
APMO 2025 – Problems and Solutions

Problem 1
Let ABC be an acute triangle inscribed in a circle Γ. Let A1 be the orthogonal projection of A
onto BC so that AA1 is an altitude. Let B1 and C1 be the orthogonal projections of A1 onto
AB and AC, respectively. Point P is such that quadrilateral AB1PC1 is convex and has the
same area as triangle ABC. Is it possible that P strictly lies in the interior of circle Γ? Justify
your answer.

Answer: No.

Solution
First notice that, since angles ∠AA1B1 and ∠AA1C1 are both right, the points B1 and C1 lie
on the circle with AA1 as a diameter. Therefore, AC1 = AA1 sin∠AA1C1 = AA1 sin(90

◦ −
∠A1AC) = AA1 sin∠C, similarly AB1 = AA1 sin∠B, and B1C1 = AA1 sin∠A. Hence; trian-
gles AC1B1 and ABC are similar.
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Let O be the circumcenter of ABC and AD be one of its diameters. Since ∠OAC = 1
2
(180◦ −

∠AOC) = 90◦ − ∠B = 90◦ − ∠AC1B1, it follows that AD is perpendicular to B1C1. Let
AD = 2R; recall that, from the law of sines, BC

sin∠A = 2R ⇐⇒ BC = 2R sin∠A. The area of
quadrilateral AB1DC1 is

B1C1 · AD
2

=
AA1 sin∠A · 2R

2
=

AA1 ·BC

2
,

which is indeed the area of ABC.
Since B1 and C1 are fixed points, the loci of the points P such that AB1PC1 is a convex
quadrilateral with the same area as ABC is a line parallel to B1C1. That is, perpendicular
to AD. Since the area of AB1DC1 is the same as the area of ABC, this locus is the line
perpendicular to AD through D, which is tangent to the circumcircle of ABC. Therefore, it is
not possible that the point P lies inside the circumcircle of ABC.
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Problem 2
Let α and β be positive real numbers. Emerald makes a trip in the coordinate plane, starting
off from the origin (0, 0). Each minute she moves one unit up or one unit to the right, restricting
herself to the region |x−y| < 2025, in the coordinate plane. By the time she visits a point (x, y)
she writes down the integer ⌊xα+yβ⌋ on it. It turns out that Emerald wrote each non-negative
integer exactly once. Find all the possible pairs (α, β) for which such a trip would be possible.

Answer: (α, β) such that α + β = 2.

Solution
Let (xn, yn) be the point that Emerald visits after n minutes. Then (xn+1, yn+1) ∈ {(xn +
1, yn), (xn, yn + 1)}. Either way, xn+1 + yn+1 = xn + yn + 1, and since x0 + y0 = 0 + 0 = 0,
xn + yn = n.
The n-th number would be then

zn = ⌊xnα + (n− xn)β⌋ =⇒ nβ + xn(α− β)− 1 < zn < nβ + xn(α− β),

in which

−2025 < xn − yn < 2025 ⇐⇒ n− 2025

2
< xn <

n+ 2025

2
.

Suppose without loss of generality that α ≥ β. Then

nβ +
n− 2025

2
(α− β)− 1 < zn < nβ +

n+ 2025

2
(α− β),

which reduces to ∣∣∣∣zn − α + β

2
n

∣∣∣∣ < 2025

2
(α− β) + 1.

On the other hand, zn+1 = ⌊xn+1α + yn+1β⌋ ∈ {⌊xnα + ynβ + α⌋, ⌊xnα + ynβ + β⌋}, which
implies zn+1 ≥ zn. Since every non-negative integer appears exactly once, in increasing order,
it follows that zn = n.
Therefore, for all positive integers n,∣∣∣∣n− α + β

2
n

∣∣∣∣ < 2025

2
(α− β) + 1,

which can only be possible if α + β = 2; otherwise, the left hand side would be unbounded.
If α + β = 2, consider xn =

