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Problem 1.

Let ABC be an acute triangle such that CA ̸= CB with circumcircle ω and circumcentre O. Let
tA and tB be the tangents to ω at A and B respectively, which meet at X. Let Y be the foot of the
perpendicular from O onto the line segment CX. The line through C parallel to line AB meets tA
at Z. Prove that the line Y Z passes through the midpoint of the line segment AC.

Problem 2.

Let a, b and n be positive integers with a > b such that all of the following hold:

(i) a2021 divides n ,

(ii) b2021 divides n ,

(iii) 2022 divides a− b .

Prove that there is a subset T of the set of positive divisors of the number n such that the sum of
the elements of T is divisible by 2022 but not divisible by 20222.

Problem 3.

Find all functions f : (0,∞) → (0,∞) such that

f
Ä
y (f (x))3 + x

ä
= x3f(y) + f(x)

for all x, y > 0.

Problem 4.

Consider an n × n grid consisting of n2 unit cells, where n ⩾ 3 is a given odd positive integer.
First, Dionysus colours each cell either red or blue. It is known that a frog can hop from one cell
to another if and only if these cells have the same colour and share at least one vertex. Then,
Xanthias views the colouring and next places k frogs on the cells so that each of the n2 cells can
be reached by a frog in a finite number (possibly zero) of hops. Find the least value of k for which
this is always possible regardless of the colouring chosen by Dionysus.
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Problem 1

Problem. Let ABC be an acute triangle such that CA ∕= CB with circumcircle ω and
circumcentre O. Let tA and tB be the tangents to ω at A and B respectively, which meet
at X. Let Y be the foot of the perpendicular from O onto the line segment CX. The line
through C parallel to line AB meets tA at Z. Prove that the line Y Z passes through the
midpoint of the line segment AC.

Solution 1. Firstly observe that OAXB is cyclic, with diameter OX, and Y also lies on
this circle since OY ⊥ XC. Hence:

∠AZC = ∠XAB = ∠ABX = ∠AYX

and so CY AZ is cyclic.

Let M be the intersection of Y Z and AC and let CY intersect ω again at W . Using the
new cyclic relation we get ∠CY Z = ∠CAZ and then using that ZA is tangent to ω we
get ∠CAZ = ∠CWA, so ∠CYM = ∠CWA. Therefore the triangles CWA and CYM are
similar. But CW is a chord of ω, and Y is the foot of the perpendicular from O, hence Y is
the midpoint of CW . It follows from the similarity relation that M is the midpoint of AC,
as required.
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Solution 2. Let M be the midpoint of AC. We have ∠CAZ = ∠CBA and ∠ZCA =
∠BAC so the triangles CAZ and ABC are similar. The line CY X is the C-symmedian of
triangle ABC, and ZM is the corresponding median in triangle CAZ, hence by isogonality
∠AZM = ∠ACY . So

∠ZMA = 180◦ − ∠AZM − ∠MAZ = 180◦ − ∠ACY − ∠CBA (1)

Now observe ∠OMC = ∠OY C = 90◦, so CMY O is cyclic. Thus:

∠CYM = ∠COM =
1

2
∠COA = ∠CBA.

This shows that

∠YMC = 180◦ − ∠MCY − ∠CYM = 180◦ − ∠ACY − ∠CBA

Combining this with (1) we get that ∠YMC = ∠ZMA and as A,C,M are collinear, it
follows that Z,M, Y are collinear as required.

Solution 3. As in Solution 2 we have that CX is the A-symmedian of triangle ABC and
that triangle ABC is similar to triangle CAZ.

Let f be the spiral similarity which maps AC onto AB and let g be the reflection on the
perpendicular bisector of AB. Note that f is a rotation about A by an angle of ∠CAB
(clockwise in our figure) followed by a homothety centered at A by a factor of AB/AC. By
the similarity of triangles ABC and CAZ we have that g(f(Z)) = C, so actually f(Z) is
the other point of intersection, say C ′, of CZ with ω.

