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Anpua 2020
3amada 1. 3a npupomauTe 6poeBu ag, a1, a9, ..., A3030 BAXKM CJIeIHABA pejallija
2ap42 = an+1 +4a,, n=0,1,2,...,3028.

Jokazku J1eKa HajMaJIKy eJeH oj OpoeBuTe ag, a1, G2, ..., 43030 € JAEJIUB CO 22020
Bagava 2. Hajau ru cure noapenenu 2020-ropku (21, T2, . . ., £2020) OJf HEHETATUBHU PEAJHI OPOEBH,
3a KOU HCTOBPEMEHO BaKaT CJCIHUTE TPU YCJIOBU:

(i) z1 < a9 < ... < 20203

(i) w2020 < 21 + 1;

(iii) IMocrom mepmyrarmja (Y1, Y2, - -, Y2020) Ha 2020-Topkara (x1, 2, ... ,T2020) TAKa IMITO

2020 2020

Z ((z; + 1) (yi + 1))2 -3 Z =3
=1

=1

3abeaewra: Hepmymayuja na nodpedena n-mopka € HO8G N-MOPKA, CO UCTAMA J0AAHCUNA, KOJO 2U
codpotcu ucmume 6pedrocmu, HO 3aNUWAHY 60 NPouseoser pedocaed. Ha npumep, (2,1,2) e nepmyma-
yuja wa (1,2,2), a u dseme mpojru ce nepmymavuu 1a mpojrama (2,2, 1). Cexoja nodpedena n-mopxa
€ NEPMYMAUUIA Camama Ha cebe.

Bamaya 3. Heka ABCDFEF e KOHBEKCEH IIECTAaroJiHUK Takop mro /A = /C = /FE, /B = /D =
/F u cumerpanure na BHarpemunre arn LA, /C n /E MUHYBaaT HU3 UCTA TOYKA.

Jlokazkn JileKa CHMETpaJIuTe Ha OCTaHATUTE Tpu BHaTpemuu arnu /B, /D u /F ucro taka MUHyBaaT
HHN3 NUCTa TOYKa.

3abenscwxa: LA =/FAB u cAaudHo 3a 0cCmanamume HAMPEUHY a2Al Ha WeCTa20AHUKOM.

Language: Macedonian Bpewme: 4 qaca u 30 munyTu
Cexkoja 3amada HOCH 7 TIOEHU

3a ma ocurypame dep HaTIpeBap BpedeH 3a maMmMerewme, Be mosmMe He 300pyBajre u He
ce MOBUKYBajTe Ha 3a/[aYNTEe HA MHTEPHET, HUTY MaK HA COIUjAJTHUTE MPEXKU, 3aKJIYIHO
co cabora, 18 Anpwuia, 23:59 yacor.
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Anpua 2020
Samaua 4. Egana mepmyrtanuja nHa 6poeBute 1, 2, ..., m ce HAPEKYBa ,c6eaca’ aKO He IMOCTOU MIPH-
pojier 6poj k < m, TakoB mTo upBuTe k 6poeBu Bo mepMmyTarujara ce bpoesure 1, 2) ..., k, BO HEKOj

pemocnien. Heka fp, e 6pojoT Ha cBeXKM HepMyTallud Ha MpUpOIHUTE OpoeBn 1, 2, ..., m.

Jokaxkn jieka 3a cekoj n > 3 BaxKu fp, > n - fn_1.

Baberewra: 3a m = 4, nepmymayujama e (3,1,4,2) e ceeorca, dodexa nepmymavujama (2,3,1,4) ne
e ceeorca.

Bamada 5. [amen e tpuaromauk ABC Bo koj ZBCA > 90°. Onumanara Kpy:kHuma I’ okoy Tpu-
aroiaukor ABC uma paguyc R. Bo BHaTpemmnocra Ha orceukara AB mocroum Touka P 3a koja mTo
noskuauTe Ha orceukure PB u PC' ce eqnaksu, a Jo/pkuHaTa Ha orcevdkara PA e R. Cumerpasara
Ha oTceukaTta PB ja cede onmianaTta KpyKHuma I' Bo Toukute D u F.

Hokaxxu neka Toukarta P e neHTap Ha BIOUIIAHATA KPYKHUIA BO TpuarojHukor CDE.

3amaya 6. Heka m > 1 e npupomen 6poj. Husara a1, a9, as, ... e gedunupana co: a; = ag = 1,
a3 = 4, m 3a cekoj n > 4, BaxKn
ap = m(anfl + an72) — an-3.

Opipesn v cuTe TPUPOIHA OPOEBH 1M 38 KOU CEKO]j UJIeH Ha HU3aTa € TOJH KBaJpar.