⌈
n
2

⌉
and yn =

⌊
n
2

⌋
. If n is even,

zn =
⌊n
2
α +

n

2
β
⌋
= n;

if n is odd,

zn =

⌊
n+ 1

2
α +

n− 1

2
β

⌋
= n+

⌊
α− β

2

⌋
,

which equals n because 0 < β ≤ α < α+ β = 2 =⇒ 0 ≤ α− β < 2.
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Problem 3
Let P (x) be a non-constant polynomial with integer coefficients such that P (0) ̸= 0. Let
a1, a2, a3, . . . be an infinite sequence of integers such that P (i− j) divides ai−aj for all distinct
positive integers i, j. Prove that the sequence a1, a2, a3, . . . must be constant, that is, an equals
a constant c for all n positive integer.

Solution
Let a0 = P (0) ̸= 0 be the independent coefficient, i.e., the constant term of P (x). Then there
are infinitely many primes p such that p divides P (k) but p does not divide k. In fact, since
P (k) − a0 is a multiple of k, gcd(P (k), k) = gcd(k, a0) ≤ a0 is bounded, so pick, say, k with
prime factors each larger than a0.
Since P (k) divides ai+k−ai, p divides ai+k−ai. Moreover, since P (k+p) ≡ P (k) ≡ 0 (mod p),
p also divides ai+k+p−ai. Therefore, ai mod p is periodic with periods k+p and k. By Bezout’s
theorem, gcd(k + p, k) = 1 is also a period, that is, p divides ai+1 − ai for all i and p such that
p | P (k) and p ∤ k for some k. Since there are infinitely many such primes p, ai+1−ai is divisible
by infinitely many primes, which implies ai+1 = ai, that is, the sequence is constant.
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Problem 4
Let n ≥ 3 be an integer. There are n cells on a circle, and each cell is assigned either 0 or 1 .
There is a rooster on one of these cells, and it repeats the following operations:

� If the rooster is on a cell assigned 0, it changes the assigned number to 1 and moves to
the next cell counterclockwise.

� If the rooster is on a cell assigned 1, it changes the assigned number to 0 and moves to
the cell after the next cell counterclockwise.

Prove that the following statement holds true after sufficiently many operations:

If the rooster is on a cell C, then the rooster would go around the circle exactly
three times, stopping again at C. Moreover, every cell would be assigned the same
number as it was assigned right before the rooster went around the circle 3 times.

Solution 1
Reformulate the problem as a n-string of numbers in {0, 1} and a position at which the action
described in the problem is performed, and add 1 or 2 modulo n to the position according to
the action. Say that a lap is complete for each time the position resets to 0 or 1. We will prove
that the statement claim holds after at most two laps, after which the n-tuple cycles every
three laps.
Say the rooster stops at a position in a certain lap if it performs an action at that position on
that lap; otherwise, the rooster bypasses that position. We start with some immediate claims:

� The rooster has to stop at at least one of each two consecutive positions.

� The rooster stops at every position preceded by a 0. Indeed, if the numbers preceding that
position are 00 then the rooster will definitely stop at the second zero, and it the numbers
preceding that position are 10 then the rooster will either stop at 1 and go directly to the
position or bypass 1 and stop at the second zero, and then stop at the position.

� Therefore, if the rooster bypasses a position, then it is preceded by a 1, and that 1 must be
changed to a 0. This means that the rooster never bypasses a position in two consecutive
laps.

� The rooster bypasses every position preceded by 01. Indeed, the rooster stops at either 1
or at 0, after which it will move to 1; at any rate, it stops at 1 and bypasses the position.

Our goal is to prove that, eventually, for every three consecutive laps, each position is bypassed
exactly once. Then each position changes states exactly twice, so it gets back to its initial state
after three laps. The following two lemmata achieve this goal:

Lemma 1. If the rooster stops at a certain position in two laps in a row, it bypasses it on the
next lap, except for the n-string 1010 . . . 10, for which the problem statement holds.