As in Solution 1 we have that CY AZ is cyclic. Therefore, letting W be the other point of
intersection of CY with ω, we have ∠WAB = ∠WCB = ∠CAY . We also have ∠ACY =
∠ABW . It follows that f(Y ) = W .

Let W ′ = g(W ). Then W ′ ∈ ω and since CW is the A-symmedian, then CW ′ passes through
the midpoint N of AB. Now CW ′ and C ′W intersect on the perpendicular bisector of AB
and therefore they intersect on N . It follows that N = AB ∩ C ′W = Af(C) ∩ f(Z)f(Y )
is the image of M = AC ∩ ZY under f . Since N is the midpoint of AB, then M is the
midpoint of AC.

Solution 4. Let E = AB∩CX and F = AW∩CZ. We have (C,W ;X,E) = −1. Projecting
from the line CX onto the line CZ from A we get that (C,F ;Z,∞) = −1. Thus Z is the
midpoint of CF . Since also Y is the midpoint of CW , we get that ZY bisects CA.
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Problem 2

Problem. Let a, b and n be positive integers with a > b such that all of the following hold:

(i) a2021 divides n ,

(ii) b2021 divides n ,

(iii) 2022 divides a− b .

Prove that there is a subset T of the set of positive divisors of the number n such that the
sum of the elements of T is divisible by 2022 but not divisible by 20222.

Solution. If 1011 | a, then 10112021|n and we can take T = {1011, 10112}. So we can assume
that 3 ∤ a or 337 ∤ a.

We continue with the following claim:

Claim. If k is a positive integer, then akb2021−k | n.

Proof of the Claim. We have that n2021 = nk · n2021−k is divisible by a2021k · b2021(2021−k)

and taking the 2021-root we get the desired result. □
Back to the problem, we will prove that the set T = {akb2021−k : k " 0} consisting of 2022
divisors of n, has the desired property. The sum of its elements is equal to

S =
2021!

k=0

akb2021−k ≡
2021!

k=0

a2021 ≡ 0 mod 2022 .

On the other hand, the last sum is equal to a2022−b2022

a−b
.

If 3 ∤ a, we will prove that S is not divisible by 9. Indeed if 3 ∤ a then we also have 3 ∤ b.
So if 3t || a − b then, since 31 || 2022, by the Lifting the Exponent Lemma, we have that
3t+1 || a2022 − b2022. This implies that S is not divisible by 9, therefore, 20222 doesn’t divide
S.

If 3 | a, then we have 337 ∤ a and a similar argument shows that 3372 ∤ S.
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Problem 3

Problem. Find all functions f : (0,∞) → (0,∞) such that

f
!
y (f (x))3 + x

"
= x3f(y) + f(x)

for all x, y > 0.

Solution 1. Setting y = t
f(x)3

we get

f(x+ t) = x3f

#
t

f(x)3

$
+ f(x) (1)

for every x, t > 0.

From (1) it is immediate that f is increasing.

Claim. f(1) = 1

Proof of Claim. Let c = f(1). If c < 1, taking x = 1 and y = 1
1−c3

we have y− yc3 = 1, so
yf(1)3 +1 = y and f(yf(1)3 +1) = f(y) = 13f(y). Thus f(1) = 0, a contradiction. Assume
now for contradiction that c > 1. We claim that

f(1 + c3 + · · ·+ c3n) = (n+ 1)c

for every n ∈ N. We proceed by induction, the case n = 0 being trivial. The inductive step
follows easily by taking x = 1, t = c3 + c6 + · · ·+ c3(k+1) in (1).

Now taking x = 1 + c3 + · · ·+ c3n−3, t = c3n in (1) we get

(n+ 1)c = f(1 + c3 + · · ·+ c3n) = (1 + c3 + · · ·+ c3n−3)3f

#
c3n

(cn)3

$
+ nc

giving

f

#
c3n−3

n3

$
=

c

(1 + c3 + · · ·+ c3n)3
< c = f(1) =⇒ c3n−3

n3
< 1 .

