis of (K) and ( )K1  is a straight 
line CD, and the radical axis of (K) and the required 
circle (K*) is a line А�B. Thus, the intersection P of 
lines AB and CD, if such point exists, is radical 
center of (K), (K*) and ( )K1 , which implies that 
the radical axis of ( )K1  and (K*) is a tangent to 
( )K1  at P. 

Hence, drawing the tangents ( )t1  and ( )t2  
at P to ( )K1 , we find the points of touching T1  and 
T2  between the required circles and ( )K1 . So, the 
given problem has at most two solutions. ■

Figure 17

Figure 18
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4.	 A PENCIL AND A ������������������  BUNDLE ����������� OF CIRCLES 

4.1. ������������ Let circles K O R1 1 1( , )  and K O R2 2 2( , )  ������������������    be given and let (p) be their radical 
axis. The set of circles such that (p) is radical axis for each two of them ((p) is considered 
as a circle) is said to be a pencil of circles. The straight line (p) is said to be a radical axis 
of the pencil. 

Since 3.1 the centres of each circle of the pencil are on the line O O1 2  which is 
perpendicular to (p)���������������������       and ����������������    is said to be a central line of a pencil. 

4.2. Clearly, each pencil is defined by two circles, but our further discussion will 
imply that pencil of circles is likewise fully defined by a radical axis and a circle. Let 
M be an arbitrary point of a plane. If M is on a radical axis, then it exists a circle which 
passes through M. Let M not �������������������������������������������������������������           be on a radical axis. Likewise in 3.5 we will consider three 
cases:

а) If circles ( )K1  and ( )K2  ������������� intersect at A and B, �����������������������   then the unique circle ( )K0  
passes through the points M, A and B. It is easy to conclude that the circle ( )K0  belongs 
to a pencil of circles determined by the circles ( )K1  and ( )K2 . 

b) If circles ( )K1  and ( )K2  ��������� touch at A, ����������������  then the circle K O OA0( , )  (O is 
intersection of bisector of line segment AM and the central line of the pencil), belongs to 
a pencil of circles determined by ( )K1  and ( )K2 . 

c) Let ( )K1  and ( )K2  ����������������������  have no intersection, m be an affix of M and T ����������� with affix t 
be an arbitrary point on a radical axis. Then, it exists a unique point M1  ���������� with affix

m t m tt o R
m t1
1

2
1
2

2= + −− −
−

| |

| |
( ) .

Since,

TM TM m t t m t t

t o R TO R

t o R
m t

⋅ = − ⋅ + − −

= − − = −

− −
−1

1
2

1
2

1
2

1
2

1
2

2| | ( )

| |

| |

| |

11
2 ,  

the circle K O OM0( , )  (О ������������������������������������������������       is intersection of the bisector of line segment MM1  and the 
central line of a pencil), belongs to a pencil of circles determined by ( )K1  and ( )K2 . 

Thus, we proved the following theorem. 

Theorem. Through each point of a plane passes exactly one and only one circle 
of a given pencil of circles. ■

4.3. ���������������  Let the pencil Π ������������������������    be defined by a radical 
axis (p) and a circle ( )K0 . ���������������������������    Since the proof of Theorem 
4.2, depending on the ����������������������  relationship between �(p) and 
( )K0 , ������������������������������������������      there are three types of pencils. Namely, 

а) If (p) and ( )K0  ������������� intersect at A and B (fig-
ure ����������������������   19), �����������������  then each circle K ���of Π �����������������������  intersects the radical 
axis at A ����and B �����(����the Poncelet points of the pencil������ ) and Figure 19
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vice verse, each circle which passes through A and B ���be-
longs to a pencil Π. �����������������������������������������      Thus, the pencil consists of each circle 
which passes through A and B. �������������������������     So, we will say that the 
pencil Π ��������������������������������������������������          has two basic points or in other words is said to 
be ��a hyperbolic pencil . 

b) ���� If (p) and ( )K0  ��������� touch at A (figure 20), ���������� then each 
circle (K) of Π ����������������������������    touches the radical axis at A and vice verse, 
each circle such that it touches (p) at A ����������� belongs to Π. ������Thus, 
the pencil of circles consists of each circle which touches 
(p) at A. So, we will say that the pencil Π ��������������  has one basic 
point or in other words is said to be ��a parabolic pencil . 

c) ���� If (p) and ( )K0  ����������������������������    have not any sharing points 
(figure �������������������������������     21), ��������������������������    then each other circle of Π ���������������  has no sharing 
points with (p) and furthermore, each two circles of Π ���do 

not have any sharing points. So, we will say that the pencil Π �����������������������������      has no any basic point or in 
other words is said to be ���an elliptic pencil. 

4.4. Lemma. �������������������   The set of circles Π1  (���������������������������������������������        each of them is orthogonal to the circles of 
a pencil Π) �����������������������������     is a pencil of circles������� , too. 

Proof. ����Let K O Ri i i( , ) , i =1 2,  ������� be two 
arbitrary circles of the pencil Π ������������� with radical  
axis (p) and central line �(q), �������� and let 
K O Ri i i' ( ' , ' ) , i =1 2,  ���������������������   be two arbitrary cir-
cles of the set � Π1  (figure 22). �������������  �Since the cir-
cles K O Ri i i' ( ' , ' ) , i =1 2,  ������������������  are orthogonal to 
K O Ri i i( , ) , i =1 2,  �������������� their centres O i' , i =1 2,  
are on a radical axis (p) of K O Ri i i' ( ' , ' ) ,  
i =1 2, . ������������������������������     On the other hand, the points 
O ii , ,=1 2  ����������������������������������     are with equal power with respect 
to K O Ri i i' ( ' , ' ) , i =1 2, , ������ i.e. �(q) �������������  is a radical 

axis of K O Ri i i' ( ' , ' ) , i =1 2, . ����������������������������������������������������������         Now, the statement is implied by the arbitrariness of the 
circles K O Ri i i' ( ' , ' ) , i =1 2, . ■

4.5. Definition. ����������������������������������������       If each circle of the pencil of circles Π �����������������������������    is orthogonal to the pencil � 
Π1 , �����������������  then the pencils Π ����and Π1  ����������������  shall be called conjugate pencil of circles. 

4.6. Lemma. а) �����������������    ������������������������������������������������       If one of two conjugate pencils of circles is elliptic, then the 
other one is hyperbolic, and vice versa. 

b) If one of two conjugate pencils of circles is parabolic, then the other one is 
parabolic, too. 

Figure 20

Figure 21

Figure 22
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Proof. а) Let Π ���������������  be an elliptic 
pencil with radical (p) and central line 
(q) (figure 23). ����������������� The intersection P of 
(p) and �(q) ����������������������������     is outer for each circle of 
the pencil Π, �����������������������������     and therefore it is a centre 
of ( ')K , which belongs to a conjugate 
pencil Π1 . ������Since ( ')K  ������������������  meets the radical 
axis �(q) ��������������  of the pencil Π1  ���at A ����and B, we 
get that the pencil Π1  ��������������� is hyperbolic. 

Conversely, let Π1  be hyperbolic pencil with radical axis �(q) ������������������   and central line (p) 
(figure ������������������������������     23). �������������������������    The circle of the pencil Π1  ����������� centred at P p q= ∩( ) ( )  �����������������������   meets the radical axis 
(q) ���at A and B. If K O R1 1 1( , )  ��������������������������    be an arbitrary circle of Π, ����and T a point of �������������intersection 
between ( )K1  ����and ( ')K , �����then O T O P1 1< , �������������� and therefore ( )K1  has no any intersection 
point with the radical axis (p) ���of Π. ��������������������������    So, the pencil of circles Π ������������� is elliptic. 

b) The statement is directly implied by the Definition of parabolic pencil of 
circles. The details are left as an exercise. ■

4.7. Example. ���������������������������������      Let be given a pencil of circles Π ���������������������    with a radical axis �(p) ������ and a 
circle K O R1 1 1( , ) . �������������������  Construct a circle K(O,R) such that it belongs to the pencil Π ����and 
touches the given circle K O R2 2 2( , ) . 

Solution. ����Let ( )p12  ���������������������������������      be a radical axis of the circles ( )K1  and ( )K2 . ���������� Since the 
required circle (K) belongs to a pencil Π, ��������������������   the radical axis of ( )K1  and (K) �����������������   will be the line 
(p). So, the radical centre of (K),� ( )K1  and ( )K2  ���is P p p= ∩( ) ( )12 , ������������������  and therefore the 
radical axis of (K) and ( )K2  ����������������   is a tangent to ( )K2  ����������������������������    such that it passes through P. ������������ After that, 
we construct the tangents to ( )K2  ��������through P, ���������������������������������������������      if such tangent exist, and further construct 
the required circle (K) centred at the perpendicular of the tangent drawn at the point of 
touching to ( )K2 . Then we find the central line of the pencil determined by ( )K1  ����and 
(p). ■ 

4.8. Example. Given a pencil Π with a radical axis (p) and a circle K O R1 1 1( , ) . 
Construct a circle K(O,R) such that it belongs to the pencil Π and touches the given line 
(a) which differs from (p). 

Solution. If (a) is parallel to (p), then the exersize given problem may be 
considered as construction of a circle that belongs to the pencil Π and passes through the 
point ( ) ( )a q∩ , where (q) is the central line of the tensile Π. 

Therefore, let’s assume that the line (a) intersects the line (p) and let M be the 
point of intersection. The tangent distance from M to ( )K1  is equivalent to the tangent 
distance from M to the required circle (K), thus the circle (K) tangents the line (a) at the 
point P so that MP MT= , where T is the point of tangent of the tangent drawn from M to 
( )K1  . Now the center of (K) is in the intersection of the perpendicular to (a) at the point 
P and the central line (q) of the pencil Π. ■

Figure 23
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4.9. Definition. The set of all the circles, such that each three of them have a 
common radical center P, and all the lines such that pass through the point P, is called 
a bundle of circles. The point P is called the radical center of the bundle and the degree 
of the point P with respect to an arbitrary circle of that bundle is called the degree of the 
bundle.

4.10. Every bundle of circles Γ is determined by 
-	 center and degree, 
-	 a center and a circle 
-	 a degree and two circles or 
-	 three circles. 

Depending on the mutual position of the center with 
respect to the circles of the bundle Γ, we can distinguish 
between three types of bundles such that: 

а) If the degree is m2 0> , then the center P is an 
external point to every circle of the bundle Γ and according 
to the lemma 13.8 the circle K(P,m) intersects orthogonally 
every circle of Γ. According to this, Γ consists of every 
circle and every line which orthogonally intersect the circle 
K(P,m) (figure 24). 

b) If the degree is m2 0= , then the bundle Γ 
consists of every circle and every line that pass through the 
centre P. 

c) If the degree is m2 0< , then the centre P is an 
internal point for every circle of the bundle Γ and according 
to lemma 13.8 every circles of Γ half the circle K(P,m). 
Therefore, Γ consists of every circle and every line which 
intersect the circle K(P,m) in diametrically opposite points 
(figure 25). 

4.11. Remark. Sometimes a bundle of circles is regarded as a set of ������������ all circles 
whose centers are on a given line (p) and every line perpendicular to (p), i.e. the set of 
every circle and every line which orthogonally intersect the line (p) and this bundle is a 
bundle of the first type, because as we said before the line in an extended complex plane 
might be regarded as a circle. 

4.12. Lemma. The intersection of two bundles of circles is a pencil of circles or 
pencil of lines. 

Proof. Let Γ1  and Γ2  be two bundles of circles with centers P and Q and degrees 
m and n, respectively. If P Q/≡ , then Γ Γ1 2∩  is a pencil of circles with a radical axis PQ, 
and if P Q O≡ ≡ , then it is a pencil of lines with a center at O. We will consider three 
different cases where P Q/≡ . 

Figure 24

Figure 25



103

а) If m n= = 0 , then Γ1  and Γ2  are the sets of every circle which passes through 
P and Q, respectively, thus Γ Γ1 2∩  is the set of every circle which passes through the 
points P and Q, i.e it is a hyperbolic pencil of circles 

b) If m > 0  and n > 0 , then Γ Γ1 2∩  is the set of all circles which orthogonally 
intersect the circles K P m,( )  and K Q n* ,( ) . According to the lemma 4.4 Γ Γ1 2∩  
is a pencil of circles. 

c) If m = 0  and n > 0 , then Γ Γ1 2∩  is the set of all the circles which pass 
through the point P and orthogonally intersect the circle K Q n* ,( ) , and that is a pencil 
of circles with at least one base point, i.e. it is a hyperbolic or parabolic pencil of circles 
depending on whether P K Q n∉ ( )* ,  or P K Q n∈ ( )* , . 

The other possible cases are left as an exercise for the reader. ■

5.	 ORTHOCENTAR AND CENTROID OF A TRIANGLE 

5.1. Let��������������   consider the  ABC, whose vertices A, B and C have affixes a, b and c, 
respectively. In the example II 3.3 we proved that 

o aa c b bb a c cc b a
a a

b b

c c

= − + − + −( ) ( ) ( )

1

1

1  
is the affix of O circumcenter of  ABC. Clearly, the radius of the circum circle of  ABC 
is R a o= −| | . The mapping S :C C→  determined by S z z oR( ) ( )= −1  is a direct 
similarity which maps  ABC into A B C' ' ' . According to consequence 4.8 we get that 

A B A C AB AC' ' : ' ' :=  and ∠ =∠A B C ABC' ' ' .
Let a b c', ', '  be the affixes of the vertices A B C', ', ' , respectively, and let t be one of 
the three square roots of the complex number a b c' ' ' . The mapping S1 :C C→  deter-
mined by S z tz1( ) =  is a movement which maps A B C' ' '  into A B C'' '' '' . Moreover, if 
a b c'', '', ''  are the affixes of A B C'', '', '' , respectively, then 

a b c t a b c'' '' '' ' ' '= =3 1  
and according to the consequence 4.8 we get that 

A B A C A B A C'' '' : '' '' ' ' : ' '=  and ∠ =∠A B C A B C' ' ' '' '' '' .
The above stated implies that when consider the triangle with no loss of generality 

we take that its vertexes A, B and C with the affixes a, b and c, respectively, are on 
the unit center circle centered at the origin. Therefore | | | | | |a b c= = =1 . Moreover, the 
coordinate system is chosen such that abc =1 . 
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In our further consideration, unless it is not mentioned differently, we will 
consider that  ABC is inscribed in the unit circle centered at the origin O and that for the 
affixes a, b and c and the vertices A, B and C is true that abc =1 . 

5.2. Let’s consider the  ABC whose vertices A, B and C have the affixes a, b 
and c, respectively. According to the theorem 1.2 the equations of the lines AB, BC and 
CA are such that 
 		  z abz a b+ = + , z bcz b c+ = + , z caz c a+ = + , 		  (1)
respectively, i.e. their complex angle coefficients are − −ab bc,  and −ca , respectively. 
According to consequence 1.8 the lines that go through C, A and B, and are perpendicular 
to AB, BC and CA are expressed as following 

 		  cz z c ab− = −2 , az z a bc− = −2 , bz z b ca− = −2 , 		  (2)
respectively. The lines whose equations are given in (2) are to be called altitudes of 
 ABC, drawn from the vertices C, A and B, respectively. 

Similarly, the equations of the bisectors of the sides AB, BC and CA are the 
following 
 		  z abz− = 0 , z bcz− = 0 , z caz− = 0 , 				    (3)
respectively. 

Therefore a b≠  we get that the system of equations 
az z a bc

bz z b ca

− = −

− = −







2

2
 

has a solution h a b c= + + . With a direct check we can prove that the complex number h 
satisfies the equation of the altitude drawn from the vertex C as well. 

Thus, we proved the following theorem. 

Theorem. The altitudes at  ABC concur at the point H with affix 
h a b c= + + . ■

5.3. Definition. The point N discussed in the theorem5.2 is called the orthocenter 
of  ABC. 

5.4. Remark. а) For  ABC whose vertexes A, B and C have the affixes a, b 
and c, respectively, and which is not inscribed in the unit circle centered at the origin, it 
can be proven that for the affixes h and o of the orthocenter H and the circumcenter O, 
respectively, the following is true

h o a b c+ = + +2 .
b) Let’s consider the at OXY such that one of its vertexes coincides with the 

origin and the other X and Y have the affixes x and y, respectively. Then, for the affix o of 
O1  circum center of the OXY we get that 
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o y x xx y y y x

x x

y y

y yx xxy
x y xy

xy y x
x y

= = =− + − + − −
−

−
−

00 0 0

0 0 1

1

1

( ) ( ) ( ) ( )

xxy

.
Moreover, for the affix h of the orthocenter H of OXY we get that 

h x y o x y xy y x
x y xy

x y xxy y yx y x y yx xxy
x y x

= + + − = + − =−
−

− + − − +
−

0 2 2
2 2 2 2( )

yy

x y y x y yx xxy
x y xy

x y x y yx x y
x y xy

x y x y yx
x

= = =− − +
−

− + −
−

− +2 2 ( ) ( ) ( )( )

yy xy−
.  

5.5. Example. Draw a line perpendicular to the 
diameter of the circle K(O,R) from a point M which is not 
on that circle. 

Solution. We draw lines from the point M to 
the ends of the diameter A and B. Then, the lines AM 
and BM meet the circle K(O,R) at the points C and D, 
respectively. In accordance with consequence 1.7 the 
lines AD and BC are altitudes of the triangle whose 
sides are on the lines AC and BD. So the theorem 5.2 
implies that the line MP is the required perpendicular 
drawn at the point M to the diameter AB (figure 26). ■

5.5. Example. If H and O are the orthocenter and the circum center of the  ABC, 
respectively, then 

OH R AB AC BC
2 2 2 2 2

9= − + +( ) , 
where R is the length of the circumradius. Prove this!

Solution. Without loss of generality, we can assume that  ABC is inscribed in a 
circle centered at the origin and a radius R. If the vertices A, B and C have the affixes a, 
b and c, then | | | | | |a b c R= = =   and the remark 15.4 implies that: 

OH a b c a b c a b c

aa bb cc ab ab bc bc ca ca

a

2 2

3

= + + = + + + +

= + + + + + + + +

=

| | ( )( )

( aa bb cc a b b c c a

R AB AC BC

+ + − − + − + −( )
= − + +

) | | | | | |

( ),

2 2 2

2 2 2 2
9

Which was exactly supposed to be proven. ■

5.6. Theorem. If H is the orthocenter of  ABC and   are the points symmetric 
to H with respect to the lines BC, CA, AB, respectively, then the points A B C4 4 4, ,  lie on 
the circle circumscribed around  ABC. 

Figure 26
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Proof. The example II 1.9 and the theorem 5.2 it follows that the affixes of the 
points A B C4 4 4, ,  symmetric to the point H with respect to the lines BC, CA, AB are 
− − −b c c a a b2 2 2 2 2 2, , , respectively. From 

| | | | | |a b c= = =1  
it follows that 

| | | | | |− = − = − =b c c a a b2 2 2 2 2 2 1 ,
i.e. the points A B C4 4 4, ,  are on the circumcircle of the  ABC. ■

5.7. Consequence. The projections A B C2 2 2, ,  of the vertexes A, B, C on the 

sides BC, CA, AB of  ABC have the affixes h b c h c a h a b− − −2 2 2 2 2 2

2 2 2
, , , respectively. 

Proof. According to the theorem 5.6 the points A B C2 2 2, ,   are midpoints of the 
line segments HA HB HC4 4 4, , , respectively. Now, the proof by the fact that the affix 
of the orthocenter H is h, and the affixes of the points A B C4 4 4, ,  are −b c2 2,  −c a2 2,  
−a b2 2  respectively. ■

5.8. Let  ABC be given, and let its vertices A, B, C have the affixes a, b, c, 
respectively. The affixes of the midpoints A B C1 1 1, ,  of the sides BC, CA, AB are 
b c c a a b+ + +

2 2 2
, , , respectively, which means that the equations of the lines AA BB CC1 1 1, ,  

are
 	 z a z a z b z b z cb c a

b c a
c a b
c a b

a b c
a b

− = − − = − − =+ −
+ −

+ −
+ −

+ −
+ −

2
2

2
2

2( ), ( ),
22c

z c( ),− 	 (4)

The system of equations
z a z a

z b z b

b c a
b c a
c a b
c a b

− = −

− = −







+ −
+ −
+ −
+ −

2
2

2
2

( )

( )  
has the solution 

t a b c= + +
3

.
By a direct check we prove that the complex number t satisfies the equality of the line 
CC1   as well. The point whose affix is the complex number t is denoted by T. Further-
more, we get that

AT a A Ta b c b c a b c a b c a b c= − = = = − =+ + + − + − + + +
3

2
3

2
6 2 3 12 2 2| .

Analogously we prove that 
BT B T= 2 1  and CT C T= 2 1 .

Thus we proved the following theorem. 

Theorem. If A B C1 1 1, ,  are the midpoints of the sides BC, CA, AB of the  ABC, 
then the lines AA BB CC1 1 1, ,  concur at a point T whose affix is t a b c= + +

3
 and the point 

T divides the line segments AA BB CC1 1 1, ,  in a ratio of 2:1. ■
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5.9. Definition. The point T defined as in theorem 5.8 is called a centroid of 
 ABC, and the lines AA BB CC1 1 1, ,  are its medians.

5.10. Example А. Let be given a quadrangle ABCD and let Ta , T T Tb c d, ,  be the 
centroids of the triangles BCD, ACD, BAD, ABC, respectively. Prove that the line seg-
ments AT BT CT DTa b c d, , ,  intersect in one point, and each of them is divided in a ratio 
of 3:1 starting at the vertices of the quadrangle. 

Solution. Due to the theorem 15.8 we get that 
t t ta

b c d
b

a c d
c

a b d= = =+ + + + + +
3 3 3

, ,  and td a b c= + +
3

.

Let A B C D', ', ', '  be the points which divide the line segments AT BTa b, ,  CT DTc d,  in 
a ratio of 3:1 starting from the vertices of the quadrangle, respectively. I 4.2. implies that  
a b c d a b c d' ' ' '= = = = + + +

4
, which means that AT BTa b, ,  CT DTc d,  concur at a point T 

with an affix t a b c d= + + +
4

, and each of them is divided by in a ratio of 3:1 starting from 
the vertices of the quadrangle. ■

Comment. The point T discussed in the previous example is called centroid 
ABCD. The example А shows how we can define the centroid of a pentagon. Namely, 
we consider the line segments which connect a vertex of a pentagon with a centroid of a 
quadrlateral formed by the other four vertices of the pentagon and thus we get five line 
segments which intersect at T, which is to be called a vertex of a pentagon. It is easy 
to prove that if the affixes of the vertices of the pentagon ABCDE are a b c d e', ', ', ', ' ,  
respectively, then the affix t of its centroid T is t a b c d e= + + + +

5
. On a similar way we can 

define the centroid T of n-gon A A An1 2...  and we can prove that its affix is

t a a a
n

n= + + +1 2 ... ,
where a i ni , , ,...,=1 2  are the affixes of the vertices A i ni , , ,...,=1 2 , respectively. 

Example B. Let S be the center of a circumcenter, аnd H be the orthocenter of 
 ABC. Furthermore, let the point Q be such that S is the midpoint of the line segment 
HQ and let T1 , T2  and T3  be the centroids of  BCQ, CAQ and  ABQ, respectively. 
Prove that 

AT BT CT R1 2 3
4
3

= = = ,
where R is the circumradius of  ABC. 

Solution. Without loss of generality, we can say that the circumcircle of  ABC is 
the unit circle, i.e. that o = 0  and | | | | | |a b c= = =1 . We have h a b c= + +  and o h q= +

2
,  

and therefore q h a b c= − = − − − . Furthermore, t b c q a
1 3 3
= = −+ +  and similar to this we 

get that t b
2 3
= − , t c

3 3
= − . Now we have that 
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AT a t a Ra a
1 1 3

4
3

4
3

4
3

= − = + = = =| | , BT CT R2 3
4
3

4
3

= = = ,

Which was actually supposed to be proven. ■

5.11. Theorem (Leibniz). If T is the centroid of  ABC and P is an arbitrary 
point of the plane of the triangle, then 

PA PB PC PT TA TB TC
2 2 2 2 2 2 2

3+ + = + + + .

Proof. Let a, b, c be the affixes of the vertexes A, B, C respectively and let p be 
the affix of the point P. From the theorem 5.8, we get 

3 3

3

2 2 2 2 3
3

2
2

3

2 2
3

2 2
3

2
PT TA TB TC

p

a b c p b c a a c b a b c+ + + = + + +

=

+ + − + − + − + −

pp aa bb cc pa pa pb pb pc pc

p a p b p c

PA PB

+ + + − − − − − −

= − + − + −

= +

| | | | | |2 2 2

2 2
++ PC

2
,  

Which was supposed to be proven. ■

5.12. Example. If T is the centroid of  ABC, then

TA TB TC AB BC CA
2 2 2 1

3

2 2 2
+ + = + +( ) . 

Prove this! 

Solution. It is sufficient to get that P A≡ , P B≡  and P C≡  in the equality of 
theorem 5.11 and after that to summaries all the obtained equalities. ■

5.13. Let it be given  ABC and let consider the homothety
 . 				    w z h= − +1

2 2
.					     (5)

The equality z z h= − +1
2 2

 implies that z h=
3

, i.e. the center of the homothety (5) is the 
centroid T of  ABC. The point A under the homothety (5) maps to a point with an affix 

− + = +a h b c
2 2 2

,

This means that at A1  maps in the midpoint of the side BC. Analogously it can be 
proven that the points B and C map at the midpoints B1  and C1  of the sides AC and AB, 
respectively. Thus, we proved the following theorem. 

Theorem. If T is the centroid of  ABC and A1 , B1  and C1  are the midpoints of 
the sides BC, AC and AB, respectively, then the homothety with a center in T and a ration 
− 1

2
 maps  ABC to A B C1 1 1 . ■

5.14. Consequence. If A1 , B1  and C1  are the midpoints of the sides BC, AC and 
AB of  ABC, then the following holds true
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A B AB B C BC C A CA

A B AB B C BC C A CA
1 1 1 1 1 1

1 1 1 1 1 12 2 2

|| , || , || ,

, ,= = = .

Proof. The theorems 5.13 and II 6.5 imply that
A B AB B C BC C A CA1 1 1 1 1 1|| , || , || ,  

and the theorems 5.12 and 4.6 imply that 
2 2 21 1 1 1 1 1A B AB B C BC C A CA= = =, , . ■

5.15. Definition. Let A1 , B1  and C1  and   be the midpoints of the sides BC, 
AC and AB, respectively, of  ABC. The line segments A B B C C A1 1 1 1 1 1, ,  are called the 
medians of the sides AB, BC, CA, respectively. 

5.16. Remark. In consequence 5.14 we proved that the medians of the triangle 
are parallel to the suitable sides of the triangle and that the length of each one Is half of 
the length of the suitable side. 

6.	 Right angled triangle

6.1. We call  ABC right angled triangle if its orthocenter H coincides with one 
of the vertices A, B or C. Due to this,  ABC is a right angled triangle if and only if 
| |h =1 , i.e if and only if 

( )( )a b c a b c+ + + + =1.
The last equality is equivalent to the equality 

( )( )( )a b b c c a+ + + = 0 . 
Which implies that the  ABC is a right angled triangle if and only if either 

a b+ = 0  or b c+ = 0  or c a+ = 0 .
Thus, we proved the following theorem.

Theorem. The triangle ABC is a right angled triangle if and only if either a b+ = 0  
or b c+ = 0  or c a+ = 0 . ■

6.2. Consequence. The triangle ABC is a right triangle if and only if one of the 
sides AB, BC or CA is the diameter of the circle circumscribed around it. 

Proof. It is directly implied by the theorem 6.1. ■

The side of the right angled traingle ABC which is the diameter of its circumcircle 
is called a hypotenuse, and the remaining two sides are called legs of  ABC. 
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6.3. Theorem (Pythagoras). For every right angled triangle the square of the 
length of the hypotenuse is equal to the sum of the squares of the length of its legs.

 Proof. Let AB be the hypotenuse of the right triangle ABC. According to theorem 
16.1 we get that a b+ = 0  i.e. b a= − , thus 

 

AC BC c a c b

c a c a

c a c a c a c a

2 2 2 2

2 2

+ = − + −

= − + +

= − − + − +

=

| | | |

| | | |

( )( ) ( )( )

22 2 4

2

2 2 2

2 2 2

| | | | | |

| | | | ,

c a b

b b a AB

+ =

= = − =
which was supposed to be proven. ■

6.4. Example. If the hypotenuse of the right triangle is divided in three equal 
parts and the point of division are connected with the vertex of the right angle, then the 
sum of the squared of the length of the sides of so obtained triangle is equal to 2

3
 of the 

square of the hypotenuse. Prove it!

Solution. Without loss of generality, we take that ABC is a right angled triangle 
with a right angle in the vertex C, such that it is inscribed in the unit circle. Let the affixes 
on the vertices A, B, C are a, b, c respectively. If D and E are points of the hypotenuse 
AB such that 

AD DE EB= = ,

then their affixes are 2
3

a b+  and a b+2
3

, respectively. According to theorem 6.1 we get 
that 

CD DE EC a b c b a a b c

a c a a c

2 2 2 2 3
3

2

3

2 2 3
3

2

3
3

2 2
3

2 3
3

2

2

+ + = + +

= + +

=

+ − − + −

− +

aaa cc a c

a a a

b a

+ = +( )
= +( ) =
= − =

6
3

2
3

2 2

2
3

2 2 2
3

2

2
3

2 2
3

3

3 2

| | | |

| | | | | |

| | AAB
2

,

which was supposed to be proven. ■
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7.	 EULER LINE AND EULER CIRCLE

7.1. Theorem. The circum center O, the centroid T and the orthocenter H of 
 ABC are on a same line and furthermore OH OT= 3 . 

Proof. For the affixes h and t of the orthocenter H and the centroid T we get 
that

h a b c ta b c= + + = =+ +3 3
3

,
which means that O, T and H are collinear and thus OH OT= 3 . ■

7.2. Definition. The line on which are the circum center O, the centroid T and the 
orthocenter H of  ABC is called Euler line for  ABC. 

7.3. Example. If T and O are the centroid and the circum center of  ABC, 
respectively, then

OT R AB BC CA
2 2 1

9

2 2 2
= − + +( ) ,

where R is the length of the circumradius of the  ABC. 

Solution. According to the theorem 7.1 we get OH OT
2 2

9= . So, the statement 
is implied directly by example 5.5. ■

7.4. According to theorem II 2.2 the equation of the Euler line OH is z zh
h

= ,  

which means that its complex angle coefficient is h
h

. Let t t t1 2 3, ,  and t4  be the complex 
angle coefficients of the lines BC, CA, AB and the Euler line of  ABC. We get that, 
t bc t ca t ab1 2 3= − = − = −, ,   and t h

h4 = . Thus, 

t t t t t t t t t t t t t t t t t t t t t t1 2 1 3 1 4 2 3 2 4 4 4 1 2 3 4 2 3 1 3 1 2+ + + + + = + + + + +

=

( )

−− + + + + +

= − + ⋅ =

( ) ( )bc ca ab abc a b c

h h

h
h

h
h

1 0  
For any movement the complex angle coefficients of the lines are multiplied by the same 
constant, thus if the equality
 			   t t t t t t t t t t t t1 2 1 3 1 4 2 3 2 4 4 4 0+ + + + + = 		  (1)
is true for a  ABC which is inscribed in the unit circle centered at the origin O, and for 
the affixes a, b, c of its vertices A, B, C it is true that abc = 1, then this is true for any 
triangle. Thus, we proved the following theorem. 

Theorem. For the complex angle coefficients t t t1 2 3, ,  and t4  of the sides and the 
Euler line of an arbitrary triangle the equality (1) holds true. ■
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7.5. Theorem. If H is the orthocenter of  ABC, A B C1 1 1, ,  are the midpoints 
of the sides BC, CA, AB, respectively, A B C2 2 2, ,  are foots of the altitudes and  
A B C3 3 3, ,  are the midpoints of the line segments AH, BH, CH, then the points  
A B C1 1 1, , , A B C2 2 2, , , A B C3 3 3, ,  are on a same circle. 

Proof. The midpoints A B C1 1 1, ,  of the sides BC, CA, AB have the affixes b c+
2

,  
c a+

2
,  a b+

2
. According to consequence 5.7 A B C2 2 2, ,  the foots of the altitudes have 

the affixes h b c h a c h b a− − −2 2 2 2 2 2

2 2 2
, , , and since A B C3 3 3, ,  are the midpoints of the line 

segments AH, BH, CH we get that their affixes are a h b h c h+ + +
2 2 2

, , . 
Due to the example II 3.3 we get that O9  the circumcircle of the A B C1 1 1  has 

the affix
ε = =+ +a b c h

2 2
,

and its radius is
R a b

1 2
1
2

= − =+ε .

By a direct check we can conclude that the points A B C2 2 2, , , A B C3 3 3, ,  are on the same 
circle centered at O9  and with radius R1

1
2

= , which means that the points A B C1 1 1, , , 
A B C2 2 2, , , A B C3 3 3, ,  are on a same circle. ■

7.6. Definition. A circle centered at O9  and with radius R O A1 9 1= , is called 
Euler circle, and the point O9  is called Euler point for  ABC. 

7.7. Remark. Clearly, for any  ABC the Euler point is a midpoint of the line 
segment OH, i.e. it is placed on the Euler line, and the radius of the Euler circle is equal 
to R

2
, where R is the radius of the circumcircle of the  ABC. 

7.8. Let L, M, N be the points with the affixes 
l b c m c a n a b= + = + = +, , ,

respectively. then, the line segments BC and OL have a common midpoint A1 , so the 
point L is symmetrical to the center O of the circumcircle of the  ABC with respect to 
the A1 , i.e with respect to the line BC. Since 

a l b m c n h+ + += = =
2 2 2 2  

we get that the line segments AL, BM, CL, HO have common midpoint, and that is the 
Euler point O9 . The equalities 

h l a b l c c l b= + = − = −, ,  
and the fact that | | | | | |a b c= = =1 , we conclude that the points H, B, C are on the circle 
with a center at L and a length radius 1. Similarly, H, C, A are on the circle centered at M 
and a length radius of 1, and H, B, A are on the circle centered at N and a length radius 
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of 1. The symmetry with respect to the point O9  implies that the other statements of the 
following theorem are true. 

Theorem. If L, M, N are symmetrical points to the center O of the circumcircle 
of the  ABC to the lines BC, CA, AB, respectively, аnd H is the orthocenter of  ABC, 
then the quadrilaterals ABCH and LMNO are symmetrical with respect to the Euler point  
O9 . The triangles ABC, BCH, CAH, ABH, LMN, MNO, NLO, LMO subsequently have 
the orthocenters H, A, B, C, O, L, M, N and the circumcircle with congruent radii and 
centers at the points O, L, M, N, H, A, B, C, respectively. ■ 

7.9. Example. Let H be the orthocenter of  ABC. Prove that the Euler lines of 
the triangles ABC, ABH, BCH and CAH intersect at a unique point. 

Solution. Without loss of generality we can say that  ABC is inscribed into the 
unit circle. The orthocenter H of the triangle has an affix h a b c= + + . The point O '  with 
an affix o a b' = +  is symmetrical to the center O of the circumcenter with respect to the 
line AB. Moreover, 

O A a b a a' | | | |= + − = =1 , 
O B a b b b' | | | |= + − = =1   and 
O H a b c a b c' | | | |= + + − − = =1, 

thus O '  is the circumcenter of the  ABH. 
Analogously, the points O ''  and O '''  with the 
affixes o b c'' = +  and o a c''' = +  are circum-
centers of the triangles BCH and ACH, respec-
tively. If T '  is the centroid of the triangle ABH, 
then its affix is 

t a b a b c a b c' ( )= =+ + + + + +
3

2 2
3

.

The Euler lines of the triangles ABH and ABC 
are the lines T O' '  and OH, respectively. 
Thereby, t a b a b c' ( ) ( )= + + + + +0

3
 we get that T '  is the centroid of HOO ' , thus the line   

T O' '  intersects the line segment OH at point E with an affix e a b c= + +
2

. Therefore, the 
point E is the intersection of the Euler lines of the triangles ABH and ABC. 

Similarly, we can prove that the point E is the intersection of the Euler lines of the 
triangles BCH and ABC, that is the triangles CAH and ABC, which means that the Euler 
lines of the triangles ABC, ABH, BCH and CAH intersect in the same point. ■

Figure 27
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8.	 MENELAU’S THEOREM

8.1. If AB
 

 and CD
 

 are collinear vectors, then it exists a real number λ such that  

AB CD
   

= λ . In the following consideration we will get that λ = AB
CD

 

  . 

Since the equality AB CD
   

= λ  is equivalent to the equality CD AB
   

= 1
λ  we get 

that CD
AB

 

  = 1
λ . 

8.2. Definition. Let the side AB of  ABC be on the line (p). The point P is called 
Menelaus point of the side AB if P p∈ ( )  and P A B/≡ , . Analogously, we define the 
Menelaus points of the sides BC and CA of the  ABC. 

8.3. Theorem (Menelaus). Let D, E and F be the Menelaus` points of the sides 
BC, CA and AB of any  ABC, respectively. The points D, E and F are collinear if and 
only if it holds true that

 				    BD
DC

CE
EA

AF
FB

 

 

 

 

 

 ⋅ ⋅ = −1 .				    (1)

Proof 1. Let D, E and F with affixes p, q and r respectively be the Menelaus` 
points of the sides BC, CA and AB. If it holds true that

BD
DC

CE
EA

AF
FB

 

 

 

 

 

 = = =λ µ ν, , ,

then for the affixes p, q and r of the points D, E and F we get that 
 			   p q rb c c a a b= = =+

+
+
+

+
+

λ
λ

µ
µ

ν
ν1 1 1

, , .			   (2)

The points D, E and F are collinear if and only if 
p q
p q

r q
r q

−
−

−
−

= .

If in the last equality (2) we substitute the values of p, q and r and the obtained equality 
we multiply by ( )( )( )1 1 1+ + +λ µ ν , we get that 
 			   ( )( )1 0+ + + − − − =λµν ab bc ca ba cb ac . 		  (3)
Therefore, the points D, E and F are collinear if and only if the equality (3) is satisfied. 
Lastly, the points D, E and F are collinear if and only if 1 0+ =λµν  (why?), that is if and 
only the condition (1) is satisfied 

Proof 2. Let the condition (1) be satisfied , i.e µ λν= − 1 . Then 
p rb c a b= =+

+
+
+

λ
λ

ν
ν1 1

,  and q c a= −
−

λν
λν 1

,
thus 

DF a b c 

= + + − − +
+ +

( ) ( ) ( )
( )( )

1 1 1
1 1

λ λν λ ν
ν λ ,

DE a b c 

= + + − − +
− +

( ) ( ) ( )
( )( )

1 1 1
1 1

λ λν λ ν
λν λ ,
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which means that DE
DF

 

  = ∈+
−
1

1
λ
λν R , since for 1 0− =λν  

we get that FD AC|| , which contradicts the finiteness 
of the point E. Therefore, DE DF|| , which implies that 
the points D, E and F are collinear. 

Let the points D, E and F be collinear and let 
the projections of the points A, B, C on the line ED be 
the points A B C', ', ' , respectively (see the figure). Then 
the triangles BB D'  and CC D'  are directly similar, and 
thus 

b b
p b

c c
p c

' '−
−

−
−= , i.e. b b

c c
p b
p c

'
'
−
−

−
−= .

Analogously, the direct similarity of the triangles AA E'  and CC E'  implies that 
a a
c c

q a
q c

'
'
−
−

−
−=  and the direct similarity of the triangles AA F'  and BB F'  implies that 

b b
a a

r b
r a

'
'
−
−

−
−= . Finally, 

BD
DC

CE
EA

AF
FB

b p
p c

c q
q a

a r
r b

 

 

 

 

 

 ⋅ ⋅ = ⋅ ⋅ =−
−

−
−

−
− −−( ) −( ) −( ) −−

−
−
−

−
−

b b
c c

c c
a a

a a
b b

'
'

'
'

'
'

1 . ■

8.4. Example. Given is the  ABC and the points D and E on the sides BC and CA, 
respectively, such that BD CE AB= = . We draw a line (l) through the point D, parallel to 

AB. If M l BE= ∩( )  and F CM AB= ∩ , then AB AE FB CD
3
= ⋅ ⋅ . Prove this! 

Solution. Let’s consider the  ACF (figure 29). The points E, M and B are 
Menelaus` points of the sides AC, CF and AF, respectively, and under a condition, they 
are collinear. From the Menelaus’ theorem , we get that

AB
BF

FM
MC

CE
EA

 

 

 

 

 

 ⋅ ⋅ = −1 ,
which implies that

AB
BF

FM
MC

CE
EA

⋅ ⋅ =1 .