Language: Macedonian Bpewme: 4 qaca u 30 munyTu
Cexkoja 3amada HOCH 7 IIOEHI

3a ma ocurypame dep HaTIpeBap BpedeH 3a ImaMmerewme, Be mosmMe He 300pyBajTe u He
ce MOBUKYBajTe Ha 3a/[aYNTEe HA MHTEPHET, HUTY MaK HA COIUjAJTHUTE MPEXKU, 3aKJIYIHO
co cabora, 18 Anpwui, 23:59 yacor.
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Problem 1. The positive integers ag, a1, aso, ..., 3030 satisfy

20p12 = apy1 + 4a, forn=0,1,2,...,3028.

Prove that at least one of the numbers ag, a1, as, ..., azp3o is divisible by 22020,

Problem 2. Find all lists (z1, 22, ...,2Z2020) of non-negative real numbers such that the fol-
lowing three conditions are all satisfied:

(i) 21 < w2 < ... < @020

(ii) @o020 <1+ 15

(iii) there is a permutation (y1,y2, ..., Yy2020) of (z1,Z2,...,T2020) such that
2020 , 2020
S (@i +Dwi+1) =8 af.
i=1 =1

A permutation of a list is a list of the same length, with the same entries, but the entries are
allowed to be in any order. For example, (2,1,2) is a permutation of (1,2,2), and they are both
permutations of (2,2,1). Note that any list is a permutation of itself.

Problem 3. Let ABCDEF be a convex hexagon such that /A =/4C =/F and /B = /D =
ZF and the (interior) angle bisectors of ZA, ZC, and ZF are concurrent.

Prove that the (interior) angle bisectors of ZB, /D, and ZF must also be concurrent.

Note that /A= /ZFAB. The other interior angles of the hexagon are similarly described.

Problem 4. A permutation of the integers 1, 2, ..., m is called fresh if there exists no positive
integer k£ < m such that the first £ numbers in the permutation are 1, 2, ..., k in some order.
Let f,, be the number of fresh permutations of the integers 1, 2, ..., m.

Prove that f,, > n- f,_1 for all n > 3.

For example, if m = 4, then the permutation (3,1,4,2) is fresh, whereas the permutation
(2,3,1,4) is not.

Problem 5. Consider the triangle ABC with ZBCA > 90°. The circumcircle I' of ABC has
radius R. There is a point P in the interior of the line segment AB such that PB = PC and
the length of PA is R. The perpendicular bisector of PB intersects I' at the points D and E.

Prove that P is the incentre of triangle CDE.

Problem 6. Let m > 1 be an integer. A sequence ap,asg,as, ... is defined by a; = as = 1,
a3z = 4, and for all n > 4,
ap = M(An—1 + pn_2) — Gp_3.

Determine all integers m such that every term of the sequence is a square.
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Solutions to Problem 1

There are different ways of solving the problem. All of these use some induction argument.
Most of these proofs use one of the following two lemmas. In many places, they can be used
interchangeably.

Lemma. If a,b, c,d are integers with 2¢ = b+ 4a and 2d = ¢ + 4b, then 4 | b.

Proof: From 2d = ¢ + 4b we have that c¢ is even, and then from 2¢c = b + 4a it follows that b is
divisible by 4.

Lemma’ For 0 < n < 3030, denote by v, the largest integer such that 2¥~ divides a,,. We claim
the following;:

(%) Upt1 > min(v, + 2,042 + 1) forn=0,1,...,3028.

Proof: Let 0 < n < 3028 and let s = min(v,, + 2,v,42 + 1). Then s < v,, + 2 implies 2° | 4a,,
and s < v,40 + 1 implies 2° | 2a,,42. It follows that a,11 = 2a,42 — 4a, is also divisible by 27,
hence s < v,41, which proves (x).

Here are different ways of working out the induction argument that is crucial in the proofs.

Induction part, alternative A.

Statement: For k=0, 1, ..., 1010, the terms ax, ag+1, .- -, G3030—2x are all divisible by 22k
Reformulation of the statement using notation v, is the largest integer such that 2V~ divides a,:
we have v, > k for any n satisfying [$k] < n < 3030 — k. Here [2] denotes the smallest integer
not smaller than x.

Proof 1: We proceed by induction on k. For k = 0 the statement is obvious, so, for the inductive
step, suppose that ay,ag,1,...,a3030_2k are all divisible by 22*. Apply the Lemma with

[ Gi—1 Qi Qi1 Q42
((l,b,c,d) - ( 22k 727k> 22k 9 22k )

fori=k+1,k+2,...,3030 — 2k — 2. We obtain that 5z is divisible by 4 (and hence a; is
divisible by 22¥+2) for i = k+ 1, k+2, ..., i = 3030 — 2k — 2. This completes the induction.
For k = 1010 we obtain that aig1¢ is divisible by 22920, and the solution is complete. O

Remark. Remark, notice that by replacing 1010 with n (and hence, 2n with 2020 and 3n with
3030, this argument works, too. Then the claim is the following: if ag, a1, ..., as, are integers
that satisfy the recursion in the problem, then a,, is divisible by 22".