But this leads to a contradiction if n is large enough. □
Now for x = 1 we get f(y + 1) = f(y) + 1 and since f(1) = 1 inductively we get f(n) = n
for every n ∈ N. For m,n ∈ N, setting x = n, y = q = m/n we get

mn2 + n = f
!
qn3 + n

"
= f(yf(x)3 + x) = x3f(y) + f(x) = n3f (q) + n =⇒ f(q) = q .

Since f is strictly increasing with f(q) = q for every q ∈ Q>0 we deduce that f(x) = x for
every x > 0. It is easily checked that this satisfies the functional equation.
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Solution 2. We can also derive a contradiction in the case c > 1 as follows:

Since f is strictly increasing then

f(y) + f(1) = f(yf(1)3 + 1) > f(yf(1)3) =⇒ f(c3y) < f(y) + c

for every y > 0. So by induction we get f(c3n) < (n + 1)c for every n ∈ N. Setting x = c3n

and t = c3n+3 − c3n in (1) we get

(n+ 2)c > f(c3n+3) > f(c3n+3)− f(c3n) = c9nf

#
c3n+3 − c3n

f(c3n)3

$
> c9nf

#
c3n+3 − c3n

c3(n+ 1)3

$

But
c3n+3 − c3n

c3(n+ 1)3
=

c3n

(n+ 1)3
· c

3 − 1

c3
> 1

for c large enough. So (n+ 2)c > c9n+1 which leads to a contradiction if n is large enough.
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Problem 4

Problem. Consider an n × n grid consisting of n2 unit cells, where n ! 3 is a given odd
positive integer. First, Dionysus colours each cell either red or blue. It is known that a frog
can hop from one cell to another if and only if these cells have the same colour and share at
least one vertex. Then, Xanthias views the colouring and next places k frogs on the cells so
that each of the n2 cells can be reached by a frog in a finite number (possibly zero) of hops.
Find the least value of k for which this is always possible regardless of the colouring chosen
by Dionysus.

Note. Dionysus and Xanthias are characters from the play of Aristophanes ‘frogs’. Dionysus
is the known god of wine and Xanthias is his witty slave.

Solution 1. Let G be the graph whose vertices are all (n + 1)2 vertices of the grid and
where two vertices are adjacent if and only if they are adjacent in the grid and moreover the
two cells in either side of the corresponding edge have different colours.

The connnected components of G, excluding the isolated vertices, are precisely the bound-
aries between pairs of monochromatic regions each of which can be covered by a single
frog. Each time we add one of these components in the grid, it creates exactly one new
monochromatic region. So the number of frogs required is one more than the number of such
components of G.

It is easy to check that every corner vertex of the grid has degree 0, every boundary vertex
of the grid has degree 0 or 1 and every ‘internal’ vertex of the grid has degree 0, 2 or 4. It
is also easy to see that every component of G which is not an isolated vertex must contain
at least four vertices unless it is the boundary of a single corner of the grid, in which case it
contains only three vertices.

Writing N for the number of components which are not isolated vertices, we see that in
total they contain at least 4N − 4 vertices. (As at most four of them contain 3 vertices and
all others contain 4 vertices.) Since we also have at least 4 components which are isolated

vertices, then 4N = (4N − 4) + 4 " (n + 1)2. Thus N " (n+1)2

4
and therefore the minimal

number of frogs required is (n+1)2

4
+ 1.
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This bound for n = 2m+1 is achieved by putting coordinates (x, y) with x, y ∈ {0, 1, . . . , 2m}
in the cells and colouring red all cells both of whose coordinates are even, and blue all other
cells. An example for n = 9 is shown above.

Solution 2. Consider an n × m grid with n,m ! 3 being odd. We say that a column is
of ‘Type A’ if, when partitioned into its monochromatic pieces, the first and last piece have
the same colour with each one containing at least two cells. Otherwise we say that that it is
of ‘Type B’.

It is enough to show that the number F of frogs required satisfies the inequality

F " (m+ 1)(n+ 1)

4
+ 1− C (1)

where C is the number of boundary columns of Type A.