Due to DM BF||  we get that FM
MC

BD
DC

= . If we substitute in 
the previous equality, we get that 

AB
BF

BD
DC

CE
EA

⋅ ⋅ =1  

And due to BD CE AB= =  we get AB AE FB CD
3
= ⋅ ⋅ . ■

Figure 28

Figure 29
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9.	 PASCAL`S AND DESARGUES` THEOREM

9.1. In this section, by using the Menelay’s theorem, we are going to prove the 
Desarg theorem which is a fundamental result in projective geometry. We are also going 
to prove the Pascal`s theorem for a hexagon inscribed in a circle. 

Definition. The triangles ABC and A B C' ' '  are called copolar if the lines 
AA BB', '  and CC '  are concurrent.

The triangles ABC and A B C' ' '  are called coax if the points of intersection of the 
lines BC and B C' ' , CA and C A' ' , AB and A B' '  lie on the same line. 

9.2. Theorem (Desargue). The triangles ABC and A B C' ' '  are copolar if and 
only if they are coax. 

Proof. Let the triangles ABC and A B C' ' '  be copolar and let the lines AA BB', '  
and CC '  intersect in the point O. Let’s denote the points of intersection of the lines 
BC and B C' ' , CA and C A' ' , AB and A B' '  by P, Q, R respectively (figure 30). The 
Menelaus’ theorem, applied to the triangles, BCO, CAO and AOB implies

BP
PC

CC
C O

OB
B B

 

 

 

 

 

 ⋅ ⋅ = −'
'

'
'

1 , 

CQ
QA

AA
A O

OC
C C

 

 

 

 

 

 ⋅ ⋅ = −'
'

'
'

1  

AR
RB

BB
B O

OA
A A

 

 

 

 

 

 ⋅ ⋅ = −'
'

'
'

1  
If we multiply the above equalities, we 
get 

BP
PC

CQ
QA

AR
RB

 

 

 

 

 

 ⋅ ⋅ = −1 .

Thus, from the Menelaus’ theorem we 
conclude that the points P, Q and R are 
collinear. Therefore, the triangles ABC 
and A B C' ' '  are coax. 

Reversely, let’s assume that P, 
Q and R are collinear and let the lines 

AA '  and BB '  intersect in the point O. Now, the triangles AQA '  and BPB '  are copolar, 
and therefore, coax. According to this, the points O, C and C '  are collinear, which means 
that the coax triangles are copolar. ■

9.3. Theorem (Pascal). Let the hexagon ABCDEF, whose opposite sides are not 
collinear, be inscribed in a circle. Let denote by L, M, N the points of intersection of the 
three pairs of opposite sides AB and ED, BC and EF, FA and CD, respectively. Then, the 
points L, M, N are collinear. 

Figure 30
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Figure 31

Proof 1. Let X, Y, Z be the points of intersection of AB and CD, CD and EF, EF 
and AB, respectively (figure 31). The points D, E, L; F, A, N; B, C, M are the Menelaus’ 
points for  XYZ, and from the Menelaus’ theorem we get that

XL
LZ

ZE
EY

YD
DX

 

 

 

 

 

 ⋅ ⋅ = −1 , XA
AZ

ZF
FY

YN
NX

 

 

 

 

 

 ⋅ ⋅ = −1 , XB
BZ

ZM
MY

YC
CX

 

 

 

 

 

 ⋅ ⋅ = −1 . 

If we multiply the above equalities, we get that 

			   XL
LZ

ZM
MY

YN
NX

ZE
EY

YD
DX

 

 

 

 

 

 

 

 

 

⋅ ⋅( ) ⋅ ⋅ 

 

 

 

 

 

 

 

 ⋅ ⋅ ⋅ ⋅ = −XA
AZ

ZF
FY

XB
BZ

YC
CX

1. 	 (1)

Furthermore, we apply the power of the points X, Y, Z with respect to the circle, then the 
geometrical interpretation of complex numbers, implies that 

ZE ZY AZ BZ
       

⋅ = ⋅ , EY FY YD YC
       

⋅ = ⋅ , CX DX XA XB
       

⋅ = ⋅ .
If we substitute in (1) we get 

XL
LZ

ZM
MY

YN
NX

 

 

 

 

 

 ⋅ ⋅ = −1 ,

which according to the Menelaus’ theorem means that the points L, M and N are 
collinear. 

Proof 2. Without loss of generality, we can say that the hexagon ABCDEF is 
inscribed in a unit circle. The affixes l, m, n of the points L AB DE= ∩ , M BC FE= ∩  
and N CD AF= ∩  are 

l ma b d e
ab de

b c e f
bc ef= =+ − +

−
+ − +

−
( ) ( ),  and n c d f a

cd fa= + − +
−
( ) .

Furthermore, 
l m b e bc cd de ef fa ab

ab de bc ef− = − − + − + −
− −

( )( )
( )( )

 and m n c f cd de ef fa ab bc
bc ef cd fa− = − − + − + −
− −

( )( )
( )( )

,
So,

l m
m n

b e cd fa
f c ab de

−
−

− −
− −= ( )( )

( )( )
.

Finally, if we take that for every point of a unit circle it is true that x x= 1 , by applying the 
properties of the complex numbers we get that
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l m
m n

b e cd fa
f c ab de

b e cd fa

f c ab

−
−

− −
− −

−( ) −( )
−( )= =( )( )

( )( )

1 1 1 1

1 1 1 −−( )
− −
− −

−
−

= =
1
de

e b fa cd
c f de ab

l m
m n

( )( )
( )( )

,

which means that l m
m n
−
−  is a real number, therefore the consequence 1.4 implies that the 

points L, M and N are collinear . ■ 

10.	 TRIANGULAR COORDINATES

10.1. Lemma. If for the complex numbers a, b and c holds true 
				    λ µ νa b c+ + = 0 				    (1)
where
				    λ µ ν+ + = 0 					     (2)
and λ, µ, ν are nonzero real numbers, then the points A, B and C whose affixes are a, b 
and c, respectively, are collinear, and vice versa. 

Proof. Truly, from (1) and (2) it follows that 

				    c
a b

=
+

+

µ
λ
µ
λ1

,					     (3)

i.e. the point C divides the line segment AB in a ratio µλ , which means that the points A, 
B and C are collinear.

Reversely, if the points A, B and C lay on a same line and if the point C divides 
the line segment AB in a ration of µλ , then from (3) in

ν λ µ= − +( )
we obtain the equalities (1) and (2). ■

10.2. Remark. Equality (2) implies that the numbers λ, µ and ν may not have the 
same sign, i.e. one of them must have an opposite sign from the other two. The point to 
which in (1) corresponds this number is between the other two points. 

Thus, for example, from the equality 
3 2 0a b c− − =

according to lemma 10.1 we get that the point whose affix is the complex number a is 
between the points whose affixes are the complex numbers b and c. 

10.3. Lemma. Let A, B and C, with affixes a, b and c, respectively, are three 
non-collinear points in the plane. Then, to every point in the plane D, with an affix d, 
correspond three real numbers λ, µ and ν such that 
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				    λ µ νa b c d+ + = 				    (4)
where
				    λ µ ν+ + =1 					     (5)

Proof. Let’s connect the point D, for example, with the point A and the intersection 
of the lines AD and BC be denoted by D ' . Then, the point D divides the line segment  
AD '  in a ratio of α λ: ' := DD DA , and the numbers α and λ can be chosen so that 
α λ+ =1 . the lemma 20.1 implies that 
 			   − + + =d a dλ α ' 0  and  − + + =1 0λ α 			    (6)
Furthermore, the point D '  divides the line segment BC with a ratio 

ν µ: ' : '=CD D B  
These numbers can be chosen so that 

ν µ α+ = .
According to the lemma 10.1 we get that 
 			   − + + =α µ νd b c' 0  and − + + =α µ ν 0 . 			  (7)
Now the equalities (4) are (5) are implied directly by the equalities (6) and (7). 

Reversely, for µ and ν it exists a sole point D '  on the line BC whose affix is 
determined by 

d b c' = +
+

µ ν
µ ν .

Now, on the line AD '  there is a unique point D such that 

d a b ca d= = + ++ +
+ +

λ µ ν
λ µ ν λ µ ν( ) ' , λ µ ν+ + =1 ,

This means that (4) and (5) determine a unique point D in the plane. ■

10.4. Remark. The numbers λ, µ 
and ν uniquely determine the position of 
the point D with respect to the  ABC. 
Therefore, the ordered triple (λ,µ,ν) is called 
triangle coordinates of the point D with 
respect to  ABC. From (5) we get that all 
three numbers λ, µ and ν cannot be negative, 
and the position of the point D with respect 
to  ABC is determined by the signs of the 
numbers λ, µ and ν (figure 32). 

Figure 32
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11.	 CEVA`S AND VAN AUBEL`S THEOREM 

11.1. Theorem (Ceva). Let D ' , D ''   and D '''  lie on the sides BC, AC and AB of 
 ABC or their extensions, respectively. The lines AD ',  BD ''  and CD '''  intersect in one 
point if and only if the following equality is satisfied 

 				    BD
D C

CD
D A

AD
D B

'
'

''
''

'''
'''

 

 

 

 

 

 ⋅ ⋅ =1. 				    (1)

Proof. Let the lines AD ',  BD ''  and CD '''  intersect in a point Q and let (p) be a 
line which goes through the point A and is parallel to the line BC. Let BD p K'' ( ) { }∩ =  
and CD p L''' ( ) { }∩ = , figure 33. The triangle D QB'  is directly similar to the triangle 
AQK, thus q d

b d
q a
k a

−
−

−
−='

'
. The triangle D CQ'  is directly similar to the triangle ALQ, thus 

c d
q d

l a
q a

−
−

−
−='

'
. From the last two equalities we get that

 		  b d
c d

k a
l a

−
−

−
−='

'
. 			   (2)

Furthermore, the triangle CD B''  is directly simi-
lar to the triangle AD K'' , therefore the equality 
d c
b c

d a
k a

'' ''−
−

−
−=  holds true, and it is equivalent to the 

equality 
 		  d c

d a
b c
k a

''
''
−
−

−
−= , 			   (3)

The triangle BCD '''  is directly similar to the triangle 
ALD ''' , and therefore the equality c b

d b
l a

d a
−
−

−
−=

''' '''
 

holds true, and is equivalent to the equality 
 						      d a

d b
l a
c b

'''
'''
−
−

−
−= . 			   (4)

Finally, the equalities (2), (3) and (4) imply that 
BD
D C

CD
D A

AD
D B

d'
'

''
''

'''
'''

'
 

 

 

 

 

 ⋅ ⋅ = −−
−

−
−

−
−

−
−

−
−

−
−⋅ ⋅ = −( ) −( ) −(b

c d
d c
a d

d a
b d

k a
l a

b c
k a

l a
c b'

''
''

'''
''' )) =1 ,

i.e. the equality (1) holds true. 
On the other hand, if BD CD Q'' ''' { }∩ =  and AQ BC A∩ ={ '} , then, the previously 

proven, implies that BA
A C

CD
D A

AD
D B

'
'

''
''

'''
'''

 

 

 

 

 

 ⋅ ⋅ =1 and by assumption that BD
D C

CD
D A

AD
D B

'
'

''
''

'''
'''

 

 

 

 

 

 ⋅ ⋅ =1 

holds true we get that BD
D C

BA
A C

'
'

'
'

 

 

 

 = . The latter implies that the points A '  and D '  coincide, 
i.e. Q AD∈ ' . ■

11.2. Remark. According to the Ceva theorem the medians of  ABC intersect 
in one point. Namely, if A B1 1,  and C1  are the midpoints of the sides BC, CA and AB 
respectively, then BA A C1 1

   

= , CB B A1 1

   

=  and AC C B1 1

   

= , thus 
BA
A C

CB
B A

AC
C B

1

1

1

1

1

1

1
 

 

 

 

 

 ⋅ ⋅ = ,

Figure 33
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which according to the Ceva theorem means that the medians AA BB1 1,  and CC1  intersect 
in one point. 

11.3. Definition. The line segments (the lines) AD BD', ''  and CD '''  from theorem 
11.1 are called Ceva line segments (lines) for  ABC. 

11.4. Theorem. The lines which connect the midpoints of the sides of a triangle 
with the suitable Ceva line segments intersect in a unique point. 

Proof. Let in  ABC (figure 34) AD, BE and CF be arbitrary lines which intersect 
in the point M; A B', '  and C '  are midpoints of the lines BC, CA and AB respectively and 
P, K and L are midpoints of the line segments AD, BE and CF respectively. By applying 
the Ceva theorem to AD, BE and CF, we get the following 

AE
EC

CD
DB

BF
FA

⋅ ⋅ =1 ,
thus,

AE

EC

CD

DB

BF

FA
2

2

2

2

2

2

1⋅ ⋅ =
 

i.e
C K
KA

B P
PC

A L
LB

'
'

'
'

'
'

⋅ ⋅ =1.

Finally, from the Ceva theorem applied to 
A B C' ' '  we get that the lines A P' ,  B K'   and 
C L'  intersect in one and only one point. ■

11.5. Consequence. The lines which connect the midpoints of the sides of a 
triangle and the midpoints of its altitudes intersect in one and only one point. 

Proof. It is implied directly from the theorems 5.1 and 11.4. ■ 

11.6. Theorem (Van Aubel). If A ',  B C', '  are points on the sides BC, CA, AB 
respectively, of the triangle ABC such that the lines AA BB CC', ', '  intersect in the point 
Q, then the following holds true

AQ
QA

AC
C B

AB
B C'

'
'

'
'

= + .

Proof. Let the affixes of points be labeled by 
a suitable small letter. Let (r) be the linе which goes 
through the point C and is parallel to the line AA ' , and 
(s) be the line which goes through the point B and is 
parallel to the line AA '  and let ( ) ' { }r BB L∩ =  and 
( ) ' { }s CC K∩ = , figure 35. 

Figure 34

Figure 35
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The triangle AQC '  is directly similar to the triangle BKC ' , thus q a
c a

k b
c b

−
−

−
−=

' '
, 

i.e.  c a
c b

q a
k b

'
'
−
−

−
−= . Furthermore, the triangle CB L'  is directly similar to the triangle AB Q' ,  

thus b c
l c

b a
q a

' '−
−

−
−= , i.e b a

b c
q a
l c

'
'
−
−

−
−= ; the triangle BKC is directly similar to the triangle 

A QC' , thus k b
c b

q a
c a

−
−

−
−= '

'
, i.e. c a

c b
q a
k b

−
−

−
−=' '  and the triangle CLB is directly similar to the 

triangle A QB' , thus l c
b c

q a
b a

−
−

−
−= '

'
, i.е. b a

b c
q a
l c

−
−

−
−=' ' . Now, 

 

AC
C B

AB
B C

c a
b c

b a
b c

q a
k b

q a
l

'
'

'
'

| ' |
| '|

| ' |
| ' |

| |
| |

| |
|

+ = + = +−
−

−
−

−
−

−
−− − −

−
−
− −

= − +( )
= − +

c k b l c

q a
c a
c b q a

q a

q a

| | | | |

| '|
| '|
| | | '|

|

| |

| |

1 1

1 1 bb a
b c

q a
q a

c a b a
b c

−
−

−
−

− + −
−( ) = ⋅'|

| |
| |
| '|

| '| | '|
| |

  = =−
−

| |
| '| '

.q a
q a

AQ
QA  ■

11.7. Comment. In the Van Aubel theorem the lines AA BB CC', ', '  intersect in 
the point Q, therefore by the Ceva theorem we get that BA

A C
CB
B A

AC
C B

'
'

'
'

'
'

⋅ ⋅ =1 , which means 

that there exist real numbers m, n, p such that BA
A C

p
n

'
'

,=  CB
B A

m
p

'
'

,=  AC
C B

n
m

'
'
= . Then, the 

affix of the point A ', is determined by a nb pc
n p' = +
+  and thereby the Van Aubel theorem 

holds true that AQ
QA

AC
C B

AB
B C

n
m

p
m

n p
m'

'
'

'
'

= + = + = + , therefore the affix of the point Q is as 
following
 			   q ma n p a

m n p
ma nb pc

m n p= =+ +
+ +

+ +
+ +

( ) ' . 				    (5)

11.8. Theorem. If A ',  B C', '  are points on the sides BC, CA, AB, respectively, 
of the triangle ABC such that 

BA
A C

p
n

'
'

,=  CB
B A

m
p

'
'

,=  AC
C B

n
m

'
'
= .

Then the lines AA BB CC', ', '  intersect in a point Q whose affix is determined in (5). 

Proof. Thereby, it holds true that 
BA
A C

p
n

'
'

,=  CB
B A

m
p

'
'
=  and AC

C B
n
m

'
'
= ,

we get that 
a nb pc

n p' = +
+ , b pc ma

p m' = +
+  and c ma nb

m n' = +
+ .

Clearly, the first part of the statement implies from the Ceva theorem. We are going to 
show that the point Q whose affix is given in (5) lies on the line AA ' . We have 

q a
a a

a

a
n p

m n p
nb pc n p a
nb

ma nb pc
m n p
nb pc
n p

−
−

−

−
+
+ +

+ − +
+= = ⋅

+ +
+ +
+
+

'
( )

ppc n p a
n p

m n p− +
+
+ += ∈

( )
R ,
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which according to the consequence 1.4 means that the points A, Q and B Q B, , '  are 
collinear. Analogously, we prove that the points   are collinear and that the points C Q C, , '  
are collinear as well. ■

11.9. The last theorem can be used to find the affixes of some important points 
of a triangle, such as the centroid, the center of the in-circle, the Jargon point( will be 
discussed later) and so. For example, for the midpoints A ',  B C', '  of the sides BC, CA, 
AB of the triangle, it holds true that 

BA
A C

'
'

,=1  CB
B A

'
'

,=1  AC
C B

'
'
=1 ,

i.e. m n p= = =1 , thus, from the theorem 11.8 we get that the medians intersect at a point 
T with affix t a b c= + +

3
. ■

12.	 AREA OF A TRIANGLE 

12.1. Let be given a  ABC and let the affixes of the vertices A, B, C be a, b, c 
respectively. We plot a line through the vertices B and C, whose auto conjugated equation 
is as following
 			   i c b z i c b z i cb cb( ) ( ) ( )− − − + − = 0 . 			   (1)
The distance from the point A to the line (1), i.e. the length of the altitude of  ABC plot 
at the vertex A, is 

hBC
i c b a i c b a i cb cb

c b= − − − + −
−

( ) ( ) ( )
| |2

,
i.e.

hBC
c b a c b a cb cb

c b= − − + − − +
−

( ) ( )
| |2

.

Therefore the area of the  ABC is 

 			   P ABC
BC h c b a c b a cb cbBC



= =⋅ − − + − − +
2 4

( ) ( ) . 		  (2)

Since the arbitrary complex numbers u and v the number uv vu−  is an imaginary number, 
the equality(2) transforms as following 

P iABC
c b a c b a cb cb



= ± − − + − − +( ) ( )
4

,
i.e

 				    P

a a

b b

c c
ABC

i


= ±
4

1

1

1

.				   (3)

12.2. Definition. Let be given  ABC and let the affixes of the vertices A, B, C 
be a, b, c respectively. We shall say that the  ABC is positively oriented with respect to 
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the considered coordinate system, if its area, calculated by applying the formula (3), is 
obtained when we multiply by + i, and negatively oriented if its area is obtained when the 
formula (3) is multiplied by − i. 

12.3. Remark. If  ABC is a right angled triangle, with a right angle in the vertex 
C, then for the affixes in the vertices A and B it holds true b a= − , thus from (3) for the 
area of the triangle we get that 

P ABC
ca ca



= −| |
2

.

12.4. Remark. The affix of the point P ' , symmetrical to the point P with an affix 
p, with respect to the line which passes through the points with affixes a and b, can be 
determined by using the following condition 

a a

b b

m m

1

1

1

0= , 

where m p p= + '
2

. The details are left to the reader as an exercise. 

12.5. Definition. We shall say that the n-gon A A An1 2...   is positively oriented if 
A A A1 2 3  is positively oriented. 

We shall say that the n-gon A A An1 2...  is negatively oriented if A A A1 2 3  is 
negatively oriented. 

12.6. Theorem. If A A An1 2...   is a convex polygon whose vertices A A An1 2, ,... ,  
have affixes a a an1 2, ,... ,  respectively, and S is its area, then S T= ± 1

2
Im( , )a a , where 

a = ( , ,..., )a a an1 2  and T is the mapping given in paragraph I 9. 

Proof. The area of the polygon is calculated as a sum of the areas of A A A1 2 3 , 
A A A1 3 4 ,... , A A An n1 2 1− −  and A A An n1 1− . Furthermore, these triangles are equivalently 
oriented, therefore 

    
S

i

a a

a a

a a

i

a a

a a

a a

i

a a

a a

a a= ± ± ± ±

1 1

2 2

3 3

1 1

3 3

4 4

1 1

4 4

5 5

1

1

1
4

1

1

1
4

1

1

1
4

....± ±

− −

− −

− −i

a a

a a

a a

i

a a

a a

a a
n n

n n

n n

n n

1 1

2 2

1 1

1 1

1 1

1

1

1
4

1

1

1
4

    

= ± − + − + − + + −

= ±

i
n n

i

a a a a a a a a a a a a a a a a

i
4 1 2 2 1 2 3 3 2 3 4 4 3 1 1

4
2

( ... )

( Im aa a i a a i a a i a a

i a a a a a

n
i

1 2 2 3 3 4 1

4 1 2 2 3 3

2 2 2

2

+ + + +

= ± + +

Im Im ... Im )

Im( aa a an4 1+ +... )

    = ± = ±1
2

1
2

Im( , ) Im( , )a a a aT T . ■ 
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12.7. Remark. The formula for calculating the area of a convex polygon, given 
in the previous theorem, applies as well when the triangle is not convex. 

12.8. Example. Let be given a convex pentagon A A A A A1 2 3 4 5 . If we connect the 
midpoints of its sides consequently, we get a new pentagon. Following the procedure, we 
get a series of pentagons and let S S S0 1 2, , ,...  be their areas. Prove that 

16 12 02 1S S Sn n n+ +− + = .

Solution. It is sufficient to prove that 
 				    16 12 02 1 0S S S− + = 				    (4)
For this purpose we will first calculate S1  and S2 . 

± = + + = +8 21
2 2S T T T T TIm( , ) Im( , ) Im( , )a a a a a a a a  and 

± = ( )( )+ + + +2 2
2

4
2

4

2 2
S T T T T TIm ,a a a a a a , 

i.e. 
± = +32 5 32

2S T TIm( , ) Im( , )a a a a .
If we eliminate Im( , )T 2a a  and take that ± =S T0 Im( , )a a  we get the equality (5). ■

12.9. Example. Prove that if the odd vertices of a n-gon are translated for the 
same vector, then the area of the new n-gon is equivalent to the area of the given n-gon. 

Solution. Let a be the oriented n-tuple of the affixes of the n-gon`s vertices. The 
area of the n-gon is as following

S T= ± 1
2

Im( , )a a ,
For the areа of the new n-gon we get the following

S T' Im ( ),= ± + +( )1
2

a h a h  
where h is one of the following ordered n-tuples

h = ( , , , ,..., , )α α α0 0 0  or h = ( , , , ,..., )α α α0 0 , α∈C ,
depending whether n is an even or an odd number, respectively. 

We get that
± = + +( ) = + + +{ }2S T T T T T' Im ( ), Im ( , ) ( , ) ( , ) ( , )a h a h a a a h h a h h .

From
( , ) ( , ) ( , ) ( , )T T T T Ta h a h a h a h= = =2  

we get the following 
Im ( , ) ( , )T Ta h a h+{ } = 0  

and if ( , )Th h = 0  we get 
± = + +( ) = = ±2 2S T T S' Im ( ), Im( , )a h a h a a .

According to this, S S= ' , which was supposed to be proven. ■
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12.10. Let’s consider a  ABC, whose vertices A, B and C have the affixes a, b 
and c, respectively. In the example II 3.3 we proved that 

o aa c b bb a c cc b a
a a

b b

c c

= − + − + −( ) ( ) ( )

1

1

1  
Is the affix of the center O of the circumcicrle of the  ABC. Clearly, the radius of the 
circumcircle of the  ABC is R a o= −| | . According to this, for the radius of the circum 
radius if of  ABC is as following 

R o a a b b c a c
a a

b b

c c

= − = − ⋅ − ⋅ −| | | | | | | |

1

1

1  
Since, AB a b BC b c CA c a= − = − = −| |, | |, | | , and also applying 12.1 we get the 
following formula 

R AB BC CA
P ABC

= ⋅ ⋅
4


.

12.11. Theorem. The ratio between the areas of two similar triangles is equivalent 
to the ratio of the squares of the respected sides. 

Proof. Let the triangles ABC and A B C1 1 1 , whose affixes of the vertices are a, b, 
c and a b c1 1 1, ,  respectively, be similar. There are two possible cases. 

а) There is a direct similarity S z dz e( ) = +  which maps  ABC into A B C1 1 1  
and therefore we get 

P dA B C

a a

b b

c c

da e da e

db e db e

dc e dc e
 1 1 1

1 1

1 1

1 1

1

1

1

4

1

1

1

4
= = =

+ +

+ +

+ +
| |22

1

1

1

4
2= =

a a

b b

c c
ABCd P| |
 .

b) There is an indirect similarity S z dz e( ) = +  which maps  ABC to A B C1 1 1 . 
Analogously as in а) we prove that 

P d PA B C ABC 1 1 1

2= | | .
The statement of the theorem is implied by the theorems 4.6 and 7.8. ■

12.12. Consequence. The ratio between the areas of two similar n-gons is 
equivalent to the ratio of the squares of the respected sides. 

Proof. Theorems 12.6 and 12.11 directly imply the above given consequence. ■
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13.	 INCIRCLES AND EXCIRCLES OF A TRIANGLE 

13.1. Let’s consider the  ABC whose vertices A, B and C have affixes a, b and 
c, respectively. In lemma 10.4 we proved that any point D with an affix d is uniquely 
determined by the real numbers λ, µ, ν such that 
 				    λ µ νa b c d+ + = 				    (1)
where
 				    λ µ ν+ + =1 .					     (2)

Let P P P P, , ,1 2 3  be the areas of the 
triangles ABC, DBC, DAC and DBA, taken with an 
appropriate sign depending on the orientation of 
the triangles (figure 36). From (1) and (2) and the 
conjugated equation of (1) we obtain the system: 

λ µ ν
λ µ ν

λ µ ν

+ + =
+ + =

+ + =









1

a b c d

a b c d  
The solution of the above system is 

		  λ µ ν= = =P
P

P
P

P
P

1 2 3, , . 					     (3)

So, we proved the following lemma. 

Lemma. The numbers λ, µ and ν which according to the formulae (1) and (2) 
determine the position of the point D with respect to the  ABC are proportional to the 
areas of P P1 2,  and P3 , i.e. they are determined by the relation (3). ■

13.2. Let be given a point I, with an affix z and let the distances between the point 
I to the sides BC, CA and AB of the  ABC be r r1 2,  and r3  respectively. The lemmas 
13.1 and 10.4 imply that 
 			   r r rP

b c
P

c a
P

a b1
2

2
2

3
2= = =− − −

λ µ ν
| | | | | |

, , , 			   (4)

where the numbers λ, µ and ν are uniquely determined. Clearly, if 

λ µ ν= = =−
− + − + −

−
− + − + −

−| |
| | | | | |

| |
| | | | | |

| |
|

, ,b c
a b b c c a

c a
a b b c c a

a b
aa b b c c a− + − + −| | | | |

,
then

r r r r P
a b b c c a1 2 3

2= = = = − + − + −| | | | | |  
and for the affix of the point I we get that 

 				    z b c a c a b a b c
a b b c c a= − ⋅ + − ⋅ + − ⋅
− + − + −

| | | | | |
| | | | | |

.			   (5)

Since the numbers λ, µ and ν are positive numbers, the remark10.4 implies that the point 
I is inside the  ABC. So, we proved the following lemma. 

Figure 36
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Lemma. For any triangle, there is a unique point inside of it which is on the same 
distance from the sides of the triangle. ■

13.3. Remark. Clearly, the circle with a center in I, whose affix is given in (5), 
and radius 

r P
a b b c c a= − + − + −

2
| | | | | |  

touches the sides of the  ABC, i.e. it is an incircle of the  ABC. 

13.4. Let A B C', ', '  be the points in which the circle K(I,r) meets the sides BC, 
CA, AB of the  ABC. Then, using the degree of the 
points A, B, C with respect to the circle K(I,r) we get 
that 

AC AB BC BA CA CB' ', ' ', ' '= = =  
thus 

AB
B C

CA
A B

BC
C A

'
'

'
'

'
'

 

 

 

 

 

 ⋅ ⋅ =1 .

Now, according to the Ceva theorem we get that 
the lines AA BB', '  and CC '  intersect at a point M 
(figure 37). So, we proved the following lemma. 

Lemma. The lines which connect the vertices A, B, C of  ABC to the points 
A B C', ', '  at which the sides meet the incircle K(I,r) intersect in a point M, which is 
called a Gergonne point for  ABC. 

13.5. Remark. Analoguosly, we prove that there exist three circles which are 
excircle of  ABC. The affixes of their centers are as following 

z b c a c a b a b c
a b b c c a' | | | | | |

| | | | | |
= − − ⋅ + − ⋅ + − ⋅

− − + − + − , z b c a c a b a b c
a b b c c a'' | | | | | |

| | | | | |
= − ⋅ − − ⋅ + − ⋅

− − − + − , z b c a c a b a b c
a b b c c a= − ⋅ + − ⋅ − − ⋅
− + − − −

| | | | | |
| | | | | |

,
their radii are 

r P
a b b c c a'

| | | | | |
= − − + − + −

2 , r P
a b b c c a''

| | | | | |
= − − − + −

2 , r P
a b b c c a'''

| | | | | |
= − + − − −

2 ,

(figure 38), respectively. 

Figure 37

Figure 38
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13.6. Lemma. The lines which connect the vertices A, B, C of the  ABC to K, F, 
L the points where the sides of the triangle meet the excircle concur in a point N which is 
called Nagel point for the  ABC. 

Proof. Firstly we are going to prove that 

BF BM AB BC CA' = = + +
2  

(figure 39). There is 

BF BA AF BA AF' '= + = +  
and 

BM BC CM BC CF= + = + .
If we add the last two equations and take that 

AC AF CF= +  
we get the required equality. According to this, 

AF AF BF BA BAAB BC CA AB BC CA= = − = − =+ + − + +' ' .
2 2  

Analogously to this, we prove that

CK LA AB BC CA= = + −
2

, BL FC AB BC CA= = − +
2

, KB AB BC CA= − + +
2

.
Now, the statement in Lemma is implied from Ceva`s theorem, thereby 

AF
FC

CK
KB

BL
LA

 

 

 

 

 

 ⋅ ⋅ =1 . ■

13.7. Remark. Clearly, the lines AI, BI and CI are bisectors of the inside angles 
of the  ABC and their equations are 

z a z ac a b a a b c a
c a b a a b c a

− = −− ⋅ − + − ⋅ −
− ⋅ − + − ⋅ −

| | ( ) | | ( )

| | ( ) | | ( )
( ) ,

z b z bb c a b a b c b
b c a b a b c b

− = −− ⋅ − + − ⋅ −
− ⋅ − + − ⋅ −

| | ( ) | | ( )

| | ( ) | | ( )
( )  and

z c z cb c a c c a b c
b c a c c a b c

− = −− ⋅ − + − ⋅ −
− ⋅ − + − ⋅ −

| | ( ) | | ( )

| | ( ) | | ( )
( ) ,

respectively. Analogously, we can determine the bisectors of the outside angles of the 
 ABC. 

13.8. Let A1  be the point where the bisector AI meets the side BC. Its affix is 
a b c
1 1
= +

+
λ
λ . Since the points A, I and A1  are collinear, by applying the consequence II 1.3 

we get that
| | ( ) | | ( )

| | ( ) | | ( )

( )c a b a a b c a
c a b a a b c a

b a c a
b

− ⋅ − + − ⋅ −
− ⋅ − + − ⋅ −

− + −= λ
−− + −a c aλ( )

.

The latter is equivalent to 

 
λ −( ) −( ) =−

−
−
−

−
−

| |
| |
a b
c a

c a
c a

b a
b a

0

Figure 39
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Now, since the points A, B and C are not collinear we get that λ = −
−

| |
| |
a b
c a , i.e. the affix of 

the point A1  is 
a c a b a b c

c a a b1 =
− ⋅ + − ⋅
− + −

| | | |
| | | |

.

Analogously, the affixes of B1  and C1  the points where the bisectors BI and CI meet the 
sides AC and AB are 

b b c a a b c
b c a b1 =
− ⋅ + − ⋅
− + −

| | | |
| | | |

 and c c a b b c a
c a b c1 =
− ⋅ + − ⋅
− + −

| | | |
| | | |

,

respectively. Thus 
 				    BA AB BC

CA AB1 = ⋅
+

, CA AC BC
CA AB1 = ⋅

+
 			   (6)

i.e.

 					     BA
CA

AB
AC

1

1
= . 				    (7)

Therefore, we proved the following lemma. 

Lemma. If A1  is the point where AI, the bisector of the inside angle at the vertex 
A of the  ABC, meets the side BC, then the equalities (6) and (7) are satisfied. ■ 

13.9. Remark. Clearly, the analogous equalities to the equalitity (6) hold true 
for the bisector BI and CI of the inside angles at the vertices B and C of the  ABC. 
Furthermore, if B1  and C1  are the points of where the bisector meets the sides CA and 
AB respectively, then

AB
CB

BA
BC

1

1
=  and 

AC
BC

CA
CB

1

1
= .

13.10. Theorem (Euler). Let O be I the circumcenter and the incenter of the 
 ABC, and R and r be their radii, respectively. Then, 

OI R Rr
2 2 2= − .

Proof. Without loss of generality, we can say that the center of the circumscribed 
circle coincides with the origin. If a, b, c are the affixes of the vertices of the  ABC, then 
| | | | | |a b c R= = =  and according to the proof of lemma 13.2 the affix of the incenter is 
as following 

z b c a c a b a b c
a b b c c a= − ⋅ + − ⋅ + − ⋅
− + − + −

| | | | | |
| | | | | |

.

Therefore, 

OI b c a c a b a b c b c a c a b a b c
a

2
= − ⋅ + − ⋅ + − ⋅ − ⋅ + − ⋅ + − ⋅

−
(| | | | | | )(| | | | | | )

(| bb b c c a| | | | |)+ − + − 2 .

Now, the statement in Lemma is directly implied by the operations of complex numbers, 
the formula for the radius of circumcircle (discussed in 12.10) and the formula for the 
radius of incircle (discussed in Remark 13.3) 
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13.11. Remark. Analogously, as in theorem 13.10 it can be proved that 

OI R Rr' '
2 2 2= + , where I '  and r '  are the center and the radius of the excircle of the 

 ABC, аnd O and R are the center and the radius of the inscribed circle of the  ABC. 

13.12. Remark. Let the unit circle be inscribed in the  ABC whose vertices A, 
B, C have the affixes a, b, c, respectively, and let it meets the sides BC, CA, AB at the 
points P, Q, R with affixes p, q, r, respectively. Then, according to the remark II 3.12 d) 
we get that 

a qr
q r= +
2 , b rp

r p= +
2  and c pq

p q= +
2 .

Furthermore, the example II 3.3 implies that the circum center of  ABC has the affix 

o pqr p q r
p q q r r p= + +
+ + +

2 ( )
( )( )( )

,

The remark 5.4 implies that the orthocenter of the  ABC has an affix  

h p q q r r p pqr p q r
p q q r r p= + + + + +( )
+ + +

2 2 2 2 2 2 2 ( )
( )( )( )

.

13.13. At the end of this part let’s note that the following theorem can be proved. 

Theorem. Let  ABC, whose vertices A, B and C have the affixes a, b and c, 
respectively, be inscribed in the unit circle. Then, there are complex numbers u, v, w such 
that a u= 2,  b v= 2 , c w= 2  and the midpoints of the arcs AB, BC, CA which don’t consist 
of the points C, A, B are points with affixes − − −uv vw wu, , , respectively. Therefore, 
the affix of the incenter L of the  ABC is l uv vw wu= − + +( ) . ■ 

13.14. Example. Let L be the incenter of the  ABC, and the lines AL, BL, CL 
meets the circums circle of the  ABC at the points A B C1 1 1, , , respectively. If R is the 
radius of the circumscribed, and r the radius of the inscribed circle of the  ABC prove 
that: 

а) LA LC
LB

R1 1⋅ = , 		 b) LA LB
LC

r⋅ =
1

2 , 		  c) P
P

r
R

ABC
A B C
∆

∆ 1 1 1

2= . 

Solution. Let the circumscribed circle of the  ABC be the unite circle and let u, 
v, w are the complex numbers as in the theorem 13.13. According to that theorem, we get 
that  l uv vw wu= − + +( )  and a u= 2,  b v= 2 , c w= 2  and the midpoints of the arcs AB, 
BC, CA which don’t consist of the points C, A, B are points with affixes − − −uv vw wu, , ,  
respectively. Furthermore, since, 

l vw
l vw

uv uw

uv uw
vwu− −

− −
− −
− −

= =( )

( ) 1 1
2  and a vw

a vw
u vw

u vw
u vw− −

− −
+
+

= =( )

( )

2

1
2

1
2

we get that the points with affixes a, l and −vw  are collinear, which means that the point 
A1  has an affix a vw1 = − . Similarly, the affixes of the points B1  and C1  are b uw1 = −  
and c uv1 = − , respectively. 
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а) the statement is implied by the equality 

LA LC
LB

l a l c
l b

u v w w u v
uv uw vw v

1 1 1 1
2

⋅ − ⋅ −
−

+ ⋅ +
+ + +

= =| | | |
| |

| ( )| | ( )|

| ||

| | | |
|( )( )|

= = =+ ⋅ +
+ +

v w u v
u v w v R1 .

b) If z is the affix of the point where the incircle meets the side BC, then z is the 
affix of the foot of the perpendicular drawn from the point L to the side BC. Thus its affix 
is 

z b c l bcl= + + −1
2

( )  
thus 

r l z u v v w w uu v v w w u
u= − = = + + ++ + +| | | ( )( )( ) |( )( )( )1

2
1
2

.
Therefore,

LA LB
LC

u v u w u v v w
w u v

u v v w w u

⋅ + + ⋅ + +
+=

= + + +
1

|( )( )| |( )( )|
| ( )|

| ( )( )( )) | .= 2r  
c) The areas of the triangles are 

P

u u

v v

w w
ABC

i


= ±
4

2 2

2 2

2 2

1 1

1 1

1 1

/

/

/

 and P
vw u
uw v
uv w

A B C
i

uvw 1 1 1 4

1

1

1

= ± ,

thus
P

P
u w w v v u v w u v w u

v w vu uw uv
ABC

A B C
∆

∆ 1 1 1

4 2 4 2 4 2 4 2 4 2 4 2

2 2 2 2= + + − − −
+ + − −− −

− + − −
− + − −

−

=

=

vw wu

v u v u w w u w v
u v uv w wu wv

u

2 2

2 2 2 2 4 2 2 2 2

2
( )( )

( )( )

( vv u v uv w wu wv
u v uv w wu wv

u v u v

)( ) ( ) ( )

( )( )

( )( )

+ + − + 
− + − −

− +=

2 2 2

2

(( )( )

( )( )

| ( )(

uv w wu wv uv w wu wv
u v uv w wu wv

u v uv w

+ − − + + +
− + − −

= + +

2 2

2

2 ++ +

= + + + =

wu wv

u v v w w u r
R

) |

| ( )( )( ) | ,2
 

which was required to be proven. ■ 
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14.	 STEWART`S THEOREM

14.1. Let a, b, c be the affixes of the vertices A, B, C of the  ABC and let 
the point D be on the side BC (figure 40). Then, the affix of D is d b c= +

+
λ
λ1

, for some 
λ∈ ( , )0 1 . According to this, 

AB b a AC c a BC b c

BD CD ADb c b c b

= − = − = −

= = =−
+

−
+

−

| |, | |, | |,

, ,| | | | |λ
λ λ1 1

aa c a+ −
+
λ
λ
( )|

1  
Thus 

AC BD AB CD BC CD BD c a b a b cb c2 2

1
2 2

1
2⋅ + ⋅ − ⋅ ⋅ = − + − − −−

+ +
| | ( | | | | | | )λ

λ
λλ

== − − − + − − + − − + − − −| | ( )( ) ( )( ) ( )( ) ( )( ) (b c c a c a b a b a c a c a b a b a bλ λ λ λ2 −− −
+

− − + − − + − − += −

c b c

c a c a b a b a c a b ab c

)( )

( )

( )( ) ( )( ) ( )( )| |

1 2

2

λ

λ λ λ(( )( )

( )

| ( )|

( )
| | .

b a c a

b a c ab c AD BC

− −
+

− + −
+

= − = ⋅

1

1

2

2

2

2

λ

λ
λ  

So, we proved the following theorem. 