Proof 2: We will show by two step induction to k& > 0: we have v,, > k for any n satisfying
[1k] < n < 3030 — k. Here [z] denotes the smallest integer not smaller than z. Plugging in
k = 2020 and n = 1010 will give the desired result.

The case k = 0 is trivial, since the v,, are non-negative. For the case k = 1, let 1 < n < 3029,
then v, > min(v,—1 +2,v,41+ 1) > L.

Suppose we have it proven for some k > 1 and for k — 1. Let [1(k+1)] < n <3030 — (k + 1).
Then [1(k—1)] <n—1 <3030 — (k—1) and also [1k] < n+1 < 3030 — k. By induction
hypothesis we have v,_1 > k—1 and v,,11 > k. Then v, > min(v,—1+2,v,41+1) > k, finishing
the induction. O

Proof 3: The notation is the same as in alternative A1, but the induction step has two steps.

We use the lemma stated in the beginning as the first step. Assume now that 92k | ak, ..., a3030—2k
for some k > 1. We claim that then 22+2 | a5, ... ,a3030—2(k+1)- Notice first that any i on
the interval [k + 1,3030 — 2k — 1] satisfies the equation 2a;,1 = a; + 4a;_o, we have 221 | q,.
Furthermore, if i € [k + 1,3030 — 2k — 2], we have 22%*2 | q; since 22**! | g;,; and hence
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22k+2 | 2ai+1 and 22k+2 ‘ 40,1‘,1. O
Induction part, alternative B.

Statement: if ag, ay, ..., a3, are integers that satisfy the recursion in the problem, then a, is
divisible by 22”. The problem statement follows for n = 1010.

Proof: The base case of the induction is exactly the Lemma we just proved. Now, for the
inductive step, suppose that the statement holds for n = k — 1, and consider integers ag, a1,

.., a3k that satisfy the recursion. By applying the induction hypothesis to the four sequences
(ao, A1y eny a3k73)7 (al, Ay ...y a3k,2), (GQ, asg, ... ,a3k,1) and (ag, Ay .oy agk), we find that QAp—1,
ay, axs1 and ay o are all divisible by 22¥=2. If we now apply the lemma to a1 /2272, a;,/22F2
ap+1/2%72 and aj42/2%%72, we find that a;,/22%~2 is divisible by 4, so a;, is divisible by 22¥ as
desired. O

Induction part, alternative C.
Statement: Given positive integers ag, a1, ao, ..., asx such that
20p4+2 = apy1 + 4a, forn=0,1,2,...,3k — 2,
then 22 divides at least one of the numbers ag, a1, as, ..., asg.
Proof: The case k =1 is obtained from Lemma.
Suppose that for some k > 1, our claim is true for any sequence of 3k 4 1 positive integers that
satisfy similar defining relations. Then consider a sequence of 3(k + 1) + 1 = 3k + 4 positive
integers ag, a1, asg, ..., asg+3 such that
20n4+2 = Gpy1 + 4a, forn=20,1,2,...,3k + 1.

Then, we see that all numbers aq, as,..., asgi2 are even, and so we may set a; = 2b; for some
positive integers b; for i = 1,2,...,3k + 2. Then 2as = a1 + 4a¢ becomes

2by = b1 + 2ayp.
Note that
2042 = bpy1 +4b, forn=1,2,...,3k.
Hence the positive integers by, b, ..., bspy1 are even, and so we may write b; = 2¢; for some

positive integers ¢; for i = 1,2,...,3k + 1. Then 2b; = by 4+ 2a¢ becomes 2¢co = ¢1 + ag, which
does not give us anything. However, we have

2¢p42 = Cpy1 +4c, forn=1,2,..., 3k — 1.

So the sequence of positive integers ¢y, ¢, ..., C3x11 is a sequence of 3k + 1 positive integers that
satisfy the defining relations. By the inductive hypothesis, 22* divides at least one of the numbers
€1, Coy .., C3pq1. Since a; = 4c; for alli = 1,2,...,3k+1, it follows that 4-22F = 22(k+1) divides
at least one of the numbers aq, ..., asr+1. This completes the induction, and hence the proof. [J

Induction part, alternative D.

Statement: If vy, v, ..., V3030 is a sequence of non-negative integers satisfying (x), there must
be a k such that vy > 2020. In fact, we will show that v1919 > 2020.

These proofs use Lemma’.
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Proof 1: We will show by induction on k that v, > 2k for k < n < 3030 — 2k and v, > 2k +1
for K4+ 1 <n <3030 — 2k — 1. For k = 1010, the first statement implies that v1919 > 2020.