Proof. If the rooster stopped at a position in lap t, then it is preceded by either (A) a 0 that
was changed to 1, (B) a 11 that was changed to 01, or (C) a 10 in which the rooster stopped
at 1. In case (A), the position must be preceded by 11 in the lap t + 1, which becomes 01, so
the rooster will bypass the position in the lap t+ 2. In case (B), the position will be bypassed
in lap t+ 1.
Now we deal with case (C): suppose that the position was preceded by m occurrences of 10,
that is, (10)m, on lap t and take m ≤ n

2
maximal. The rooster stopped at the 1 from each

occurrence of 10, except possibly the first one.
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First, suppose that n ≥ 2m + 2. After lap t, (10)m becomes either (00)m or 11(00)m−1 in lap
t+1. In the latter case, initially we had 1(10)m, which became 011(00)m−1. It will then become
a01(11)m−1 in lap t+2, in which the rooster will bypass the position. In the former case, (10)m

becomes (00)m, so it was either 00(10)m or 11(10)m in lap t, which becomes respectively a1(00)m

and 01(00)m in lap t + 1, respectively. In the second sub-case, it becomes b001(11)m−1 in lap
t+2, and the position will be bypassed. In the first sub-case, it must be 11(00)m after which it
becomes either 01(11)m or 1001(11)m−1. In any case, the position will be bypassed in lap t+2.
If n = 2m+ 1, the possible configurations are

(10)m0 → (00)m1 → (11)m0 → (10)m0,

the rooster stops at the 1 from the first 10 because it was preceded by a 0.

(10)m1 → (00)m0 → 0(11)m → 1(01)m,

or
(10)m1 → 11(00)m−10 → 01(11)m−11 → (10)m1,

In any case, the position is bypassed in lap t+ 2.
If n = 2m, the entire configuration is (10)m, m ≥ 2. If the rooster did not stop at the first 1, it
becomes 11(00)m−1 in the lap t+1, then 01(11)m−1 in the lap t+2, so the position is bypassed
in this last lap. If the rooster stopped at the first 1, it becomes (00)m, then (11)m, then (01)m,
then 10(00)m−1, then (11)m, and then it cycles between (11)m, (01)m and 10(00)m−1.
So, apart from this specific string, the rooster will stop at most two laps in a row at each
position.

Lemma 2. If the rooster bypasses one position on a lap, then it stops at that position on the
next two laps, with the same exception as lemma 1.

Proof. The position must be preceded by 1 in lap t. If it is preceded by 11, it changes to 10 in
lap t + 1. Then it becomes 00 because the 1 was already skipped in the previous lap, and the
rooster will stop at the position in the lap t+ 2.
Now suppose that the position was preceded by (01)m on lap t and take m ≤ n

2
maximal. It

becomes 10(00)m−1 or (00)m in lap t + 1. In the former case, in lap t + 2 it becomes either
00(11)m−1, after which the rooster stops at the position again, or (11)m, which we’ll study later.
In the former case, (00)m becomes (11)m or 01(11)m−1. In the latter case, the 0 was bypassed,
so it must be sopped in the next lap, becoming (10)m. In the (11)m case, in order to bypass the
position in lap t + 2, it must become (10)m. All in all, the preceding terms are (01)m. Then,
either 10(00)m−1 or (00)m, then either (11)m or 01(11)m−1, then (10)m. Then the second term
in (01)m is 1, then 0, then 1, and then 0, that is, it changed three times. So we fall under the
exception to lemma 1.

The result then immediately follows from lemmata 1 and 2.

Solution 2
Define positions, laps, stoppings, and bypassing as in Solution 1. This other pair of lemmata
also solves the problem.

Lemma 3. There is a position and a lap in which the rooster stops twice and bypasses once
(in some order) in the next three laps.

Proof. There is a position j the rooster stops for infinitely many times. Each time it stops at
j, it changes between stopping and bypassing j + 1. So the rooster stops and bypasses j + 1
infinitely many times. Then there is a lap in which the rooster stops at j + 1, and bypasses it
in the next. As in solution 1, it cannot bypass j + 1 two times in a row, so it stops at j + 1 in
the next lap.
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Lemma 4. If the rooster stops twice and bypasses once (in some order) at some position in
three consecutive laps, it also stops twice and bypasses once at the next position (in some order)
in the same laps (or in the next laps, in case the lap changes from one position to the other).