Theorem (Stewart). If D is a point on the side BC of the  ABC, such that O is 
between the points B and C, the following equality holds true 

		  AC BD AB CD BC CD BD AD BC
2 2 2
⋅ + ⋅ − ⋅ ⋅ = ⋅ .   ■		  (1)

14.2. Example. Let m m mA B C, ,  be the lengths of the medians of the  ABC 
drawn from the vertices A, B, C respectively. Prove that 

 	 m m mA
AC AB BC

B
BC BA AC

C
CA CB AB2

2 4
2

2 4
2

2 4

2 2 2 2 2 2 2 2 2

= − = − = −+ + +, , .	(2)

Solution. We shall only prove the first equality in (2). The other two equalities 
can be proved analogously. 

Let A '  be the midpoint of the side BC. Since

CA BA BC' '= =
2

 and m AAA = ' ,
By applying the Stewart  theorem, we get the following equality

m BC AC AB BCA
BC BC BC BC2 2

2

2

2 2 2
⋅ = ⋅ + ⋅ − ⋅ ⋅  

If we divide it by BC  we get the following equality 

mA
AC AB BC2

2 4

2 2 2

= −+ . ■

14.3. Example. The lengths of the medians of the  ABC are mA = 9 cm,  
mB =12 cm  and mC =15 cm . Calculate the lengths of its sides. 
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Solution. From the equalities (2) using the length of the medians we can find the 
length of the sides of the  ABC. 

 	 AB BC CAm m m m m m m mA b C B C A C A2 8 4
9

2 8 4
9

2 8 42 2 2 2 2 2 2 2

= = =+ − + − + −( ) ( ) ( )
, ,

mmB
2

9
. 	(3)

Using the equality (3) we get that
AB BC= =10 2 73cm cm,  and CA = 4 13 cm . ■

14.4. Example. Express the length of the bisectors of the interior angles of the 
 ABC using the length of its sides. 

Solution. Let D be the point where, the bisector lA  of the angle at the vertex A, 
meets the side BC. In lemma 13.8 we proved that 

BD AB BC
CA AB

= ⋅
+

 and CD AC BC
CA AB

= ⋅
+

.

According to the Stewart theorem, we get that 

l AB ACA
BC

AB AC
2 1

2

2= ⋅ −



+( )

.

It can be proved analogously that

l AB BCB
AC

AB BC
2 1

2

2= ⋅ −



+( )

 and l AC BCC
AB

AC BC
2 1

2

2= ⋅ −



+( )

. ■

14.5. Definition. The line symmetrical to the median with respect to the bisector 
of the angle drawn from the same vertex is called symmedian. 

14.6. Let AA AA1, '  and AA ''  be the bisectors of the angle, the median and the 
symmedian of the  ABC, drawn from the vertex A (figure 41). The equations of the 
median and the symmetry are the following 

z a z ab c a
b c a

− = −+ −
+ −

2
2

( )  and z a z ac a b a a b c a
c a b a a b c a

− = −− − + − −
− − + − −

| |( ) | |( )

| |( ) | |( )
( ) ,

respectively. 
The indirect similarity 

 			   S z z a ac a b a a b c a
c a b a a b c a

( ) ( )| |( ) | |( )

| |( ) | |( )
= − +− − + − −

− − + − −
			   (4)

is a line symmetry and the line of symmetry is a bisector 
of the angle at the vertex A by direct calculations we get 
that the line with an equation 

 		 z a z ac a b a a b c a
c a b a a b c a

− = −− − + − −
− − + − −

| | ( ) | | ( )

| | ( ) | | ( )
( )

2 2

2 2 	 (5)

is an image of the median е under the line symmetry (4). 
According to this, (5) is the equation of the symmedian 
drawn from the vertex A. A ''  the point where the Figure 41
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symmedian and the side BC has the affix a b c'' = +
+
λ
λ1

. But, the point A ''  lies on the line 
(5), thus the following equality is satisfied 

| | ( ) | | ( )

| | ( ) | | ( )

( )c a b a a b c a
c a b a a b c a

b a c a
b

− − + − −
− − + − −

− + −=
2 2

2 2
λ

−− + −a c aλ( )  
which is equivalent to the equality 

λ −





−( ) =−
−

−
−

−
−

| |

| |

a b
c a

c a
c a

b a
b a

2

2 0  

and since the points A, B and C are not collinear we get that λ = −
−

| |

| |

a b
c a

2

2 , i.e. the affix of 
the point A ''  is 

a c a b a b c
c a a b

'' | | | |

| | | |
= − + −

− + −

2 2

2 2 .

Analogously to this, for the points of intersection B ''  and C ''  of the other symmedians 
and the sides AC and AB we get that 

b b c a a b c
b c a b

'' | | | |

| | | |
= − + −

− + −

2 2

2 2  and c c a b b c a
c a b c

'' | | | |

| | | |
= − + −

− + −

2 2

2 2 ,

respectively. 
The above stated impies that, thus,

			   BA AB BC
AB CA

'' = ⋅
+

2

2 2  and CA AC BC
AB CA

'' = ⋅
+

2

2 2 			   (6)
so

 				    BA
CA

AB
CA

''
''
=

2

2 .					     (7)

So we proved the following lemma.

Lemma. If A ''  is the point of intersection between the symmedian at the vertex 
A of the  ABC and the side BC, then the equalities (6) and (7) are satisfied. ■

14.7. Consequence. The symmedians AA BB'', ''  and CC ''  of the  ABC are 
concurrent. 

Proof. The proof is directly implied by lemma 14.6 and the Ceva theorem. ■

14.8. Example. Express the lengths of the symmedians of the  ABC using the 
lengths of the sides of the triangle. 

Solution. By using the equalities (6), and the Stewart  theorem for the length of 
the symmedian AA ''  we get the following

A A AC AB BC
AC AB

''
( )

2 2 2
2

2

2 2 2
= ⋅ −









+
.

Analogously to this, for the symmedians BB ''  and CC ''  the following holds true

B B BC AB AC
BC AB

''
( )

2 2 2
2

2

2 2 2
= ⋅ −









+
 and C C AC BC AB

AC BC
''

( )

2 2 2
2

2

2 2 2
= ⋅ −









+
. ■
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15.	 SIMPSON LINE 

15.1. ������������������ Theorem (Simpson). Let D be point on the circumcircle of  ABC. Then 
the foots of the perpendiculars drawn from the point D to the sides of the  ABC are 
collinear. 

Proof. With no loss of generality, we can 
say that the  ABC is inscribed in the unit circle. Let 
a b c', ', '  be the affixes of A B C', ', '  the foots of 
perpendicular drawn from the point D  to the sides BC, 
CA and AB, respectively (figure 42). If we take that 

a b ca b c= = =1 1 1, ,  and d d= 1 ,
Then the example 1.9 implies that 

a b c d bc
d' = + + −( )1

2
, b c a d ac

d' = + + −( )1
2

 and 
c a b d ab

d' = + + −( )1
2

.
Thus, 

 

a c
b c

b c d a b d

c a d a b d

c a
bc
d

ab
d

ac
d

ab
d

' '
' '

(−
−

+ + − − + + −( )
+ + − − + + −( )

−= = ))( )
( )( )

( )( )
( )( )

( )( )
( )(

d b
c b d a

a c b d
b c a d

c a b d
c b d a

−
− −

− −
− −

− −
− −

=

=
))

' '
' '

,= =
+ + − − + + −( )
+ + − − + + −( )

−
−

b c d a b d

c a d a b d
a c
b c

bc
d

ab
d

ac
d

ab
d

thus the consequence 1.4 implies that the points A B C', ', '  are collinear. ■

15.2. Definition. The line such that the points A B C', ', '  (defined as in theorem 
15.1) lay on it, is called Simpson line of the point D with respect to the  ABC. 

15.3. We shall give the equation of Simpson line for the point D about the  ABC. 
If Z is an arbitrary point on the Simpson line, then the points Z A C, ', '  are collinear, 
therefore z c

a c
z c
a c

−
−

−
−

='
' '

'
' '

, and for the Simpson line we get that 

z z a c
a c

a c c a
a c

− + =−
−

−
−

' '
' '

' ' ' '
' '

0 .

Furthermore, according to the proof of theorem 15.1 we get that 

a c c a a c a cb
d ac

d
b' ' ( ) , ' ' ( )− = − −( ) − = − −( )1

2
1

2
1 1 ,

therefore a c
a c

acb
d

' '
' '
−
−

= . In order to determine the constant term m a c c a
a c

= −
−

' ' ' '
' '

 we shall take 
that the point B '  is on the Simpson line, i.e. 

1
2

1
2

0c a d c a d mac
d

ac
d

acb
d+ + −( ) − + + −( ) + = . 

So,

Figure 42
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m a b c d a b c dabc
d= + + + − + + +

2
1
2

( ) ( )  
thus the equation of Simpson line of the point D with respect to the  ABC is 
		  z z a b c d a b c dacb

d
abc

d− + + + + − + + + =
2

1
2

0( ) ( ) . 		  (1)

15.4. Example. Let the points A, B, C, D lie on a same circle. Prove that the point 
X where the Simpson line of A for the  BCD meets the Simpson line of B for the  ACD 
is on the line which passes through the point C and the orthocenter H of the  ABD. 

Solution. The quadrilateral ABCD is cyclic, so we can say that it is inscribed in 
a unit circle. Let a a a', '', '''  be the affixes of A A A', '', '''  the foot of the perpendiculars 
drawn from the point A to the lines BC, CD, DB, respectively, and b b b', '', '''  are the 
affixes of the food of perpendicular B B B', '', '''  of the normal lines drawn from the point 
B of the lines AC, CD, DA, respectively. So, 

a a b c a a b d a a c dbc
a

bd
a

cd
a' , '' , '''= + + −( ) = + + −( ) = + + −( )1

2
1
2

1
2

,

b b a c b b c d a b d aac
b

cd
b

ad
b' , '' , '''= + + −( ) = + + −( ) = + + −( )1

2
1
2

1
2

.

The equation of Simpson line of the point A is: z a z aa a
a a

− = −−
−

' ( ')'' '
'' '

, i.e. 

				    z a z abcd
a− = −' ( ') ,				    (2)

and the equation of Simpson line of the point B is: z b z bb b
b b

− = −−
−

' ( ')'' '
'' '

, i.e.

 				    z b z bacd
b− = −' ( ') .				    (3)

By solving the system of equations (2) and (3) we get the affix x of the point of intersec-
tion X, as following 

x a b c d= + + +1
2

( ) .

Moreover, the affix of the orthocenter H of the  ABD is h a c d= + +  and since 
h c
h c

a b d c
a b d c

a b c d c
a b c d c

a b c d c−
−

+ + −
+ + −

+ + + −
+ + + −

+ + + −
= = =2

2

1
2
1
2

( )

(( )a b c d c
x c
x c+ + + −
−
−

= ,

According to the consequence II 1.3 we get that the points C, H and X are collinear. ■

15.5. Example. Let l(N,PQR) be the SImson line of the point N of the  PQR. 
Let the points A, B, C, D be on a same circle. Prove that the lines l(A,BCD), l(B,ACD), 
l(C,ABD), l(D,ABC) concur.

Solution. We shall say that the points A, B, C, D lie on a unit circle. According to 
the example 15.4 the lines l(A,BCD) and l(B,ACD) intersect at the point X with an affix  
x a b c d= + + +1

2
( ) . The right part of the last equality is symmetrical with respect to the 

affixes a, b, c, d of the points A, B, C, D, thus the point X is the point of intersection of the 
Simpsons lines l(A,BCD), l(B,ACD), l(C,ABD), l(D,ABC). ■



138

15.6. Example. Let l(P,ABC) and l(Q,ABC) be the Simpsons lines of the points 
P and Q with respect to the  ABC and O be the center of the circum circle of the  ABC. 
Prove that ∠( ) = ∠l P ABC l Q ABC POQ( , ), ( , ) 1

2
. 

Solution. We shall say that  ABC is inscribed in the unit circle. 15.3 implies that 
the equations of the lines l(P,ABC) and l(Q,ABC) are 

z z a b c p a b c pacb
p

abc
p− + + + + − + + + =

2
1
2

0( ) ( )  and

 z z a b c q a b c qacb
q

abc
q− + + + + − + + + =

2
1
2

0( ) ( ) , 

respectively. The complex angle coefficients of the lines l(P,ABC) and l(Q,ABC) are 
η = acb

p  and η ' = acb
q , respectively. According to theorem II 1.7 the oriented angleϕ  

between the lines l(P,ABC) and l(Q,ABC) is given by the formula e i q
p

2 ϕ η
η= =

'
, which 

according to I 8.7 means that 
∠( ) = ∠l P ABC l Q ABC POQ( , ), ( , ) 1

2
. ■

16.	 PTOLEMY`S THEOREM 

16.1. Lemma. If z jj , , , ,=1 2 3 4  are the affixes of the consecutive vertices of a 
cyclic quadrilateral, then 

 			   ( )( )
( )( )
z z z z
z z z z
1 2 3 4

1 4 2 3
0

− −
− − > 				    (1)

Proof. With no loss of generality we shall say that the center of the circum circle 

coincides with the origin, and the radius of the circle is r. Then, z rej
i j= ϕ , j =1 2 3 4, , , . 

Also, we can assume that consecutively of the vertices is equivalent to the condition 
 				    ϕ ϕ ϕ ϕ ϕ π1 2 3 4 1 2< < < < + . 			   (2)
Thus, it holds true that: 

( )( )
( )( )

( )( )

(

z z z z
z z z z

e e e e
e e

i i i i

i
1 2 3 4

1 4 2 3

1 2 3 4

1

− −
− −

− −
−

=
ϕ ϕ ϕ ϕ

ϕ ii i i

i i i i

e e

e e e e

e

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

4 2 3

1 2
2

1 2
2

3 4
2

3 4
2

)( )−

−( ) −( )
=

− − − −
−

−

ii i i i
e e e

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

1 4
2

1 4
2

2 3
2

2 3
2

1 2
2

3 4

− − − −
−

−

− −

−( ) −( )
=

sin sin
22

1 4
2

2 3
2

0
sin sin

ϕ ϕ ϕ ϕ− − >
 

therefore according to (2), each argument of sin belongs to the interval ( , )−π 0 . Thus the 
inequality (1). is proved. ■
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16.2. Theorem (Ptolemy). The product of the 
lengths of the diagonals of a cyclic quadrilateral is equal 
to the sum of the products of its lengths of the opposite 
sides. 

Proof. Let z jj , , , ,=1 2 3 4  be the affixes of the 
vertices A, B, C, D of a cyclic quadrilateral ABCD, figure 
43. The statement of the theorem is equal to the equality 

AC BD AB CD BC AD⋅ = ⋅ + ⋅ ,
i.e. the equality 
 		  | | | | | | | | | | | |z z z z z z z z z z z z1 3 2 4 1 2 3 4 1 4 2 3− ⋅ − = − ⋅ − + − ⋅ − .	 (3)
According to the lemma 26.1 we have that

| ( )( ) | | ( )( ) | | ( )( ) ( )(z z z z z z z z z z z z z z1 2 3 4 1 4 2 3 1 2 3 4 1 4− − + − − = − − + − zz z
z z z z z z z z
z z z z

2 3

1 4 2 3 1 2 3 4

1 3 2 4

−
= − − + +
= − −

) |

| |

| ( )( ) |,  
which means that the equality (3) is satisfied. ■

16.3. Theorem. If for the complex numbers p, q, r, s it is true that ( )( )
( )( )
p s r q
p q r s
− −
− − ∈R ,  

then they are the affixes of the consecutive vertices P, Q, R, S of a cyclic quadrilateral 
(cyclic) or they are collinear. 

Proof. In extended complex plane the points Q, R, S, determine a circle (K). 
A Möbius transformation determined by f q( ) = ∞ , f r f s( ) , ( )= =1 0   maps the circle 
(K) on the real axis and thereby theorem II 10.8 it is defined by f z z s r q

z q r s( ) ( )( )
( )( )

= − −
− − . The 

point P is on the circle (K) if and only if its image is on the real axis i.e. if and only if 
f p p s r q

p q r s( ) ( )( )
( )( )

= ∈− −
− − R . ■

16.4. Example. An equilateral triangle ABC is inscribed in a circle. An 
arbitrary point M is on the arc BC  on which doesn’t belong the point A. Prove that  
BM CM AM+ = . 

Solution. By applying the Ptolemy`s theorem on the cyclic quadrilateral ABMC 
we get that 
 			   BM CA CM AB BC AM⋅ + ⋅ = ⋅ . 			    (4)
But, the triangle ABC is equilateral, AB BC CA= = , so thereby (4) holds true we get 
that 

BM AB CM AB AB AM⋅ + ⋅ = ⋅  
and if we divide the last equality by AB  we get the necessary equality. ■

Figure 43
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16.5. Example. Given are circles k k k k1 2 3 4, , ,  so required that 
k k A B1 2 1 1∩ ={ , } , k k A B2 3 2 2∩ ={ , } , k k A B3 4 3 3∩ ={ , }  and 

k k A B4 1 4 4∩ ={ , } .
If the points A A A A1 2 3 4, , ,  are concyclic (they lie on a same circle too) or are collinear, 
then the points B B B B1 2 3 4, , ,  are concyclic or collinear. Prove it! 

Solution. The points 
A B A B1 1 2 2, , , ; A B A B2 2 3 3, , , ; A B A B3 3 4 4, , ,  and A B A B4 4 1 1, , ,

are concyclic, so thereby lemma 25.1 we get that the numbers 
( )( )
( )( )
a a b b
a b b a

1 2 2 1

1 1 2 2

− −
− − , ( )( )

( )( )
a a b b
a b b a

2 3 3 2

2 2 3 3

− −
− − , ( )( )

( )( )
a a b b
a b b a

3 4 4 3

3 3 4 4

− −
− − , ( )( )

( )( )
a a b b
a b b a

4 1 1 4

4 4 1 1

− −
− −

are real numbers. The product of the first and the third number divided by the product of 
the second and the forth number in (1) is equal to 

( )( )
( )( )

( )( )
( )( )

a a a a
a a a a

b b b b
b b b b

1 2 3 4

2 3 4 1

2 1 4 3

3 2 1 4

− −
− −

− −
− −⋅  

and it is a real number too. According to the condition of the example, the points 

A A A A1 2 3 4, , ,  are concyclic, so from the lemma 16.1 we get that ( )( )
( )( )
a a a a
a a a a

1 2 3 4

2 3 4 1

− −
− −  is a real 

number. But, that means that the number ( )( )
( )( )
b b b b
b b b b

2 1 4 3

3 2 1 4

− −
− −  is a real number, so the theorem 

16.3 we get that the points B B B B1 2 3 4, , ,  are concyclic or collinear. ■

16.6. Lemma (Ptolemy`s inequality). For arbitrary points A, B, C, D in a plane, 
the following inequality holds true 
 			   AB CD BC AD AC BD⋅ + ⋅ ≥ ⋅ .				    (5)

Proof. Let a, b, c, d be the affixes of the vertices A, B, C, D respectively. Then 
( )( ) ( )( ) ( )( )a b c d b c a d a c b d− − + − − = − −  

and if we apply the triangle inequality, we get the following inequality 
| ( )( ) | | ( )( ) | | ( )( ) |a b c d b c a d a c b d− − + − − ≥ − − ,

which is actually the inequality (5) written in terms of the affixes of the vertices of the 
quadrilateral ABCD. ■

17.	 INNER PRODUCT

17.1. ������������������������   Let the complex numbers a a ei= | | α  and b b ei= | | β  be given. Then
ab a e b e a b e a b ii i i= = ⋅ = ⋅ − + −(− −| | | | | | | | | | | | cos( ) sin( )( )α β β α β α β α )) ,

so
| | | | cos( ) Rea b ab⋅ − =β α  and | | | | sin( ) Ima b ab⋅ − =β α .

Furthermore, the complex numbers a and b correspond to the vectors a


 and b


 with 
tale at the origin and held at the points A and B with affixes a and b . Moreover, the 
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scalar product of the vectors a


 and b


 is defined by ab a b a b
    

= ⋅ ∠| | | | cos ( , )  and since 
∠ = ± −( , ) ( )a b
 

β α  we get that the scalar product of the vectors a


 and b


 (the complex 
numbers a and b) holds true that ab ab



= Re  ( a b ab⋅ = Re ). The following properties of 
a scalar product are very simple, and therefore they are left on the reads. 

Theorem. The following statements hold true: 
1)	 a a a⋅ = | |2 , for each a∈C , 
2)	 a b b a⋅ = ⋅ , for all a b, ∈C , 
3)	 a b c a b a c⋅ + = ⋅ + ⋅( ) , for all a b c, , ∈C , 
4)	 ( ) ( ) ( )ka b k a b a kb⋅ = ⋅ = ⋅ , for all a b, ∈C  and for each k∈R , 
5)	 ( ) ( ) | |ac bc c a b⋅ = ⋅2 , for all a b, ∈C , and
6)	 a b⋅ = 0  if and only if OA OB⊥ . ■

17.2. Lemma. Let A, B, C, D be four distinct points with affixes a, b, c, d, 
respectively. Then AB CD⊥  if and only if ( ) ( )b a d c− ⋅ − = 0 . 

Proof. The complex numbers b a−  and d c−  correspond to the vectors AB
 

 and  
CD
 

. The statement directly implies the statement 6) of the previous theorem. ■

17.3. Example. Let O be the circumcenter of the  ABC, C '  be the 
midpoint of the side AB and T be the centroid. Prove that OT CC⊥ '  if and only if  

BC AC AB2 2 2
2+ = .

Solution. With no loss of generality, we shall say that the triangle is inscribed in 
the unit circle. Then OT CC⊥ '  if and only if 

 	 t c c⋅ − = ⇔( ' ) 0 			 

 	
a b c a b c+ + +⋅ −( ) = ⇔

3 2
0

	
 	 ( ) ( )a b c a b c+ + ⋅ + − = ⇔2 0 		

 	 | | | | | |a b c a b a c b c2 2 22 2 0+ − + ⋅ − ⋅ − ⋅ = ⇔

	 2 0a b a c b c⋅ − ⋅ − ⋅ = . 
Furthermore, 

BC AC AB c b a c a b
c b c b a c a c

2 2 2 2 2 22 2+ − = − + − − −
= − ⋅ − + − ⋅ −

| | | | | |

( ) ( ) ( ) ( ) −− − ⋅ −

= − − + ⋅ − ⋅ − ⋅
= ⋅ − ⋅ −

2

2 4 2 2

2 2

2 2 2

( ) ( )

| | | | | |

(

a b a b

c a b a b a c b c
a b a c b ⋅⋅c).  

Therefore, OT CC⊥ '  if and only if 2 0a b a c b c⋅ − ⋅ − ⋅ =  if and only if  

BC AC AB2 2 2
2+ = . ■
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17.4. Theorem (Apollonius). Let M be a point on the side BC of the triangle 
ABC such that BM MC m n: := . Then

nAB mAC mCM nBM m n AM2 2 2 2 2
+ = + + +( ) .

Proof. Let a, b, c, z be determine the affixes of the points A, B, C, M, respectively. 
Then z nb mc

m n= +
+ , thus

 	

AB b a b a b a a a b b

AC c a c a c

2 2 2 2

2 2

2= − = − ⋅ − = − ⋅ +

= − = − ⋅ −

| | ( ) ( ) | | | | ,

| | ( ) ( aa a a c c

CM b c b b cn
m n

n
m n

) | | | | ,

| | (| | |
( ) ( )

= − ⋅ +

= − = − ⋅ +
+ +

2 2

2 2 2

2

2
2

2

2

2 cc

BM b c b b c c

AM a

m
m n

m
m n

| ),

| | (| | | | ),

| |

( ) ( )

2

2 2 2 2

2 2

2

2

2

2 2= − = − ⋅ +

=

+ +

++ + + ⋅ − ⋅ − ⋅
+ + + + +
n

m n
m

m n
mn

m n
n

m n
m

m nb c b c a b a c
2

2

2

2 2
2 2 2 2 2

( ) ( ) ( )
| | | | ..

So,

 	

mCM nBM m n AM b c b c

m n a

mn
m n

mn
m n

mn
m n

2 2 2 2 2

2

2+ + + = + − ⋅

+ +

+ + +( ) | | | |

( ) | | ++ +

+ ⋅ − ⋅ − ⋅

= − ⋅ +

+ +

+

n
m n

m
m n

mn
m n

b c

b c na b ma c

m a a c c

2 22 2

2

2

2 2

2

| | | |

(| | | || ) (| | | | )2 2 22+ − ⋅ +n a a b b

	  = +nAB mAC2 2 . ■ 

17.5. Let’s consider distinct points A i ni , , ,...,=1 2  in a plane with 
affixes a i ni , , ,...,=1 2  and let k i ni , , ,...,=1 2  be nonzero numbers, such that 
k k k kn1 2 0+ + + = ≠... . A barycenter or centroid of the system composed of the points   
A i ni , , ,...,=1 2  with centroids k i ni , , ,...,=1 2  is called the point T with an affix 

t k a k a k a
k k k

n n
n

= + + +
+ + +

1 1 2 2

1 2

...
...

.

If ki =1,  k i ni , , ,...,=1 2 , then the point T is called the equibarycenter or centroid of the set 
of points A i ni , , ,...,=1 2 . 

17.6. Theorem (Lagrange). Let the points A i ni , , ,...,=1 2  be given and 
the centroids k i ni , , ,...,=1 2 , be non-zero, such that k k k kn1 2 0+ + + = ≠... . If T 
is the barycenter of the system composed of the points A i ni , , ,...,=1 2  and centroids
k i ni , , ,...,=1 2 , then for each point M with affix z the following holds true:

 			   k MA kMT k TAi i
i

n
i i

i

n
2

1

2 2

1= =
∑ ∑= + .				   (1)
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Proof . We have that: 
MA t z a t t z a t t z a t a ti i i i i

2 2 2 2= − + −( ) ⋅ − + −( ) = − + − + − ⋅( ) ( ) ( ) ( ) | | | | ( ) (( )t z− ,
thus

k MA t z k k a t t z k a ti i
i

n
i

i

n
i i

i

n
i i

i

2

1

2

1

2

1
2

= = = =
∑ ∑ ∑= − + − + − −| | | | ( ) ( )

11

2 2

1 1 1

2

2

n

i i
i

n
i i

i

n
i

i

n
kMT k TA t z k a t k

kMT

∑

∑ ∑ ∑= + + − ⋅ −










=

= = =
( )

++ + − ⋅ = +
= =
∑ ∑k TA t z kMT k TAi i
i

n
i i

i

n
2

1

2 2

1
2 0( ) ,

i.e. the equality (1) holds true . ■

17.7. Consequence (Leibnez). Let the points A i ni , , ,...,=1 2  be given and let T 
be the centroid. Then for any point M in the plane the following holds true 

. 			   MA nMT TAi
i

n
i

i

n
2

1

2 2

1= =
∑ ∑= + 				    (2)

Proof. The equality (2) is implied directly from the equality (1) for ki =1,  
k i ni , , ,...,=1 2 . ■

17.8. Comment а) If the points A i ni , , ,...,=1 2  be on a circle centered at O and 
with radius R and if the point M corresponds with the center of the circle, we get the 
formula 

nR nOT TAi
i

n
2 2 2

1
= +

=
∑ .

b) If A i ni , , ,...,=1 2  are the vertices of a regular n-gon inscribed in the circle 
| |z R= , then its centroid shall be the origin (why?). Now, according to the Leibniz 
theorem we get that 

MA nMO nRi
i

n
2

1

2 2

=
∑ = + , 

and if the point M is on the circumcircle of this polygon, then the previous formula 
implies the following

MA nR nR nRi
i

n
2

1

2 2 22
=
∑ = + = .
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IV CHAPTER
EXAMPLES AND EXERCISES 

1.	 EXAMPLES (CHAPTER I) 

1. �������� ���� ��������������� �����  �������������� ������ ����� ���� ���� ��� ���� �������Without any transformation in a trigonometric form, find the set of the second 
roots of the complex number z a ib= + .  Hence, find the following 

− +7 244 i .  
Solution. Since ( )x iy a ib+ = +2  holds true, we obtain the following system of 

equations 
x y a2 2− = ,  2xy b= ,

which implies

x iy ia a b a a b+ = ± +






+ + − + +2 2 2 2

2 2
.  

The fourth roots of − +7 24i  are the following 2 2 1 2 1 2+ − − − − +i i i i, , , .  ■

2. Determine the set of points z in the complex plane for which it exists a real number 
c such that it satisfies the following z c i

c i= −
−2

.

Solution. Let z x iy= + . Since z c i
c i= −
−2

 we get that 

c zi i
z

y x i
x iy

x iy
x iy

x y x= = ⋅ =−
−

− + −
− +

− −
− −

− + −
2 1

1
2 1 2

2 1 2
2 1 2

1 2 2( ) ( ) ( 11 1 2 1 2

2 1 4

2

2 2

) (( )( ) )

( )

y x x y i
x y
+ − − +
− +   

Now, ( )2 1 4 02 2x y− + ≠ , thus x ≠ 1
2

 and y ≠ 0 . Furthermore, it should be

( )( )x x y− − + =1 2 1 2 02 , i.e. x y−( ) + =3
4

2 2 1
16

. 
So, the required set of points is the following  

 S z x iy x y x y= = + −( ) + = ≠ ( ){ }| , ( , ) ,3
4

2 2 1
16

1
2

0

    = − = = ≠{ }z z a a z| | | , ,1
4

3
4

1
2 . ■

3. Let a, b, c be complex numbers such that they satisfy the following  
| | | | | |a b c= = =1 . Prove the following

| | | |ab bc ca a b c+ + = + + .

Solution. Since the condition of the given problem, it is true that aa bb cc= = =1 ,  
thus a b ca b c= = =1 1 1, , . Hence, 

 | | | | | | | | | |ab bc ca abc a b c a b ca b c+ + = + +( ) = ⋅ ⋅ ⋅ + +1 1 1

    = + + = + +| | | |a b c a b c . ■
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4. If z and w are complex numbers such that they satisfy the following Re z > 0  and 
Re ,w > 0  then z w

z w
−
+

<1.  Prove that! 

Solution. I solution. Let z x iy w a ib= + = +, .  Then: 

z w
z w

z w
z w

x a y b i
x a y b i

x a y−
+

−
+

− + −
+ + − +

− + −= = =| |

| |

|( ) ( ) |
|( ) ( ) |

( ) (2 bb

x a b y

)

( ) ( )
.

2

2 2+ + −

If x > 0  and a > 0,  then ( ) ( ) ,x a x a− < +2 2  and ( ) ( ) ,y b b y− = −2 2  the radicand 
of the numerator is always smaller then the radicand of the denominator. 

II solution. Since Re z > 0 , Re ,w > 0 and the properties of complex numbers, we 
have that 

| | | | ( )( ) ( )( )z w z w z w z w z w z w

zz zw zw ww zz zw zw w

− − + = − − − + +

= − − + − − − −

2 2

ww

z w w z w w

w w z z z w

= − + + +

= − + + = − ⋅ <

[ ( ) ( )]

( )( ) Re Re ,4 0

i.e. | | | | ,z w z w− < +2 2  which implies that z w
z w
−
+

<1.  ■

5. Prove the following inequality 

( ... ) ( ... )a a a b b b a bn n i i
i

n
1 2

2
1 2

2 2 2

1
+ + + + + + + ≤ +

=
∑

for a bi i, ∈R , i n=1 2, ,..., .

Solution. Let consider complex numbers z a ibi i i= + , for i n=1 2, ,..., . By substitu-
tion in the inequality 

| ... | | | | | ... | |z z z z z zn n1 2 1 2+ + + ≤ + + +
we obtain the required inequality. ■

5. Find the smallest possible value of the following expression z z− 1 , z∈C , if 
given | |z = 2 . 

Solution. If | |z = 2 , then

z z
z

z
z

z
z z z− = = = ≥ = =− − − − −1 1 1 1

2
1

2
1

2
3
2

2 2 2 2 2| |
| |

| | | | | | . 

The above stated implies that the required minimal value is equal to 3
2

 and it is achieved 
for z2 4= , i.e. z = ±2 . ■

6. Determine and show in a complex plane the set 
z tt i

t i= ∈{ }+
−

3 : .R
Solution. Let

z i x iyt i
t i

t
t

t
t

= = + = ++
−

−
+ +

3 3 1
1

4
1

2

2 2 .
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Therefore, x yt
t

t
t

= =−
+ +

3 1
1

4
1

2

2 2, . Hence, t y
x= −3

,  that is 

( ) , .x y x− + = ≠1 4 32 2

So, the required set is a circle centered at (1,0) and radius 2, except the point (3,0). ■

7. Solve the equation
2 1 4 2 5 3 02( ) ( )+ − − − − =i z i z i .

Solution. By solving the given quadratic equation for z we obtain the following

z i i i i
i= − ± − + + +

+
4 2 16 2 8 1 5 3

4 1

2( ) ( ) ( )( )
( )

,

hence, z i
i

i
1

4
1

3 5
2

= =−
+

−  and z i
i

i
2 1

1
2

= = −−
+

+ . ■ 

8. Determine all complex numbers z such that they satisfy the following
| | | |

| |
z zz= = −1 1 .

Solution. Firstly, let’s notice that the given expressions are defined for z ≠ 0 . Since 
| |

| |
z z= 1  , we get that | |z =1  and | | | |z z= −1 , imply that | |z − =1 1 . If z x iy= + , then 

the above stated conditions imply that 
x y2 2 1+ =  and ( )x y− + =1 12 2 ,

that is x x2 21= −( ) , thus x = 1
2

, and y = 3
2

 or y = − 3
2

. 

Finally, the solutions of the given equation are: 1
2

3
2

+ i  and 1
2

3
2

− i . ■

9. Solve the equation in a field of complex numbers 
( ) ( ) ( )x x x− + − = −3 4 2 74 4 4 .

Solution. Let y x= − 7
2

. The given equation can be written as following

112 24 1 04 2y y− − = ,
thus y2 1

4
=  and y2 1

28
= − , i.e. 

y i i∈ − −{ }1
2

1
2

1
28

1
28

, , , ,
thus

x i i∈ + −{ }3 4 7
2

1
28

7
2

1
28

, , , . ■

10. Find all complex numbers n, so that the number z i
i

n
= ( )+

−
3
2  is a real number.

Solution. Since
z ii

i
i
i

n n= ⋅( ) = ++
−

+
+

3
2

2
2

1( ) ,

we have that z i n2 2= ( ) , so the number z is real if and only if z2 0≥  holds true, and that 
it is true if and only if n is factored by 4. ■
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11. Given a complex number u. Find all complex numbers z, such that a u uz
z= −

−1  is 
a real number. 

Solution. A number a is a real number if and only if a a= . Thus, u uz
z

−
−1  is a real 

number if and only if u uz
z

u zu
z

−
−

−
−

=
1 1

, i.e. if and only if

( )( )u u zz− − =1 0 .
Hence, if u is a real number, then a solution is each complex number z ≠1 , and if u is not 
a real number, then a solution of the given problem is each complex number z ≠1  such 
that zz =1 , i.e. a solution is each complex number z such that | | ,z z= ≠1 1 . ■ 

12. Let a an1,...,  be given complex numbers, such that 
| | ... | |a an1 1= = =  and a a an1 2 0+ + + =... .

Prove that for each complex number z 
| | | | ... | |a z a z a z nn1 2− + − + + − ≥  holds true.

Solution. Since | | | |a ai i= , for each i n=1 2, ,...,  and ai
i

n

=
∑ =

1
0 , we get that 

 
n a a a a a z a a a zai

i

n
i i

i

n
i i

i

n
i

i

n
i i i

i

n
= = = − = −

= = = = =
∑ ∑ ∑ ∑ ∑| | ( )2

1 1 1 1 1

    = −( ) ≤ − ⋅ = −
= = =
∑ ∑ ∑a z a a z a a zi i
i

n
i i

i

n
i

i

n

1 1 1
| | | | | | . ■

13. Given complex numbers z z z n1 2 2 1, ,..., +  such that | |zi =1  and Im zi ≥ 0 , for 
i n= +1 2 2 1, ,..., . Prove that the following holds true

zi
i

n

=

+
∑ ≥

1

2 1
1.

Solution. The inequality can be proven by the principle of mathematical induction. 
Clearly, the inequality holds true for n = 0 . Let assume that it holds true for all 2 1n −  
complex numbers which satisfy the condition of the given problem. 

Let z z z n1 2 2 1, ,..., +  be complex numbers which satisfy the conditions of the problem. 
Without loss of the generality we assume 

arg arg ... argz z z n1 2 2 1≤ ≤ ≤ + .
Let position a new coordinate system in a complex plane so that the imaginary axis is a 
bisector of ∠ z Oz1 2 , and the real axis passes through the point O(0,0). In a so-defined 
coordinate system the points are denoted by 

z x iyk k k= + , k n= +1 2 2 1, ,..., .
We have 

yk ≥ 0  and x x y yn n1 2 1 1 2 1= − =+ +, ,
The above stated and the inductive assumption imply that: 
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z x x x x y y y yi
i

n
n n n n

=

+
+ +∑ = + + + + + + + + +

=

1

2 1

1 2 2 2 1
2

1 2 2 2 1
2( ... ) ( ... )

(xx x y y y yn n n2 2
2

1 2 2 2 1
2+ + + + + + + +... ) ( ... )

 

≥ + + + + +

= + + ≥

( ... ) ( ... )

| ... | .

x x y y

z z
n n

n

2 2
2

2 2
2

2 2
2 1

Finally, by applying the principle of mathematical induction we get that each odd number 
of complex numbers satisfies the conditions in the given problem. ■ 

14. Let a a an0 1, ,...,  be complex numbers such that if z∈C,  | |z ≤1 , then
| ... |a z a z a z an

n
n

n+ + + + ≤−
−

1
1

1 0 1.
Prove the following

| |ak ≤1  and | ... ( ) |a a a n a nn k0 1 1+ + + − + ≤ , for each k n= 0 1 2, , ,..., . 

Solution. Let
P z a z a z a z an

n
n

n( ) ...= + + + +−
−

1
1

1 0   
and w i ni , , ,...,= 0 1  be the (n+1)-th roots of the one. But,

wi
k

i

n

=
∑ =

0
0,   if k is not factored by n +1  and 

w ni
k

i

n

=
∑ = +

0
1  if k is factored by n +1 .

So,

w P w n ai
k

i
i

n
n k( ) ( ) ,

=
−∑ = +

0
1  for each k n∈{ , ,..., }.0 1

Hence, 

( ) | | ( ) | ( ) | | ( ) |n a w P w w P w P wn k i
k

i
i

n
i
k

i
i

n
i

i

n
+ = ≤ = ≤ +−

= = =
∑ ∑ ∑1 1 1

0 0 0
++ + = +
+

... 1 1
1n

n
 

  

,

The last implies that | | ,an k− ≤1  for each k n∈{ , ,..., }.0 1
For the second part of the statement it is true that 

w P w w P w P n a ai
k

i
i

n
i
k

i
i

n
n k i

i

n
( ) ( ) ( ) ( )

= =
−

=
∑ ∑ ∑= − = + −

1 0 1
1 1  and

w P w w P w P w ni
k

i
i

n
i
k

i
i

n
i

i

n
( ) | ( ) | | ( ) |

= = =
∑ ∑ ∑≤ = ≤

1 1 1  
thus,

( )n a a nn k i
i

n
+ − ≤−

=
∑1

1
, for each k n∈{ , ,..., }.0 1  ■
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15. Let n be a positive integer. Prove that the polynomial 
P z z zn n( ) = − −+1 1  

has a root w such that | |w =1  if and only if 6 2| ( )n + . 

Solution. Let | |w =1  and w wn n+ − − =1 1 0 . Then w wn ( )− =1 1  and since | |w =1  
we get that | |w − =1 1 . Hence, w is one of the intersection of the circles | |z =1  and 
| |z − =1 1 , that is w i= ±cos sinπ π

3 3
. Moreover, w i w− = ± =1 2

3
2
3

2cos sinπ π . Finally,

1 1 2 2
3

2
3

= − = = ±+ + +w w w in n n n( ) cos sin( ) ( )π π ,

The last means that ( ) ,n k+ =2
3

2π π  for some k∈N , thus n k+ =2 6 ,  for some k∈N , i.e. 
6 2| ( )n + . 

Conversely, if 6 2| ( )n + , i.e. n k+ =2 6 ,  for some k∈N , then for w i= ±cos sinπ π
3 3

 
holds true that | |w =1 , w w2 1= −  and wn+ =2 1 , thus

w w w w w w wn n n n n+ +− − = − − = − = − =1 2 21 1 1 1 1 0( ) . ■

16. Let z z zn1 2, ,...,  be arbitrary complex numbers. Prove that positive integers 
i ik1,....,  can be chosen such that they satisfy the followings 1 1≤ < < ≤i i nk...  and 

| ... | (| | | | ... | |)z z z z z zi i i nk1 2
2

4 2 1 2+ + + ≥ + + + . 

Solution. Let z x iyj j j= + , x yj j, ∈R , j n=1,..., . Lets 

S j x yj j1 0 0= ≥ ≥{ | , } , S j x yj j2 0 0= < ≥{ | , },

S j x yj j3 0 0= < <{ | , } , S j x yj j4 0 0= ≥ <{ | , } .
Then, 

| | | |z zj
j

n
j

j Sj k= ∈=
∑ ∑∑=

1 1

4

 
by applying the principle of Dirichlet, we get that for some k∈{ }1 2 3 4, , ,  the following 
inequality holds true 

| | | |z zj
j S

j
j

n

k∈ =
∑ ∑≥ 1

4
1

.