For k = 0 the first statement v,, > 0 is obvious, and the second statement follows using (x): we
have v, > v,41 +1>1 for 1 < n < 3029.

Now suppose that the inductive hypothesis holds for k = ¢£: we have v, > 2¢ for £ < n < 3030—2¢
and v, > 20+ 1 for £ +1 < n < 3030 — 2¢ — 1. For the first statement, consider an n with
£+ 1<n <3030 —2¢—2. Then using () and the inductive hypothesis, we obtain

Up > min(vy—1 + 2,Up41 + 1) > min(20 4+ 2,20+ 2) = 20 + 2

because v,—1 > 2¢ (as £ <n—1<3030—2¢) and v,,41 > 20+1 (asf+1 <n+1<3030—2¢-1).
Similarly, for £+ 2 <n < 3030 — 2¢ — 3 we find

Up > min(vy—1 + 2,0p41 + 1) > min(2¢ + 3,20+ 3) =20+ 3

because v,—1 > 20+ 1 (as +1<n—-1<3030—-20—1)and v,11 >20+2 (as £+ 1<n<
3030 — 2¢ — 2). This completes the induction.

O

Proof 2: The inequality v1919 > min(vigg9 + 2, v1011 + 1) gives us two cases to consider: either
V1010 = V1009 + 2 OF V1910 2> V1011 + 1.

Suppose first that v1919 > v1009 + 2. In this case we will show by induction on k that vig190_x >
v1009—k + 2 for 0 < k < 1009. The case k = 0 is assumed, so suppose that v1g10_¢ = V1009—¢ + 2
holds for some 0 < ¢ < 1009. We obtain

V1009—¢ > Min(vigro—¢ + 1, v1008—¢ + 2) > min(vigo9—r¢ + 3, vV100s—¢ + 2).

Because v1gp9_¢ < v1009—¢ + 3 we must have viggg_¢ > v1008_¢ + 2, completing the induction.
We conclude that

V1010 = V1009 + 2 > V1008 +4 = -+ = vo + 2020 > 2020.

In the second case, we show by induction on k that vi0104+x > vio114% + 1 for 0 < k < 2019.
Again, the base case k = 0 is assumed, so suppose that v1p104+¢ > v10114¢ + 1 holds for some
0 </ < 2019. We obtain

V10114+¢ > Min(vig104¢ + 2, V1012+¢ + 1) > min(vio114¢ + 3, v10124¢ + 1).

Because vip114+¢ < v10114¢ + 3, we must have vig114¢ > vi0124¢ + 1, completing the induction.
We conclude that

V1010 = Vip11 + 1 > vig12 +2 > -+ > w3030 + 2020 > 2020,

as desired. O
Alternative E.

This solution is different from the other solutions. Shift the sequence so that it starts at a_1910
and ends at asg29. We will show that ag is divisible by 22020, Consider ag. It either has at least as
many factors 2 as 2aq, or at least as many factors 2 as 4a_1 (this follows from 2a; = ag+4a_1).
Consider the first case, so ez(ag) > e2(2a1). By multiplying the original recursion by 2"~1, we
note that b, = 2"a,, satisfies the recursion b, = b,,_1 + 8b,,_». Furthermore, we assumed that
ea(bg) > ea(by). This implies that ez (b,) is constant for n > 1. Furthermore, clearly 22920 | bygoq,
so 22020 | p; and hence 22920 | qo. The case where eax(ag) > ea(4a_1) is similar; we then look
at b, = 4"a_,, which satisfies b, = 8b,,_o — b,_1 and use that 22920 | byp19. The rest of the
argument is the same. O
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Solutions to Problem 2

Answer. There are two solutions: (0,0,...,0,1,1,...,1) and (1,1,...,1,2,2,...,2).
—_——— —— —_——— ——
1010 1010 1010 1010

Solution A. We first prove the inequality

(& +1)(y+1))* > 4(2® +y°) (1)
for real numbers z,y > 0 satisfying |« — y| < 1, with equality if and only if {z,y} = {0,1} or
{z,y} ={1,2}.