Proof. When the rooster bypasses the position, it must stop at the next one. In the two times
it stops at the position, the cell has different numbers on it, so the rooster will stop once and
bypass once at the next position.

By lemmata 3 and 4, there would be a moment that the rooster stops twice and bypasses once
(in some order) at any position after this moment. After this moment, if the rooster is in a
cell C in lap t, we know that it stopped; stopped-bypassed; and bypassed-stopped at C in laps
t, t+1, t+2. Since it stopped twice and bypassed once (in some order) in laps t+1, t+2, t+3,
it must stop at C in lap t+3. Moreover, the rooster stopped twice and bypassed once (in some
order) each cell between stopping at C in laps t and t+ 3, so every cell has the same assigned
number before and after going around the circle three times.

Solution 3
Let us reformulate the problem in terms of Graphs: we have a directed graph G with V =
{v1, v2, . . . , vn} representing positions and E = {vi → vi+1, vi → vi+2 | 1 ≤ i ≤ n} representing
moves. Indices are taken mod n. Note that each vertex has in-degree and out-degree both
equal to 2. We say that the edge vi → vi+1 is active and vi → vi+2 is inactive if the number on
vi is 0, or the edge vi → vi+2 is active and vi → vi+1 is inactive if the number on vi is 1. The
rooster then traces an infinite trail on the graph in the following manner;

� it starts at v1;

� if the rooster is at vi, it uses the active edge going out of vi to continue the path, and
changes the number on vi.

Take the first vertex that appears 3 times on the rooster’s trail, and suppose without any loss
of generality that it is v1 (otherwise, just ignore the path before the first time that this vertex
appears). Consider the sub-trail from the first to the third time v1 appears: C = v1 → · · · →
v1 → · · · → v1. Trail C induces a circuit C∗ on G that passes through v1 twice.
In between two occurrences of v1, the rooster must have completed at least one lap. Vertex v1
appears three times at C, so C contains at least two laps. Since (as per Solution 1) no vertex
is bypassed twice in a row, C∗ must contain every vertex. Moreover, v1 is the first (and only)
vertex that appeared three times on the rooster’s path, so each vertex appear at most twice on
C∗.

Lemma 5. Take V ′ to be the subset of V containing the vertices that only appears once on C∗

and E ′ to be the edges of G that don’t appear on C∗. So G′ = (V ′, E ′) is a simple cycle or
V ′ = E ′ = ∅.

Proof. We will first prove that each edge in C∗ appears exactly one. Suppose, for the sake of
contradiction, that there is an edge u → v that appears twice on C∗. So u must appear times
in C, because the active edge going out of u changes at each visit to it. So u = v1, but the
rooster only goes out of v1 twice in C, which is a contradiction.
Now, since C∗ does not have repeated edges, all four edges through v are in C∗ if v is visited
twice in this cycle. So the edges on E ′ cannot pass through vertices in V \ V ′, then G′ is
well-defined.
Since v ∈ V ′ is visited once on C∗, it has degin(v) = degout(v) = 1 in G′, so G′ is a union of
disjoint simple cycles. Each of these cycles completes at least one lap, and v1 is skipped on
these laps, so all cycles must use the edge vn → v2. But the cycles are disjoint, so there is at
most one cycle.