For such a number k we get the following 

 	

1
4 2 1

1
2

1
2

1
2

| | | | | | (| | | |)z z x iy x yj
j

n
j

j S
j j

j S
j j

j Sk k k= ∈ ∈ ∈
∑ ∑ ∑≤ = + ≤ +∑∑

  	  

= +



∈ ∈

∑ ∑1
2

x yj
j S

j
j Sk k

	  ≤ +







 =∈ ∈ ∈

∑ ∑ ∑2
2

1
2

2 2x y zj
j S

j
j S

j
j Sk k k

.   ■
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17. Let z z zn1 2, ,...,  be complex numbers such that 
| | | | ... | |z z zn1 2 1+ + + = .

Prove that it exists a set S z z zn⊆{ , ,..., }1 2  such that 
zi

z Si∈
∑ ≥ 1

6 .

Solution. Let z x y k nk k k= + =, , ,...,1 2 . Then

1
1

2 2

1 1

0

= = + ≤ +

= +
= = =

≥

∑ ∑ ∑

∑

| | (| | | |)

| | | |

z x y x y

x x

k
k

n
k k

k

n
k k

k

n

k
x

k
xk k << ≥ <
∑ ∑ ∑+ +

0 0 0
| | | |.y yk

y
k

yk k  
by applying the principle of Dirichlet, we get that at least one of the four sums of the 
right side of the equality is equal or greater to 1

4
. Let assume that | |xk

xk <
∑ ≥

0

1
4 .So we 

get that 
z x xi

x
k

x
k

xk k k< < <
∑ ∑ ∑≥ = ≥ >

0 0 0

1
4

1
6

| | . ■

18. Let a, b, c be any complex numbers and w i= − +1 3
2

. Prove that the following 
holds true

a b c abc a b c a bw cw a bw cw3 3 3 2 23+ + − = + + + + + +( )( )( ).  

Solution. It can be directly checked that

w w w w w3 4 21 1= = + = −, , ,  
thus,

( )( )( )

( ) ( )

a b c a bw cw a bw cw

a b c a b c w ab bc ca w

+ + + + + + =

= + + + + + + + +

2 2

2 2 2 22

2 2 2 2

( )

( ) ( )( )

( )

ab bc ca

a b c a b c w w ab bc ca

a b c a

+ +( )
= + + + + + + + +( )
= + + 22 2 2 3 3 3 3+ + − + +( ) = + + −b c ab bc ca a b c abc( ) ,

which was required to be proven. ■

19. Let a and b be positive real numbers. Determine the minimum of the expression  
x y

x y
+
+1

, if x and y are complex numbers, so that | | , | |x a y b= = .

Solution. We have
x y

x y
x y

x y
x y

xy
x y x y

x y x y

x

+
+

+
+

+
+

+ +
+ +

= ⋅ =

= +

1

2

1 1

2

1 2

2 2

2

1

| | | | Re

| | Re

| || | | | |

| | Re

( )( )

| | Re
,

2 2 2

2

2 2

2

1

1 2

1 1

1 2
1+ − −

+ +
− −

+ +
= −y x y

x y x y
a b
x y x y

whereby
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min{Re :| | ,| | } ,

max{Re :| | ,| | } .

x y x a y b ab

x y x a y b ab

= = = −

= = =  
If at least one of the numbers a and b is equal to 1, then

min
,x a y b

x y
x y= =

+
+

=
1

1
 

If both of the numbers a and b are either greater or less than 1, then

min
| | ,| |

( )( )

x a y b
x y

x y
a b

a b ab
a b

ab= =

+
+

− −
+ −

−
−= − =

1

1 1

1 2 1
1

2 2

2 2
 

If one of the numbers a and b is greater than 1, and the other is less than 1, then

min
| | ,| |

( )( )

x a y b
x y

x y
a b

a b ab
a b

ab= =

+
+

− −
+ +

+
+= − =

1

1 1

1 2 1
1

2 2

2 2 . ■

20. Compute z i

i
= +( )

+( )
2 2

3

10

8 . 

Solution. The numbers
z1 3 1= +  and z i2 2 2= +

shall be rewritten using Euler’s formulas. So, 

r1
2 23 1 2= + = , r1

2 2
2 2 2= + = , 

ϕ π
1

1
3 6

= =arctg , ϕ π
2 4

1= =arctg ,

thus z ei
1 2 6=

π
 and z ei

2 2 4=
π

. Therefore, 

 	

z i
i

e

e

e

e

e

i

i

i

i

i

= = =

=

+
+

( )
( )

( )

( )

2 2

3
2

2

2

2

2

10

8

4

10

6

8

10
10

4

8
8
6

2
5

π

π

π

π

π
22

4
3

5
2

4
3

7
64 4

e

i i
i

e eπ

π π π
= =

−( )

	  = +( ) = − −( ) = − −4 4 2 3 27
6

7
6

3
2

1
2

cos sin .π πi i i  ■

21. Let z z z1 2 3, ,  be distinct complex numbers with equal modulus. If the numbers 
z z z1 2 3+ ,  z z z2 3 1+  and z z z3 1 2+  are real, then the equality z z z1 2 3 1= .  holds true. 
Prove it! 

Solution. Let z r i kk k k= + =(cos sin ), , , .ϕ ϕ 1 2 3  By direct computations we get 
that 

z z z r i i i

r
1 2 3

3
1 1 2 2 3 3

3

= + + +

=

(cos sin )(cos sin )(cos sin )

(cos

ϕ ϕ ϕ ϕ ϕ ϕ

ϕϕ ϕ+ isin ),   
where ϕ ϕ ϕ ϕ= + +1 2 3.
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The condition of the given problem therefore 
sin sin( ) , , , ,ϕ ϕ ϕk kr k+ − = =0 1 2 3  

that is 
 sin ( cos ) cos sin , , , .ϕ ϕ ϕ ϕk kr r k1 0 1 2 3− + ⋅ = =  

Let assume that 1 0− ≠r cos .ϕ  Then
tg , , , ,sin

cos
ϕ ϕ

ϕk
r

r k= =−1
1 2 3  

which is not possible thereby ϕ πk ∈[ , )0 2 . These numbers differ each other, hence 
1 0− =r cosϕ  and sin ,ϕ = 0  thus cos , .ϕ = =1 1r  Finally, 

z z z r i1 2 3
3 1= + =(cos sin ) .ϕ ϕ  ■

22. Determine the maximal value of | |z  if given that the complex number z satisfies 
the following condition z z+ =1 1?

Solution. Let z rei= ϕ ,  where e iiϕ ϕ ϕ= +cos sin . So,

 

z re e re e

r e e r

z
i

r
i i

r
i

r
i i

r

+ = +( ) +( )
= + + + = + +

− −

−

1 2 1 1

2 1 2 2 2 1
2 2

ϕ ϕ ϕ ϕ

ϕ ϕ 22 2cos .ϕ

The equation 
r

r
2 1

2 2 2 1+ + =cos ϕ  
implies 

r2 2 2 1 2 2 1 4

2

2

=
− + ± −( ) −cos cos

.
ϕ ϕ

 
This implies that r2 , as well as r will be maximal if 

cos .2 1ϕ = −  
Then 

rmax
( ) ( )

.= = =
− − + + − −( ) − + +2 1 1 2 1 1 4

2
3 5

2
1 5

2

2

 ■

23. Prove that z z+ =1 2cosθ  implies z mm
zm+ =1 2cos θ . 

Solution. The equation z z+ =1 2cosθ  implies z z2 2 1 0− + =cosθ . The solutions 

of the last quadratic equations are z i= ±cos sinθ θ . Now 1
z i= cos sinθ θ . Therefore, 

z m i mm = ±cos sinθ θ  and 1
zm i m= cos sinθ θ .

By adding the last two equalities we get 
z mm

zm+ =1 2cos θ . ■

24. Let t∈R  and z it
it= +

−
1
1

. Prove that 

z z n tn n+ = 2 2cos( arctg ) .
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Solution. We express z as following z iit
it

t
t

t
t

= = −+
−

−
+ +

1
1

1
1

2
1

2

2 2 . If t x= tg
2

, i.e. 

x t= 2arctg , then cos
tg

tg
x

x

x
t
t

= =
−

+
−
+

1

1
1
1

2
2

2
2

2

2  and sin
tg

tg
x

x

x
t
t

= =
+ +

2

1
2

1
2
2

2
2 , thus 

z z x i x x i x
nx i nx conx i nx

n n n n+ = + + −
= − + −

(cos sin ) (cos sin )

cos sin sin  
 = =2 2 2cos cos( arctg )nx n t . ■

25. Solve the eqaution: 
iz
i z

6

6
8

8
3+

−
= .

Solution. If 8 06i z− = , then the fraction which is on the left side of the equation is 
not defined. If 8 06i z− ≠ , i.e. z i6 8≠ , then we multiply by 8 6i z−  the both sides of the 
equation and after grouping the terms which consist of z on the left side, and the other 
ones on the right side of the equation we get the following 

z i i6 3 8 8 3+( ) = − + .
Thus,

z ii
i

i i
i i

i i6 8 8 3
3

8 8 3 3

3 3

8 1 3 3
4

8= = = =− +
+

− +( ) −( )
+( ) −( )

− +( ) −( ) .

But, we previously found that z i6 8≠ , so, we find that the given equation has no solu
tion. ■

26. On the field of complex numbers find the solution of the given system 
x x y y

x y xy

4 2 2 4

3 3

6 5

1

+ + =

+ =





  
Solution. The given system is equivalent to the system whose second equation is 

multiplied by 4, that is equivalent to the following system 
x x y y

x y xy

4 2 2 4

3 3

6 5

4 4 4

+ + =

+ =





  
Thus, it is equivalent to the system which consists of the sum and the difference of these 
two equations, that is equivalent to the following system 

( )

( )

x y

x y

+ =

− =







4

4

9

1  
Since the above equations we get that 

x = ⋅ +α β3
2

, y = ⋅ −α β3
2

, α β, { , , , }∈ − −1 1 i i ,
that is, 16 solutions. It is necessary to percieve that these solutions differed from each 
other. Namely, if 
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α β α β1 1 2 23
2

3
2

⋅ + ⋅ += ,
then 	

( ) ( )α α β β1 2 2 13− = − ,
so α α1 2= , which means that β β1 2= , i.e.that is the same solution, since if it is con-
versely 3  can not be expressed as r is+ , where r s, ∈Q , therefore 3  is an irrational 
number. ■

27. Solve the system in the field of complex numbers
z w

z w

z w

19 25

5 7

4 4

1

1

2

=

=

+ =










,

,

.  

Solution. If we cube the second equation of the system we get that z w15 21 1= . Since 
z w19 25 1=  and z w15 21 1=  it is true that z w4 4 1= . But, z w4 4 2+ = , and the Vieta’s for-
mulas we get that z4  and w4  are solutions of the quadratic equation t t2 2 1 0− + = , i.e. 
z4 1=   and w4 1= . Moreover, z w w5 8 =  implies zz w w4 4 2( ) = , i.e. z w= . Finally, so-
lutions of the given system might be only the ordered pairs ( , ), ( , ), ( , ), ( , )1 1 1 1− − − −i i i i .  
With direct check it is easy to be proven that these pairs are truly solutions of the given 
system. ■

28. If given that w w wn0 1 1, ,..., −  are the n-th roots of 1, calculate the following 
sums: 

а)  kwk
k

n
−

=
∑ 1

1
		  b) k wk

k

n
2

1
1

−
=
∑ 		c  ) k wk

k

n
3

1
1

−
=
∑

Guidelines. а) The n-th roots of 1 can be written as following w wk
k= −1 , where 

w in n= +cos sin2 2π π . The required sum can be written as 

S kw kwk
k

n k

k

n
= =−

=

−

=
∑ ∑1

1

1

1  
Since 1 0− ≠w , the following equalities hold true 

S S Sw
w

w w nw w w w nw
w

w

n n
= =

=

−
−

+ + + + − − − − −
−

+ + +

−

1
1 2 3 2 3

1

1

2 1 2 3... ...

... ww nw
w

nw
w

n w nw
w

n n wn
w

n n n− −
−

+
−

−
−
−

− + +
−

= =
1 1

1
1

21 1
1 1

1

( )

( )
.
 

Finally, the required sum can be found by substituting for w as following 
w in n= +cos sin2 2π π  

and by using the De Moivre’s formula. 
The examples b) and c) can be solved analogously as already explaned example a). ■



155

29. Calculate the sums: 	

а) k k
n

k

n
cos 2

1

π

=
∑ ,	  		  b) k k

n
k

n
sin 2

1

π

=
∑

Guidelines. Let

A k k
n

k

n
=

=
∑ cos 2

1

π , B k k
n

k

n
=

=
∑ sin 2

1

π

calculate S A iB= + +1 . Then, apply the example 28 а) and further find 
A S= −Re( )1  and B S= −Im( )1 . ■

30. Prove that

a)	 C kn
k

k

n n n ncos( ) cos cos+ =
=

+∑ 1 2
0

2
2

2
α αα

b)	 C kn
k

k

n n n nsin( ) cos sin+ =
=

+∑ 1 2
0

2
2

2
α αα  .

Guidelines. Let z i= +cos sinα α , hence apply the binomial formula for  
( )1+ z n . ■

31. Prove that 
s = − + =cos cos cosπ π π

7
2
7

3
7

1
2

.

Solution. Firstly, let declare that z in n= +cos sinπ π  implies 

 				    z zn n= − =1 12, .				    (1)
Let w i= +cos sinϕ ϕ . Hence w i w= − =cos sinϕ ϕ 1 , thus 

cos , sinϕ ϕ= +( ) = = −( ) =+ −1
2

1 1
2

1
2

1 1
2

2 2
w ww

w
w i w

w
iw .

Further, by applying De Moivre’s formula we get 

w k i kk = +cos sinϕ ϕ  and w k i kk

wk= − =cos sinϕ ϕ 1 ,
thus

 			   cos , sink kw
w

w
iw

k

k

k

kϕ ϕ= =+ −2 21
2

1
2

.				   (2)

Let z i= +cos sinπ π
7 7

. By taking for k =1 2 3, ,  in (2) and hence by applying (1) we 
gat that 

s z
z

z
z

z
z

z z z z z z z
z

z
z= − + = =+ + + − + − + − + + +
+2 4

2

6

3

6 5 4 3 2 3

3

7 1
1

2
1

2
1

2

1

2

( ) 11
3

3

3

32 2
1
2

+
= =

z

z
z
z

. ■

32. Compute
p = cos cos cosπ π π

7
4
7

5
7

.
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Solution. Let z i= +cos sinπ π
7 7

. Then (2) and (1) in the example 31 therefore 

cos , cos , cosπ π π
7

1
2

2
7

1
2

3
7

1
2

2 4

2

6

3= = =+ + +z
z

z
z

z
z

,
thus

 

p z z z
z

= = = + + +cos cos cos cos cos cos ( )( )( )π π π π π π
7

4
7

5
7 7

3
7

2
7

1 1 1

8

2 4 6

66

12 10 8 6 4 2

6

5 3 6 4 2 6

6
2 1

8
1

8
= =+ + + + + + − − − + + + + +z z z z z z

z
z z z z z z z

z

 = = =− + − + − + + ++
+z z z z z z z

z

z

z

z
z6 5 4 3 2 6

6

7 1
1

6

6
1

8 8
1
8 . ■

33. Let α, β and γ be angles of any triangle. Then, 

cos cos cos cos cos cos2 2 2 2 1α β γ α β γ+ + + = , 
holds. Prove it!

Solution. Let the left side of the identity be denoted by S and let 
z i w i= + = +cos sin , cos sinα α β β . Then, the trigonometric entry of complex number 
implies zw i= + + +cos( ) sin( )α β α β , and since the equalities (2) in the example 31 we 
get 

 

cos cos cos cos cos cos ( ( ))

cos cos co

2 2 2 2 2 2

2 2

α β γ α β π α β

α β

+ + = + + − +

= + + ss ( )2

1
2

2
1

2

2
1

2

2

6

2 2 2 2

2 4 2 4 2 2

α β+

= ( ) + ( ) + ( )
=

+ + +

+ + +

z
z

w
w

z w
zw

w z z w z w zz w z w
z w

2 2 4 4

2 2
1

4
+ + + ,

and

2 2 2
2 2 2 21
2

1
2

1
2

cos cos cos cos cos cos( )α β γ α β α β= − + = −

=

+ + +

−

z
z

w
w

z w
zw

ww z z w z w z w z w
z w

2 4 2 4 2 2 2 2 4 4

2 2
2
4

− − − − − .  

Finally, S z w
z w

= =4
4

2 2

2 2 1. ■

34. Solve the equation 
cos cos cos2 2 22 3 1x x x+ + = .

Solution. By using that
cos cos2 1 2

2
t t= + ,

the given equation can be transformed as following 
3
2

1
2

2 4 6 1+ + + =(cos cos cos ) ,x x x  
i.e.

cos cos cos2 4 6 1x x x+ + = −  .



157

Let z x i x= +cos sin . If we apply the equality (2) of example 31, we obtain the following 
z

z
z

z
z

z

4

2

8

4

12

6
1

2
1

2
1

2
1+ + ++ + = − ,

and by using the well known mathematical transformation we get
( ) ,1 02 4 6 8 10 12 6+ + + + + + + =z z z z z z
z
z

z
14

2
1
1

6 0−
−

+ = , 

( )( )z z8 61 1 0− + = . 
In the above transformation we used the fact that z2 1≠ , thereby x = 0  and x = π  are 
not the solution of the given equation. Since ( )( )z z8 61 1 0− − = , we get that z6 1 0+ =  
or z2 1 0+ =  or z4 1 0+ = . Furthermore, z6 1 0+ =  therefore cos6 1x = − , i.e. 
x kk= + ∈π π

6 3
, Z .

Similarly one can obtain the other solutions 
x kk= + ∈π π

4 2
, Z  and x k k= + ∈π π

2
, Z . ■

35. Prove the identity
1
2

1
4

1
2

2
sin sin sin

... ctg ctgx x x
n

n x x+ + + = − , 

for n x k nk∈ ≠ = ∈N Z, , , , ,..., ,λπ λ
2

0 1 2  

Solution. Let z x i x= +cos sin . The equality (2) in the example 31 implies

 			   tg , ctg
( )

( )k kw
i w

i w
w

k

k

k

kϕ ϕ= =−
+

−
−

2

2

2

2
1
1

1

1
.			   (1)

Further, thereby (1) for n s= 2  it is true that 

 		
1
2

2

1

2 1 1

1

12

2 1

2 1 2 2 1

2 1

2

sin

( )
s

s

s

s s s

s

s

x
iz

z
z z z

z

zi i= = =+

+ +

+
−

+ + − −

−

+ 22 2 1

2 1

2

2

2 1

2 1

1

1

1

1

1

1

12

− +

−

+

−

+

−

−

+

+

+

+= − = −

( )

ctg c

z

z

z
z

z
z

s

s

s

s

s

s

si i x ttg .2s x

	 (2)

Finally, if in (2) consequently we set s n=1 2 4 2, , ,...,  and add the such obtained equalities 
we get that 

1
2

1
4

1
2

2 2 4

sin sin sin
...

(ctg ctg ) (ctg ctg ) ...

x x xn

x x x x

+ + + =

= − + − + + ((ctg ctg )

ctg ctg ,

2 2

2

1n n

n

x x

x x

− −

= −  
which was supposed to be proven. ■

36. Let α, β and γ be angles of any triangle. The triangle is right angled triangle if 
and only if 

cos cos cos2 2 2 1α β γ+ + = − .
Prove it!
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Guidelines. Firstly, prove that for any triangle 
cos cos cos cos cos cos2 2 2 1 4α β γ α β γ+ + = − −  

holds. ■

37. Find the sum: 
S x x nxn

n= + + + +1 2 2 2 22cos cos ... cos .

Solution. Let
T i x x nxn

n= + + +(sin sin ... sin )2 2 22  and z x i x= +2(cos sin ) .
Then 

S T x i x x i x nx i nxn n
n+ = + + + + + + +1 2 2 2 2 22(cos sin ) (cos sin ) ... (cos sin ))

... [cos( ) sin( ) ]
(c

= + + + + = =
+ +
−

−
+ + + −1 2 1

1
2 1 1 1

2

1 1

z z zn z
z

n x i n xn n

oos sin )
,x i x−

thus

Sn
n x i n x

x i x

n n
= 




=

+ ++ + + −
−Re [cos( ) sin( ) ]

(cos sin )
c2 1 1 1

2
21 2 oos cos( ) cos

cos
nx n x x

x

n− + − +
−

+2 1 2 1
5 4

1
. ■

38. Let a a an1 2, ,...,  be real numbers such that for each real number x is true that 
 			   1 2 01 2+ + + + ≥a x a x a nxncos cos ... cos . 		  (1)
Prove that 
 				    a a a nn1 2+ + + ≤... .				    (2)

Solution. Let ϕ π= +
2

1n . Then for z ei= ϕ  we get 

1 2 1
1

11
2 1

1
2 1

+ + + + = =−
−

− −+
+
+

+

z z zk k nk z
z

in k

k

n k
n

n

...
( )

( ) ( )cos sinπ kk
n

k
n

k
ni

π

π π
+

+ +− −
=1

2
1

2
1

1
0

cos sin
, 

for k n=1 2, ,..., , therefore 
 			   1 2 0+ + + + =cos cos ... cosk k nkϕ ϕ ϕ , 			   (3)
for k n=1 2, ,..., . If in the inequality (1) we set consecutive

x x x n= = =ϕ ϕ ϕ, , ...,2 ,
we get n inequalities, which after adding, by using the (3) give the inequality 
n a a an− − − − ≥1 2 0... , which is equivalent to the inequality (2). ■



159

2.	 EXERCISES (CHAPTER 1)

1.	 Compute the following
а) i nn , ∈Z , 			   b) ( ) ( ) ,1 1+ + − ∈i i nn n N , and	

c) − +( ) ∈1
2

3
2

i n
n

, N . 

2.	 Find the exact value of the following expression
( )

( ) ( )

1

1 1

2000

2000 2000
+

− − +
i

i i
.

3.	 Determine the modulus of a complex number
x y xyi

xy i x y

2 2

4 4

2

2

− +

+ +
. 

4.	 Let A z z z={ , ,..., }1 2 1996  be a set of complex numbers and let for each i =1 2 1996, ,...,  
hold true that A z z z z z zi i i={ , ,..., }1 2 1996 . 
a) For each i =1 2 1996, ,...,  it holds true that | |zi =1 . Prove it!
b) If z A∈  then z A∈ . Prove it!

5.	 Let * be an operation in a field of complex numbers defined as following: 
z z zz i z z i* ( ) ( )1 1 1 1= + + − + . Prove that * is commutative and associative. Determine 
the identity element e, i.e. determine an element e∈C  such that e z z e z* *= =  is 
satisfied for each z∈C . Prove that there exists a unique complex number which 
does not have its inverse ( z '∈C  is an inverse element of z∈C  if zz z z e' '= = ). 

6.	 Prove that 
| | | | | | ( )b b b a a a0

2
1

2
2

2
0
2

1
2

2
23+ + = + + ,

for

b a a w a wk
k k= + +0 1 2 ,  k = 0 1 2, , ;  a a a0 1 2, , ∈R  and w i= − +1

2
3

2
.

7.	 Prove that x iy s it n+ = +( ) , x ys t, , ∈R  implies that 

( ) ( )x y s t n2 2 2 2+ = + .

8.	 Graphically show the set of complex numbers z such that holds z
z
−
+ =3

3
2 .

9.	 Solve the equations: 
а) | |z z i+ = −4 , and 			   b) | | | |z i z i+ + − = 2 . 
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10.	 Let a a an1 2, ...,  be given complex numbers, such that | | ... | |a a rn1 = = = .
Let Tn

s  be the sum of each products of s pairwise distinct numbers. For example 

T a a a a a a a a a an n n n
2

1 2 1 3 1 2 3 1= + + + + + + −... ..... .  
Prove the following 

| |

| |
, , , ,...,

T
T

sn
n s

n
s r s n
−

= = −1 2 3 1. 

11.	 Let all roots of a polynomial 
P x a x a x a x an n

n n( ) ...= + + + +−
−0 1

1
1  

be on the circle | |z r= . Prove the following
| | | |a r an i

i
i− = , i n= 0 1 2, , ,..., .

12.	 Prove the following:

а) If | |α <1 , then z
z
−
−

≤α
α1

1  if and only if | |z <1 .

b) If | |α >1 , then z
z
−
−

≥α
α1

1  if and only if | |z <1 . 

13.	 Express in trigonometric form the following complex numbers:
а) − 2 , 			   b) − +1 i ,		c  ) 2 3− i
d) 1+ +cos sinα αi , 	e ) sin cosα α+ +( )i 1 . 

14.	 Find the exact value of ( )1+ w n , if given that n∈Z  and w i= − +1
2

3
2

. 

15.	 Compute:
а) 2i , 			   b) −8i ,		c  ) 4 3+ i , 

d) − +13 i , 		e  ) − −2 3 24 i . 

16.	 1 3 1 3 6+ + − =i i . Prove it!

17.	 If a i
a i

n+
−( ) =1 , then a k

n= ctg π , k n= −0 1 2 1, , ,..., . Prove it!

18.	 Solve the following equations, for n∈N .

а) ( ) ( )x xn n+ − − =1 1 0 , 

b) ( ) ( )x i x in n+ − − =5 5 0 , 

c) ( ) ( )x i i x in n+ + − =3 3 0 ,
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d) i x
i x

n i
±-i

−
+

+( ) = ∈ctg
ctg
α α, R , and 

e) ( ) (cos sin )( ) , , , ,x i i x i kn n+ + + − = ≠ ≠ ∈α θ θ α θ π α α θ0 2 0 R . 

19.	 Prove the following identities:
а) cos cos ... cosπ π π

11
3
11

9
11

1
2

+ + + = , 

b) cos cos ... cos2
11

4
11

10
11

1
2

π π π+ + + = − . 

20.	 Find the sums: 

а) 1 2 4 6− + − +C C Cn n n ... , and 			 

b) C C C Cn n n n
1 3 5 7− + − + ... . 

21.	 Find the sum: 
1 4 8 12 4+ + + + + +C C C Cn n n n

k... ... .

22.	 Prove the equality: 
1 23 6 9 2

3
1

3
+ + + + = +( )−C C Cn n n

n n... cos π .

23.	 Prove that for m = 2 3 4, , ,...  it is true that: 
sin sin sin ...sin ( )π π π π

m m m
m

m
m
m

2 3 1

2 1
− = − .

24.	 Prove the identity: 

( ) cos− =
=
∑ −1

0 2 1
k n k

n
k

n
n
n

π .

25.	 Let 
F a nA b nB c nCn

n n n= + +sin sin sin ,
where a b c A B C, , , , , ∈R  and A B C k+ + = 2 π , for some k∈Z . Then, F F1 2 0= =  
implies Fn = 0  for each n∈N . Prove it!

26.	 Let x k≠ 2 π , x∈R , k∈Z  and n∈N . Find the sum 
1 2 3 2 4 3 1+ + + + + +cos cos cos ... ( )cosx x x n nx .

27.	 Let x y, ∈R  and n∈N . Calculate the sums: 
а) cos cos( ) ... cos( )x x y x ny+ + + + +2 2 , and
b) sin sin( ) ... sin( )x x y x ky+ + + + +2 2 . 
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28.	 If given that cos π
4

2
2

= , then calculate cos π
12

. 

29.	 Given that tg π
8

2 1= − . Prove the following: tg π
24

2 6 3 2= + − − .

30.	 Prove the following: 

а) tg π
5

5 2 5= − , 			   b) tg 2
5

5 2 5π = + , 

c) tg 3
5

5 2 5π = − + , 			d   ) tg 4
5

5 2 5π = − −

31.	 Calculate: 
а) sin sin sinπ π π

21
8
21 7

, 			 

b) tg tg tgπ π π
7

2
7

3
7

, 

c) sin sin sin sin sin sinπ π π π π π
14

2
14

3
14

4
14

5
14

6
14

. 

32.	 Prove the identities:

а) sin sin sin3 3
4

1
4

3x x x= − , and	

b) cos cos cos4 1
8

1
2

3
8

4 2x x x= + + . 

33.	 Prove the identities:

а) cos cos cos cos5 16 20 55 3x x x x= − + , and	

b) sin sin ( cos cos )5 16 12 14 2x x x x= − + . 

34.	 A complex number a is called an algebraic, if it is a root of a polynomial 
P z a z a z a an n

n n( ) ...= + + + +−
−0 1

1
1  

with integer coeficients. The numbers wich are not algebraic are called as 
transcendental numbers. For example π and e are transcendental numbers. But, there 
exist numbers, such as eπ and e + π , for which it is still not found either they are 
algebraic or trancedental numbers. 
Prove that the numbers 
а) 3 2+  and 			   b) 4 23 − i
are algebraic numbers. 

35.	 Solve the eqation: 

x nax C a x C a x a an n
n

n
n

n n− − − − = ≠− − −1 2 2 2 3 3 3 0 0... , .
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36.	 Let n ≥ 2  be a positive integer. Find all the solutions x0  of the equation 
x x xn n− − + =−2 2 0  such that | |x0 1= . 

37.	 Find the solutions for x: 

cos cos( ) cos( ) ... cos( )a C x a b C x a b C x a nbn n n
n n+ + + + + + + =1 2 2 2 0 .

38.	 Solve the equations: 
а) sin cos2 2 2x x+ = , and			 

б) tg ctg2 2 6x x+ = . 

39.	 Let f x y f y x( , ) ( , )= be a rational function with real coefficients. If the function f is symmetric, 
i.e. if f x y f y x( , ) ( , )= , then f a a( , )∈R , for each a∈C . Prove it! 

40.	 Let [t] be the maximal integer which is not greater than t. Let z x iy= + . Prove the 
following:

а) Re ( )
[ / ]

z x yn k
k
n n k k

k

n
= − ( ) −

=
∑ 1 2

2 2

0

2
, 

b) Im ( )
[ / ]

z x yn k
k
n n k k

k

n
= − ( )+

− − +

=
∑ 1 2 1

2 1 2 1

0

2
, 

c) Re Im ( )[ / ]z z x yn n k
k
n n k k

k

n
+ = − ( ) −

=
∑ 1 2

0
. 

Find the proper expression for Re Imz zn n− ? 

41.	 Each zero of the following polynomial is in the field of complex numbers. 

а) Re( )x i n+ , 

b) Im( )x i n+ , 		

c) Re( ) Im( )x i x in n+ ± +
For each of the above polynomial prove the given statement and find the zeros. 
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3.	 EXAMPLES (CHAPTER II, CHAPTER III)

1. Construct a trapezoid if given its bases and diagonals. 

Solution. Let’s suppose that the given problem is solved and let ABCD be the required 
trapezoid (figure 1). If a, b, c, d are the affixes of the points A, B, C, D respectively, then  

DC c d
 

= − . Let’s consider the translation 
S z z c d( ) = + −  

and let the point B1  be the image of B under 
this translation. Further, S d d c d c( ) = + − =  
therefore, the point C is the image of D under 
this translation, thus CB DB1= . Therefore, all 
three sides of the triangle AB C1  are already 
determined ( AB AB DC AC1= + ,  and 

CB DB1= ), so it might be constructed. Since the base AB  is already determined, the 
point B can be found, and the point D is the inverse image of C. ■

2. Construct a circle such that it passes through a given point and tangents two 
parallel lines. 

Solution. Let’s assume that the given problem is solved (figure 2). If a is a vector 
parallel to the line (p), then the translation S z z a( ) = +  maps the circle (K) to a circle 

( ')K , such that it tangents the lines (p) and (q), but 
it does not pass through A. So, we have to construct 
a circle ( ')K  such that it tangents the lines (p) and 
(q) and by the translation we map that circle to the 
required circle

The number of solutions depends on the 
relationship between the point A and the lines (p) and 
(q). Namely: 

-	 If the point A is placed between the lines (p) and (q), then the given problem has 
two solutions;

-	 If the point A is placed on any of the lines, then the given problem has a unique 
solution, and

-	 In any other case the given problem has no solution. ■

3. Given the circles K o R'( ', ')  and K o R''( '', '')  and the line (p). Construct a line (q) 
parallel to (p), so that the circles ( ')K  and ( '')K  intersept congruent line segments on 
the line (q). 

Solution. Let’s assume that the given problem is solved (figure 3). Let’s plot a line 
(a) perpendicular to (p) and a line O O'  perpendicular to (a), i.e. parallel to (p). Hence, 

A A B B O O' '' ' '' '
     

= = .

Figure 1

Figure 2
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Due to this, if
S z z o o( ) '= + −  

is translation for vector O O'
 

, then 
S a a( ') ''= ,  S b b( ') ''=  and S o o( ') = ,  
and the circle ( ')K  maps to a circle 
K o o a( ,| '' |)−  and further A a''( '')  and 
B b''( '')  are midpoints of the circles (K) 
and ( '')K . 

Whether the problem has a solution 
or not depends on the relationship of the 
circles ( ')K  and (K). Due to that, the given problem has a solution, and furthermore: 

-	 if | '' ' | | '' | '' ' ''R R o o OO R R− ≤ − = ≤ + , then the given problem has a unique solu-
tion, 

-	 if | '' ' | | '' | ''R R o o OO− > − =  or | '' | '' ' ''o o OO R R− = > + , then the given problem 
has no solution. ■

4. Let be given two points A, B and let S u z= −  be a poin reglection. If S A A( ) '=  
and S B B( ) '= , then AB B A

   

= ' ' . Prove it!

Solution. Let a, b be the affixes of the points A, B, respectively. The affixes of the 
points A B', '  are a S a u a' ( )= = −  and b S b u b' ( )= = − , respectively. Thus, 

b a u b u a a b' ' ( )− = − − − = −  
The latter means that AB B A

   

= ' ' . ■

5. If O '  and O ''  are centers of a symmetry of the figure F, prove that O S OO= '' ( ')  
is also a center of a symmetry of the figure F. 

Solution. Let o '
2

 and o ''
2

 be affixes of the points O '  and O ''  respectively, and let 
A(a) be any point on the figure F. Then, the affix of O is 

o S oO
o o= ( ) = −''

' '''
2 2

.

Thereby the condition, the points A A A1 2 3, ,  whose affixes are 
a S a o a
a S a o o a o o a
a S a

O

O

O

1

2 1

3 2

= = −
= = − − = − +
=

''

'

''

( ) '' ,

( ) ' ( '' ) ' '' ,

( )) '' ( ' '' ) '' ' ,= − − + = − −o o o a o o a2  
belong on the figure F. Finally, the arbitrariness of the 
point A and the equality 

S a o o a aO ( ) '' '= − − =2 3  
imply that O S OO= '' ( ')  is also a center of a symmetry of 
the figure F (figure 4). ■

Figure 3

Figure 4
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6. Given two lines (p) and (q) and a point A. Through A draw a line (a), so that A is 
the midpoint of the line segment MN, where M a p= ∩( ) ( )  and N a q= ∩( ) ( ) . 

Guidelines. Consider a poin reglection centered at A. ■

7. Let the circles K O R'( ', ')  and K O R''( '', '')  meet at a point A. Through the point 
A draw a line (a) on which the circles intersept 
congruent line segments. 

Solution. Let’s suppose that the given problem 
is solved and let (a) be the required line (figure 5). 
Thereby AB AC= , a point A is the midpoint of a 
line segment BC. It means that C S BA= ( ) . A point 
B K∈ ( ') , thus the point C S BA= ( )  will be on the 
circle ( ) ( ')K S KA= . So, C K K∈ ∩( ) ( '') . 

The problem has a unique solution. ■

8. Given four points A, B, C, D, so that AB CD= ,  
but AB CD

   

≠ . Prove that it exists a rotation S such 
that S A C S B D( ) , ( )= = !

How many such rotations exist? 

Guidelines. Consider the case when a line AC 
is parallel to a line BD, (figure 6) and the case when 
a line AC is not parallel to a line BD, (figure 7), 
separately. ■

9. Let ( ')K  and ( '')K  be circles with congruent 
radii and let they intersect at A and B. Prove that 
it exists a rotation S around the point A, so that 
S K K( ') ''= . Moreover, if X K∈ ( ')  and S X X( ) '= , 
then the line XX '  passes through the point B. 

Solution. Since r r' ''= , the line AB is a bisector of 
the line segment O O' '' , thus A is a center of the rotation 
SA,α  such that S K KA, ( ') 'α = , where α = ∠O AO' '' .  
Let X K∈ ( ')  be any point and X XB K' ( '')= ∩ , 
(figure 8). Since ∠ AXB  and ∠ AX B'  are inscribed 
angles of congruent arcs, the angles are conguent, 
and thus AX AX= ' . If S X XA, ( ) *α = , we get that 
AX AX= *  and X K* ( '')∈ , therefore X X' *= . 

Finally, for any point X K∈ ( ') , the points X, B 
and S XA, ( )α  are collinear. ■

Figure 5

Figure 6

Figure 7

Figure 8
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10. Given lines (p) and (q) and a point A. Construct an equilateral triangle ABC, such 
that B p∈ ( )  and C q∈ ( ) . 

Solution. Let assume that the given problem 
is solved and ABC is the required triangle, (fig-
ure 9). Since the triangle ABC is an equilateral, 
we obtain that AB AC=  and ∠ = °BAC 60  .  
That is, S B CA, ( )60° =  or S B CA, ( )− ° =60 . 
The point B is on the line (p), and therefore the 
point S B CA, ( )60° =  is on the line S pA, ( )60° .  
On the other hand C is on the line (q), thus 
C q S pA= ∩ °( ) ( ),60 . For the rotation SA,− °60  the 
latter holds true, analogously.

 Let
S p pA, ( ) ( )60 1° =  and S p pA, ( ) ( )− ° =60 2 .

If
C q p1 1= ∩( ) ( ) , C q p2 2= ∩( ) ( ) , 

S C BA, ( )− ° =60 1 1  and S C BA, ( )60 2 2° = , 
then AB C1 1  and AB C2 2  are the required trian-
gles, (figure 10). Further, at least one of the lines 
S pA, ( )60°  and S pA, ( )− °60  meet the line (q), 
which means that the problem always has at least 
one possible solution. ■

11. Given lines (p) and (q) and a point O. Construct a 
square ABCD centered at the point O, such that two adjacent 
vertices are on the lines (p) and (q), respectively. 

Solution. Let assume that the given problem is already 
solved and ABCD is the required square, (figure 11). We have 
∠ = − °AOB 90 , therefore S A BO, ( )− ° =90 . Further, A p∈ ( )  
implies that B q S pO∈ ∩ − °( ) ( ), 90 . 

Let’s consider the rotations SO,90°  and SO,− °90 .  
So, 

( ) ( ),p S pO1 90= ° , ( ) ( ),p S pO2 90= − ° , 
B p q B p q1 1 2 2= ∩ = ∩( ) ( ), ( ) ( ),   

A S BO1 90 1= − °, ( ) , A S BO2 90 2= °, ( ) . 
Then the required squares are squares with sides 
A B1 1  и A B2 2 , respectively. 

Let state that the above problem may have ei-
ther two solutions or none. Namely, if the lines (p) 
and (q) are perpendicular to each other, then the lines 

Figure 9

Figure 10

Figure 11

Figure 12
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( )p1  and ( )p2  are parallel with (q) and the given problem does not have any solution, 
if lines (p) and (q) are not perpendicular, then the given problem has exactly two solu- 
tions. ■ 

12. Given lines (p) and (q) and a point O. 
Construct an equilateral triangle ABC centered at 
the point O, so that its two vertices are placed on 
the lines (p) and (q), respectively. 

Solution. Let assume that the given prob-
lem is solved and let the triangle ABC be the 
required triangle. Thereby ∠ = − °AOC 120 ,  
we get that S A CO, ( )− ° =120 , therefore  
C S p qO= ∩− °, ( ) ( )120 , (figure 13). 

Let’s consider the rotations SO,120°  and 
SO,− °120 .Therefore

( ) ( ),p S pO1 120= ° , ( ) ( ),p S pO2 120= − ° , 
C p q1 1= ∩( ) ( ) , C p q2 2= ∩( ) ( ) , 

A S CO1 120 1= − °, ( ) , A S CO2 120 2= °, ( ) . 
Then the required triangles have sides A C1 1  and 
A C2 2 , respectively (figure 14). 

The given problem may have two solutions, 
one solution or none. ■

13. Let S z az b( ) = + , a∈R \ { , }0 1  be a homothety and M be any point. Prove that 
the center of a homothety C, the point M and its image N are collinear.