Indeed,

Aa® +y°) = 4z +y) (2* — 2y +°)
< ((z+y)+ @ -2y + %))
=(zy+z+y+(z—y)?)?°
<(zy+a+y+1)?
=((z+ )y + 1)

where the first inequality follows by applying the AM-GM inequality on = 4+ y and 22 — zy + 2
(which are clearly nonnegative). Equality holds in the first inequality precisely if z +y =
22—y +y? and in the second one if and only if |z — y| = 1. Combining these equalities we have
r+y=(z—y)?+ay=1+azyor (z—1)(y— 1) =0, which yields the solutions {z,y} = {0,1}
or {z,y} = {1,2}. Now, let (x1,2,...,22020) be any sequence satisfying conditions (i) and
(ii) and let (y1,ys2,--.,Y2020) be any permutation of (z1,xso,...,T2020). As 0 < min(z;,y;) <
max(x;,y;) < min(z;,y;) + 1, we can applying inequality (1) to the pair (z;,y;) and sum over all
1 <4 <2020 to conclude that

2020 2020 2020
Y (@it D+ 1) =4) (2} +y?) =8 ai.
i=1 i=1 i=1

Therefore, in order to satisfy condition (iii), every inequality must be an equality. Hence, for
every 1 < i < 2020 we must have {x;,y;} = {0,1} or {z;,v:} = {1,2}. By condition (ii) ,we see
that either {z;,y;} = {0,1} for all ¢ or {x;,y;} = {1, 2} for all 4.

If {x;,y;} = {0,1} for every 1 <4 < 2020, this implies that the sequences (z1,Za, ..., Z2020) and
(y1, Y2, - - -, Y2020) together have 2020 zeroes and 2020 ones. As (y1,Y2,.-.,¥Y2020) IS & permuta-
tion of (1,2, ...,Z20920) this implies that (z1,za, ..., T2020) = (0,0,...,0,1,1,...,1) with 1010
zeroes and 1010 ones. Conversely, note that this sequence satisfies conditions (i), (ii), and (iii)
(in (iii), we take (y1,92,...,¥2020) = (Z2020, %2019, ---,21)), showing that this sequence indeed
works. The same reasoning holds for the case that {z;,y;} = {1,2} for all 4. O

Comment. There are multiple ways to show the main inequality (1):

o Write
(+ DY+ = (e + D)y +1)? = ((z -y —-1)°
=4(x +y)(zy + 1)
> Az +y)(xy + (x —y)?)
=4(z® 4+ 9°),

where equality holds precisely if |z —y| =1 and (x — 1)(y — 1) = 0.
o Write

(z+1)%@y+1)° 42’ —4y° = (¢ = 1)’(y — 1)’ + 4z +y) (1 — (z —y)?) >0,

where equality holds precisely if (x — 1)(y — 1) = 0 and (z — y)? = 1.
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e One can rewrite the difference between the two sides as a sum of nonnegative expressions.
One such way is to assume that y > = and then to rewrite the difference as

2y —2°+ (@ +1—-y)(4y* — 42 + 2zy + w4+ 3y + 1),

where 22(y —2)? > 0, 2 +1—y > 0 and 4y? — 42 + 22y + 2+ 3y +1 > 0, so in the equality
case we must have z + 1 —y =0 and z(y — 2) = 0.

e Again assume y > x; substitute y = z 4+ u with 0 <« < 1 and rewrite the difference as
22 (x+u—2)% + 2%(2 — 2u) + (4 + 6u — 10u?)z + (1 + 2u + u® — 4u?),
of which each summand is nonnegative, with equality case u =1 and = € {0, 1}.

e Fix 2 > 0. We aim to show that the function

Fy) = ((z+ 1)y +1))* = 4(a® +5°),

viewed as polynomial in y, is nonnegative on the interval [z,x + 1]. First note that for
y =z and y = z + 1 the function equals

(2% —22)* 4222 + 42 +1>0 and (% —2)2 >0
respectively. The derivative of f with respect to y equals
20z 4+ 1)% 4+ 2(x + 1)%y — 1292,

which is a quadratic with negative leading coefficient that evaluates as 2(z + 1)2 > 0
for y = 0. Therefore, this quadratic has one positive and one negative root. Therefore,
on [0,00), the function f will be initially increasing and eventually decreasing, hence the
minimum on the interval [z,2 4+ 1] will be achieved on one of the endpoints. To have
equality, we must have 22 — 2 = 0, hence = € {0, 1}.

o Observe that ((z +1)(y +1))? — 4(2® + y3) is the discriminant of
p(z) = (@ —ay+y*)2" = (@ + Dy + Dz + (v +y).

Note that the leading coefficient 22 — xy + y? = (v — y)? + xy is positive unless z = y = 0,
in which case ((0+ 1)2(0+ 1)2) > 4-0% + 4 - 03. Substituting z = 1, we get

p(1) = (" —ay+¢y*) — @+ Dy + )+ (@+y) = (= —-y)*-1<0.

It follows that the discriminant is non-negative. It equals zero if and only if [z —y| = 1 and
p(2) attains its minimum at z = 1. Without loss of generality y = x 4+ 1. The minimum is

attained at
[o e+ +1) 2% 4 3z + 2
22—y +y?) 222+ 20 +2
which reduces to 2% = z. Therefore, the only critical points are (z,y) = (0,1) and (z,y) =
(1,2).

e Without loss of generality y > x. Let z = ‘”T” and a = y — 2. Note that z > 0 and
0<a< min{%, z}. We can rewrite the inequality in terms of z and a.