Lemma 6. The rooster eventually traverses a contiguous Eulerian circuit of G.
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Proof. If V ′ = E ′ = ∅, C∗ is already an Eulerian circuit traversed in C. If not, take u1 to be
the first vertex of C that is in V ′. Let U = u1 → · · · → uk → u1 be the cycle determined
by G′ by Lemma 5, C1 = v1 → · · · → u1 be the sub-path of C from the first v1 to u1, and
C2 = u1 → · · · → v1 be the rest of C.
Each vertex on V \ V ′ has been changed twice, so they would be in their initial states after C;
every vertex on V ′ has been changed only once, and therefore are not on their initial states. Let
us trace the rooster’s trail after it traversed C. By the minimality of u1, all the edges of C1 are
active after C, so the rooster traverses C1 after C. Moreover, each ui was visited exactly once
in C and has not yet used the edge ui → ui+1. Since all their states have changed, all edges of
U are active after C. Therefore, the rooster traverse U after C1, flipping all the vertices in U to
their initial states. Then, since every state in U was changed, the rooster traverses C2 instead
of U . The trail is then C → C1 → U → C2, and hen C1 → U → C2 is an Eulerian circuit.

Having this in mind, after the rooster completes an Eulerian circuit, it has passed through each
vertex twice and returned to its initial vertex, so the state of the rooster and of the edges are
the same before and after the Eulerian cycle. The rooster will then traverse the Eulerian circuit
repeatedly.
The edges vi → vi+1 move forward by one position and the edges vi → vi+2 move forward by
two positions. Since all edges are used, each time the rooster traverses the Eulerian circuit, it
moves forward a total of n(1 + 2) = 3n positions, which corresponds to three laps. The proof
is now complete.

Comment: Solution 1 presents a somewhat brute-force case analysis; the main ideas are

� Lemma 1: The rooster stops at one position in at most two consecutive laps, with one
notable exception.

� Lemma 2: If the rooster bypasses one position then it stops at it in the next two laps,
with the same notable exception.

Solution 2 has a recursive nature; the main ideas are

� Lemma 3: Proving that one position changes states exactly two out of three laps.

� Lemma 4: Given that this happens to one position, it also happens to the next position
in the same laps, so it happens to every position.

Solution 3 cleverly identifies the moves the rooster performs within a graph theoretical frame-
work. The main goal is to prove that the rooster traces an Eulerian circuit in a graph.

� Lemma 5: Analyzing what happens after the rooster first visits a position three times.

� Lemma 6: Proving that the rooster traces an Eulerian circuit.
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Problem 5
Consider an infinite sequence a1, a2, . . . of positive integers such that

100!(am + am+1 + · · ·+ an) is a multiple of an−m+1an+m

for all positive integers m,n such that m ≤ n.
Prove that the sequence is either bounded or linear.
Observation: A sequence of positive integers is bounded if there exists a constant N such that
an < N for all n ∈ Z>0. A sequence is linear if an = n · a1 for all n ∈ Z>0.

Solution
Let c = 100!. Suppose that n ≥ m+ 2. Then am+n = a(m+1)+(n−1) divides both c(am + am+1 +
· · · + an−1 + an) and c(am+1 + · · · + an−1), so it also divides the difference c(am + an). Notice
that if n = m+1 then am+n divides c(am+am+1) = c(am+an), and if n = m then am+n divides
both cam and 2cam = c(am + an). In either cases; am+n divides c(am + an).
Analogously, one can prove that if m > n, am−n = a(m−1)−(n−1) divides c(am−an), as it divides
both c(an+1 + · · ·+ am) and c(an + · · ·+ am−1).
From now on, drop the original divisibility statement and keep the statements “am+n divides
c(am+an)” and “am−n divides c(am−an).” Now, all conditions are linear, and we can suppose
without loss of generality that there is no integer D > 1 that divides every term of the sequence;
if there is such an integer D, divide all terms by D.
Having this in mind, notice that am = am+n−n divides c(am+n−an) and also c(am+n−am−an);
analogously, an also divides c(am+n−am−an), and since am+n divides c(am+an), it also divides
c(am+n−am−an). Therefore, c(am+n−am−an) is divisible by am, an, and am+n, and therefore
also by lcm(am, an, am+n). In particular, cam+n ≡ c(am + an) (mod lcm(am, an)).
Since am+n divides c(am + an), am+n ≤ c(am + an).
From now on, we divide the problem in two cases.