Solution. Let the affix of the point M be z. Then the affixes of the center of a 
homothety C and a point N are c b

a= −1  and w az b= + . Then, 
w z
c z

az b z
z

b a z
b a z

b a z
b ab

a

a a−
−

+ −
−

+ −
+ −

+ −
+= = − = − =

−1

1

1

11 1( )

( )

( )
(

( ) −−
+ −
−

−
−− = =

−
1

1
1

)
( )z

az b z
z

w z
c za b

a
,

and since corollary 1.4 we have that the points C, M and N are collinear. ■

14. Given a circle K(O,r) and a point A on the circle. Determine the locus of midpoints 
of the chords of the circle (K) at the point A. 

Solution. Let AX be an arbitrary chord of a circle K(O,r) and let Y be its midpoint, 
(figure 15). If the affixes of the points A, X and Y are a, z and w, respectively, then since 
the condition of the problem it is true that 

w z a z a= + = +1
2

1
2

1
2

( ) ,
The latter means that the required locus is the image of the circle (K) under the similar-
ity 

Figure 13

Figure 14
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S z z a( ) = +1
2

1
2

,
with coefficient 1

2
 and center 

c a
a

= =
−

1
2

1
2

1
.

Finally, the required locus is the image of a circle (K) under 
the homothety with center at A and coefficient 1

2
, i.e. that is 

the circle with diameter OA. ■

15. On the bases AB and DC of the trapezoid 
ABCD on the same side of them, are constructed 
equilateral triangles ABM and DCN. Prove that a 
line MN passes through the intersection point O 
of the extensions of the legs. 

Guideline. Prove that the homothety with 
center at O and coefficient AB

DC
 maps the point 

N at M, (figure 16), and further apply the Exam-
ple 13. ■ 

16. Let ABCD be trapezoid with bases AB and CD and let M be the midpoint of AB, 
N be the midpoint of CD, P be the intersection of diagonals and Q the intersection of 
extensions of the legs. Prove that the points M, N, P and Q are collinear. 

Guideline. Prove that it exists a homothety Η with 
center at Q and coefficient DC

AB
 so that Η( )A D=  and 

Η( )B C= , further, conclude that Η( )M N= , (fig-
ure 17), and then apply the example 13. Provethat there 
exists a homothety Η1  with center P and coefficient 
− DC

AB
 so that Η1( )A C=  and Η1( )B D= , and further 

conclude that Η( )M N= , (figure 17), and then apply 
the example 13. ■ 

17. Given two concentric circles K(O,R) and K O R'( ', ') , R R> ' . Draw a line (p) 
which consecutively meets the circles at A, B, C and D, so that AB BC CD= = . 

Solution. Let assume that the given problem is 
solved and let (p) be the required line, (figure 18). 
Then AB

AD
= 1

3
, thus under homothety Η with cen-

ter at A and coefficient 1
3

 the point D maps at B. 
This means that B is on the circle Η(K). That is,  
B K K∈ ∩Η( ) ( ') . 

Figure 15

Figure 16

Figure 17

Figure 18
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Finally, if we fix a point A on a circle (K) and let B K K∈ ∩Η( ) ( ') , then the required 
line ( )p AB= , (make a figure). ■ 

18. Construct a triangle ABC if given α, β and hc . 

Solution. Let assume that the given problem is solved 
and ABC is a required triangle (figure 19). If A B C1 1 1  is 
any triangle with angles α and β, then the triangles ABC 
and A B C1 1 1  are homothetic with center of homothety at 

D and coefficient h
C D

c

1
, thus the required triangle can be 

constructed if we take an arbitrary triangle   with angles 
α and β and map it under homothety Η with center D and 
coefficient A B C1 1 1 , (make a figure). ■

19. In a triangle ABC, inscribe a triangle PQR whose sides are perpendicular to the 
sides of ABC. 

Guideline. Take any 
point K on the side AB, and 
construct the triangle KMN so 
that NK AB⊥ ,  MN AC⊥ . 
Further, draw the line AM and 
find the point Q AM BC= ∩
. Now, the required triangle 
PQR is an image of the triangle 
KMN under homothety Η with 

center A and coefficient AQ
AM

 
(figure 20). ■ 

20. Prove that if two circles touch each other, their centers and the point of touch are 
collinear.

Guideline. Determine the affix c of a point of touch of the circles with equations 
| |z =1  and | |z a R− =  and prove that the points with affixes 0, a and c are collinear. ■ 

21. Given points A and B. Let A '  be a point on the line OB, B '  be a point on the line 
OA and Z be a point on AB. Construct a point Z '  which divides the line segment A B' '  
in a same ratio as a point Z divides the line segment AB. 

Solution. Let a a b b, ', , ',  z be the affixes of points A, B, A B Z', ', , respectively. If 
BZ
ZA

= λ , then 
 				    b z z a− = −λ( ) 	  				      (1)
Hence, we should obtain the affix z '  of a point Z so that 

Figure 19

Figure 20
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b z z a' ' ( ' ')− = −λ .      (2)

Let Z1  be the point where 
the OA meets the line which 
passes through the point Z and 
is parallel with BB ' , and Z2  
be the point where the line OB 
meets the line which passes 
through the point Z and is 
parallel with AA ' . Then, the 
similarity of triangles AZZ1  
and  ABB ' , i.e. the similarity 
of BZZ2  and BBA '  implies that 
			   b z z a' ( )− = −1 1λ  and b z z a− = −2 2λ( ') . 		  (3)
By reducing a and b, in (1) and (3), we obtain that 

b z z z z z z a' ( ) [( ) ']− + − = + − −1 2 1 2λ ,
Since (2),we get that 

z z z z' = + −1 2 π .
Hence, the point Z '  is obtained by construction, (show in figure 21). ■

22. Prove that the sum of interior angles of any triangle is p. 

Solution. Let a, b, c be affixes of vertices A, B, C of a triangle. Then 
∠ = ∠ = ∠ =−

−
−
−

−
−CBA BAC ACBa b

c b
c a
b a

b c
a carg , arg , arg .

Since each of the interior angles of a triangle is strictly smaller then π, we get that their 
sum is strictly smaller than 3π, and thus 

∠ +∠ +∠ = + +

=

−
−

−
−

−
−

−
−

−

CBA BAC ACB a b
c b

c a
b a

b c
a c

a b
c b

c a
b

arg arg arg

arg −−
−
− = − =a

b c
a c arg( ) ,1 π  

which was supposed to be proven. ■

23. Let ABCD be strictly convex quadrilateral and let the points  T Ta b, ,  T Tc d,  be 
centroids of the triangles BCD, ACD, BAD, ABC, respectively. Prove that the medians of 
the quadrilaterals ABCD and T T T Ta b c d  are concurrent.

Solution. According to Example I 4.2. B) the medians MP and NQ of the quadrilateral 
ABCD intersect at a point T with affix t a b c d= + + +

4
, which according to Example 15.10 А) 

is the centroid of the quadrilateral ABCD. Analogously, the medians of the quadrilateral 
T T T Ta b c d  intersect at its centroid, whose affix is 

t t t t t a b c da b c d
b c d a c d a b d a b c

' = = =+ + + + + + + + +
+ + + + + + + +

4 4 4
3 3 3 3 .

Finally since, t t= '  the statement of the given problem is proven. ■

Figure 21
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24. а) Given two vertices of an equilateral trianglein a complex plane. Determine its 
third vertex. 

b) Obtain a point z3  so that the points z i1 2 2= + , z i2 3= +  and  z3  create an 
equilateral triangle.

Solution. а) Let be given points A and B with affixes a and b. The given problem has 
two possible solutions C and C ' :  ABC is positively oriented and  ABC '  is negatively 
oriented. Thereby, a point C is obtained if the vector AB

 

 is rotated around a point A at  
π
3

, and C '  is obtained when aif the AB
 

 is rotated around a point A at − π
3

. Therefore 

c a b a ei= + −( )
π
3  and c a b a e i

' ( )= + − − π
3 .

b) Since solution a), 

z z z z e i i e i i ii i i
3 1 2 1

1 3
2

5 3
2

33 32 2 1 2 2 1' ( ) ( ) ( )= + − = + + − = + + − = ++ + +π π
33

2

z z z z e i i e i ii i i
3 1 2 1

1 3
2

5 3
2

3 32 2 1 2 2 1'' ( ) ( ) ( )= + − = + + − = + + − = +− − − −π π
ii 3 3

2
− . ■

25. Given an equilateral triangle  ABC let a be an affix of the vertex A. Determine 
the affix of the vertex B if the origin coincides with: 

а) the vertex C, 
b) the centroid T of the  ABC, 
c) A1 , the foot of the altitude at the vertex A to the line segment BC. 

Solution. а) Since C coincides with the origin, c = 0 . If  ABC is positively oriented, 
then B is obtained by rotation of the point A at π

3
 around the point C and therefore

b ae ai i= = +π
3 1 3

2
.

If  ABC is negatively oriented, then B '  is obtained by rotation of the point A at − π
3

 
around the point C and therefore

b ae ai i' = =− −π
3 1 3

2
.

b) Since T coincides with the origin, t = 0 . If  ABC is positively oriented, 
thenthe point B is obtained by rotation of the point A at 2

3
π  around T and therefore 

b ae ai i= = − +2
3 1 3

2

π
. If  ABC is negatively oriented, then the point B '  is obtained by 

rotation of the point A at − 2
3
π  around C and therefore b ae ai i' = =− − −2

3 1 3
2

π
. 

c) Since A1  coincides with the origin, a1 0= . Due to A A A B1 1 3= , we obtain the 
point B by rotation of the point A around A1  at π

2
 if  ABC is positively oriented, that is 

− π
2

  if  ABC is negatively oriented and the both cases, the obtained results are divided 
by 3 . Thus, the given problem has two solutions: b ai=

3
 and b ai' = −

3
. ■
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26. If a, b, c are the affixes of vertices of an equilateral triangle, then 
a b c ab bc ca2 2 2+ + = + + . Prove it! 

Solution. Let t be affix of the centroid of an equilateral triangle, (with vertices whose 

affixes are a, b, c) such that a, b, c are the affixes, of its vertices,and let u ei=
2
3
π

. Then 
b t a t u= + −( )  and c t a t u= + −( ) 2 . The equality

a b c ab bc ca2 2 2+ + = + +  
is equivalent to the equality 
 			   ( ) ( ) ( )a b b c c a− + − + − =2 2 2 0 . 			    (1)
We will prove the equality (1). Thus 

	  

( ) ( ) ( ) [( ) ( ) ( ) ]( )

[

a b b c c a u u u u a t

u

− + − + − = − + − + − −

= + +

2 2 2 2 2 2 2 2 2

2

1 1

1 (( ) ]( ) ( )

( )( ) ( )

( )( )(

u u a t

u u u a t

u u a

+ − −

= + + − −

= − − −

1 1

2 1 1

2 1 1

2 2 2

2 2 2

3 tt

e u a ti

)

( )( )( )

2

2 22 1 1= − − −π

	    = − − − =2 1 1 1 02( )( )( ) .u a t   ■

27. If a, b and c are complex numbers so that they satisfy a b c ab bc ca2 2 2+ + = + + ,  
then either a b c= =  or a, b and c are affixes of the vertices of an equilateral triangle. 
Prove it! 

Solution. The equality a b c ab bc ca2 2 2+ + = + +  is equivalent to the equality 
( ) ( )( )b c c a a b− = − −2 , and thus

| | | | | |b c c a a b− = − ⋅ −2 .
Analogously, it can be proven that 

| | | | | |c a a b b c− = − ⋅ −2  and | | | | | |a b b c c a− = − ⋅ −2 .
If the last three equalities are multiplied by | |,b c−  | |c a−  and | |a b− , respectively, 
then, we obtain the following equalities 

| | | | | | | | | | | |a b b c c a a b b c c a− = − = − = − ⋅ − ⋅ −3 3 3 ,
The latter explaines the following | | | | | |a b b c c a− = − = − . The above means that either 
a b c= =  or a, b and c are affixes of the vertices of an equilateral triangle. ■

Comment. The statements in the Examples 26 and 27 can be transformed as fol-
lowing 

A triangle ABC, where a, b, c are affixes of its vertices is an equilateral triangle if 
and only if a b c ab bc ca2 2 2+ + = + +  holds true. 
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Indeed, a triangle ABC is equilateral if it and only if it is directly similar with the 
triangle BCA, that is if and only if α β β γ= =, ,  γ α α β γ π= ⇔ = = =

3
, which actually 

means that if and only if 

 	
1 1 1

0 2 2 2a b c
b c a

a b c ab bc ca= ⇔ + + = + + . ■

28. On the sides of a triangle ABC three equilateral triangles are constructed, such 
that the triangles A BC'  and B AC'  are constructed on an interior side and C AB'  is 

constructed on an exterior side. If M is the center of 
a triangle C AB' , then prove that the triangle A B M' '  
is an isosceles triangle and furthermore ∠ =A MB' ' 2

3
π  

holds true. 

Solution. Let a, b, c be the affixes of vertices A, B, 
C respectively. Then the condition of the given problem 
implies that 

a b ce

e

i

i
' = −

−

π

π
3

31

, b c ae

e

i

i
' = −

−

π

π
3

31

 and 

c be aeb ae

e

i ii

i
' = = −−

−

π

π

π π3

3

3
2
3

1

. 

Hence, 

m a e b e ia b c i i a b b a= = −( ) + +( ) = ++ + + −'
3

1
3

1
3 2 6

1 1 3
2
3 3
π π

.
Finally, 

( ' ) 'a m e m a e m e

e i

i i i

b ce

e

i a b b
i

i

− + = + −( )
= + +− +

−

2
3

2
3

2
3

3

3

2
3

1

2

π π π

π

π

π
−−

+ + − − − −

( ) −( )
= − + + +

= − − +

a

i a b b a b a a b

i

i

b ce i

ce a

6
3
2

3
2

3 3
4 4

1
2

3

33

3

π

π
ii ce ae bi i c ae

e

i

i
3

2
3

2
3 3

3

( ) = − = =−
−

π π π

π ',

the latter implies the statement of the given problem. ■

29. Given a triangle A A A1 2 3  and a point P0  on its plane. Let A A ss s= ≥−3 4, . We 
construct consecutive points P P P1 2 3, , ,...  such that the point Pk , under rotation around 
the point Ak+1  at − 2

3
π , maps at Pk+1 . If P P2013 0= , then the triangle A A A1 2 3  is an 

equilateral triangle. Prove it!

Figure 22
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Solution. By applying the given rotation, we obtain the following
S p p S p p S p pA A A1

2
3 2

2
3 2013

2
3

0 1 1 2 2012 0, , ,( ) , ( ) ,..., ( )− − −= = =π π π ,
thus

S S S S p pA A A A2013
2
3 2012

2
3 2

2
3 1

2
3

0 0, , , ,... ( )− − − −( ) =π π π π    .

Further, 3 22
3

−( ) = −π π , so the theorem 5.13 implies that 

 			   S S S SA A A v
3

2
3 2

2
3 1

2
3

, , ,− − − =π π π  ,				   (1)

where Sw  is translation for a vector v. But, 
S S S S S SA A A A v

2013
2
3 2012

2
3 2

2
3 1

2
3

671
671, , , ,... ( )− − − − = =π π π π    vv wS= ,

i.e. S p pw ( )0 0= . This means that Sw  is a translation which has a fixed point. Now the 
theorem 5.5. implies that Sw  is identity i.e. w = 0 , thus v = 0 , which according to (1) 
means that S S SA A A2

2
3 1

2
3 3

2
3

, , ,− − =π π π . The points A1  and A2  are fixed points for the 

rotations SA1
2
3

,− π  and SA2
2
3

,− π . Thus 

S e z e aA
i i

1
2
3

2
3

2
31 1,−

− −= + −( )π

π π
 and S e z e aA

i i
2

2
3

2
3

2
31 2,−

− −= + −( )π

π π
,

which according to the theorem 5.13 means that an affix a3  of the center of rotation 
SA3

2
3

, π  satisfies the following equality 

a e e a e a

e e

i i i

i i3
1 1

1

2
3

2
3

2

2
3

1
2
3

2
3

=
− − −

− −

−( ) + −( )
−

π π π

π π , i.e. a e e a ai i
3 2 11

2
3

2
3+( ) = +− −π π

.

The last equality is equivalent to the following equality 

a a a a ei
1 3 2 3

3− = −( )
π

,
The latter implies that the triangle A A A1 2 3  is an equilateral triangle. ■

30. Determine the points c and d, which together with the points a i= +1  and 
b i= +2 3  form such a square onto the Oxy plane, that a and b are its two adjacent vertices 
and one of the other two vertices is placed on the second quadrant. 

Solution. c i= 4  and d i= − +1 2 . ■

31. The points a i= +1  and c i= − +1 3  are opposite vertices of a square. Determine 
the other two vertices of that square. 

Solution. The affix of the center of that square is o i= +1 3
2

, and hence 

b i= +− +3 1
2

3 3
2

 and d i= +− − +1 3
2

1 3
2

. ■
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32. The complex numbers a i= +1  and b i= +2 2  are adjacent vertices of a square. 
Determine the other two vertices c and dof that square.

Solution. The given problem has two possible solutions: 
c i d i' , '= + =1 3 2  and c i d'' , ''= + =3 2 . ■

33. Given a square ABCD and a as the affix of A. Determine the affixes b, c, d of B, 
C, D if the origin coincides with:

а) the vertex B, 
b) the vertex C, 		
c) the center of the square. 

Solution. а) The given problem has two possible solutions and in both of them  
b = 0 . 

If the square is positively oriented, then the point C is obtained by rotation of the 
point A at − π

2
 around B, thus c ia' = − . Now, thereby AD BC

   

=  we get that d a c b' '− = − ,  
thus d a c i a' ' ( )= + = −1 .

If the square is negatively oriented, then the point C is obtained by rotation of a point 
А ���at π

2
 around B, thus c ia'' =  and d a c i a'' '' ( )= + = +1 .

b) The given problem has two possible solutions, and in both cases c = 0 , since the 
center O of the square is the midpoint of its diagonal, we get that the affix of the center 
is  o a=

2
. If the square is positively oriented then the point B is obtained by rotation of A 

around O at π
2

, and D by rotation at − π
2

, thus b ia a= +
2 2

 and d ia a= −
2 2

. If the square 
ABCD is negatively oriented, then b and d will only change their positions. 

c) To determine the points B, C, D we only rotate the point A around O at π
2

, p, 3
2
π    

respectively, and thus b ia c a d ia= = − = −, , . ■

34. Squares are constructed to the outside of 
the parallelogram ABCD on each side. Prove that 
their centers form a square. 

Solution. Let the intersection of diagonals of a 
square ABCD coincide with the origin and let a, b, 
c, d be the affixes of A, B, C, D, respectively, and 
a b c d', ', ', ',  be the affixes of A B C D', ', ', '  (the 
centers of the constructed squares), respectively 
(see the figure 23). Then c a d b= − = −, , thus 

( ') 'a a e a bi− + =− π
2 , i.e. a b ai

i' = +
+1 .

Similarly, Figure 23
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b c bi
i' = +

+1 , c d ci
i' = +

+1  and d a di
i' = +

+1 ,
and hence 

b c da bi
i

b ai
i

a bi
i' , ' , '= = =− +

+
− −
+

−
+1 1 1

.
Finally, since

b a d ca b b a i
i' ' ' '( ) ( )− = = −− + + −

+1  
and 

c b i i b aa b b a i
i

a b b a i
i' ' ( ' ')( ) ( ) ( )− = = = −− − +

+
− + + −

+1 1
,

we get that the quadrilateral is a square. ■ 

35. Squares are constructed to the outside of the quadrilateral ABCD on each side. If 
A ' , B ' , C '  and D '  are centers of the squares constructed on the sides AB, BC, CD and 
DA, respectively, E is the midpoint of A C' ' , F is the midpoint of BD, G is the midpoint 
of B D' '  and H is the midpoint of AC, prove that the quadrilateral EFGH is a square. 

Solution. Let the affixes of points 
be denoted by the appropriate lower case 
letters. The properties of rotation and the 
condition of the given problem, imply the 
following
a b c da bi

i
b ci

i
c di

i
d ai

i' , ' , ' , ' .= = = =−
−

−
−

−
−

−
−1 1 1 1  

Further, 
e

g

f

a c a c b d i
i

b d b d a c i
i

b d

= =

= =

=

+ + − +
−

+ + − +
−

+

' ' ( )
( )

' ' ( )
( )

,

,

2 2 1

2 2 1

2
,, .h a c= +

2
Hence, 

f e b d a c b d i
i

b d
i

a c
i− = − = −+ + − +

−
+
−

+
−2 2 1 2 1 2 1

( )
( ) ( ) ( )

,

g h b d a c i
i

a c b d
i

a c
i− = − = −+ − +

−
+ +

−
+
−

( )
( ) ( ) ( )2 1 2 2 1 2 1

, and 

g f i f eb d a c i
i

b d b d
i

a c
i− = − = − = −+ − +

−
+ +

−
+
−

( )
( ) ( ) ( )

( ) ( )
2 1 2 2 1 2 1

, 

therefore quadrilateral EFGH is a square. ■

36. Squares centered at P, Q, R are constructed to the outside of the triangle ABC on 
each side. Squares centered at A B C', ', '  are constructed to the inside of the PQR on each 
side. Prove that the points A B C', ', '  are midpoints of the sides of the triangle ABC. 

Figure 24
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Solution. Let the affixes of points be 
denoted by appropriate lower case letters 
and let A B C', ', '  be centers of the squares 
constructed on the sides QR, RP, PQ, 
respectively (see the figure 25). Then, the 
condition of the given problem and the 
properties of rotation imply that 
p q rb ci

i
c ai

i
a bi

i= = =−
−

−
−

−
−1 1 1

, , , 	 (1)

a b cr qi
i

p ri
i

q pi
i' , ' , '= = =−

−
−
−

−
−1 1 1

 .	 (2)

If we substitute the expressions for p, q, r, in 
(2) we get that 

a b cb c c a a b' , ' , '= = =+ + +
2 2 2

,
which was supposed to be proven. ■

37. Let a, b be complex,but not real numbers, and are such that they satisfy the 
following | |a b− = 2  and ab =1 . Prove that the quadrilateral ABCD whose vertices have 
affixes −1, a, 1, b, respectively, is an isosceles trapezoid. 

Solution. Since AC b a BD= − − = = − =| ( ) | | |1 1 2  it is sufficient to prove that the 
quadrilateral ABCD is a cyclic. But, 

[ ( )]( )
[ ( )]( ) ( ) ( )
b a

b a
a b ab

b a
b a
b a

− − −
− − −

− + −
−

−
−= = = ∈1 1

1 1
1

2 2
1
2

R ,

thus, the remark 3.6 b) implies that the points −1, a, 1, b are placed on a same circle, 
but they are not on a same line, because in that case it must be the real axis, which is 
contradictory with the given condition. Hence, the quadrilateral ABCD is an isosceles 
trapezoid. ■ 

38. Let ABCD be a cyclic quadrilateral and let H H HA B C, ,  and HD  be the 
orthocenters of the triangles BCD, CDA, DAB and ABC, respectively. Prove that the 
quadrilaterals ABCD and H H H HA B C D  are congruent. 

Solution. Without loss of generality we assume that the circumcircle of the 
quadrilateral ABCD is the unit circle. So, we have that 

h b c d h c d a h d a b h a b ca b c d= + + = + + = + + = + +, , , .
To prove that quadrilaterals ABCD and H H H HA B C D  are congruent it is sufficient to 
prove that for all x y a b c d, { , , , }∈

| | | |x y h hx y− = −   
holds true (why?), which is easy to be proven. Indeed, for example

| | | ( ) | | | | |h h b c d c d a b a a ba b− = + + − + + = − = − . ■

Figure 25



179

39. Let a, b, c be complex numbers such that they satisfy the following 
a b c+ + = 0  and | | | | | |a b c= = .

Then a, b, c are vertices of an equilateral triangle. Prove it! 

Solution. 
| | ( )( )

( )( )

a b a b a b aa ab ba bb aa ab ba bb

a b a b

− = − − = − − + = − − − −

= − + + =

2 4

4 4 −− + = − − = − =| | | | | | .a b c c2 2 24 4 3  
Hence, | |a b− = 3 . Similarly, it can be proven that | |b c− = 3  and | |c a− = 3 , 
which actually means that a, b, c are vertices of an equilateral triangle. ■ 

40. Let the complex numbers a, b, c have equal modules and let a, b, c be affixes of 
vertices of an equilateral triangle. Prove that the complex numbers ab, bc, ca are also the 
affixes of vertices of an equilateral triangle. 

Solution. Let | | | | | |a b c r= = =  and | | | | | |a b b c c a x− = − = − =  hold true. 
Hence,

| | | | | | ,

| | | | | | ,

| | | | |

ab bc b a c xr
bc ca c b a xr
ca ab a c b

− = ⋅ − =
− = ⋅ − =
− = ⋅ − || ,= xr  

the above imply that ab, bc, ca are affixes of vertices of an equilateral triangle. ■ 

41. The squares BCDE, CAFG and ABHI are constructed to the outside of the triangle 
 ABC, on each side BC, CA and AB. Let GCDQ and EBHP be parallelograms. Prove 
that the  APQ is an isosceles right angled triangle. 

Solution. The point h is obtained by rotation of a point a around b at π
2

 in a positive 
direction, which means that 

h a b a e i a ibi= + − = − +( ) ( )
π
2 1 .

Similarly, d i b ic= − +( )1  and g i c ia= − +( )1 . The quadrilateral BCDE is a square, thus 
the midpoints of sides CE and BD coincide with each other, which implies that d b e c+ = + , 
thus e i b ic= + −( )1 . Analogously, g i c ia= + −( )1 . Further, the quadrilaterals BEPH and 
CGQD are parallelograms, thus p b e h+ = +  and c q g d+ = + , that is p ia b ic= + −  
and q ia ib c= − + + . Finally, by rotation of the point p around a at π

2
 we get that 

a p a e a i ia b ic a a a ib c ia ia ib c qi+ − = + + − − = − + + − = − + + =( ) ( )
π
2 .

Finally, the point Q is obtained by rotation of the point P around A at π
2

, hence the 
triangle  APQ is isosceles right angled triangle.■ 

42. The equilateral triangles BCB1 , CDC1 , DAD1  are constructed to the outside of 
a convex quadrilateral ABCD, on each side BC, CD, DA. If the points P, Q and R are the 
midpoints of the sides B C C D1 1 1 1,  and AB, respectively, prove that the triangle PQR is 
an equilateral triangle. 
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Solution. The points B C D1 1 1, ,  are obtained by rotation of the points B, C, D around 

C, D, A at π
3

 in a positive direction, respectively. Hence, by letting the ε
π

= ei
3  we get 

that
b c b c c d c d d a d a1 1 1= + − = + − = + −( ) , ( ) , ( )ε ε ε .

Further, thereby P is the midpoint of B C1 1  we get that

p b c b c d= =+ + + −1 1
2

1
2

ε ε( ) .

Similarly, q c d a= + + −ε ε( )1
2

. Clearly, r a b= +
2

. Hence, 

r p r a b b c d a b

c a d b

+ − = + −( )
=

+ + + − +

+ − + − + −

( ) ( )

( ) ( ) (

ε εε ε

ε ε ε ε ε

2
1

2 2

1 12 ++

+ + −= =

ε

ε ε

2

2
1

2

)

( )c d a q  
thereby ε ε2 1 0− + = , (why?). Hence, the point Q is obtained by rotation of the point P 
around R. Therefore, the triangle PQR is equilateral triangle. ■

43. Let ABCD be a convex quadrilateral so that AC BD= . On the exterior side of 
the quadrilateral on its sides are constructed equilateral triangles. Let O O O O1 2 3 4, , ,  be 
the centers of triangles constructed on the sides AB, BC, CD, DA, respectively. Prove that 
the lines O O1 3  and O O2 4  are perpendicular to each other.

Solution. Since, a point A is obtained by rotation of B around O1  at 2
3
π  in a positive 

direction, and by taking that ε
π

= ei 2
3  we get that a o b o= + −1 1( )ε , i.e. o a b

1 1
= −

−
ε
ε . 

Analogously, o b c
2 1
= −

−
ε
ε , o c d

3 1
= −

−
ε
ε  and o d a

4 1
= −

−
ε
ε . Further, to prove that O O O O1 3 2 4⊥  

it is sufficient to prove that o o
o o

o o
o o

1 3

1 3

2 4

2 4

−
−

−
−

= − , i.e. it is sufficient to prove that

a c b d
a c b d

b d c a
b d c a

− − −
− − −

− − −
− − −

= −( )

( )

( )

( )

ε
ε

ε
ε . 

We can be directly assured in the validity of the latter by using the εε =1 , i.e. ε ε= 1  and 

( )( ) | | | | ( )( )a c a c a c b d b d b d− − = − = − = − −2 2 . ■

44. Let M and N be two distinct points on a plane of a triangle  ABC so that 
AM BM CM AN BN CN: : : := .

Prove that the line MN passes through the circumcenter of the triangle  ABC. 

Solution. Without loss of generality we consider the circumcircle of the triangle 
 ABC as the unit circle. Then o = 0  and a a= 1 , b b= 1  and c c= 1 . The proportion 
AM BM AN BN: :=  is written as following 

1= − ⋅ −
− ⋅ −

| | | |
| | | |
a m b n
a n b m ,
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thus,

 			   1
2 2

2 2= =− −
− −

− − − −
− −

| | | |

| | | |

( )( )( )( )

( )( )(

a m b n
a n b m

a m a m b n b n
a n a n bb m b m− −)( )

.			   (1)
Further, 

( )( )( )( )a m a m b n b n am mm bn nnm
a

n
b− − − − = − − +( ) − − +( )1 1 , 

( )( )( )( )a n a n b m b m an nn bm mmn
a

m
b− − − − = − − +( ) − − +( )1 1

If we substitute in (1) we obtain the following equality 

1 1 1 1− − +( ) − − +( ) = − − +( ) − − +( )m
a

n
b

n
a

m
bam mm bn nn an nn bm mm  

After reducing and dividing the latter by a b−  we get that 

 	 m
ab

n
ab

a b mn
ab

mmn
ab

a b mn
ab

mnn
abm n mmn mnn− − + − + − + + − =+ +( ) ( ) 0 .	 (2)

Analogously, since the proportion AM CM AN CN: := , whereby in (2) b is substitute by 
c, and thereby symmetry we get that 

 	 m
ac

n
ac

a c mn
ac

mmn
ac

a c mn
ac

mnn
acm n mmn mnn− − + − + − + + − =+ +( ) ( ) 0 .	 (3)

If we subtract (3) from (2), after reducing and dividing the so-obtained equality by b c−  
we get the following 
 			   − + − + + − =m

abc
n

abc
mn
bc

mmn
abc

mn
bc

mnn
abc 0 . 			  (4)

Further, thereby the symmetry, reapplying the same procedure to the proportions 
AM BM AN BN: :=  and BM CM BN CN: :=  we obtain the following equality 

  			   − + − + + − =m
abc

n
abc

mn
ac

mmn
abc

mn
ac

mnn
abc 0 . 			  (5)

Finally, if we subtract (5) from (4), and further the so-obtained equality we divide by 
1 1
ac bc−  we get that mn nm− = 0 , which is equivalent to 

m o
m o

n o
n o

−
−

−
−

= ,

therefore, the points M, N and O are collinear. ■

45. The quadrilateral ABCD is inscribed into a circle, such that AC is its diameter. 
Lines AB and CD meet at M, and the tangents at B and D meet at N. Prove that  
MN AC⊥ . 

Solution. Let the quadrilateral ABCD be inscribed into a unit circle. Since AC is a 
diameter we have that c a= − . Further, thereby Remark 3.13 holds true we have that affix 
of M is 

m a b cd c d ab
cd ab

bd ad ab
d b= =+ − +

−
+ −
+

( ) ( ) 2  
and affix of N is n bd

b d= +
2 . Further, since 

a a= 1 , b b= 1  and d d= 1

we get that 

m n a d b
b d− = −
+

( )  and m n a d b
b d

b d
a b d− = =−

+
−
+

( )
( )

,
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The latter means that 
m n
m n

a−
−

= 2 .
But, 

a c
a c

a
a

a−
−

= − = −2
2

2 ,

Therefore, the complex gradient of MN and AC holds true
m n
m n

a c
a c

a−
−

−
−

= = −2 ,
which means that MN AC⊥ . ■ 

46. Let H be the orthocenter of  ABC and let P be placed on its circumcircle. Let E 
be the foot of the altitude BH, the quadrilaterals PAQB and PARC be parallelograms and 
AD and HR meet at X. Prove that EX and AP are parallel. 

Solution. Without loss of generality we get that the circumcircle of  ABC is the unit 
circle. Since Theorem 15.2 we have that h a b c= + + , and since solution of Example 1.9 
we get that the affix of E is the following e a b c ac

b= + + −( )1
2 . Further, the equilateral 

PAQB is parallelogram, and therefore the midpoints of the line segments PQ and AB 
coincide, i.e. q a b p= + − . Analogously, since the quadrilateral PARC is parallelogram 
we have that r a c p= + − . But, A, Q, X are collinear, and therefore 

x a
x a

a q
a q

p b
p b

pb−
−

−
−

−
−

= = = − , i.e. x pb a ax
abp= + −2

. 

Analogously, the points H, R, X are collinear, and therefore

x h
x h

h r
h r

p b
p b

pb−
−

−
−

+
+

= = = , i.e. x
x a b c p

ab

bp
a

bp
c=

− − − + + +
. 

By equating the obtained equalities for x  we express x
x a b c p bp

c= + + − −( )1
2

2 .

Finally, to prove that EX and AP are parallel, it is sufficient to prove that 
e x
e x

a p
a p

ap−
−

−
−

= = −  
holds true. The latter can be directly checked if we consider that 

e x p abp
c

ac
b

b c bp ac
bc− = + − −( ) = + −1

2 2
( )( ) . ■

47. Let ABCD be a cyclic quadrilateral. The points P and Q are symmetric to C 
with respect to the lines AB and AD, respectively. Prove that PQ passes through the 
orthocenter of the triangle ABD. 

Solution. Without loss of generality we can consider that the quadrilateral ABCD is 
inscribed into the unit circle. Since the solution of Example 1.9, the affixes of P and Q 
are 
 			   p a b q a dab

c
ad
c= + − = + −, . 				   (1)
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The Theorem 15.2 implies that the orthocenter of  ABD has affix h a b d= + + , and 
therefore (1) implies that 

p h
p h

a b a b d abd
c

a d a b dab
c

a b
c

ab a b d

ad
c−

−

+ − − − −

+ − − − −

+ − − − −
= = =1 1 1 1 1 1

aa d
c

ad a b d

q h
q h+ − − − −
−
−

=1 1 1 1 ,

The latter means that the line PQ passes through the orthocenter of the triangle ABD. ■

48. Let ABC be a given triangle, H be the orthocenter, O be the sircumcenter and R 
be the circumradius of its circumcircle. Let the point D be symmetric to A with respect to 
the line BC, the point E be symmetric to B with respect to CA and F be symmetric to C 
with respect to AB. Prove that the points D, E and F are collinear if and only if OH R= 2 . 

Solution. Without loss of the generality we can consider that the triangle is inscribed 
into the unit circle. Then o = 0 , R =1 and since 15.2 we have h a b c= + + . Thereby 
Example 1.9 the affixes of the points D, E and F are the following 
 			   d b c e a c f a bbc

a
ac
b

ab
c= + − = + − = + −, , .		  (1)

Further, the points D, E and F are collinear if and only if 

 			   d e
d e

f e
f e

−
−

−
−

= .				    (2)

holds true. If (1) is substituted in (2), and after reducing we get that the points D, E and 
F are collinear if and only if 

( )( )c a abc a b ab a c ac b c bc− − − − − − − =2 2 2 2 2 2 0 ,
Thereby c a− ≠ 0 , we get that the points D, E and F are collinear if and only if 
  		  abc a b ab a c ac b c bc− − − − − − = ⇔2 2 2 2 2 2 0 	 

 		  a b ab abc a c ac abc b c bc abc
abc

2 2 2 2 2 2
4+ + + + + + + + = ⇔ 	  

 		
ab a b c ac a b c bc a b c

abc
( ) ( ) ( )+ + + + + + + + = ⇔4 		   

 	  	  
( ) ( )( )a b c a b c a b ca b c+ + + +( ) = ⇔ + + + + = ⇔1 1 1 4 4

 		   | |h o hh R OH R− = = ⇔ =2 24 2 . ■

49. Let ABC be a triangle so that the tangent of its circumcirle at the vertex A meets 
the midsegment of a triangle (parallel to BC) at A1 . The points B1  and C1  are defined 
analogously. Prove that the points A1 , B1  and C1  are collinear and moreover the line 
which passes through these points is perpendicular to the Euler line of  ABC. 

Solution. Without loss of generality we can consider that the triangle  ABC is 
inscribed into the unit circle. Then, h a b c= + +  and according to 17.4 the equation of 
the Euler line is the following z zh

h
= . Further, if A B C', ', '  are the midpoints of the line 

segments BC, CA, AB respectively, then their affixes are 
a b cb c c a a b' , ' , '= = =+ + +

2 2 2
.
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Therefore, the equation of the midsegment B C' '  parallel to BC is 

 				    z bc zc a a c
ac− = − −( )+ +

2 2
,				   (1)

And the equation of the tangent at the vertex A is

 				    z a z a+ =2 2 . 					     (2)
Since (2) we obtain the following expression z a z

a
= −2

2  and by substituting in (1) we get 
the following equation 

z bcc a a z
a

a c
ac− = − −( )+ − +

2
2

22 ,

whose solution a a a b c abc
a bc1

3

2

2

2= + + −
−

( )

( )
 is the affix of the point A1 . Symmetrically, 

b b a b c abc
b ca1

3

2

2

2= + + −
−

( )

( )
 and c c a b c abc

c ab1
3

2

2

2= + + −
−

( )

( )
.

Further, 

a b a a b c abc
a bc

b a b c abc
b ca

c a b
1 1

3

2

3

2

2

2

2

2− = − = −+ + −
−

+ + −
−

−( )

( )

( )

( )

( )) ( )

( )( )

3

2 22

a b c
a bc b ca

+ +
− −  

it is easy to check that following holds true
a b
a b

a b c abc
ab bc ca

h
h

1 1

1 1

−
−

+ +
+ += − = −( ) ,

the latter means that the line A B1 1  is perpendicular to the Euler line. Symmetrically, the 
line B C1 1  is perpendicular to the Euler line, and therefore the points A1 , B1  and C1  are 
collinear. ■

50. Let H be the orthocenter of  ABC. Prove that the Euler circles of the triangles 
ABC, ABH, BCH, CAH coincide. 

Solution. Without loss of generality we can consider that the triangle  ABC is 
inscribed into the unit circle. The center of the Euler circle of the triangle  ABC is the 
point E with affix e a b c= + +

2
. The solution of Example 17.9 implies that the circumradius 

of the triangles ABC and ABH are congruent and the point O '  with affix o a b' = +  is the 
circumcenter of the triangle ABH. Thereby CH AB⊥  and BC AH⊥ , C is the orthocenter 
of the triangle ABH. If E '  is the center of the Euler circle of the triangle ABH, and H h'( ')  
is its orthocenter, we get that h c' =  and E '  is the midpoint of the line segment O H' ' , i.e.  

O C' , and therefore its affix is e ea b c' ( )= =+ +
2

. The latter means that the points E and E '  
coincide. But, the radius of the Euler circle is half of the length of the circumradius. The 
above stated implies that the Euler circles of the triangles ABC and ABH coincide. 

Analogously, it can be proven that the Euler circles of triangles ABC and BCH, i.e. of 
triangles ABC and CAH coincide. 

Finally, the above stated implies that the Euler circles of triangles ABC, ABH, BCH, 
CAH coincide. ■
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51. Let ABCD be a cyclic quadrilateral. Prove that 
а) the Euler circles of the triangles ABC, BCD, CDA, DAB meet at a unique point. 
b) the centers of the Euler circles of the triangles ABC, BCD, CDA, DAB are vertices 

of a cyclic quadrilateral. 

Solution. а) Without loss of generality we can consider that the quadrilateral ABCD 
is inscribed into the unit circle. The quadrilateral ABCD is cyclic, and therefore the cen-
ters of circumcircles of the triangles ABC, BCD, CDA, DAB coincide. If E E E E1 2 3 4, , ,  
are the centers of the Euler circles of the triangles ABC, BCD, CDA, DAB, then their af-
fixes will be 

e e e ea b c b c d c d a d a b
1 2 2 2 3 2 4 2
= = = =+ + + + + + + +, , ,  ,

respectively. If H H H H1 2 3 4, , ,  are the orthocenters of the triangles ABC, BCD, CDA, 
DAB, then their affixes will be 

h a b c h b c d h c d a h d a b1 2 3 4= + + = + + = + + = + +, , , ,
respectively. The point E with affix e a b c d= + + +

2
 is midpoint of line segments 

DH AH BH CH1 2 3 4, , ,  and the following hold true 

 

| | ,

| | ,

e e

e e

a b c d a b c d

a b c d b c d a

− = − = =

− = − = =

+ + + + +

+ + + + +

1 2 2 2
1
2

2 2 2 2
1
2

|| | ,

| |

e e

e e

a b c d c d a b

a b c d d a b c

− = − = =

− = − = =

+ + + + +

+ + + + +

3 2 2 2
1
2

4 2 2 2
1
2

..