(z+Dy+1)?—4d2® —dy® = (z+ 1+ a)(z+1—a))® —4(z — a)® — 4(z + a)®
= ((z+1)* — a?)? — 82° — 2424°
=a* — (242 +2(z + 1)%)a® + ((z + 1)* — 827)

This is a quadratic in a?. It attains its minimum at a? = 12z + (2 + 1)2 > 1. Therefore it
is strictly decreasing in a on the interval [0, min{%, z}. Ifa= %, then y = z + 1. It follows
that

(z4+D(y+1)? —4d2® 4y = (x + D)(z +2))* —42® —4(z+ 1)) =2*(z - 1)* >0
with equality if and only if x =0 or x = 1. If a = 2, then = = 0. It follows that
(+D(y+1))?—42’ — 4y’ = (y + 1) — 4y’ = y*(1 —y) + 2y(1 = y*) + (1 = 9*) 2 0

with equality if and only if y = 1. Therefore (0,1) and (1,2) are the only critical points.

6
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Solutions to Problem 3

Solution A. Denote the angle bisector of A by a and similarly for the other bisectors. Thus,
given that a, ¢, e have a common point M, we need to prove that b, d, f are concurrent. We
write Z(z,y) for the value of the directed angle between the lines x and y, i.e. the angle of the
counterclockwise rotation from z to y (defined (mod 180°)).

Since the sum of the angles of a convex hexagon is 720°, from the angle conditions we get
that the sum of any two consecutive angles is equal to 240°. In particular, it now follows that
Z(bya) = Z(e,b) = Z(d,e) = ZL(e,d) = Z(f,e) = Z(a,f) = 60° (assuming the hexagon is
clockwise oriented).

Let X = ABNCD,Y = CDNEF and Z = EFNAB. Similarly, let P = BCNDE, Q = DENFA
and R = FAN BC. From /B + ZC = 240° it follows that Z(ZX,XY) = Z(BX, XC) = 60°.
Similarly we have /(XYY Z) = A(YZ,ZX) = 60°, so triangle XY Z (and similarly triangle
PQR) is equilateral. We see that the hexagon ABCDEF is obtained by intersecting the two
equilateral triangles XY Z and PQR.

We have Z(AM,MC) = Z(a,c) = Z(a,b) + £(b,¢) = 60°, and since

Z(AM,MC) = Z(AX,XC) = Z(AR, RC) = 60°,

A,C,M, X, R are concyclic. Because M lies on the bisector of angle /X AR, we must have
MR = MX, so triangle M RX is isosceles. Moreover, we have Z/(MR,MX) = Z/(CR,CX) =
Z(BC,CD), which is angle C of the hexagon. We now see that the triangles M RX, M PY and
MQZ are isosceles and similar. This implies that there is a rotation centered at M that sends
X,Y and Z to R, P and Q respectively. In particular, the equilateral triangles XY Z and PQR
are congruent.

It follows that there also exists a rotation sending X,Y, Z to P, Q, R respectively. Define N as
the center of this rotation. Triangles NXZ and N PR are congruent and equally oriented, hence
N is equidistant from XZ and PR and lies on the inner bisector b of /B (we know N lies on
the inner, not the outer bisector because the rotation centered at N is clockwise). In the same
way we can show that N is on d and on f, so b,d, f are concurrent at N. (I

Remark. The key observation (a rotation centered at M sends AXY Z to ARQP) can be estab-
lished in slightly different ways. E.g., since A, M, R, X are concyclic and A, M, Q, Z are concyclic,
M is the Miquel point of the lines XZ, RQ, X R, Z@Q, hence it is the center of similitude s send-
ing X7 to R_Q. Repeating the same argument for the other pairs of vectors, we obtain that s
sends AXY Z to ARQP. Moreover, s is a rotation, since M is equidistant from X7 and RQ.

Remark. The reverse argument can be derived in a different way, e.g., defining IV as the common
point of the circles BXPD, DYQF, FZRB, and showing that ANXZ = ANPR, etc.
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Solution B. As in Solution A, we prove that the hexagon ABCDEF is the intersection of the
equilateral triangles PQR and XY Z.

Let d(S,AB) denote the signed distance from the point S to the line AB, where the neg-
ative sign is taken if AB separates S and the hexagon. We define similarly the other dis-
tances (d(S, BC), etc). Since M € a, we have d(M,ZX) = d(M,QR). In the same way, we
have d(M,XY) = d(M,RP) and d(M,Y Z) = d(M, PQ). Therefore d(M,ZX)+ d(M,XY) +
dM,YZ) =d(M,QR) +d(M,RP) + d(M, PQ).