We will proceed by induction but we first need a preliminary result.

Claim. Consider two neighbouring columns of height n which when taken alone need k and
ℓ frogs respectively. Let k+ t be the number of frogs required when both columns are taken
together. (It is allowed for t to be negative.) Then the maximum value of t is given by the
following table according to the types of the two columns:

Column 1 Column 2 t

A A min
!

ℓ+1
2
, n−k

2

"

A B min
!

ℓ+1
2
, n−k+2

2

"

B A min
!

ℓ−1
2
, n−k

2

"

B B min
!

ℓ
2
, n−k+1

2

"

Proof of Claim. Note that for every two consecutive monochromatic regions of the second
column, one can be covered by a frog from the first column. This is because there is a cell in
the first column which neighbours both of them and a from can jump from it to the region of
the corresponding colour. So the new frogs needed is at most ℓ+1

2
. Furthermore, if we have

equality, then ℓ must be odd so its top and bottom cell have the same colour. Furthermore
the neighbouring cells in the first column must be of opposite colour, so the first column is
of Type A. If the first column is of Type B and the second column is of Type A, then even
ℓ
2
cannot be achieved. If it could, then ℓ ought to be even but this contradicts the fact that

the second column is of type A.

We draw the k− 1 horizontal lines separating the first column into monochromatics regions
and suppose that those they have heights h1, h2, . . . , hk. Note that the cells touching these
lines in the second column do not need any frog as a frog from the first column can jump to
them. So the remaining cells are partitioned in columns of heights h1 − 1, h2 − 2, . . . , hk−1 −
2, hk − 1 all of whose cells to the left are the same colour. Now in each one of them we
will need at most h1

2
, h2−1

2
, . . . , hk−1−1

2
, hk

2
frogs. Their sum is n−k+2

2
so we need at most that

many frogs. Equality holds only if h1, hk are even and the other hi’s are odd. In that case,
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since their sum is equal to n which is odd we must have that k is odd. So the first column
must be of Type A. Furthermore, if the second column is of Type A, then the first and
last monochromatic regions need at most h1−1

2
and hk−1

2
new frogs respectively. So the total

number of new frogs needed is at most n−k
2
. □

Suppose now that m = 3 and the middle column needs k frogs. So depending on the type
of the three columns we need at most the following number of frogs:

Column 1 Column 2 Column 3 Number of Frogs

A A A k + n−k
2

+ n−k
2

= n

A A B k + n−k
2

+ n−k+2
2

= n+ 1

A B A k + n−k
2

+ n−k
2

= n

A B B k + n−k
2

+ n−k+1
2

= n− 1
2

B A A k + n−k+2
2

+ n−k
2

= n+ 1

B A B k + n−k+2
2

+ n−k+2
2

= n+ 2

B B A k + n−k+1
2

+ n−k
2

= n+ 1
2

B B B k + n−k+1
2

+ n−k+1
2

= n+ 1

This proves (1) for the case m = 3 as the claim is F " n+2−C and it can be checked that
this is satisfied in all cases.

Suppose now by induction that the result is true for m and we are trying to prove it for
m + 2. We attach two columns at the end of the table. We need to show that we need
additionally at most n+1

2
+ Cold − Cnew number of frogs.

Suppose they need k and ℓ frogs respectively. So depending on the type of these two columns
with the previous one we need at most the following additional number of frogs:

Column 1 Column 2 Column 3 Number of Frogs

A A A k+1
2

+ n−k
2

= n+1
2

A A B k+1
2

+ n−k+2
2

= n+3
2

A B A k+1
2

+ n−k
2

= n+1
2

A B B k+1
2

+ n−k+1
2

= n+2
2

B A A k−1
2

+ n−k
2

= n−1
2

B A B k−1
2

+ n−k+2
2

= n+1
2

B B A k
2
+ n−k

2
= n

2

B B B k
2
+ n−k+1

2
= n+1

2

It can now be checked (using also that n is odd) that this completes the inductive step.
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