The above means that it belongs to the Euler circles of the triangles ABC, BCD, CDA, 
DAB. 

b) The proof is directly implied by the following equalities 
| | | | | | | |e e e e e e e e− = − = − = − =1 2 3 4

1
2

. ■

52. Let AA1 , BB1  and CC1  be the altitudes of  ABC and let AB AC≠ . Let M be 
the midpoint of BC, H be the orthocenter of  ABC and D be the point of intersection of 
BC and B C1 1 . Prove that DH AM⊥ . 

Solution. Let the circumcircle of  ABC be the unit circle. The condition of the 
given problem implies that 

b a b c ac
b1

1
2

= + + −( )  and c a b c ab
c1

1
2

= + + −( ) , m b c= +
2

 and h a b c= + + .

The equation of the line BC is z b z bc b
c b

− = −−
−
(   ) , i.e. 

 				    z b bcz c− = − + . 				    (1)

The equation of the line B C1 1  is z b z bc b
c b

− = −−
−1 1

1 1

1 1
(   ) , i.e. 

 				    z b a z b− = − −1
2

1(   ) . 				    (2)
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Since (1), z c b z
bc= + − . By substituting in (2) and after reducing we obtain the following 

expression for the affix of D
d a b a c ab ac b c bc abc

a bc
= + + + − − −

−

2 2 2 2 2 2

2
2

2( )
.

Finally, to prove that DH AM⊥  it is sufficient to check that 
d h
d h

m a
m a

−
−

−
−

= − , 

where d h b c a ab bc ca a
a bc

− = + − + + +
−

( )( )

( )

2

2

2

2  and m a b c a− = + −2
2

. The details are left as an 
exercise. ■ 

53. Let ABC be an acute triangle, so that BC CA>  and let O be the circumcenter, H 
be the orthocenter and F be the foot of the altitude CH. If the line through F, perpendicular 
to OF, intersects the side CA at P, then prove that ∠ =∠FHP BAC . 

Solution. Without loss of generality we consider the circumcircle of triangle  ABC 
as a unit circle. The affix of F is the following f a b c ab

c= + + −( )1
2

. The equation of the 
line CA is the following 

z a z ac a
c a

− = −−
−

( ) , i.e. z acz a c+ = + ,

and the equation of the line which passes through F and is perpendicular to OF is the 
following 

z f z ff
f

− = − −( ) .

By solving the system of the last two equations we obtain the affix of P as following 

p f ac f a c
ac f f

a b c c

b c

ab
c= =− +

−

+ + −( )
+

2
2

2 2
( ) .

Let ∠ =PHF ϕ  and ∠ =BAC α . Then 
f h
f h

p h
p h

ie−
−

−
−

= 2 ϕ  and c a
c a

b a
b a

ie−
−

−
−

= 2 α ,

i.e. 

e i f h p h
f h p h

2 ϕ = − −
− −

( )( )

( )
 and e i c a b a

c a b a
c
b

2 α = =− −
− −

( )( )

( )( )
.

Then thereby 

p h b ab bc ca c
b c

− = − + + +
+

2

2 2 , p h c ab bc ca c
ab b c

− = − + + +
+

2

2 2( )
, 

 f h ab bc ca c
c− = + + + 2

2
 and f h ab bc ca c

abc− = + + + 2

it is true that e ei c
b

i2 2ϕ α= = . The latter implies that ϕ α=  or α ϕ π= + . But, 
 ABC is an acute triangle, and therefore α ϕ π= +  is not possible. So, ϕ α= , i.e.  
∠ =∠FHP BAC . ■
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54. If a Symson line l(P,ABC) passes through Q which is diametrically opposite of 
P, then it passes through the centroid of  ABC. Prove that! 

Solution. Without loss of generality we consider the circumcircle of triangle  ABC 
as the unit circle. According to the condition of a problem, the line l(P,ABC) consists 
of a point Q with affix q p= − . Further, according to Example 24.4 the line l(P,ABC) 
consists of a point Op  with affix op

a b c p= + + +
2

, and the centroid T of  ABC has affix  

t a b c= + +
3

. Then, 
t q

o q
p

p
a b c p
a b c pp

a b c

a b c p
−
−

+

+
+ + +
+ + += = =

+ +

+ + +
3

2

2
3

3
3

2
3

.

Since Corollary 1.4. we get that points Q, T and   are collinear, which actually means that 
T is placed on the line l(P,ABC). ■

55. Prove that the Symson line of any point P (P is a point placed on a circumcircle 
of  ABC) bisects a line segment PH where H is the orthocenter of a  ABC. 

Solution. Without loss of generality we consider the circumcircle of the triangle 
 ABC as a unit circle. The orthocenter H of  ABC has affix h a b c= + + , and therefore 
the midpoint Q of the line segment PH has affix q a b c p= + + +

2
, which obviously satisfies 

the equation 
z z a b c p a b c pacb

p
abc

p− + + + + − + + + =
2

1
2

0( ) ( )  
of the Symson line l(P,ABC). The latter means that l(P,ABC) bisects the line segment 
PH. ■

56. Let  ABC be a triangle and let D be on the circumcircle of the triangle  ABC. 
Determine the locus of meeting points of the Symson lines l(A,BCD), l(B,ACD), l(C,ABD), 
l(D,ABC), when D moves on a circumcircle of  ABC. 

Solution. Without loss of generality we consider the circumcircle of triangle  ABC 
as a unit circle. If a, b, c, d are the affixes of A, B, C, D, respectively, then according 
to the Example 23.4 the point of intersection of lines l(A,BCD), l(B,ACD), l(C,ABD), 
l(D,ABC) has affix x a b c d= + + +1

2
( )  So, the required locus of points is a set of all 

points x a b c d= + + +1
2

( ) , when d moves on a circle. That actually is a circle with 
radius 1

2
 and center a b c+ +

2
, i.e. it is a circle centered at the midpoint of the line segment 

whose ends are the orthocenter and the circumenter of  ABC, and the radius is congruent 
to half of the circumradius.■ 

57. Let  ABC be such a triangle that AB AC≠  and let D be a point of intersection 
of the tangent to the circumcircle of  ABC at A and the line BC. If E and F are such 
points of bisectors of line segments AB and AC, respectively, that the lines BE and CF are 
perpendicular to BC, then the points D, E and F are collinear. Prove it!
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Solution. Without loss of generality we consider the circumcircle of triangle  ABC 
as a unit circle. The equation of the line BC is the following 

z b z bc b
c b

− = −−
−

( ) , i.e. z bcz b c+ = + ,

and the equation of the tangent at A is z a z a+ =2 2 . By solving the system of the last 
two equations we obtain d, the affix of point of intersection between the line BC and the 
tangent to the circle at A, as following

d a b c abc
a bc

= + −
−

2

2
2( ) .

The point E is placed on the bisector of the line segment AB, and thus OE AB⊥ ,  
therefore e o

e o
a b
a b

−
−

−
−

= − , i.e. e e
ab= . Further, BE BC⊥  implies that e b

e b
c b
c b

−
−

−
−

= − , and 

therefore e c e b
bc= + − . So, e

ab
c e b

bc= + − , thus e a c b
c a= −
−

( ) . Analogously, f a b c
b a= −
−

( ) . 
Finally, 

d f a b c abc
a bc

a b c
b a

ab a c b c a
a bc b a

− = − =+ −
−

−
−

− + −
− −

2

2 2
2 2( ) ( ) ( )( )

( )( ))
 and 

d e a b c abc
a bc

a c b
c a

ac a b b c a
a bc c a

− = − =+ −
−

−
−

− + −
− −

2

2 2
2 2( ) ( ) ( )( )

( )( ))  
imply

d f
d e

b a c
c a b

a b c c a
c a b b a

b a c
c a b

−
−

−
−

−
−

−
−

= = =( )

( )

( )

( )

( )

( )

2

2

2 2 2

2 2 2

2

22 =
−
−

d f
d e ,

the above means that the points D, E and F are collinear. ■ 

58. (Brokar theorem). Let ABCD be a cyclic quadrilateral. The lines AB and CD 
intersect at E, the lines AD and BC intersect at F and the lines AC and BD intersect at 
G. Prove that the circumcenter O of the quadrilateral coincides to the orthocenter of 
 EFG. 

Solution. Let assume that ABCD is inscribed into the unit circle. According to the 
Remark 3.13 c) the affixes of E, F and G are 

 	 e f gab c d cd a b
ab cd

ad b c bc a d
ad bc

ac b d bd= = =+ − +
−

+ − +
−

+ −( ) ( ) ( ) ( ) ( ), , (( )a c
ac bd

+
− .		 (1)

To prove that O is the orthocenter of  EFG it is sufficient to prove that OF EG⊥  and 
OG EF⊥ . Since (1) it is easy to find that

 			   f o
f o

ad b c bc a d
a d b c

−
−

+ − +
+ − += ( ) ( )

( )
, 				    (2)

 			   e g a d b c b c ad a d bc
ab cd ac bd− = − − + − +
− −

( )( )[( ) ( ) ]
( )( ) 			   (3)

 			   e g a d b c b c a d
ab cd ac bd− = − − + − +
− −

( )( )( ( ))
( )( ) . 				    (4)

Now, (2), (3) and (4) imply that 
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e g
e g

a d b c b c ad a d bc
ab cd ac bd

a d b c
−
−

=
− − + − +

− −
− −

( )( )[( ) ( ) ]
( )( )

( )( )(( ( ))
( )( )

( ) ( )
( )

(
b c a d

ab cd ac bd

b c ad a d bc
b c a d

ad b
+ − +

− −

= = −+ − +
+ − +

+cc bc a d
a d b c

f o
f o

) ( )
( )
− +

+ − +
−
−

= − ,

The latter means that OF EG⊥ . Since the symmetry we conclude that OG EF⊥ , i.e. O 
is the orthocenter of  EFG. ■

59. Let ABC be an isosceles triangle, AB AC= . Let P be a point on the extension 
of the side BC and X and Y be the points on the sides AB and AC, respectively, so that 
PX AC PY AB|| , || . If T is the midpoint of the arc BC , then PT XY⊥ . Prove it!

Solution. Let the circumcircle of the triangle  ABC be the unit circle and a =1 . 
Then c b=  and t = −1 . Further, since P is on the line BC, its affix p satisfies the following  
p b pb= + −1 . Further, since X is a point on the side AB it is true that x b x

b= + −1 , and since 

PX AC||  we get that x p bp bx= + − . So, x b p
b= +
+

( )1
1

 thereby the last three equations. 

Analogously, y c y
c= + −1  and y p cp cy= + − , thus y p

b= +
+

1
1

. Finally, 

x y
x y

p
p

p t
p t

p b
b

p b
b

−
− −

+
+

−
−

= = − = −
+ −
+

+ −
+

( )( )

( )( )

1 1
1

1 1
1

1

1
,

implies that PT XY⊥ . ■

60. Let ABCD be a cyclic quadrilateral and let K, L, M, N be the midpoints of the 
sides AB, BC, CD, DA, respectively. Prove that the orthocenters of the triangles AKN, 
BKL, CLM, DMN form a parallelogram. 

Solution. Let the circumcircle of a quadrilateral be the unit circle. The affixes of the 
points K, L, M, N are 

k l m na b b c c d d a= = = =+ + + +
2 2 2 2

, , , .

We have to determine the affix h1  of the orthocenter H1  of the triangle AKN. Since 
KH AN NH AK1 1⊥ ⊥, , the following holds true 

k h
k h

a n
a n

a d
a d

ad−
−

−
−

−
−

= − = − =1

1
 and n h

n h
a k
a k

a b
a b

ab−
−

−
−

−
−

= − = − =1

1
,

that is 

h kad k h
ad1

1= − +  and h nab n h
ab1

1= − + ,
which imply that 

h a b d
1

2
2

= + + .
Analogously, the affixes of the orthocenters of the triangles BKL, CLM, DMN are 

h b c a
2

2
2

= + + , h c b d
3

2
2

= + + , h d a c
4

2
2

= + + ,
respectively. Finally, since 

h h h ha b c d1 3 2 4
2 2
+ += + + + = ,
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the midpoints of the diagonals of the quadrilateral coincide. The latter means that the 
quadrilateral is a parallelogram. ■

61. The incircle of a  ABC centered at O tangents the sides AB, BC, CA at M, K, E. If 
P MK AC= ∩ , then OP BE⊥ . Prove it! 

Solution. Let the incircle of  ABC be the unit circle. Then, according to the Remark 
3.13 d), it is true that 

a em
e m= +
2  and b mk

m k= +
2 .

Since P is on the chord MK we get that P, M, K are collinear, and therefore their affixes 
satisfy the following 

p m k p
mk= + − .

Further, P is on the line AC. Thereby this line tangents the circle at E, we get that PE OE⊥ ,  
and therefore 

e p
e p

e o
e o

e−
−

−
−

= − = − 2 , i.e. p e p
e

= −2
2

holds true. By equating the last two expressions for p  and after reducing, we obtain that 
the affix of P is the following 

p m k e mke
e mk

= + −
−

( ) 2

2
2 .

Finally, it is easy to be checked that the affixes o, p, b, e of the points O, P, B, E 
satisfy the following 

p o
p o

e b
e b

−
−

−
−

= − ,

(check it!). The latter means that OP BE⊥ . ■

62. A circle centered at O is incircle of a quadrilateral ABCD and tangents the sides 
AB, BC, CD, DA at K, L, M, N respectively. The lines KL and MN meet at S. Prove that 
OS BD⊥ . 

Solution. Let the incircle be the unit circle. Then Remark 13.3 implies that 

a b c d snk
n k

kl
k l

lm
l m

mn
m n

kl m n mn k l
kl mn= = = = =+ + + +
+ − +

−
2 2 2 2, , , , ( ) ( ) .

Further, 

	 s kl m n mn k l
kl mn

k l m n
kl mn= =+ − +

−
+ − +

−
( ) ( ) ( ) , 

	 b d kl m n mn k l
k l m n− = + − +
+ +

2 2( ) ( )
( )( )

 and 

  	 b d m n k l
k l m n− = + − +
+ +

2 2( ) ( )
( )( )

and therefore
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s o
s o

kl m n mn k l
kl m n mn k l

kl mn
k l m n

kl mn

−
−

+ − += = −
+ − +

−
+ − +

−

( ) ( )

( )
( ) ( )
(( ) ( )

( ) ( )
( )( )

( ) ( )
(

m n k l

kl m n mn k l
k l m n

m n k l
k l

+ − + = −
+ − +
+ +
+ − +
+

2 2

2 2
))( )m n

b d
b d

+

= − −
−

, 

The latter actually means that OS BD⊥ . ■

63. Let ABC be an acute triangle, whose incircle tangents the sides AB and AC at Q 
and R, respectively. Let X and Y be the points of intersection between the bisectors of the 
angles ∠ ACB  and ∠ ABC  with the line QR, respectively and let Z be the midpoint of 
the line segment BC. Prove that the triangle XYZ is an equilateral triangle if and only if 
∠ =BAC π

3
. 

Solution. Without loss of generality we consider the incircle of the triangle as a unit 
circle. Let P be the point where the line BC tangents the incircle. Then, 

a b cqr
q r

pr
p r

pq
p q= = =+ + +

2 2 2, ,  and z b c pr
p r

pq
p q= = ++

+ +2
. 

Since the bisector of ∠ ACB  passes through the center of the incircle, we get that the points 
B, O and X are collinear, and therefore the affix x of the point X satisfies the following 
x c pq

p q= = +α α 2 , α∈R . Similarly, the affix y of Y is y pr
p r= +β 2 , β∈R . Further, the 

constants α and β are determined by the following given conditions that X Y QR, ∈ , i.e. 
the points X, Q, R are collinear likewise Y, Q, R. So, 

q r
q r

x r
x r

−
−

−
−

=  and q r
q r

y q
y q

−
−

−
−

= ,

By direct calculation we get that, 

α = + +
+

( )( )
( )

p q q r
q p r2

 and β = + +
+

( )( )
( )

p r q r
r p q2

,
thus

x p q r
p r= +
+

( )  and y p q r
p q= +
+

( ) .
We have to prove that 

∠ =BAC π
3

 if and only if  XYZ is an equilateral triangle.

The first condition is equivalent to ∠ =QOR 2
3
π , i.e. q rei=

2
3
π

. The second condition is 

equivalent to y z x z ei− = −( )
π
3 . So, 

y z p q r
p q

pr
p r

pq
p q

pr r q
p q p r− = − +( ) =+

+ + +
−

+ +
( ) ( )

( )( )
, 

x z p q r
p r

pr
p r

pq
p q

pq q r
p q p r− = − +( ) =+

+ + +
−

+ +
( ) ( )

( )( )
. 

Therefore, 

  	  	  

y z x z e e

r q

i pr r q
p q p r

pq q r
p q p r

i− = − ⇔ = ⇔

= −

−
+ +

−
+ +( ) ( )

( )( )
( )

( )( )

π π
3 3

ee q rei iπ π
3

2
3⇔ = , 	   
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The last equivalence is implied if the equation before the last is multiplied by ei 2
3
π

 and 
also having on mind that eiπ = −1 . ■

64. (Newton theorem). Let ABCD be a cyclic quadrilateral. Let M and N be the 
midpoints of the diagonals AC and BD and S be the center of its incircle. Prove that M, 
N and S are collinear. 

Solution. Let the quadrilateral be inscribed into the unit circle and let P, Q, R, S be 
the points where the circles tangents the sides AB, BC, CD, DA, respectively. Then, 

a b c dps
p s

pq
p q

qr
q r

rs
r s= = = =+ + + +

2 2 2 2, , , ,

and therefore 
m a c pqs prs pqr qrs

p s q r= =+ + + +
+ +2 ( )( )

, m p q r s
p s q r= + + +
+ +( )( )

, 

n b d pqr pqs prs qrs
p q r s= =+ + + +
+ +2 ( )( )

, n p q r s
p q r s= + + +
+ +( )( )

. 

Thus, 
m o
m o

pqr pqs prs qrs
p q r s

n o
n o

−
−

+ + +
+ + +

−
−

= = ,

The latter actually means that M, N and S are collinear. ■

65. Let ABCD be a quadrilateral and let its incircle tangents the sides AB, BC, CD, 
DA at points M, N, P, Q, respectively. Prove that the lines AC, BD, MP, NQ are concurrent 
(meet at a unique point). 

Solution. Let the incircle of the quadrilateral ABCD be the unit circle. Therefore, 
b dmn

m n
pq

p q= =+ +
2 2, .

If X MP NQ= ∩ , then
x mp n q nq m p

mp nq= + − +
−

( ) ( ) .

So, 
b d mn p q pq m n

m n p q− = + − +
+ +2 ( ) ( )

( )( )
, 		  b d p q m n

m n p q− = + − +
+ +2 ( )

( )( )
,

b x m n mn p q pq m n
m n mp nq− = − + − +
+ −

( )[ ( ) ( )]
( )( )

, 	 b x m n p q m n
m n mp nq− = − + − +
+ −

( )[ ( )]
( )( )

, 

Thus,

b x
b x

mn p q pq m n
p q m n

mn p q pq m n
m n p q−

−
+ − +
+ − += =

+ − +
+ +( ) ( )

( )

( ) ( )
( )( )

2

22 p q m n
m n p q

b d
b d+ − +

+ +

= −
−( )

( )( )

,

The above means that X is placed on the line BD. Further, by applying the symmetry, we 
conclude that X is placed on the line AC. The above stated means that the lines AC, BD, 
MP, NQ are concurrent. ■ 
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66. The incircle of a triangle ABC tangents the sides BC, CA, AB at D, E, F, 
respectively, and X, Y, Z are the midpoints of the sides EF, FD, DE, respectively. Prove 
that the center of incircle is placed on the line determined by the circumcenters of the 
triangles XYZ and ABC. 

Solution. Let the incircle of  ABC be the unit circle. According to the Remark 
22.13 the affix o of the circumcenter of the triangle ABC is the following 

o def d e f
d e e f f d= + +
+ + +
2 ( )

( )( )( )
.

Further, the affixes of points X, Y, Z are 
x y ze f d f d e= = =+ + +

2 2 2
, , ,

thereby the Remark 3.4 and Example 3.3 b),the affix o '  of circumcenter of  XYZ is: 

o xx z y y y x z z z y x
x y yz z x xy yz zx

d e f' ( ) ( ) ( )= =− + − + −
+ + − − −

+ +
2

.

So, 
	 o i def d e f

d e e f f d− = + +
+ + +
2 ( )

( )( )( )
, o i de ef fd

d e e f f d− = + +
+ + +
2( )

( )( )( )
, 

	 o i d e f'− = + +
2

, o i de ef fd
def'− = + +

2
, 

thus,
o i
o i

def d e f
de ef fe

o i
o i

−
−

+ +
+ +

−
−

= =( ) '
'

. 

The above means that the points I O O, , '  are collinear, which actually was supposed to 
be proven. ■

67. The incircle of a triangle ABC, centered at I, tangents the sides BC, CA, AB at 
D, E, F, respectively. Let AI EF K∩ = , ED KC N∩ =  and DF KB M∩ = . Prove that 
MN BC|| . 

Solution. Let the triangle ABC be inscribed into the unit circle. Then, 
a fe

f e= +
2 , b fd

f d= +
2  and c ed

e d= +
2 .

Further, the affix of the midpoint of the line segment EF is e f+
2

 and since 

a o
a o

o

o

ef
e f

ef
e f

f e

f e
ef−

−

−

−
= = =+

+

+

+

2

2
2

2  
we get that k e f= +

2
. Further, the equations of the lines DF and KB are 

 			   z d z dd f
d f

− = −−
−

( )  and z k z kk b
k b

− = −−
−

( ) , 		  (1)

respectively, and if we substitute for 
k e f= +

2
 and b fd

f d= +
2 ,

by reducing the system (1) we obtain the following expression for the affix of M 
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m ef d efd e d e f f d f e
efd e d ed ef e f d f d

= + − − − −
− − − − − −

4 2

6

2 2 2 2 2 2 2 2 3

2 2 2 2 2 ff 2 .

The equations of the lines ED and KC are 
			   z d z dd e

d e
− = −−

−
( )  and z k z kk c

k c
− = −−

−
( ) , 		  (2)

respectively, and if we substitute the following expressions for k e f= +
2

 and c ed
e d= +
2 , 

and by solving the system (2) we obtain the following expression for the affix of N 

n e fd efd f d e f e d e f
efd e d ed ef e f d f d

= + − − − −
− − − − − −

4 2

6

2 2 2 2 2 2 2 2 3

2 2 2 2 2 ff 2 .

Finally, it is sufficient to prove that MN ID⊥ , namely to prove that 
m n
m n

d o
d o

d−
−

−
−

= = − 2 .

Details are left as your exercise. ■

68. Let  ABC be any triangle, with orthocenter H, circumcenter O, incenter I 
and K the point where the side BC tangents the incircle of  ABC. If IO BC|| , then  
AO HK|| . Prove it! 

Solution. Let the incircle of  ABC be the unit and let it tangent BC, CA, AB at K, L, 
M, respectively. According to the Remark 22.13 it is true that 

o klm k l m
k l l m m k= + +
+ + +
2 ( )

( )( )( )
 and h k l l m m k klm k l m

k l l m m k= + + + + +( )
+ + +

2 2 2 2 2 2 2 ( )
( )( )( )

.

Further, IO BC||  implies that IO KL⊥ , and therefore 
o i
o i

k i
k i

k−
−

−
−

= − = − 2
 

By substituting for o and o , and after reducing we obtain that 

 			   klm k l m k kl lk mk( ) ( )+ + + + + =2 0 . 			   (1)
We will prove that if the condition (1) is satisfied, then AO HK|| . The affix of A is the 
following a ml

m l= +
2 , thus 

a o ml
m l

klm k l m
k l l m m k

m l
k l l m m k− = − =+

+ +
+ + + + + +

2 2 2 2 2( )
( )( )( ) ( )( )( )

 and a o k
k l l m m k− = + + +

2 2

( )( )( )
.

On the other hand, if we use the condition (1) we get that 

h k kl lm mk k l m k
k l m k l l m m k

− = + + + + +
+ + + + +

( ) [( ) ]

( ) ( )( )( )

2 2 2

2  and h k k l m k
k l l m m k− = + + +
+ + +
( )

( )( )( )

2 2

.

Thus,
h k
h k

kl lm mk
k l m

m l
k

a o
a o

−
−

+ +
+ +

−
−

= = =( )

( )
(

2

2

2 2

2acording to (1))= . 

So, AO HK|| . ■
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69. Let AH BH CH1 2 3, ,  be the altitudes of an acute triangle  ABC. The incircle 
of the  ABC tangents the sides BC, CA, AB at points T T T1 2 3, , , respectively. Let the 
lines l l l1 2 3, ,  be symmetric to the lines H H H H2 3 3 1, , H H1 2  with respect to the lines  
T T T T T T2 3 3 1 1 2, , , respectively. Prove that the lines l l l1 2 3, ,  form a triangle whose vertices 
are on the incircle of the  ABC. 

Solution. Let the incircle of the  ABC be the unit circle. Thus c t t
t t= +
2 1 2

1 2
. Let’s 

determine the affix h3  of the point H3 . Since the given conditions H T T I3 3 3⊥  and 
H C T I3 3||  it is true that 

h t
h t

t o
t o

t3

3 3

3

3
3
2−

−
−
−

= − = −  and 
h c
h c

t o
t o

t3

3

3

3
3
2−

−
−
−

= = .

By solving the system of the last two equations we get the following expression for h3   

h t c ct t t t t
t t3

1
2 3 3

2
32 1 2 3

2

1 2
= + − = + −

+( ) .

Analogously h t t t t
t t2 2
1 3 2

2

1 3
= + −

+ . Further in order to determine the line l1  which is symmetric 
to H H2 3  with respect to the line T T2 3 , it is sufficient to determine the points P2  and 
P3  which are symmetric to H2  and H3  with respect to the line T T2 3 , respectively. The 
equation of the line T T2 3  is 

z t z tt t
t t

− = −−
−2 2

3 2

3 2
( ) .

Since the example 1.9, the affix of P2  is 

p h t t t t t t
t t

t t t
t t t2

2 2 3 2 3 2 3

2 3

1 2
2

3
2

2 1 3
= =− + −

−
+
+

( ) ( )
( )

.

Analogously, the affix of P3  is

p h t t t t t t
t t

t t t
t t t3

3 2 3 2 3 2 3

2 3

1 2
2

3
2

3 1 2
= =− + −

−
+
+

( ) ( )
( )

.

Further,

p p t t t
t t t

t t t
t t t

t t t
2 3

1 2
2

3
2

2 1 3

1 2
2

3
2

3 1 2

1
2

2
2

3− = − =+
+

+
+

+( )
( )

( )
( )

( 22
3 2

2 3 1 2 1 3

)( )
( )( )

t t
t t t t t t

−
+ + ,

thus, the equation of the line l1  is

z p z pp p
p p

− = −−
−2 2

2 3

2 3
( ) ,

i.e.

 			   z t zt t t
t t t

t t
t t t t− = − −





+
+

+
+

1 2
2

3
2

2 1 3

2
2

3
2

2 3 1 3
1
2( )

( ) ( ) .			   (1)

Analogously, the equation of the line l2  which is symmetric to H H3 1  with respect to the 
line T T3 1  is 

 			   z t zt t t
t t t

t t
t t t t− = − −





+
+

+
+

2 3
2

1
2

3 2 1

3
2

1
2

3 1 2 1
2
2( )

( ) ( )
. 			   (2)
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By solving the system of the equations (1) and (2) we get that m t t
t1
1 2

3
=  is affix of the point 

of intersection of the lines l1  and l2 . Analogously, m t t
t2
2 3

1
=  is affix of point of intersection 

of the lines l2  and l3  has affix and m t t
t3
3 1

2
=  is affix of the point of intersection of the 

lines l3  and l1 . Finally, the statement is implied by the fact that | | | | | |m m m1 2 3 1= = = .  
Prove it ■ 

70. Let O and R be the circumcenter and the circumradius of  ABC, and Z and r be 
the incenter and the inradius of  ABC, respectively. If K is the centroid of the triangle 
whose vertices are the points where the incircle tangents the sides of  ABC prove that 
Z OK∈  and also that OZ ZK R

r: = 3 . 

Solution. Let the incircle of the triangle  ABC be the unit circle and let d, e, f be 
the affixes of its tangent points with the sides BC, CA, AB respectively. According to 
the Remark 22.13 it is true that o def d e f

d e e f f d= + +
+ + +
2 ( )

( )( )( )
. Since Theorem 15.8, k d e f= + +

3
. 

Thus, 

o z
o z

def d e f
d e e f f d

d e f
d e e f f d

−
−

−
=

+ +
+ + +

+ +
+ + +

2

2

0( )
( )( )( )

( )
( )( )( )

−−

−

−
−
−

= = =
+ +

+ +0

0

0
3

3

def
d e f

d e f
def

k z
k z  

Therefore the points K, Z and O are collinear. Further, 

OZ
ZK

o z
z k d e

def d e f
d e e f f d

d e f= = =−
− +

+ +
+ + +

+ +
| |
| | ( )(

( )
( )( )( )

2

3
1
2

3
ee f f d

R
r+ +

=
)( )

3 .

The latter was supposed to be proven. ■

71. Let P be the intersection of the diagonals of a convex quadrilateral ABCD so 
that AB AC BD= =  and let O and I be the circumcenter and the incenter of  ABP, 
respectively. Prove that if O I≠ , then OI CD⊥ . 

Solution. Let  ABP be inscribed into the unit circle and let u, v, w be complex 
numbers as given in Theorem 22.14, so that a u= 2,  b v= 2 , p w= 2 , hold true. Then, 
according to the stated theorem i uv vw wu= − − − . But, AB AC= , and therefore for 
α = ∠CAB  it is true that 
 				    c a e b ai− = −α ( ) , 				    (1)
(make a figure). Further, the points A, C and P are collinear, and therefore 
α = ∠ =∠CAB PAB . The latter means 

− −
− −

−
−

=vw u
vw u

i v u
v u

e
2

2
2

2 2

2 2

2 α
, i.e. ei w

v
α = − . 

By substituting in (1) we get c u v uw
v− = − −2 2 2( ) , i.e. 
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 				    c u w u v v w
v= + −2 2 2

.				    (2)
Analogously, 

 				    d v w v u u w
u= + −2 2 2

. 				    (3)
Finally, (2) and (3) imply 

c d u v uv vw wu
uv− = − + +( )( )2 2

,
therefore

c d
c d

uv vw wu
u v w

i o
i o

uvw−
−

+ +
+ +

−
−

= − = − . 

The latter means that OI CD⊥ . ■
 

72. Let I be the circumcenter of  ABC, AB AC≠ . The point O1  is symmetric to 
O, the circumcenter of  ABC, with respect to the line BC. Prove that the points A, I and   
O1  are collinear if and only if ∠ = °BAC 60 . 

Solution. Let the circumcircle of  ABC be the unit circle. According to the Theorem 
22.14 there exist complex numbers u, v, w so that 

a u b v c w= = =2 2 2, ,  and i uv vw wu= − − − .
According to the Example 1.9, the affix of O1  is the following

o b c v wb c bc bc
b c1

0 2 2= = + = +− + −
−

( ) .

Further, the points A, I and O1  are collinear if and only if 
a o
a o

a i
a i

−
−

−
−

=1

1
,

i.e. if and only if

 

v w u
v u u

u uv vw wu
u uv vw wu

v w u
u v w

2 2 2

2 2 2

2

2

2 2 2

2 2 2

+ −
+ −

+ + +
+ + +

+ −
+ −

= ⇔

( ) vv w
u u v w vw
vw uw uv u

v w u
u v w v

u v w u vw2 2 2

2 2 2

2 2 2

2 2 2 2= ⇔+ + +
+ + +

+ −
+ −

( )

( ) 22 2 1

0

0

3 2 3 2 2 2 2 2

2 2 2

w
vw

wv v w vw vwu u v u w

wv u vw v w

= ⇔

+ + − − − = ⇔

− + + =( )( ) .  
That is, the points A, I and O1  are collinear if and only if either u vw2 =  or  
vw v w+ + =2 2 0 . If u vw2 = , then 

u o
u o

o vw
o vw

u v w
2

2

4 2 2−
−

− −
− −

= = = ( )

( )
,

which means that A, O and O1  are collinear, thus AB AC≠ , which is contradictory. So, 
the points A, O and O1  are collinear if and only if the following holds true 
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vw v w+ + =2 2 0 ,
i.e. 

( )v w vw+ =2 ,
thus AB AC≠ , which is contradictory. So, the points A, O and O1  are collinear if and 
only if the following holds true 

vw v w+ + =2 2 0 ,
i.e. 

( )v w vw+ =2 ,
therefore

| | | | | | | | | ( ) | | ( ) |v w vw vw w vw w vw o vw+ = = ⇔ + = = ⇔ − − = − −2 2 21 1 ,

i.e. if and only if the triangle with vertices w vw o2, ,−  is an equilateral, that is if and only 
if ∠ = °BAC 60 . ■ 

73. Let  ABC be any triangle. Let A B C1 1 1, ,  be the midpoints of the sides BC, CA, 
AB, respectively, P, Q, R be the points where the incircle k tangents the sides BC, CA, AB; 
P Q R1 1 1, ,  be the midpoints of the arcs QR, RP, PQ and P Q R2 2 2, ,  be the midpoints of 
arcs QPR, RPQ, PRQ, respectively. Prove that both lines A P B Q1 1 1 1,  and C R1 1 , and lines 
A P B Q1 2 1 2,  and C R1 2  are concurrent. 

Guidelines. Let the incircle be a unit circle. Since Theorem 22.14 there exist complex 
numbers u, v, w so that 

p u q v r w= = =2 2 2, ,  and p vw q wu r uv1 1 1= − = − = −, , .
The points P Q R2 2 2, ,  are symmetric with respect to the center of k with the points 
P Q R1 1 1, , , thus 

p vw q wu r uv2 2 2= = =, , .
Further, 

a b cv w
v w

w u
w u

u v
u v

= = =
+ + +

2 2 22 2

2 2

2 2

2 2

2 2

2 2, , ,
therefore,

a b cw u
w u

u v
u v

v w
v w

u v
u v

w u
w u

v
1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2= + = + = +
+ + + + +

, ,
22 2

2 2
w

v w+
.

Use that the equations of lines A P B Q1 1 1 1,  are 

z a z aa p
a p

− = −−
−1 1

1 1

1 1
( )  and z b z bb q

b q
− = −−

−1 1
1 1

1 1
( ) ,

Determine the affix n of the point of intersection and verify whether it satisfies the 
equation of the line C R1 1 . 

The second part of the statement should be proved analogously. ■

74. The squares ABB B' '' , ACC C' ''  and BCXY are constructed on the outside of a 
triangle  ABC. Let P be the center of the square BCXY. Prove that the lines CB '' , BC ''  
and AP are concurrent. 
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Solution. Let the point A coincide with the origin, i.e. a = 0 . Thus 
c a e c ai'' ( )/− = −π 2 , i.e. c ic'' = .

Similarly, 
b ib'' = − , x c e b ci− = −π / ( )2 , i.e. x i c ib= − +( )1

And since P is the midpoint of BX we get that
p b ci i= ++ −1

2
1
2

.
The equation of the lines BC ''  and AP are 

			   z b z bb c
b c

− = −−
−

''
''
( )  				    (1)

 			   z a z aa p
a p

− = −−
−

( ) 				    (2) 

By solving the system of equations (1) and (2), we obtain the affix of Q, point of 
intersection between the lines BC ''  and AP as following 

q bc bc i b i c
b ic b ic

= + + + −
− +

( )[( ) ( ) ]

( )( )

1 1 .

The equation of line B C''  is following 
  				    z b z bb c

b c
− = −−

−
'' ( '')''

''
				    (3)

By solving the system of equations (2) and (3), we obtain the affix of Q ' , the point of 
intersection of the lines B C''  and AP as following 

q bc bc i b i c
b ic b ic

' ( )[( ) ( ) ]

( )( )
= + + + −

− +
1 1 .

Finally, the statement of the given problem is implied by the equality q q' = . ■

75. Let ABCD be any quadrilateral, O be the intersection of its diagonals, M be the 
midpoint of the side AB and N be the midpoint of the side CD. Prove that if OM CD⊥  
and ON AB⊥ , then ABCD is a cyclic quadrilateral.

 Solution. Let the intersection of the diagonals coincide with the origin, i.e. o = 0
. The points A, O and C are collinear and also the points B, O and D are collinear, and 
thus ac ca=  and bd db= . Further, m a b= +

2
 and n c d= +

2
. Thereby, OM CD⊥  and 

ON AB⊥  the following holds true 
c d

c d

o

o
a b
a b

+

+

−

−
−
−

= −2

2

 and 
a b

a b

o

o
c d
c d

+

+

−

−
−
−

= −2

2

,

i.e.

c da ab bb ab
b ab aa ab

= − +
− +

( )

( )

2

2
 and c da ab bb ab

b ab aa ab
= + +

+ +
( )

( )

2

2
,

therefore
 				    ( )( )ab ab aa bb+ − = 0 .				    (1)
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We have to prove that the condition (1) is sufficient for the points A, B, C, D to be on a 
same circle, which according to Remark 25.3 means that the condition (1) is sufficient to 
( )( )
( )( )
c d b a
b d c a
− −
− − ∈R , that is 

 				  
( )( )

( )( )

( )( )

( )( )

c d b a
c d b a

b d c a
b d c a

− −
− −

− −
− −

= 				    (2)

The points B, O and D are collinear, and thus b d
b d

b
b

−
−

=  and also points A, O and C are 

collinear and thus a c
a c

a
a

−
−

= . If ab ab+ = 0 , then 

c d d ab a b
b ab aa ab

− = −
− +

2

2

( )

( )
,

and if aa bb− = 0 , then 

c d d a b ab ab
b ab aa ab

− = − +
− +

( )( )

( )2
.

By direct checking we assure that in both cases the condition (2) is satisfied. The latter 
means that the points A, B, C, D are placed on the same circle. Details are left as your 
exercise. ■ 

76. Let F be the point on the base AB of a trapezoid ABCD, such that DF CF= ,  
E AC BD= ∩  and O1  and O2  be the circumcenters of the triangles ADF and FBC, 
respectively. Prove that FE O O⊥ 1 2 . 

Solution. Let the origin coincide with the point F, i.e. f o=  and let d c= . CD AF||  
implies that 

a f
a f

c d
c d

−
−

−
−

= = −1,

i.e. a a= −  and similarly, b b= − . Further, the above statated and the Example 3.3 imply 
that 

o ad d a
ad ad

c a c
c c1 = =−

−
+
+

( ) ( )  and o cb c b
bc bc

c c b
c c2 = =−

−
+
+

( ) ( ) .

The equations of the lines AC and BD are 
z a z ac a

c a
− = −−

−
( )  and z b z bd b

d b
− = −−

−
( ) .

The solution of the system consists of the last two equations is the affix of the point E, 
thus

e ac bc
a c b c

= −
+ − −

.
Finally, 

o o ca cb
c c1 2− = −
+  

By direct checking we get that the following holds true 
o o
o o

e f
e f

1 2

1 2

−
−

−
−

= − ,

therefore FE O O⊥ 1 2 . ■ 
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77. Let the diagonals of a convex quadrilateral ABCD meet at O and let T1  and T2   
be the centroids of the triangles AOD and BOC, and H1  and H2  be the orthocenters of 
the triangles AOD and BOC, respectively. Prove that T T H H1 2 1 2⊥ . 

Solution. Let the point O and the origin coincide. Then the affixes of the orthocenters 
H1  and H2  and centroids T1  and T2  are 

h a b ab ab
ab ab1 =

− +
−

( )( ) , h c d cd cd
cd cd2 =

− +
−

( )( ) , t a d
1 3
= +  and t b c

2 3
= + .

The points A, C and O are collinear, and also B, D and O are collinear, therefore c ca
a=  

and d db
b= , that is 

h c d ba ba
ab ab2 =

− +
−

( )( ) .
Further, 

h h a d b c ab ab
ab ab1 2− = + − − +
−

( )( ) , t t a d b c
1 2 3
− = + − −

By direct checking we obtain that 
t t
t t

h h
h h

1 2

1 2

1 2

1 2

−
−

−
−

= − ,

therefore T T H H1 2 1 2⊥ . The details are left as your exercise. ■

78. Let the tangents of a circle Γ at points A and B meet at C. The circle Γ1  is such 
a circle that passes through C, tangents the line AB at B and meets Γ at M. Prove that the 
line AM bisects the line segment BC. 

Solution. Let Γ be the unit circle. Then c ab
a b= +
2 . Let O1  be the center of the circle  

Γ1 . Then O B AB1 ⊥ , thus 
o b
o b

a b
a b

ab1

1

−
−

−
−

= − = ,

So, we obtain that o o a b
ab1

1= + − . Further, | | | |o b o c1 1− = − , and by squaring we get 

( )( ) ( )( )o b o b o c o c1 1 1 1− − = − − , i.e. o o
b

a b
b a b1

1
2= − −

+( )
.