We now use of the following well-known lemma (which can be easily proved using areas) to de-
duce that triangles PQR and XY Z are congruent.

Lemma. The sum of the signed distances from any point to the sidelines of an equilateral triangle
(where the signs are taken such that all distances are positive inside the triangle) is constant and
equals the length of the altitude.

For N = bNd we now find d(N,ZX) = d(N,RP) and d(N, XY) = d(N, PQ). Using again the
lemma for the point N, we get d(N,ZX) 4+ d(N,XY)+ d(N,YZ) = d(N,QR) + d(N,RP) +
d(N, PQ). Therefore d(N,Y Z) = d(N,QR), thus N € f. O

Remark. Instead of using the lemma, it is possible to use some equivalent observation in terms
of signed areas.

Solution C. We use the same notations as in Solution A. We will show that a, ¢ and e are
concurrent if and only if
AB+CD+ EF = BC + DE + FA,

which clearly implies the problem statement by symmetry.

Let @ be the vector of unit length parallel to a directed from A towards the interior of the
hexagon. We define analogously Z;, etc. The angle conditions imply that opposite bisectors of the
hexagon are parallel, so we have @ || d, b || & and @ || f. Moreover, as in the previous solutions,
we know that @, ¢ and € make angles of 120° with each other. Let M4 =cNe, Mc =eNa and
Mg =anc Then My, M, Mg form an equilateral triangle with side length denoted by s.
Note that the case s = 0 is equivalent to a, ¢ and e being concurrent.

Projecting MgA+ AB = MgB = MzC + CB onto € = —5, we obtain

AB-b—CB-b=MgC-b— MpA-b=MpA-&— MpC -é.
8
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Writing ¢ = /B = 1/D = J /F, we know that AB-b=—AB- cos(¢p), and similarly CB-b=
—CB - cos(¢). Because MpA and MyC intersect e at 120° angles, we have MpA - € = iMpA
and MEC -€= %MEC. We conclude that

2cos(p)(AB — CB) = MgC — MgA.

Adding the analogous equalities 2 cos(p)(CD — ED) = MaE — M4C and 2cos(p)(EF — AF) =
McA — McE, we obtain

2cos(¢)(AB+CD + EF —CB — ED — AF) = MgC — MpA+ MAE — MAC + McA — McE.

Because M4, Mo and Mg form an equilateral triangle with side length s, we have MpC —
MsC = £s, McA — MgA = +s, and MaE — McE = +s. Therefore, the right hand side
MpC—MgA+ MsE—MAsC+ McA— McFE equals s+ s+ s, which (irrespective of the choices
of the +-signs) is 0 if and only if s = 0. Because cos(p) # 0, we conclude that

AB+CD+ EF =CB+ ED+ AF < s=0 <= a, ¢, e concurrent,

as desired. O

Remark. Equalities used in the solution could appear in different forms, in particular, in terms
of signed lengths.

Remark. Similar solutions could be obtained by projecting onto the line perpendicular to b
instead of b.

Solution D. We use the the same notations as in previous solutions and the fact that a || d,
b |l e and ¢ || f make angles of 120°. Also, we may assume that F and C are not symmetric in a
(if they are, the entire figure is symmetric and the conclusion is immediate).

We consider two mappings: the first one s : a =+ BC — d sending A’ — B’ — S is defined such
that A’B’ || AB and B’S || b, and the second one t : a - EF — d sending A’ — F’ +— T is defined
such that A’F’ || AF and F'T || f. Both maps are affine linear since they are compositions of
affine tranformations. We will prove that they coincide by finding two distinct points A’, A” € a
for which s(A’) = t(A’) and s(A”) = ¢t(A”). Then we will obtain that s(A) = ¢(A), which by
construction implies that the bisectors of /B, /D and ZF are concurrent.

We will choose A’ to be the reflection of C in e and A” to be the reflection of E in c. They are dis-
tinct since otherwise C' and E would be symmetric in a. Applying the above maps a — BC and
a — EF to A’, we get points B’ and F’ such that A’B’CDEF’ satisfies the problem statement.
However, this hexagon is symmetric in e, hence the bisectors of ZB’, /D, /F’' are concurrent
and s(A’) = t(A’). The same reasoning yields s(A”) = t(A”), which finishes the solution. O

Remark. This solution is based on the fact that that two specific affine linear maps coincide.
Here it was proved by exhibiting two points where they coincide. One could prove it in another
way, exhibiting one such point and proving that the ‘slopes’ are equal.

Remark. There are similar solutions where claims and proofs could be presented in more ‘ele-
mentary’ terms. For example, an elementary reformulation of the ‘slopes’ being equal is: if b’
passes through B’ parallel to b, and f’ passes through F’ parallel to f, then the line through
bN f and b’ N f’ is parallel to a (which is parallel to d).