Case 1: there exist m,n such that lcm(am, an) > c2(am + an).
If lcm(am, an) > c2(am + an) > c(am + an) then both c(am + an) and cam+n are less than
cam+n ≤ c2(am + an) < lcm(am, an). This implies cam+n = c(am + an) ⇐⇒ am+n = am + an.
Now we can extend this further: since gcd(am, am+n) = gcd(am, am + an) = gcd(am, an), it
follows that

lcm(am, am+n) =
amam+n

gcd(am, an)
=

am+n

an
lcm(am, an) >

c2(am + an)
2

an

>
c2(2aman + a2n)

an
= c2(2am + an) = c2(am + am+n).

We can iterate this reasoning to obtain that akm+n = kam + an, for all k ∈ Z>0. In fact, if
the condition lcm(am, an) > c2(am + an) holds for the pair (n,m), then it also holds for the
pairs (m+ n,m), (2m+ n,m), . . . , ((k− 1)m+ n,m), which implies akm+n = a(k−1)m+n + am =
a(k−2)m+n + 2am = · · · = an + kam.
Similarly, am+kn = am + kan.
Now, am+n+mn = an+(n+1)m = am+(m+1)n =⇒ an + (n+ 1)am = am + (m+ 1)an ⇐⇒ man =
nam. If d = gcd(m,n) then n

d
am = m

d
an.

Therefore, since gcd(m
d
, n
d
) = 1, m

d
divides am and n

d
divides an, which means that

an =
m

d
· t = t

d
m and am =

n

d
· t = t

d
n, for some t ∈ Z>0,

which also implies

akm+n =
t

d
(km+ n) and am+kn =

t

d
(m+ kn), for all k ∈ Z>0.
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Now let’s prove that akd = tk = t
d
(kd) for all k ∈ Z>0. In fact, there exist arbitrarily large

positive integers R, S such that kd = Rm−Sn = (n+(R+1)m)− (m+(S+1)n) (for instance,
let u, v ∈ Z such that kd = mu− nv and take R = u+Qn and S = v +Qm for Q sufficiently
large.)
Let x = n+ (R+1)m and y = m+ (S +1)n. Then kd = x− y ⇐⇒ x = y+ kd, ax = t

d
x, and

ay = t
d
y = t

d
(x− kd) = ax − tk. Thus ax divides c(ay + akd) = c(akd + ax − tk), and therefore

also c(akd− tk). Since ax = t
d
x can be arbitrarily large, akd = tk = t

d
(kd). In particular, ad = t,

so akd = kad.
Since kad = akd = a1+(kd−1) divides c(a1 + akd−1), bk = akd−1 is unbounded. Pick p > akd−1 a
large prime and consider apd = pad. Then

lcm(apd, akd−1) ≥ lcm(p, akd−1) = pakd−1.

We can pick akd−1 and p large enough so that their product is larger than a particular linear
combination of them, that is,

lcm(p, akd−1) = pakd−1 > c2(pad + akd−1) = c2(apd + akd−1).

Then all the previous facts can be applied, and since gcd(pd, kd− 1) = 1, ak = ak gcd(pd,kd−1)

= kagcd(pd,kd−1) = ka1, that is, the sequence is linear. Also, since a1 divides all terms, a1 = 1.

Case 2: lcm(am, an) ≤ c2(am + an) for all m,n.
Suppose that am ≤ an; then lcm(am, an) = Man ≤ c2(am + an) ≤ 2c2an =⇒ M ≤ 2c2, that is,
the factor in the smaller term that is not in the larger term is at most 2c2.
We prove that in this case the sequence must be bounded. Suppose on the contrary; then there
is a term am that is divisible by a large prime power pd. Then every larger term an is divisible

by a factor larger than pd

2c2
. So we pick pd > (2c2)2, so that every large term an is divisible by

the prime power pe > 2c2. Finally, fix ak for any k. It follows from ak+n | c(ak+an) that (an) is
unbounded, so we can pick an and ak+n large enough such that both are divisible by pe. Hence
any ak is divisible by p, which is a contradiction to the fact that there is no D > 1 that divides
every term in the sequence.
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