Thus, 
o a b

ab
o
b

a b
b a b

1 1
2

+ − −
+= −

( )
, i.e. o bab

a b1 = ++ .

The point M is placed on the unit circle Γ, therefore m m= 1  and since it is placed on the 
circle whose radius is O B1  and is centered at O1  we get that 

| | | |o b o m1 1− = − , i.e. o m o b m oo
b1

2
1 1

1 0− +( ) + =

holds. The solutions of the last quadratic equation are m and b, and thereby the Viet 
formulas it is true that 

b m bo
o b

+ = +1

1
, i.e. m b a b

a b= +
+

2
2

.
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Further, the affix of the midpoint of the line segment BC is b c+
2

. Finally, to prove that the 
line AM bisects the line segment BC it is sufficient to prove that 

a

a
a m
a m

b c

b c
am

−

−
−
−

+

+
= = −2

2

,

The validity of the latter could be easily checked. Details are left as your exercise. ■

79. Let Γ be a given circle, and AB be its diameter. Let P be an arbitrary point on Γ 
distinct of A and B. The projection of the point P to AB is a point Q. A circle centered at 
P and radius PQ meets Γ at points C and D. The lines CD and PQ intersect at a point E. 
Let F be the midpoint of AQ, and G be the foot of the perpendicular at F to CD. Prove 
that the points A, G and P are collinear and furthermore 

EP EQ EG= = .

Solution. Let Γ be the unit circle and let b =1. Then a = −1  and thereby P∈Γ  we 
get that p p= 1 . Further, the affix of the point Q is q p p= +( )1

2
1 , and the affix of F is

 				    f
p p

p
p= =

+( )− −
1
2

1 21

2
1

4
( ) .				    (1)

The point C is placed on the circle centered at P and radius PQ, thus | | | |p q p c− = − , 
The latter implies that
 				    ( )( ) ( )( )p q p q p c p c− − = − − . 			  (2)
But, C∈Γ , and thus c c= 1  and thereby 

p q p p− = −( )1
2

1
 

by substituting in (2) we obtain that 
 				    4 6 1 4 02 4 2 3pc p p c p− + + + =( ) .		  (3)
The equation (3) is a quadratic equation with variable c and since the point D satisfies the 
same conditions as the conditions applied when determined the affix of C, we get that d 
is the second solution of (3). Now, by applying the Viet roles we get the following

c d cd pp p
p

+ = =+ +4 2

3
6 1

4

2, .

The point G is placed on the chord CD, therefore C, D, G are collinear, thus we get that 
g c d g

cd= + − , and thereby FG CD⊥  we have that
g f
g f

c d
c d

cd p−
−

−
−

= − = = 2 .

By solving the system consisting of the last two equations where f is the expression given 
in (1), we get that

g p p p
p= + − +3 23 1

4
.

To prove that the points A, G and P are collinear it is sufficient to prove that 
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g a
g a

a p
a p

p−
−

−
−

= − = .

The last can be easily checked if we consider that 

g a p p p
p− = + + +3 23 3 1

4
 and g a p p p

p
− = + + +3 2

2
3 3 1

4
.

The point E is placed on the chord CD, therefore C, D and E are collinear, i.e. 
e c d e

cd= + − . So, PE AB⊥  implies that
e p
e p

a b
a b

−
−

−
−

= − = −1 , i.e. e p ep= + −1 .

That is, 
p e ep

c d e
cd+ − = = + −1 ,

therefore

e p
p= +3 1

4

2

.

Now,

e p pp
p

p
p− = − =+ −3 1

4
1

4

2 2

, e q p
p− = −2 1

4
 and e g p p

p− = − 3

4

Further, since | |p =1 , we get that 
| | | | | |e p e q e g− = − = − , i.e. EP EQ EG= = . ■

80. Let H be the orthocenter of a  ABC. The tangents at A to the circle whose diameter 
is BC touch the circle at P and Q. Prove that the points P, Q and H are collinear. 

Solution. Let the circle over the diameter BC be a unit circle and let b = −1 . Then, 
c =1  and the origin is the midpoint of the line segment BC. The point P lies on the unit 
circle, thus p p= 1  and since PA PO⊥  we get that

a p
a p

p o
p o

p−
−

−
−

= − = − 2 ,
The latter implies 
 				    ap p a2 2 0− + = . 				    (1)
The equation (1) is a quadratic equation with a variable p and thereby the point Q satisfies 
the same conditions as the ones used when determining the point P, we get that q is the 
second solution of (1). Now, by applying the Viet formulae we get the following 

p q pqa
a
a

+ = =2 , .

Let H '  be the intersection of the line through A perpendicular to the side BC and the line 
PQ. the points P, Q and H '  are collinear, so 

h p q h
pq' '= + − , i.e. h ah

a' '= −2 .

But, AH BC'⊥ , therefore 
a h
a h

b c
b c

−
−

−
−

= − = −'
'

1 ,

The latter means that h a a h' '= + − . Thus, 
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a a h h ah
a+ − = = −' ' '2 ,

So, we find 

h aa a
a a

' = + −
−

2 2 .

We will prove that h h= ' , therefore the statement in the given problem shall be implied. 
In order to do that, it is sufficient to prove that CH AB'⊥ , that is, to prove that 

c h
c h

a b
a b

−
−

−
−

= −'
'

, 

holds true (why?). We can be assured in validity of the last equality by direct checking if 
we use that 

h c h aa a a a
a a

a a a
a a

' ' ( )( )− = − = =+ − − +
−

+ + −
−

1
2 2 1 2  and a b a− = +1.

Details are left as an exercise. ■

81. Let P be a point on the extension of the diagonal AC of a rectangle ABCD 
through the point C, so that ∠ =∠BPD CBP . Determine the ratio PB PC: . 

Solution. Let the intersection of diagonals O of the rectangle be the origin and let the 
line AB be parallel to the real axis. Then a c b d c b+ = + = =0 0, ,  and d a= . Further, 
the points P, A, O are collinear, and therefore

p
p

a
a

= , i.e. p pb
a= − .

Let ∠ =∠ =DPB PBC ϕ . Then, 
d p
d p

i b p
b p

e−
−

−
−

= 2 ϕ  and p b
p b

i c b
c b

e−
−

−
−

= 2 ϕ .

If we multiply the last two equalities, and express the obtained equality in terms of a and 
b, we get 

p b
bp a

a p b
bp a

+
+

+
−

=2

2

2 2
( )

( )
.

Further, if we express the above equality as a polynomial of p we get the following

( )[ ( ) ( ) ]b a bp a ab b p a a ab b p a b− + + + − + + − =3 2 2 2 2 2 33 3 0 ,
i.e.
 		  bp a ab b p a a ab b p a b3 2 2 2 2 2 33 3 0+ + + − + + − =( ) ( ) .		  (1)
But the point A satisfies ∠ =∠ =DAB ABC π

2
, thus one of the points which satisfies 

the given condition in the given problem is the point A. So, a is one of the roots of the 
polynomial (1). The latter implies that the polynomial can be divided by p a−  and p is a 
root of the such obtained quotient (why?), i.e. 

 			   bp a ab b p a b2 2 2 24 0+ + + + =( ) .			   (2)
holds true. Finally, by applying the condition (2) we get
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PB
PC

p b
p c

p b p b
p c p c

p b p a

p a

b
a

2

2

2

2= = =−
−

− −
− −

− − +( )
+

| |

| |

( )( )

( )( )

( )

( ))

( ) ( )

(

− −( )
− + +
+ +

− + +
−

= =

b
a p b

bp a b p a b
bp abp a b

a ab b p
a

2 2 2 2

2 2

2 2

22

2 4

++ +
=

2 2 2
ab b p)  

The latter implies that PB PC: = 2 . ■

82. In a convex quadrilateral ABCD the diagonal BD is not a bisector neither of 
∠ ABC  nor of ∠CDA . A point P placed into the ABCD is such that ∠ =∠PBC DBA  and 
∠ =∠PDC BDA . Prove that the quadrilateral ABCD is cyclic if and only if AP CP= . 

Solution. Let the quadrilateral ABCD be cyclic and let the circumcircle be the unit 
circle. If ∠ =∠ =PBC ABD ϕ  and ∠ =∠ =PDC BDA θ , then

d b
d b

i a b
a b

e−
−

−
−

= 2 ϕ , c b
c b

i p b
p b

e−
−

−
−

= 2 ϕ , c d
c d

i p d
p d

e−
−

−
−

= 2 θ , b d
b d

i a d
a d

e−
−

−
−

= 2 θ

and thereby a b c da b c d= = = =1 1 1 1, , ,  by using the first equality, we obtain that  

e i a
d

2 ϕ = , and since the fourth one, e i b
a

2 θ = . By substituting at the second and the third 
equality we get that 

a
d

p b
p b

bc−
−

= −  and b
a

p d
p d

cd−
−

= − ,

since which 
p ac bd

b d= +
+ .

Further, 
a p a p

c p

ab ad ac bd
b d

bc cd ac bd
ac b d

bc bd ac bd
b

− = − =

− =

+ − −
+

+ − −
+

+ − −

, ,
( )

++
+ − −

+− =d
ab ad ac bd

ac b dc p, ,
( )  

thus,

AP a p a p a p ab ad ac bd
b d

bc cd ac bd
ac b d

bc

2 2= − = − − = ⋅

=

+ − −
+

+ − −
+| | ( )( )

( )

++ − −
+

+ − −
+⋅ = − − = − =bd ac bd

b d
ab ad ac bd

ac b d c p c p c p CP
( )

( )( ) | | ,2 2
 

i.e. AP CP= . 
Let AP CP= , i.e. 

  				    | | | |a p c p− = − 				      (*)
and let suppose that the circumcircle of the triangle ABC is the unit circle. This means 
that a a= 1 ,  b cb c= =1 1, . The condition (*), after squaring and reducing, implies that 

a p c pp
a

p
c+ = + ,

that is 

( )a c p p
ac− −( ) = 0 ,
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therefore p p
ac= . Let D '  denote the intersection of a side CD and a unit circle. Then

c d
c d

c d
c d

cd−
−

−
−

= = −'
'

' ,
thus

d c d d
cd= + −'

'
.

Thereby the condition of the problem, we have that 
∠ =∠ =CBP DBA ϕ  and ∠ =∠ =PDC ADB θ ,

thus
 	 a b

a b
i d b

d b
e−

−
−
−

= 2 ϕ , p b
p b

i c b
c b

e−
−

−
−

= 2 ϕ , c d
c d

i p d
p d

e−
−

−
−

= 2 θ , b d
b d

i a d
a d

e−
−

−
−

= 2 θ . 	 (1)

Thereby the first two equations in (1) we get that 
p b
p b

d b
d b

a b
a b

c b
c b

ab c−
−

−
−

−
−

−
−

= = 2 ,

And by substitution for d  and p , and after reducing we obtain following 

 			   p c bdd acd abd abc abd b d
cd d b d b d b c

= + − − + −
− + −

' ' ' '
' '

2

2 2 2 .			   (2)

Now, the third and the fourth equality in (1) and c d
c d

cd−
−

= − '  imply 

 				    − =−
−

−
−

−
−

cd a d
a d

p d
p d

b d
b d

' .				    (3)

If in the latter we substitute the above expression for p and p , then after reducing 
we obtain a polynomial of P(d), which is obviously at most quartic. By comparing 
the coefficients of d 4  we get that the polynomial P(d) is exactly a cubic polynomial. 
Clearly, two of its zeros are a and b. We shall prove that its third zero is d ' , and therefore  
d d= ' , i.e. the quadrilateral ABCD is cyclic. Indeed, if d d= ' , then 

a d
a d

ad−
−

= − ' , b d
b d

bd−
−

= − '  and p d
p d

p d
pd ac acd−

−
−
−= '
'

' .

Thus the equality (3) is equivalent to the p ac bd
d b= +
+

'
'

, which is obviously satisfied, and is 
obtained by letting d d= '  in (2). ■

83. Three triangles KPQ, QLP and PQM, so that ∠ =∠ =QPM PQL α , 
∠ =∠ =PQM QPK β  and ∠ =∠ =PQK QPL γ  for α β γ< <  and α β γ+ + = °180 , are 
constructed on a same side of a line segment PQ. Prove that the triangle KLM is similar 
to, and moreover, is the same oriented with the triangles KPQ, QLP and PQM. 

Solution. Let p = 0  and q =1 . Since ∠ =MPQ α
m p
m p

i q p
q p

e−
−

−
−

= 2 α , 

holds thus m
m

ie= 2 α . Further, ∠ =PQM β  implies 

e i m q
m q

p q
p q

2 β −
−

−
−

= ,
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thus e i m
m

2 1
1

1β −
−
= . If we remember that e i2 1( )α β γ+ + = , then by solving the system 

e

e

i m
m

i m
m

2

2 1
1

1

α

β

=

=






−
−  

we get 

m e
e

i

i=
+ −
−

2

2
1

1

( )α γ

γ .

Analogously l e
e

i

i=
+ −
−

2

2
1

1

( )β γ

β  and k e
e

i

i=
+ −
−

2

2
1

1

( )α β

α . According to the theorem 4.9 in order to 

prove that the triangle KLM is simmilar and same oriented as the triangle KPQ, it is 
sufficient to prove that 

k l
l m

k p
p q k−

−
−
−= = − , 

in which we can be convinced by immediate validation. Finally, since the triangles KPQ, 
QLP and PQM are similar and same oriented, we get that each of the four triangles is 
similar and same oriented as the other ones. ■ 

84. Prove that the area of the triangle whose vertices are feet of the perpendiculars 
at any vertex of a cyclic pentagon to its sides does not depend on the choice of the vertex 
of the pentagon. 

Solution. Let the circumcircle of the pentagon ABCDE be the unit circle and let X, Y, 
Z be the feet of the perpendiculars at the vertex A to the sides BC, CD, DE, respectively. 
Then x a b c bc

a= + + −( )1
2

, y a c d cd
a= + + −( )1

2
 and z a d e ed

a= + + −( )1
2

, thus

 	

P

x x

y y

z z

a b c a b c

a c d a c dXYZ
i i

ab
a

bc
a

cd
a

c


= ± = ±

+ + − + + −

+ + − + + −
4 16

1

1

1

1

dd
a

ed
a

ed
a

i

ab
a

bc
a

a c d b
a

a e d a e d

a b c a b c

1

1

1

16

+ + − + + −

= ±

+ + − + + −

− −( )( ) (( )( )

( )( ) ( )( )

a c d b
a

e c a d
a

e c a d
a

i

ab
a

bca b c a b c

− −

− − − −

= ±

+ + − + + −

0

0

16

aa
a c d b

a
a c d b

bcd
e c a d

a
e c a d

ced

1

0

0

( )( ) ( )( )

( )( ) ( )( )

− − − −

− − − −
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= ±

+ + − + + −
− − − −i a c d b e c a d

ab
a

bc
a

a bcd

a ced

a b c a b c
( )( )( )( )

16
1 1

1 1

1

0

0

== ± −

= ±

− − − −

− − −

i a c d b e c a d
aced abcd

i a c c e e b

( )( )( )( )

( )( )( )(

( )
16

1 1

bb d a d
abcde

− −)( ) .
16

Therefore, the area is the sixteenth of the product of the pentagon diagonals, so it does not 
depend on the choice of the pentagon vertex. ■

85. The points A B C1 1 1, ,  are positioned on the altitudes of the  ABC plotted at the 
vertices A, B, C, respectively, and H is the orthocenter of  ABC. If
 			   P P P PABC BCA CAB ABC   1 1 1

+ + = ,			   (1)
prove that the quadrilateral A B C H1 1 1  is cyclic. 

Solution. Let the circumcircle of the  ABC be the unit circle. Let A '  be the foot of 
the perpendicular at the vertex A to the side BC. Then 

P BC A ABCA
b c a a

 1
11

2 1 2
= ⋅ = − ⋅ −

'
| | | '|  and P BC AAABC

b c a a


= ⋅ = − ⋅ −1
2 2

' | | | '| ,
thus

P
P

a a
a a

a a a a
a a

a a
a a

BCA

ABC





1 1 1 11= = = −−
−

− − −
−

−
−

| '|
| '|

| '| | |
| '|

| |
| ''| '

= − −
−1 1a a

a a , 

The latter means that the equality (1) can be transformed and rewritten as the following 

 				    a a
a a

b b
b b

c c
c c

−
−

−
−

−
−+ + =1 1 1 2

' ' '
.				    (2)

Further, 
a a b c bc

a' = + + −( )1
2

,
thus

a a a b a c
a− = − −' ( )( )

2
.

Analogously, 
b b b c b a

b− = − −' ( )( )
2

, c c c a c b
c− = − −' ( )( )

2
.

If we substitute in (2), and after equivalent transformations, we get that the above 
condition is equivalent to 
 			   aa b c bb c a cc a b1 1 1 0( ) ( ) ( )− + − + − = . 			   (3)

According to the Remark 25.3, in order to prove that the quadrilateral A B C H1 1 1  is 
cyclic, it is sufficient to prove that 

 				    a c
a c

b h
b h

b c
b c

a h
a h

1 1

1 1

1

1

1 1

1 1

1

1

−
−

−
−

−
−

−
−

= . 				    (4) 

holds. 
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The point H is the orthocenter of the  ABC, thus h a b c= + +  and since A H BC1 ⊥  

we get that a h
a h

b c
b c

bc1

1

−
−

−
−

= − =  and similary b h
b h

ac1

1

−
−

= . Further, thereby A A BC1 ⊥ , we 

get  a a
a a

bc1

1

−
−

= , thus a bc aa a
bc1

1
2

= + −  and similarly b ac bb b
ac1

1
2

= + −  and c ab cc c
ab1

1
2

= + − . 

Finally, if we apply the obtained equalities and the condition (4), we immideatly check 
the validity of (4), which means that the quadrilateral A B C H1 1 1  is cyclic. The details are 
left as an exercise for the reader. ■

86. The feet of the altitudes at the vertices A, B and C of a  ABC are D, E and F, 
respectively. The line through D is parallel to EF and meets the lines А�C and AB at Q and 
R, respectively. The line EF meets the line BC at P. Prove that the circumcircle of  PQR 
consists of the midpoint of the side BC. 

Solution. Let the circumcircle of the  ABC be the unit circle. So, 
d a b c bc

a= + + −( )1
2

, e a b c ac
b= + + −( )1

2
, f a b c bc

a= + + −( )1
2

, a b c
1 2
= + ,

where A1  is the midpoint of BC. Since Q is placed on AC we get that q a c q
ac= + − . But, 

QD EF|| , thus 
q d
q d

e f
e f

a−
−

−
−

= = − 2 .

By solving the system consisting of the last two equations, we get that 

q a a b abc b c
ab= + + −3 2 2

2
.

Similarly,

r a a c abc bc
ac= + + −3 2 2

2
.

Moreover, P BC∈ , thus 
p b c p

bc= + −
 

And since P EF∈ , we get that 
p e
p e

e f
e f

a−
−

−
−

= = − 2 .

By solving the system of the last two equations, we obtain 

p b c a b c
a bc

= ++ −
−2 2

2

2
( )

( )
.

We have to prove that the points P, Q, R and A1  are concyclic, which according to 
Remark 25.3 means that we have to prove the equality 

p a
p a

q r
q r

q a
q a

p r
p r

−
−

−
−

−
−

−
−

=1

1

1

1
,

in order to do this it is sufficient to apply that 

q r a c b a bc
abc− = − +( )( )2

2
, p r a c b c abc a a c

ac a bc
− = − + − −

−
( )( )

( )

2 2 2 3 2

22
, 
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q a a a b b c ab
ab− = + − −

1 2

3 2 2 2
 and p a a b c

a bc
− = −

−1 2

2

2
( )

( )
. 

The details are left to the reader as an exercise. ■

87. Given two circles Γ1  and Γ2  on the plane. Let А be their common point. On the 
circles Γ1  and Γ2 , with constant velocities the points M1  and M2  move, respectively. 
They pass through A at the same moment of time. Prove that it exists a fixed point P 
which at every moment in time is on a same distance of the points M1  and M2 . 

Solution. Let B and C be the centers of the circles Γ1  and Γ2  and let BC be the real 
axis. If the points M1  and M2  move in the same direction, then 

m b a b ei
1 − = −( ) ϕ  and m c a c ei

2 − = −( ) ϕ .
The existance of a point P with the desirable property is consecutively equivalent to 

the following conditions 
| | | |p m p m− = −1 2 , ( )( ) ( )( )p m p m p m p m− − = − −1 1 2 2 , 

 			   p m m m m p m m
m m= − − −
−

1 1 2 2 1 2

1 2

( ) .				    (1)

Let e ziϕ = . If we apply that b b= , c c=  and z z= 1 , we get that the condition (1) is 
equivalent to 

 	 ( ) [ ( ) ]b c a p z b c a a p p z b c a p+ − − − + − − − − + + − − =2 2 0 , 		 (2)
The latter means that the right side of the polynomial, in (2), with a variable z  must be 
identically equal to null. Therefore all of its coefficients must be nulls. Since the free 
term, we find that p b c a= + −  and clearly the coefficients of the linear and the quadratic 
terms are null.(Check it!) 

The completely identically procedure is applied in case when the points M1  and 
M2  move in opposite directions. The details are left for reader as an exercise. ■

88. Given a square ABCD and a circle Γ with diameter AB. Let P be any point on the 
side CD, M and N be the points where the line segments AP and BP meet Γ which differs 
from A and B, and Q be the intersection of the lines DM and CN. Prove that Q∈Γ  and 
further that AQ BQ DP CP: := . 

Solution. Let Γ be the unit circle and let a = −1 . Then b =1, c i= +1 2  and 
d i= − +1 2 . Further, the points A, P, M are collinear, therefore

a p
a p

a m
a m

am m−
−

−
−

= = − = ,
the latter implies that

p p m
m= + −1 .

But the points C, D, P are collinear, therefore 
c p
c p

c d
c d

−
−

−
−

= =1 ,
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therefore p p i= − 4 . That is, 
p m

m p p i+ − = = −1 4 , i.е. p im
m= −−
4

1
1.

Similarly, the points B, N, P are collinear, and therefore 
c p
c p

c d
c d

−
−

−
−

= =1 ,
that is 

n b p
b p

m i
i m= − =−

−
− −

+ −
( )1 2 1

1 2
.

Let Q DM' = ∩Γ . So, 
q q' ' =1 and d m

d m
q m
q m

q m−
−

−
−

= = −'

'
' ,

therefore
q m i

m i'
( )

= − + −
+ +
1 2

1 2 1
.

Further, 
q c
q c

q c
q c

m i
m i

m i
i mq nq'

'

'

' ( )
( )' '−

−
−

−
+ −
+ +

− −
+ −= = ⋅ = − =

1
1 2

1 2 1
1 2 1

1 2
qq n
q n

'

'

−
−

,

The latter means that the points Q C N', ,  are collinear, which implies that 
Q CN DM Q' = ∩ = . 

The equality AQ BQ DP CP: :=  is equivalent to the equality 
| | | | | | | |q a p c d p b q− ⋅ − = − ⋅ − ,

Its validity can be proven by immediate checking and by applying the following 
 	 | |

( ) ( )
q a m i

m i
m

m i− = + =+ −
+ +

+
+ +

1 2
1 2 1

1
1 2 1

1 2 , | | ( )p c iim
m

m i i
m− = − − − =−
− + +
−

4
1

1 1
1

1 1 2 2 , 

 	 | |d p i im
m

m
m− = − + − + =−
+
−1 2 1 24

1
1
1

, | |
( )

( )
( )

b q m i
m i

m i i
m i− = + =+ −

+ +
+ + −
+ +1 21 2

1 2 1
1 1
1 2 1

and apply that 
i m i i m i i[ ( ) ] ( )1 1 1 1+ + − = − + + . ■

89. Given a  ABC and a circle such that it passes through B and C and remeets the 
sides AB and AC at the points C '  and B '  respectively. Prove that the lines BB CC', '  and 
HH '  are concurrent (H and H '  are the orthcenters of the triangles ABC and A B C' ' ' , 
respectively).

Solution. Let the circumcircle of the quadrilateral BCB C' '  be the unit circle. The 
intersection of lines BB '  and CC '  is a point X with affix 

x bb c c cc b b
bb cc= + − +

−
'( ') '( ')

' '
.

Further, since BH CB⊥ '  and CH BC⊥ '  we get 
b h
b h

b c
b c

bc−
−

−
−

= − = −'
'

'  and c h
c h

b c
b c

bc−
−

−
−

= − ='
'

' ,

therefore

h bh b cb
bb c= − +2 '

'
 and h ch c bc

bc c= − +2 '
'

,



212

So, 
bh b cb

bb c
ch c bc

bc ch− + − += =
2 2'
'

'
'

, i.e. h b c b c b c b c
bc cb= − + −

−
' '( ) ' '

' '

2 2

.

Analogously,

h bc b c b c bc
b c c b' ( ' ') ' '

' '
= − + −

−

2 2

.

Finally, in the order to prove the statement, it is sufficient to prove that the points 
H H X, ',  are collinear, i.e. to prove that 

h h
h h

h x
h x

−
−

−
−

='
'

, 

holds true. We can be convinced in the validity by immediate check if we use that 

h h b b c c bc cb
bc cb− = + − − +

−' ( ' ')( ' ')
' '

 and h x b c b c b b c c
bc cb bb cc− = − + − −

− −
' '( )( ' ' )

( ' ')( ' ')

2 2

.

The details are left to the reader as an exercise. ■

90. Let ABCDEF be a convex hexagon such that 
∠ +∠ +∠ = °B D F 360  and AB CD EF BC DE FA⋅ ⋅ = ⋅ ⋅ .

Then
BC AE FD CA EF DB⋅ ⋅ = ⋅ ⋅ .

Prove it! 

Solution. Let ∠ = ∠ = ∠ = ∠ = ∠ = ∠ =A B C D E Fα β γ δ ε ϕ, , , , , . So,
c b
c b

i a b
a be−

−
−
−=

| | | |
β , e d

e d
i c d

c de−
−

−
−=

| | | |
δ , a f

a f
i e f

e fe−
−

−
−=

| | | |
ϕ .

If we multiply the last three equalities and consider that 
β δ ϕ+ + = °360  and | | | | | | | | | | | |a b c d e f b c d e f a− ⋅ − ⋅ − = − ⋅ − ⋅ −

we get 
( )( )( ) ( )( )( )c b e d a f a b c d e f− − − = − − − . 

So, it is easy to conclude that 
( )( )( ) ( )( )( )b c a e f d c a e f d b− − − = − − − ,

If we take modulus in the last equality we obtain the required equality. ■

91. Given a triangle  ABC and points X and Y on the sides BC and CA, respectively. 

Let R AX BY= ∩  and AY
YP

AR
RX

p q
 

 

 

 = =, , for 

0 < <p q . Determine the ratio BX
XC

 

  . 

Solution. Let consider the  AXC. The points 
B, R and Y are Menelaus’ points of the sides CX, AX 
and AC, respectively. The are collinear thereby the 
condition R AX BY= ∩  (figure 26). According to 
the Menelaus’ theorem it is true that 

AR
RX

XB
BC

CY
YA

 

 

 

 

 

 ⋅ ⋅ = −1 .
Figure 26
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So, 
BC
XB

AR
RX

CY
YA

q
p

 

 

 

 

 

 = ⋅ = −  

and thereby BC BX XC
     

= +  and XB BX
   

= −  by substitution in the last equality we get 
BX XC

BX
q
p

   

 

+ =  
that is

BX
XC

p
q p

 

  = − . ■

92. Given a right angled triangle  ABC whose right angle is at B and sides AB = 4,    
BC = 3 . A point E is the midpoint of the side AB, and the point D is on placed the side 
AC and moreover DA =1 . Let F DE BC= ∩ . Determine the length of the line segment 
BF. 

Solution. Let’s consider the triangle  ABC 
(figure 27). The points D, E and F are Menelaus’ 
points of the sides CA, AB and BC, respectively, 
so they are collinear. The Menelaus’ theorem 
implies 

 		  AE
EB

FB
FC

CD
DA

⋅ ⋅ =1 .	     (1)

Since the condition of the given problem, 
FC FB CB FB= + = + 3 ,

DA =1  and AE EB= = 2 .
Moreover the Pithagora’s theorem implies 

CA BC AB= + =
2 2

5 . Due to this, CD CA DA= − = 4  and if we substitute in (2) and 
after reducing, we get that FB =1 . ■

93. Let A A A A A A A0 1 2 3 4 5 6  be a regular heptagon. Prove that 
 				    1 1 1

0 1 0 2 0 3A A A A A A
= + .				    (1)

Solution. Without loss of generality, we consider the case the regular heptagon 
is inscribed into the unit circle and (1,0) is the affix of the vertex A0 . So, the affixes 
of the vertices A kk , , , , , , ,= 0 1 2 3 4 5 6  are a wk

k= , k = 0 1 2 3 4 5 6, , , , , , , respectively, for  

w ei=
2
7
π

. Further, since the properties of the regular heptagon, we get that if the point A1  
is rotated at A0  around 2

7
π  and the point A2  is rotated at A0  around 2

14
π  we get points 

which are collinear with the points A0  and A3 . Let ε
π

= ei 2
14 , w = ε2 , thus 

a a w' ( )1 11 1= + −  and a a' ( )2 11 1= + − ε .
To prove the equality (1) it is sufficient to prove that

Figure 27
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1
1

1
1

1
11 2 3a a a' '− − −= + , 

(why?). The last equality is equivalent to the equality
1

1
1

1
1

12 2 4 6ε ε ε ε ε( ) ( )− − −
= + ,

Which after reducing, can be rewritten as below 

ε ε ε ε ε ε6 4 2 5 31+ + + = + + .
But, 

ε ε ε ε ε ε5 12 3 10 8= − = − = −, , .
Therefore the last equality is equivalent to the equality 

ε ε ε ε ε ε12 10 8 6 4 2 1 0+ + + + + + = ,
i.e. to the equality

w w w w w w6 5 4 3 2 1 0+ + + + + + = ,
which is obviously true thereby w7 1= . ■ 

94. Let A A A A0 1 13 14...  be a regular 15-gon. Prove that 
 			   1 1 1 1

0 1 0 2 0 4 0 7A A A A A A A A
= + + , 				    (1)

holds.

Solution. Without loss of generality we consider a wk
k= , k = 0 1 2 14, , ,..., , for 

w ei=
2
15
π

. Further, by rotation of the points A A A1 2 4, ,  at A0  around 6
15

5
15

3
15

π π π, , , 
respectively, we get points with affixes a a a' , ' , '1 2 4  which are collinear with the points 
A0  and A7 . Therefore, to prove the equality (1) it is sufficient to prove that 
 			   1

1
1

1
1

1
1

11 2 4 7a a a a' ' '− − − −= + + . 				    (2) 
holds. We set that 

ε
π

= ei
15 , w = ε2 , ε30 1=

and obtain that 
a a' ( )1 1

61 1= + − ε , a a' ( )2 2
51 1= + − ε  and a a' ( )4 4

31 1= + − ε ,
The latter means that the equality (2) is equivalent to the following equality 

1
1

1
1

1
1 16 2 5 4 3 8

16

16ε ε ε ε ε ε
ε
ε( ) ( ) ( )− − − −

= + − .

If the last is multiplied by ε2 1 0− ≠ , and after reducing we obtain the following 
equality 
    ε ε ε ε ε ε ε ε ε ε ε ε ε ε14 12 10 8 6 4 2 12 8 4 3 8 221 1 1+ + + + + + + = + + + + + −( ) ( ) .  	 (3)

But, ε επ15 301= = − = −ei , therefore ε ε15 30− −= −k k , which implies 

ε ε ε ε ε ε ε ε ε ε ε ε13 28 9 24 5 20 16 11 26 3 18= − = − = − = − = − = −, , , , , ,
so, the equality (3) is equivalent to the equality
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ε ε ε ε ε ε ε ε ε ε ε ε ε ε28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 0+ + + + + + + + + + + + + + = ,

which is obviously true, thereby the left side of the last equality is equal to ε
ε

30

2
1
1

0−
−

= . ■

95. Given a cyclic quadrilateral ABCD. The points A B C D', ', ', '  are the centroids of 
the triangles BCD, ACD, BAD, ABC, respectively. Prove that the quadrilateral A B C D' ' ' '  
is also a cyclic quadrilateral. 

Solution. The quadrilateral ABCD is cyclic, so c b
a b

a d
c d

−
−

−
−⋅ ∈R *.  Further, a b c db c d a c d a b d a b c' , ' , ' , '= = = =+ + + + + + + +

3 3 3 3
 

a b c db c d a c d a b d a b c' , ' , ' , '= = = =+ + + + + + + +
3 3 3 3

, so 

c b
a b

a d
c d

c b
a b

a d
c d

b c

b a

d a

d c
' '
' '

' '
' '

*,−
−

−
−

−
−

−
−⋅ = ⋅ = ⋅ ∈

−

−

−

−
3

3

3

3

R
 

the latter implies that the quadrilateral A B C D' ' ' '  is cyclic. ■

96. Given a triangle ABC and points P, N, M positioned on the sides AB, BC, CA, 
respectively. Prove that the circumcircles of the triangles APN, BMP, CNM meet at a 
unique point. 

Solution. Let Q be the other point of intersection 
of the circumcircles of the triangles APN and BMP 
(see the figure 28). The points A, P, Q, N are on a same 
circle, thus q p

a p
a n
q n

−
−

−
−⋅ ∈R*,  simillary q m

b m
b p
q p

−
−

−
−⋅ ∈R * . 

So, q m
q n

a n
a p

b p
b m

q p
a p

a n
q n

q m
b m

b p
q p

−
−

−
−

−
−

−
−

−
−

−
−

−
−⋅ ⋅ = ⋅ ⋅ ⋅ ∈R * , which 

implies q m
q n

n c
m c

m c
n c

n a
p a

p b
m b

−
−

−
−

−
−

−
−

−
−⋅ ⋅ ⋅ ⋅ ∈R * . But, 

 

arg arg arg argm c
n c

n a
p a

p b
m b

m c
n c

n a
p a

p b
m b

M

−
−

−
−

−
−

−
−

−
−

−
−⋅ ⋅( ) = + +

= ∠ CCN NAP PBM
ABC BCA CAB

+∠ +∠
=∠ +∠ +∠ = π,

thus m c
n c

n a
p a

p b
m b

−
−

−
−

−
−⋅ ⋅ ∈R*,  which means that q m

q n
n c
m c

−
−

−
−⋅ ∈R * , i.e. the points Q, M, N, C 

lie on a same circle. Finally, the circumcircles of the APN, BMP, CNM meet at Q. ■

97. Four distinct lines intersect each other, so that they form four triangles. Prove 
that the four circumcircles of these triangles have a common point. 

Solution. Since the condition of the given problem, three of the given lines are not 
concurrent. Let A, B, C, D, E, F, be the point of intersection of the lines, see the figure. 
Let the circumcircles of the triangles ABC and EFC intersect at the point P. We will prove 
that the points E, P, A, D are concyclic. It is true that,

  			   p a
b a

b c
p c

c f
e f

e p
c p

−
−

−
−

−
−

−
−⋅ ⋅ ∈, *R . 				    (1)

Figure 28
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By dividing these two numbers, we get 
p a
b a

b c
e p

e f
c f

−
−

−
−

−
−⋅ ⋅ ∈R * . Further, the points E, F, 

D are collinear, and so are the points B, A, D 
therefore e f

e d t−
− = ∈R *  and b a

d a t−
− = ∈' *R . If the 

last two equalities we substitute in (1) we obtain 
a p
e p

e d
a d

b c
f c

t
t

−
−

−
−

−
−⋅ ⋅ ⋅ ∈

'
*R . Since the points B, C, F 

are collinear, b c
f c
−
− ∈R *  holds, thus a p

e p
e d
a d

−
−

−
−⋅ ∈R * , 

which means that the points A, D, E, P are concyclic. 
Analogously, it can be proven that the points B, D, 
F, P are concyclic. So, the four circles consist of the 
point P. ■

98. In a convex quadrilateral ABCD the sides AB and CD are congruent. 
а) The lines AB and CD with the line which connect the midpoints of the sides AD 

and BC form congruent angles. Prove it!
b) The lines AB and CD with the line which connect the midpoints of the diagonals 

AC and BD form congruent angles. Prove it!

Solution. а) Let 0, r, c, d where r∈ +R , c d, ∈C , be the affixes of A, B, C, D. The 
points N and M are the midpoints of the line segments AD and BC, respectively, thus 
n d=

2
 and m r c= +

2
. So, 

( ) ( ) ( )b a m n r r c d r r c d− − = = ++ − −
 



2 2 2

2

 
therefore | |c d r− =  implies 

( ) ( ) ( )

(

( ) | |

( )

c d m n c d

b

r c d r c d c d

r c d r

− − = − = +

= + = −

+ − − −

−

 





2 2 2

2 2

2

2
aa m n) ( ) −  

and since | | | |c d b a r− = − =  and the previously stated implies 
∠ =∠( , ) ( , )AB NM NM DC .

b) Let L and K be the midpoints of AC and BD, respectively. Then l c=
2

 and  

k r d= +
2

. Thus, 
( ) ( )

,

( ) ( )

| |

k l m n r d c r c d

r c d d c

r c d

− − =

= +

= − =

+ − + −

− −

−

 



2 2

4 4

4 4

2

2 2

0

so, KL MN⊥ . The latter and the statement a) 
imply 

∠ =∠( , ) ( , )AB KL KL DC . ■

Figure 29

Figure 30
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99. In an acute triangle ABC, the orthocentar H satisfies the following HC AB= . 
Determine the angle at C. 

Solution. Let the triangle be inscribed into the unit circle. Then, h a b c= + +  
therefore HC a b= +| |  and AB a b= −| | . Hence, 

| | | |a b a b+ = −2 2 , i.e. ( ) ( ) ( ) ( )a b a b a b a b+ + = − −  ,
therefore, a b = 0 , that is that OA OB⊥ , i.e. ∠ =AOB π

2
. But, the triangle ABC is an 

acute triangle, and thereby the measure of inscribed angle is half of the measure of its 
corresponding central angle, we get that ∠ =ACB π

4
. ■

100. In a convex quadrilateral ABCD the points P and Q are the midpoints of the 
diagonals AC and BD, respectively. Prove that 

AB BC CD DA AC BD PQ2 2 2 2 2 2 2
4+ + + = + + .

Solution. The points P and Q are midpoints of the diagonals AC and BD, thus 
p a c= +

2
 and q b d= +

2
. Further, 

AB b a b a b a a a b b BC b b c c

C

2 2 2 2 2 2 22 2= − = − − = − + = − +| | ( ) ( ) | | | | , | | | | ,  

DD c c d d DA d d a a

AC a a c c B

2 2 2 2 2 2

2 2 2

2 2

2

= − + = − +

= − +

| | | | , | | | | ,

| | | | ,

 

 DD b b d d2 2 22= − +| | | | ,  

     

4 4
2

2 2 2 2

PQ q p q p b d a c b d a c

a b c d

= − − = + − − + − −

= + + + +

( ) ( ) ( ) ( )

| | | | | | | |

 

22 2 2 2 2 2a c b d a b b c c d a d     + − − − − ,
thus

AB BC CD DA a b c d
a b b c c d a

2 2 2 2 2 2 2 22 2 2 2

2 2 2 2

+ + + = + + + −
− − − −

| | | | | | | |

   d

AC BD PQ= + +
2 2 2

4 ,  
which was supposed to be proven. ■

101. Let H be the orthocenter of an acute triangle ABC. A circle through H and 
centered at the midpoint of the line segment BC, meets the line BC at points A1  and  
A2 . Analogously, a circle through H and centetred at the midpoint of the line segment 
CA, meets the line CA at points B1  and B2 , a circle through H and centetred at the mid-
point of the line segment AB meets the line AB at points C1  and C2 . Prove that the points 
A A1 2, ,  B B1 2, ,  C C1 2,  lie on a same circle.

Solution. Let the triangle be inscribed into the unit circle, A0  be the midpoint of 
the line segment BC and let a b c a a a h, , , , , ,0 1 2  be the affixes of points A, B, C, A0 , 
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A A1 2, ,  H, respectively. Then, h a b c= + + , aa bb cc= = =1  and a b c
0 2
= + . Since the 

triangles OA A1 0  and A OA2 0  are right angled triangles, 

OA OA OA A A OA A H

a b c a b cb c b c b c

1
2

2
2

0
2

0 1
2

0
2

0
2

2 2 2

= = + = +

= ⋅ + + + −( ) + ++ + + −−( )
= + + +

= +

+

+ + + + +

+ + + + +

b c

bb cc ab ab bc cb ca ca

ab ab bc cb ca ca

aa

2

2 2 2

2
22

.  
The last expression is symmetric by a, b, c, and by cyclic substitution of the variables we 
obtain the following OA OA OB OB OC OC1

2
2
2

1
2

2
2

1
2

2
2= = = = = , which means that the 

points A A1 2, ,  B B1 2, ,  C C1 2,  are on a same circle. ■

102. Let I be the incenter, and Γ be the circumcircle of a triangle  ABC. Let the line 
AI meets Γ at points A and D. Let E be a point on the arc BDC , and F be a point on the 
line segment BC such that ∠ =∠ < ∠BAF CAE BAC1

2
 holds true. Let G be the midpoint 

of the line segment IF. Prove that the intersection of DG and EI belongs to Γ. 

Solution. Let  ABC be inscribed into the unit circle. Since Theorem 13.3 there 
exist complex numbers a, b, c such that the points A, B, C have affixes a b c2 2 2, , , 
respectively, and the midpoints of the arcs BC CA AB  , ,  which do not consist of the 
points A, B, C have affixes − − −bc ca ab, , , respectively and the incenter I has affix  
s ab bc ca= − − − . Therefore I is the orthocenter of the triangle whose vertices are the 
midpoints of the arcs BC CA AB  , ,  which do not consist of the points A, B, C. 

Without loss of generality we get that the points B and C are symmetric with respect 
to the real axis. Let F '  be the point of intersection of AF and Γ, which differs from 
A and let the points D E F F I, , , ',  have affixes d e f f s, , , ', , respectively. Hence, 

| | | | | |a b c= = =1 , c b d f b c
e e= = − = =, , '1

2 2 1  and s a b b= − − +1 ( ) . Thereby F is a 
point of intersection of the lines AF and BC we get that 

f b

f b
b b
b b

−

−
−
−

= = −
2

2

2 2

2 2
1  and f a

f a

a

b
a
e

e

e

−

−

−

−
= = −

2

2

2 1

2 1

2
,

which imply the following f f b b+ = +2 2  and f f aa
e e+ = +
2 2 1 , thus 

f a e a b b a e( ) ( )2 2 2 2 2 1− = + − − .
Let y be the affix of the point of intersection of IE and Γ (which differs from E), and 
x be the affix of the point of intersection of DG and Γ (which differs from D). Then  
x x= 1 , y y= 1 , thus
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− = =−
−

−
−

ye y e
y e

s e
s e

, i.e. y s e
es

= −
−1

.
Further, 

 	 − + = +a b b s( ) 1 , a s a a a sb b
a

2 2 2 21= − − = − ++ , a e
a e

a e
a e

2 1 1
2

2

2− = − = − − ,

 	

( )( ) ( )

( ) (

f s a e a b b a e a sa es e

a b b a

+ + − = + − − + + − −

= + − +

2 1 2 2

1

2 2 2 2 2 2 2

2 2 2 ss e e es

s e es a s e s e s a

− − −

= + − − − + − = − + +

)

( ) ( ) ( )( ),

2

1 1 2 22 2 2

 	

( )( ) ( )( )f s a e s e s a es
e

a a s
a

es
e

a

+ + − = − + + = − ⋅

= − ⋅

− + +

− +

2 22 2 1 2 1

1 2

2 2

2

2 11 1 1 22

2

2

2
− + + − + += −a s
a

es s a
a e

( )( ) ,

imply the following

x x
x

g
g

f s
f s

f s a e

f s

f s

f g
= = = = =+

+
+
+

+

+

+ +
+ +

+ + −

+ +

+

+
1
1

1

1

1

1

2

2

22

2

2( )( )

( 22

1 2

2

1 2

2 2

2

2

2

)( )

( )( )

( )( )

( )(

a e a e
f s a e

f s a e

a e
s e s

−

+ + −

+ + −

− +

= − ⋅

= − ⋅ ++

−

−
−− + +

= =a s e
eses s a

a e

y
2

1 2 2

2
1

)

( )( )
,

 
which actually was supposed to be proven. ■

103. Let P be a point in the inner part of a triangle ABC and let the lines AP, BP, CP 
remeet the circumcircle Γ of the triangle ABC at points K, L, M, respectively. The tangent 
of the circle Γ at C meets the line AB at S. Let SC SP= . Prove that MK ML= . 

Solution. Without loss of generality we consider that the triangle ABC is inscribed 
into the unit circle and let 1 be the affix of ABC. If to the points correspond the affixes 
denoted by the appropriate lower case letters then | | | | | | | | | |a b k l m c= = = = = =1 ,  
a p
a p

a k
a k

ak−
−

−
−

= = − , thus k p a
a p

= −
−1

 and symmetrically l mp b
b p

p
p

= =−
−

−
−1

1

1
, . The point S is 

the point of intersection of the line AB and the tangent to Γ at C, thus s s+ = 2  and 
s abs a b+ = + , therefore we obtain that s a b ab

ab= + −
−

2
1

. Let T be the midpoint of PC, i.e. 

t p= +1
2

. Since the condition of the problem SC SP= , that is T is the foot of the perpendicular 

at S to PC, i.e. to MC, which implies that t
t

m
m

m−
−

−
−

= = −1
1

1
1

 and t s
t s

m
m

m−
−

−
−

= − =1
1

, i.e.

p t m s ms+ = = + + −1 2 1 , i.e. p m s ms m s m s s m ms= + − = + − − = − +( )2 .
Thereby 

p
p

p s
sm−

−
−
−= =1

1 1  
it is true that 
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p s sp p s p s p− = − − + + −1 ( ) , i.e. p p sp
p s= − −
−

2 1 .
Thus,

 
m p s

s
p ab p a b ab

a b ab

a b ab
ab

a b ab
ab

= = =−
−

−

−
− − − +
+ −

+ −
−

+ −
−

1 1

1 2
2

2
1
2

1

( )
−− +

− − − +
− −= −

1
1 2

1 1ab
ab p a b ab

a b
( )

( )( )
,

 

k p a
a

p a p s
p ap a ap s

p a p
p sp
p s

a b

= = =−
− ⋅

− −
− + + −

− −
− −
−

+ −

1 2 12 1

2
( )( )

( )

( ) aab
ab
a b ab

abp ap a ap

p a ab p a b ab

1
2

1
2 1

1 2

−
+ −
−

( )
− + + − ⋅

− − − − +=

( )

( )[( ) ]

pp ap a abp a bp a b a p abp a bp a b ab
p a ab p
− + − + − + + − − − +
− −=

2 2 2 2

1

2 2 2 2

( )[( ) −− − +
− + − − +

− − − − +
−

=a b ab
p ap a p a b b ab

p a ab p a b ab
p a

2

2 2

1 2

12 2
] ( )[( ) ]

( )22 2

2

1

1 2

1

− −
− − − − +

− −
=

b a
p a ab p a b ab

p b a

( )

( )[( ) ]

( )( )

and symmetrically,

l p b ab p a b ab
p a b

= − − − − +
− −

( )[( ) ]

( )( )

1 2

1 2 , 

So, m kl2 = , which implies the statement of the problem.■

104. Let ABC be an acute scalene triangle so that AC BC> , O be the circumcenter 
H be the orthocenter and F be the foot of the altitude at the vertex C. Let P be a point on 
the line AB, which differs from A, so that AF PF= , and M be the midpoint of the line 
segment AC. Let X be the point of intersection of the lines PH and BC, Y be the point of 
intersection of the lines OM and FX, and Z be the point of intersection of the lines OF and 
AC. Prove that the points F, M, Y and Z lie on a same circle. 

Solution. Without loss of generality we consider the case where the triangle ABC is 
inscribed into the unit circle. Let the affixes of the points A, B, C, H, F, P, X be a, b, c, h, 
f, p, x, respectively. So, h a b c= + +  and | | | | | |a b c= = =1 , holds true.

Thereby F is placed on AB, and CF is perpendicular to AB we get that 
f a
f a

b a
b a

f c
f c

ab−
−

−
−

−
−

= = − = − , i.e. f ab f a b+ = +  and f ab f c abc− = − , thus 

f a b c abc= + + −
2

. p f a b c abc= − = + −2 , thereby AF FP
   

= . The point X is placed on 

BC, hence x b
x b

b c
b c

bc−
−

−
−

= = − , i.e. x b c x
bc= + − . But, X is placed on PH, hence 

p x
p x

p h
p h

b c abc a b c
b c abc a b c

ac b c
ab c b

−
−

−
−

+ − − − −
− − − − −

+
− +

= = = − =( )

( )
aa b
c
2

,  
therefore 

p x b c abca b
c

b c x
bc

ac a x
c

− = + − −( ) =+ − − +2 2 2

2 , i.e. x c p ac
a c

fc
a c

= =+
+ +

2 2

2 2

2

2 2
2 . 
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It is sufficient to prove that OF FX⊥ , which is equivalent to f
f

f x
f x

−
−

−
−

= −0

0
, i.e. 

x f x f f+ = 2 2| | , which is obviously true, thereby 

x f x f f f f ffc
a c

f c

a c
c

a c
a

a c
+ = + = +( ) =+ + + +

2 2 2 22

2 2

2

2 2

2

2 2

2

2 22 2| | | | . ■

105. Let  ABC not be an isosceles triangle and let AD, BF and CF be the bisectors 
of its angles ( D BC E AC F AB∈ ∈ ∈, , ). Let K K Ka b c, ,  be points of incircle 
of the triangle  ABC such that DK EK FKa b c, ,  are tangents of the incircle and 
K BC K AC K ABa b c∉ ∉ ∉, , . Let A B C1 1 1, ,  be the midpoints of sides BC, CA, AB, 
respectively. Prove that lines A K B K C Ka b c1 1 1, ,  concure at the incircle of the triangle 
 ABC. 

Solution. Without loss of generality we consider the incircle of the triangle  ABC as 
the unit circle and let the circle tangents the sides BC, CA, AB at A B C', ', ' , respectively. 
Let S be the incenter whose affix is 0. If the affixes of the points are denoted by correspond-
ing lowercase letters, we get that | ' | | ' | | ' |a b c= = =1  and a b cb c

b c
a c

a c
a b

a b= = =+ + +
2 2 2' '

' '
' '

' '
' '

' '
, , ,  

thus  a b c a b a c a b c
a b a c1 2

22 2
= =+ + +

+ +
' ' ' ' ' ' '

( ' ')( ' ')
. Since DKa  is a tangent of an incircle we get that 

∠ =∠ASK A SAa '  and thereby | |ka =1 , it implies that k
a

a
a

a = ( )' , so, ka a
a
a

b c
a= ⋅ =1

'
' '
'

. The point of intersection X, of the incircle and the line A Ka1  satisfies the following 

| |x =1  and x k
a k

x k
a k

a
a

a
a

−
−

−
−= ( )

1 1
, that is ( )( ) ( )a k x k a ka a x k a

a
1

1 1
1− − = −( ) − , and thereby 

x ka≠ , it is true that a k a ka xk a
a

1
1

1− = − −( ) . Since

a ka
a b a c a b c

a b a c
b c
a

a b c
1

22 2 2

− = − =+ +
+ +

−' ' ' ' ' ' '
( ' ')( ' ')

' '
'

( ' ' ')(aa b a c b c
a a b a c

' ' ' ' ' ')
'( ' ')( ' ')

+ +
+ +  and 

a ka

b c a
a b c

a b c
a b c

a b a c

a b c

1

2

2

3

− = =
− + +

+ +

⋅' ' '

' ' '

' ' '
' ' '

( ' ')( ' ')

' ' '

(( ' ' ' )( ' ' ')
' '( ' ')( ' ')

b c a a b c
b c a b a c

− + +
+ +

2
, 

and a b c' ' '2 ≠ , since  ABC is not an isosceles triangle, 

x k
a k
a k

a b b c c a
a b ca

a

a
= − ⋅ =−

−
+ +
+ +

1 1

1

' ' ' ' ' '
' ' '

.

Thereby the obtained expression is symmetric at a b c', ', ' , the lines B Kb1  and C Kc1  
meet the incircle at X. ■
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4.	 EXERCISES (CHAPTER 2 AND 3)

1.	 Dermine the relationship between the points A and B with affixes a and b, 
respectively, if given that
а) Reab = 0 ,		  b) Im ab = 0 , 
c) Reab = 0 , 		d  ) Im ab = 0 . 

2.	 Let A '  be the projection of a point 
A on a real axis. Determine the 
point A ''  such that it is symmetric 
to A '  with respect to the line OA 
(figure 31). 

3.	 Let OA =1  be the diameter of a semicircle (fig-
ure 32). At B and C such that OB = 1

4
 and OC = 3

4
 

are drawn perpendiculars to x-axis and E and D are 
the points of intersection of these perpendiculars 
and the semicircle. Find the complex number such 
that it is the affix of M, the point of intersection of 
the lines OE and BD. 

4.	 Let be given a point C with affix c e= 2 6
π

. Determine the affixes a and b of the 
points A and B such that they are symmetric with respect to the line OC, the distance 
between each of them and the point C is 1 unit and satisfy the following: 
а) | |a b− = 2 , 		  b) | |a b− = 2 . 

5.	 Given the points A, B, C and Z with affixes a b a e c a ei i, ,= + = +α β  and z, 
respectively. Determine the distance between the symmetric points Z '  and Z ''  to 
the point Z with respect to the lines AB and AC. 

6.	 We shall say that α is a viewing angle for a line segment AB of a point M a line 
segment AB is viewed at an angle α of a point M if ∠ =AMB α . Let be given 
points A and B with affixes a and b, respectively. Let W be the point on the bisector 
of AB and furthermore the viewing angle for the line segment AB be α. Prove that 

w ae b
e

i

i= −
−

α

α 1
 is the affix of W. 

Figure 31

Figure 32
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7.	 The square of the diagonal is equal to the sum of the square of the leg and the 
product of the length of the bases in an isosceles trapezoid. Prove it!

8.	 Let a quadrilateral ABCD be parallelogram and let N be the point of intersection 
of the semiline AD and the circumcircle of the triangle ABC. Prove that 
AD AM AC AB⋅ = −

2 2
.

9.	 A circle (K) is a circumcircle of a regular pentagon ABCDE. Let M be a point on the 
arc AE . Prove that 

MA MC ME MB MD+ + = + . 

10.	 Construct a trapezoid if given all its sides. 

11.	 Given circles K o R'( ', ')  and K o R''( '', '')  and a line segment AB. Construct a line 
segment CD parallel and congruent to AB, such that C K∈ ( ')  and D K∈ ( '') . 

12.	 Given a line (p), a circle (K) and a line segment AB. Construct a line segment CD 
parallel and congruent to AB, such that C K∈ ( )  and D p∈ ( ) . 

13.	 Given lines (p) and (q) and a line segment AB. Construct a line segment CD parallel 
and congruent to AB, such that C p∈ ( )  and D q∈ ( ) . 

14.	 Let А, B, C, D be four given points and let 
S D D S D D S D D
S D D S D D S D D

A B C

A B C

( ) , ( ) , ( ) ,

( ) , ( ) , ( )

= = =
= = =

1 1 2 2 3

3 4 4 5 5 6..  
Prove that D D= 6 ! 

15.	 Given points O ii , , , ,=1 2 3 4  and a line segment A B0 0 . Let Si ,  i =1 2 3 4, , ,  be a 
point reflection centered at O ii , , , ,=1 2 3 4  and let 

A B S A B ii i i i i= =− −( ), , , ,1 1 1 2 3 4 .

Prove that A A B B0 4 0 4= . 

16.	 Does the figure F ={ , , }A B C  have a center of reflection? 

17.	 In which case a figure consisting of two semilines is a point reflective figure? 

18.	 Given circles K O R'( ', ')  and K O R''( '', '') . In which case a figure consisting of the 
circles ( ')K  and ( '')K  is a point reflective figure? 
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19.	 If a figure F is point reflective, then it has either a unique or, infinitely many centers 
of reflection. Prove it! 

20.	 Given circles K O R'( ', ')  and K O R''( '', '')  and point A. Draw a line (a) through 
A so that A is the midpoint of the line segment MN, for M a K∈ ∩( ) ( ')  and  
N a K∈ ∩( ) ( '') . 

21.	 Given four distinct points A, B, C, D on a circle (K) and a point M on the chord CD. 
Determine a point X on the circle (K), so that the lines AX and BX on the chord CD 
intercept a line segment ST for which M is the middle point. 

22.	 Given a rotation SC,α , α π≠ 0, . Are there any lines which are fixed lines under this 
rotation? 

23.	 Given a rotation SC,α . Prove that a circle K(O,R) is fixed if and only if O C≡ . 

24.	 Given lines (p) and (q). In which case there exists a rotation SC,α , so that  
S p qC, ( )α = ?

25.	 Given circles K(O,R) and K O R'( ', ') . In which case there exists a rotation SC,α , so 
that S K KC, ( ) 'α = ?

26.	 Given two circles ( ')K  and ( '')K  and a point A. Construct an equilateral triangle 
ABC, so that B K∈ ( ')  and C K∈ ( '') . 

27.	 Given three parallel lines (p), (q) and (r). Construct an equilateral triangle ABC, so 
that A p B q C r∈ ∈ ∈( ), ( ), ( ) . 

28.	 Given three concentric ( ')K , ( '')K  and ( ''')K . Construct an equilateral triangle 
ABC, so that A K B K C K∈ ∈ ∈( '), ( ''), ( ''') . 

29.	 Given a line (p), a circle (K) and a point O. Construct an equilateral triangle ABC 
centered at O, so that two of its vertices are on (p) and (K), respectively. 

30.	 Given two circles (K), ( ')K  and a point O. Construct an equilateral triangle ABC 
centered at O, so that two of its vertices are on (K) and ( ')K , respectively. 
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31.	 In a triangle ABC inscribe a rhombus with acute angle α = °60 , so that its two 
adjacent vertices are on the side AB, and the other two on the sides BC and AC, 
respectively. 

32.	 In a circle K(O,R) inscribe a triangle ABC, which is similar to a given triangle 
PQR. 

33.	 Given intersecting lines (p), (q) and a circle (K). Construct a circle so that it tangents 
both lines (p) and (q) and a circle (K). 

34.	 Let Η and Η1  be homotheties with a common (mutual) center O and coefficients 
a and a1 , respectively. Prove that Η Η 1  is also a homothety and Η Η Η Η 1 1=  
holds true. 

35.	 а) Prove that the composition of a point reflection and a homothety with coefficient 
a ≠ −1  is homothety. 
b) Prove that the composition of a homothety with coefficient a ≠ −1 and a point 
reflection is homothety. 

36.	 Prove that a composition of rotation around α ≠ ° °0 180,  and a homothety is a 
similarity such that it is not a homothety. 

37.	 Prove that a composition of two reflections is either translation or rotation. 

38.	 Prove that each translation can be expressed as a composition of two reflections

39.	 Prove that each rotation can be expressed as a composition of two reflections.

40.	 Let (a), (b) and (c) be three parallel lines. Prove that the composition of the reflections 
σ σa b,   and σc  is a reflection. 

41.	 Prove that a composition of a reflection and a homothety is similarity such that it is 
not homothety. 

42.	 Prove that there does not exist any similarity such that it is not: movement, ho-
mothety, composition of rotation and homothety, composition of reflection and ho-
mothety. 
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43.	 If z z z1 2 3, ,  and z4  are four distinct points on a circle, then their дворазмер is a real 
number. Prove it! 

44.	 Determine the set of points z such that under the Möbius transformation w z i
iz= +
−
2

2 1
 

map to the following set { | | | }w w =1 . 

45.	 Detrmine such a Möbius transformation that a semiplane { | Im }z z > 0  maps 
to the circle { | | | }z z <1  and furthermore the points z i=  and z = ∞  under that 
transformation will be mapped to w = 0  and w = −1 , respectively.

46.	  Find a condition which has to be satisfied, so that under the Möbius transfor-
mation w az b

cz d= +
+ , the circle circle { | | | }z z <1  will be mapped to the semiplane  

{ | Im }z z > 0 . 

47.	 Determine the Möbius transformation so that the points 0, −i, −1 map at i, 1, 0, 
respectively. 

48.	 Determine the Möbius transformation so that the points i, −i, 1 map at 0, 1, ∞, 
respectively. 

49.	 Prove that any three distinct points on a circle are not collinear. 

50.	 Given the chords AB and CD of a circle so that AC BD= . Prove that either or 
AB CD||  or AD BC|| . 

51.	 In an acute triangle ABC, B '  and C '  are feet t of the altitudes at the vertices B and 
C, respectively. The circle with diameter AB meets the line CC '  at M and N, and the 
circle with diameter AC meets the line BB '  at P and Q. Prove that the quadrilateral 
MNPQ is cyclic. 

52.	 Let ABCD be a quadrilateral such that the inner angles at the vertices A, B and C 
are congruent. Prove that the point D, the circumcentar and the orthocenter of the 
triangle ABC are collinear. 

53.	 In a circle k is inscribed a hexagon ABCDEF, so that the sides AB, CD and EF are 
congruent with the radius of k. Prove that the midpoints of the other three sides are 
vertices of an equilateral triangle. 
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54.	 Isoscaled triangles BCD, CAE and ABF, whose bases are BC, CA and AB, respectively, 
are constructed on the outer part of a triangle  ABC. Prove that the perpendiculars 
drawn at the vertices A, B and C to the lines EF, FD and DE, respectively, are 
concurent. 

55.	 Let the quadrilateral ABCD be a cyclic and let E and F be the feet of the perpendiculars 
plot at the intersection of diagonals to the sides AB and CD, respectively. Prove that 
the line EF is perpendicular to the line which passes through the midpoints of the 
sides AD and BC.

56.	 Prove that the midpoints of the altitudes of a triangle are collinear if and only if the 
triangle is right angled triangle. 

57.	 The feet of the perpendiculars in an acute triangle  ABC are A ' , B '  and C ' . If 
A B'', ''  and C ''  are the touching points of the incircle of the triangle  A B C' ' ' , then 
prove that the Euler lines of  ABC and  A B C'' '' ''  coincide.

58.	 Let ABCD be a convex quadrilateral such that its diagonals AC and BD are 
perpendicular to each other and let E AC BD= ∩ . Prove that the points symmetric 
to E with respect to the lines AB, BC, CD and DA form a cyclic quadrilateral.

59.	 Let AK, BL, CM be the altitudes ofa triangle ABC, H be its orthocenter and P the 
midpoint of the line segment AH. If BH MK S∩ =  and LP AM S∩ = , then 
TS BC⊥ . Prove it!

60.	 Let AD, BE, CF be the altitudes of a triangle ABC. Let A ' , B ' , C '   be such that 
AA k AD BB k BE CC kCF' , ' , '= = = , for each k∈R , k ≠ 0 . Determine all k such 
that for any non-isoscale triangle ABC the triangles ABC and A B C' ' '  are simillar. 

61.	 Given a triangle  ABC and points D, E, F on its altitudes BC, CA, AB, respectively, 
so that 

BD
DC

CE
EA

AF
FB

k
k k= = = ∈−1 , R .

Determine the locus of points of the circumcenters of DEF for k∈R . 

62.	 Let H '  and H ''  be the feet of the perpendiculars at the orthocenter H of  ABC to 
the bisector of the outer and the inner angle at C. Prove that the line H H' ''  consists 
of the midpoint of the side AB. 
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63.	 Given an acute triangle ABC and a point D on its inner part, so that 
∠ =∠ + °ADB ACB 90  and AB CD AD BC⋅ = ⋅ . Determine  

AB CD
AC BD

⋅
⋅

.

64.	 Tangents AM and AN and a line which crosses the circle at k and L are constructed 
on a circle k at the point A (which is positioned out of the circle k). Let l be any line 
which is parallel to AM and let KM and LM meet l at the points P and Q, respectively. 
Prove that the line MN bisects the line segment PQ. 

65.	 On the sides BC, CA and AB of a triangle ABC are given points D, E and F, 
respectively, so that BD CE AF= = . Prove that the triangles ABC and DEF have 
common circumcenter if and only if the triangle ABC is an equilateral triangle. 

66.	 Let be given a cyclic quadrelateral ABCD. Prove that the incenters of the triangles 
ABC, BCD, CDA, DAB are vertices of a rectangle. 

67.	 Let I be the incenter of atriangle ABC and let D and E be the midpoints of the 
sides AC and AB, respectively. Let AB DI S∩ =  and AC EI Q∩ = . Provе that 
AP AQ AB AC⋅ = ⋅  if and only if ∠ = °CAB 60 . 

68.	 Let M be a point of the interior part of the square ABCD and A B C D', ', ', '  be 
the intersections of the lines AM, BM, CM, DM and the circumcircle of the square 
ABCD, respectively. Prove that 

A B C D A D B C' ' ' ' ' ' ' '⋅ = ⋅ .

69.	 Let ABCD be a cyclic quadrilateral and let F AC BD= ∩  and E AD BC= ∩ . If 
M and N are the midpoints of the sides AB and CD, respectively, then prove that 
MN
EF

AB
CD

CD
AB

= −1
2

.

70.	 The points A B C', ', '  are symmetric to the points A, B, C with respect to the sides 
BC, CA, AB, respectively. Determine the type of the triangle ABC, so that the triangle 
A B C' ' '  is an equilateral triangle? 

71.	 Let O be the circumcenter and R be the circumradius of a triangle ABC. The in-
circle of the triangle ABC, with radius r, touches the sides BC, CA, AB at points  
A B C', ', ' , respectively. Let the lines determined by the midpoints of the line 
segments AB '  and AC ' , BA '  and BC ' , CA '  and CB '  intersect at C '' , A ''  and  
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B '' . Prove that the circumcenter of the triangle A B C'' '' ''  is O and the circumradius 
is R r+

2
. 

72.	 Let the trapezoid ABCD, AB CD AB CD|| , > , not be isoscaled and let it be 
circumscribed about a circle centered at I. The incircle tangents the side CD at E. 
Let M be the midpoint of the side AB and moreover MI and CD intersect at F. Prove 
that DE FC=  if and only if AB CD= 2 . 

73.	 Given a cyclic hexagon ABCDEF so that AB CD EF= =  and the diagonals AD, BE 

and CF are concurrent. If p AD CE= ∩ , then CP
PE

AC
CE

= ( )2 . Prove it!

74.	 Given a triangle ABC. A B C', ', '  are the midpoints of the arcs BC CA , ,  AB , such 
that each of them does not consist of the point A, B, C, respectively. The lines 
A B B C C A' ', ' ', ' '  divide the sides of the triangle in six parts. Prove that “the middle” 
parts are congruent if and only if the triangle ABC is an equilateral triangle. 

75.	 Let  ABC be such a triangle that ∠ = °ABC 60 . Let the line IF be parallel to AC 
(I is the incenter, and F lies on the side AB). The point P is on the side BC and 
3BP BC= . Prove that ∠ = ∠BFP ABC1

2
. 

76.	 The angle at A is the smallest angle in a  ABC. The points B and C divide the 
circumcircle of the triangle in two arcs. Let U be the interior point of the arc between 
B and C which does not consist of A. The bisectors of the line segments AB and AC 
meet the line AU at points V and W, respectively. The lines BV and BW meet at T. 
Prove that AU TB TC= + . 

77.	 Let ABCD be a convex quadrilateral so that AB is not parallel to CD and AD is not 
parallel to BC. The points P, Q, R, S are such chosen on the sides AB, BC, CD, DA, 
respectively, that the quadrilateral PQRS is parallelogram. Find the locus of the 
intersections of all such quadrilaterals PQRS. 

78.	 The incircle of a triangle ABC tangents the sides BC, CA, AB at the points E, F, G, 
respectively. Let AA BB CC', ', '  be the intercepts of the bisectors of the inner angles 
of the triangle ABC. Let K K KA B C, ,  be the points where the second tangents to 
the incircle drawn at A B C', ', ' , respectively. Let P, Q, R be the midpoints of the 
sides BC, CA, AB, respectively. Prove that the lines PK QK RKA B C, ,  concure on 
the incircle of the triangle ABC. 
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79.	 Let AD, BE, CF be the altitudes of the triangle ABC, and A B C', ', '  are points on 
them respectively, so that AA

AD
BB
BE

CC
CF

k' ' '= = =  holds. Determine each values of k so 
that the triangles ABC and A B C' ' '  are similar. 

80.	 (Gauss’s theorem). If the line l meets the lines which consist of the sides BC, CA, 
AB of the triangle ABC at A B C', ', ' , respectively, then prove that the midpoints of 
the line segments AA BB CC', ', '  are collinear. 

81.	 Given a triangle ABC and a point T. Let P and Q be the feet of the perpendiculars at T 
to the lines AB and AC, respectively, and let R and S be the feet of the perpendiculars 
at A to the lines TC and TB, respectively. Prove that the intersection of the lines PR 
and QS lies on the line BC. 

82.	 Let PQRS be a cyclic quadrilateral, such that the lines PQ and RS are not parallel. 
Consider the set of all circles through P and Q and the set of all circles through R 
and S. Determine the set of all touching points between the circles which belong to 
these two sets. 

83.	 Given a circle k and a point P positioned in the outer part of the circle. A variable 
line s, such that it consists of the point P, meets the circle at the points A and B. Let 
M and N be the midpoints of the arcs determined by the points A and B and let C be 

a point positioned on the line segment AB so that PC PA PB
2
= ⋅  holds. Prove that 

the angle ∠MCN  does not depend on the choise of the line s. 

84.	 Two circles k1  and k2  touch at a point M. The radius of k1  is greater than the radius 
of k2 . Let A be any point on the circle k2  such that it is not placed on the line which 
connects the centers of the circles, B and C be points on k1  so that AB and AC are 
its tangents. The lines BM and CM remeet k2  at E and F, respectively, and D is the 
intersection of the tangent to k2  at A and the line EF. Prove that the locus of the 
point D, when A moves on k2 , is a line. 

85.	 On a plane are given two circles k1  and k2  such that they meet at points A and B. 
The tangents to k1  at A and B intersect at K. Let M be any point of the circle k1  and 
let 

MA k A P∩ =2 { , } , MK k M C∩ =1 { , }  and CA k A Q∩ =2 { , } .
Prove that the midpoints of the line segment PQ is placed on the line MC and PQ 
passes through a fixed point when M moves round the circle k1 . 
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86.	 Let ABC be a triangle so that ∠ = ∠ACB ABC2  and let D be a point on the line 
segment BC so that CD BD= 2  holds. The line segment AD is extended through D 
to the point E so that AD DE=  holds. Prove that the following is satisfied

∠ + ° = ∠ECB EBC180 2 .

87.	 Given a triangle A A A1 2 3  and a line p which passes through a point P and meets 
the sides A A A A A A2 3 3 1 1 2, ,  at X X X1 2 3, , , respectively. Let A Pi  meetthe 
circumcircle of the triangle A A A1 2 3  at a point Ri , for i =1 2 3, , . Prove that the lines 
X R X R X R1 1 2 2 3 3, ,  concur at a point which belongs on the circumcircle of the 
triangle A A A1 2 3 . 

88.	 Two circle with defferent radii meet at points A and B. Their mutual tangents are 
MN and ST. Prove that the orthocenters of the triangles AMN, BMN, AST, BST are 
vertices of a rectangle. 

89.	 Given a cyclic quadrilateral ABCD. The lines AD and BC meet at a point E, so that 
C is between B and E. The diagonals AC and BD meet at F. Let M be the midpoint 
of CD and let N M/≡  be the point on the circumcircle of the triangle ABM such that 
AN
BN

AM
BM

= . Prove that points E, F and N are collinear. 

90.	 The diameter of a circle k is placed on a line l. Let C and D be points on k. The tangents 
to k at C and D consecutively meet the line l at B and A, so that the center of the 
circle is between B and A. Let E AC BD= ∩  and F be the foot of the perpendicular 
at E to l. Prove that EF is the bisector of ∠CFD . 

91.	 Let ABCD be a convex quadrilateral whose sides BC and AD are congruent, but not 
parallel. Let E and F be interior points of the sides BC and AD, respectively, so that 
BE DF= . The lines AC and BD intersect at P, the lines BD and EF intersect at Q 
and the lines EF and AC intersect at R. Let’s consider the triangles PQR which are get 
for all points E and F. Prove that the circumcircles of these triangles have a common 
point, such that it differs from P. 

92.	 Let O be an interior point for the acute triangle  ABC. The circles centered at the 
midpoints of the sides of the triangle  ABC, such that each of them passes through 
O, concur at K, L, M (K, L, M differ from O). Prove that O is the incenter of the 
triangle  KLM if and only if O is the circumcenter of the triangle  ABC. 
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93.	 Let M and N be points of the interior of a triangle  ABC such that ∠ =∠MAB NAC  
and ∠ =∠MBA NBC  hold. Prove that 

AM AN
AB AC

BM BN
BA BC

CM CN
CA CB

⋅
⋅

⋅
⋅

⋅
⋅

+ + =1 .

94.	 Let  ABC be such a triangle that ∠ = °A 90  and ∠ <∠B C  hold. The tangent at 
A of its circumcircle Γ meets the line BC at D. Let E be the image of A under line 
symmetry with respect to the line BC, X be the foot of the perpendicular at A to BE 
and Y be the midpoint of the line segment AX. Let the line BY remeets Γ at a point Z. 
Prove that the line BD is a tangent to the circumcircle of the  ADZ. 

95.	 Given  ABC and points  A BC B AC C AB1 1 1∈ ∈ ∈, ,   such that  ABC and  A B C1 1 1  
are simmilar. If the orthocenters or the incenters of  ABC and  A B C1 1 1  coincide, 
then  ABC is an equilateral triangle. Prove it! 

96.	 Let be given points A, B and C. Determine the locus of a point D so that 

DA DB AB DB DC BC DC DA CA AB BC CA⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅  
holds.

97.	 Prove that the length of the side of a regular nonagon is equal to the difference of the 
lengths of its longest and shortest diagonal. 

98.	 Prove that for any regular n-gon inscribed into a circle with radius r the, product of 

all sides and diagonals is equal to n r
n n n
2

1
2

( )−

. 

99.	 On the circumcircle of a regular 2n-gon A A A n1 2 2...  is chosen an arbitrary point P. 
Prove that the sum of the squared distances between the point P and the vertices 
whose indexis are even numbers is equal to the sum of the squared distances between 
the point P and the vertices whose indexis are odd numbers.

100.	 Let A A A A n0 1 2 2...  be a regular polygon, P be an arbitrary point of the smaller arc 
A A n0 2
  of its circumcircle and m be a positive integer, 0 ≤ <m n . Prove that 

PA PAk
m

k

n
k
m

k

n
2
2 1

0
2 1
2 1

1

+

=
−
+

=
∑ ∑= .

101.	 Let A A An0 1 1... −  be a regular n-gon inscribed in a circle whose radius is r. Prove 
that for any point P of the circumcircle and a positive integer m n< , 
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PA nrk
m

k

n
m
m m2

0

1
2 2

=

−
∑ = ( )   

holds true.

102.	 Let h h hn1 2, ,...,  be the distances between an arbitrary point P of the smaller 
arc A An0 1−  of the circumcircle of regular n-gon A A An0 1 1... −  and the lines 
A A A A A An0 1 1 2 1 0, ,..., − . Prove that 

1 1 1 1
1 2 1h h h hn n
+ + + =

−
... . 

103.	 Given a regular n-gon A A An1 2...  and a point P of the smaller arc A An1
 . Let dk  be 

the distance between the points P and Ak . Prove that 
1 1 1 1

1 2 2 3 1 1d d d d d d d dn n n
+ + + =

−
... .

104.	 Let P be any point on the circumcircle of a regular 2n-gon A A A n1 2 2... . If 
p p p n1 2 2, ,...,  are the distances between the point P and the lines which consists 

of the sides A A A A A An1 2 2 3 2 1, ,..., , respectively then p p p p p pn n1 3 2 1 2 4 2... ...− = . 
Prove it!

105.	 Let n be a prime number and let H1  be a convex n-gon. The polygons H H Hn2 3, ,...,  
are constructed consecutive: the vertices of the polygon Hk+1  are obtained by 
applying the the symmetry through the k-th adjacent vertex to the vertices of the 
polygon Hk  in a positive direction. Prove that the polygons H1  and Hn  are 
similar. 

106.	 Let A A A k0 1 2, ,...,  be cosequtive points on a circle, such that they divide the circle 
in 2 1k +  congruent arcs. The point A0  is plot by chords with each other points. 
These 2k chords divide the circle in 2 1k +  parts. These parts are alternately colored 
with white and black color, such that the number of the white parts is greater for 
one than the number of the black ones. Prove that the black area is greater than the 
white one. 

107.	 The vertices of a regular n-gon are coloured with a few colors (each vertex with 
only one colour) so that the vertices coloured with the same colour form a regular 
polygon. Prove that two of these polygons are similar. 

108.	 Let the points A, B, C, D and E be such that ABCD is a parallelogram, and BCED 
is a cyclic quadrilateral. Let l be a line which consists of the point A and intersects 
the line segment DC at an inner point F, and the line BC at C. If EF EG EC= = , 
then l is the bisector of the angle DAB. Prove it! 
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109.	 Let H be the orthocenter of acute triangle ABC. The circle centered at the midpoint 
of the line segment BC, such that it consists of the point H, meets the line BC at A1  
and A2 . Analogously, the circle centered at the midpoint of the line segment CA, 
such that it consists of the point H, meets the line CA at B1  and B2 , and the circle 
centered at the midpoint of the line segment AB, such that it consists of the point 
H, meets the line AB at C1  and C2 . Prove that the points A1 , A2 , B1 , B2 , C1  and 
C2  belong on a same circle. 

110.	 Let ABCD be convex quadrilateral so that BA BC≠  and k1  and k2  be the incircles 
of the triangles ABC and ADC, respectively. Let it exists a circle k such that it 
touches the extension of the side BA at A and the extension of the side BC at C, and 
it likewise touches the lines AD and CD. Prove that the common outer tangents to 
the circles k1  and k2  intersect at a point on the circle k. 

111.	 Let O be the circumcenter of triangle ABC, P and Q be inner point for the line 
segments CA and AB, respectively, K, L and M be the midpoints of the line segments 
BP, CQ and PQ, respectively and Γ be a circle which consists of the points K, L 
and M. If the line PQ is a tangent to the circle Γ, then OP OQ= . Prove it!

112.	 Let I be the incenter, and Γ be the circumcircle of a triangle  ABC. Let the line AI 
intersect Γ at A and D, and let E be a point on the arc BDC , and F be a point on 
the line segment BC so that

∠ =∠ < ∠BAF CAE BAC1
2

.

Let G be the midpoint of the line segment IF. Prove that the lines DG and EI 
intersect at a point of the circle Γ. 

113.	 Let P be a inside point of triangle  ABC and the lines AP, BP and CP remeet the 
circumcircle Γ of the  ABC at K, L and M, respectively. The tangent to the circle Γ at 
the point C meets the line AB at S. Let SC SP= . Prove that MK ML= . 

114.	 Let ABC be an acute triangle and let Γ be its circumcircle. Let l be any tangent to 
the circle Γ and let l la b,  and lc  be lines symmetric to l with respect to BC, CA 
and AB, respectively. Prove that the circumcircle of the triangle determined by the 
lines l la b,  and lc  touches the circle Γ.

115.	 Let ABC be a scalene acut triangle such that AC BC>  satisfies. Let O be the 
circumcenter, H be the orthocenter, and F the foot of the altitude at the vertex C. 
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Let P be a point on the line AB, such that it differes from A, and AF PF=  holds, 
and M be the midpoint of the line segment AC. Let X be the intersection of PH and 
BC, Y be the intersection of OM and FX, and Z be the intersection of OF and AC. 
Prove that the points F, M, Y and Z are on a same circle. 

116.	 In  ABC, M and N are points on the sides AB and AC, respectively, so that the line 
MN is parallel to the side BC. Let P be the intersection of the lines BN and CM. The 
circumcircles of the triangles  BMP and  CNP meet at two distinct points P and 
Q. Prove that ∠ =∠BAQ CAP . 

117.	 Let  ABC be not isoscaled triangle. Let AD, BE, CF be the bisector of the angles 
of this triangle ( D BC E AC F AB∈ ∈ ∈, , ). Let K K Ka b c, ,  be points on the 
incircle of the  ABC so that DKa , EKb , FKc  are tengents to the incircle and 
K BC K ACa b∉ ∉, ,  K ABc ∉ . Let A B C1 1 1, ,  be the midpoints of the sides BC, 
CA, AB. Prove that the lines A K B K C Ka b c1 1 1, ,  are concurrent on the incircle of 
 ABC.  

118.	 Let  ABC not be isoscaled triangle and k be its incircle centered at S. The circle 
k tangents the sides BC, CA, AB at points P, Q, R, respectively. The line QR meets 
BC at M. Let a circle which consists of the points B and C touches k at N. The 
circumcircle of the triangle MNP meets the line AP at L which differes from P. 
Prove that the points S, L and M are collinear.

119.	 In an acute triangle  ABC a point M is the midpoint of the side BC, and points D, 
E, F are feet of the altitudes at vertices A, B, C, respectively. Let H be the ortho-
center of the triangle  ABC, S be the midpoint of the line segment AH, and G be 
the intersection of the line segments FE and AH. If N is point of intersection of the 
median AH and the circumcircle of the  BCH, prove that ∠ =∠HMA GNS . 

120.	 In  ABC, M and N are points on the sides AB and AC, respectively, so that the 
line MN is parallel to BC. Let P be the point of intersection of BN and CM. The 
circumcircles of the triangles  BMP and  CNP meet at two distinct points P and 
Q. Prove that ∠ =∠BAQ CAP . 
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