Solution E. We use the same notations as in previous solutions.

Since the sum of the angles of a convex hexagon is 720°, from the angle conditions we get
4B+ £C = 720°/3 = 240°. From £ZB + ZC = 240° it follows that the angle between ¢ and b
equals 60°. The same is analogously true for other pairs of bisectors of neighboring angles.
Consider the points O, € a, O, € ¢, O, € e, each at the same distance d’ from M, where
d' > max{MA, MC, M E}, and such that the rays AO,, CO., EO, point out of the hexagon. By

9
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construcion, O, and O, are symmetrical in e, hence 0,0, L b. Similarly, 0.0, 1 d, O.O, L f.
Thus it suffices to prove that perpendiculars from B, D, F to the sidelines of AO,0.O,. are
concurrent. By a well-known criteria, this condition is equivalent to equality

0,B* - 0.B*>+0.D* - 0.D* + O.F* — O,F* = 0. (%)

To prove (x) consider a circle w, centered at O, and tangent to AB and AF and define circles
we and w, in the same way. Rewrite O,B? as 7”3 + B, B2, where r, is the radius of wg, and B, is
the touch point of w, with AB. Using similar notation for the other tangent points, transform
(*) into

B,B? - B.B?>+ D,D? - D.D* + F.F? - F,F? = 0. ()

Furthermore, Z0.0,B, = ZMO,B, + £0.0,M = (90° — ) + 30° = 120° — ¢, where ¢ =
%ZA. (Note that ¢ > 30°, since ABCDEF is convex.) By analogous arguments, Z0,0.B. =
/£0.0.D, = £0.0.D, = L0,0.F, = Z0O.0O,F, = 120°— . It follows that rays O, B, and O.B.
(being symmetrical in e) intersect at U, € e forming an isosceles triangle AO,U,O,. Similarly
define AO.U,O, and AO.U.O,. These triangles are congruent (equal bases and corresponding
angles). Therefore we have O,U. = U.O, = O.U, = U,O. = O.U. = U.O,. Moreover, we
also have B,U, = O, U, —r, = O,U. — r, = F,U. = x, and thus similarly D.U, = B.U. = v,
F.U.=D.U, = z.

Now from quadrilateral BB,U, B, with two opposite right angles B, B>~ B.B* = B.U?~B,U? =
y? — 2. Similarly D.D? - D.D? = D,U? -~ D.U? = 2? —y? and F.F? - F,F? = F,U? - F.U? =

22 — 22, Finally, we substitute this into (), and the claim is proved. (]

Remark. Circles wg, we. and we could be helpful in some other solutions. In particular, the
movement of A along a in Solution D is equivalent to varying r,.

10
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Solutions to Problem 4

Solution A. Let o = (01,...,0,-1) be a fresh permutation of the integers 1,2,...,n — 1. We
claim that for any 1 < i <n — 1 the permutation

i
U( ) = (017'"50i717n70’i7-~-70’n71)

is a fresh permutation of the integers 1,2,...,n. Indeed, let 1 < k < n —1. If k > i then
we have n € {agz),...,a,(j)}, but n ¢ {1,2,...,k}. And if & < i we have £ < n — 1, and
{O’%Z), e a,(j)} ={o1,...,0k} #{1,2,...,k}, since o is fresh. Moreover, it is easy to see that

when we apply this construction to all fresh permutations of 1,2, ..., n—1, we obtain (n—1)- f,,_1
distinct fresh permutations of 1,2,...,n.

Note that a fresh permutation of 1,2,...,n — 1 cannot end in n — 1, and hence none of the
previously constructed fresh permutations of 1,2,...,n will end in n — 1 either. Therefore, we

will complete the proof by finding f,,_1 fresh permutations of 1,2,...,n that end in n — 1. To
do this, let ¢ = (01,...,0n,-1) be a fresh permutation of 1,2,...,n — 1 and let j be such that
0; =n — 1. Define

(T/ = (01,. <3 05-1,1,05415--+,0p-1,1 — 1),

then clearly ¢’ is a permutation of 1,2,...,n that ends in n — 1. We show that ¢’ is fresh, so
let 1<k<n-—1Iftk>jthenne {o],...,0.} but n & {1,2,... k};if k< j,thenk<n—1
and {of,...,0.} = {o1,...,06} # {1,2,...,k}, since o is fresh. So we have constructed f,_1
additional fresh permutations of 1, 2, ..., n (which again are all different), and the total number
fn of fresh permutations of 1, 2, ..., n must at least be (n—1) f,—1+ fn—1 = nfn_1, as required.
O

Comment. A similar way to construct n fresh permutations of 1, 2, ..., n for each fresh
permutation o of 1, 2, ..., n — 1 is as follows: increase all entries of ¢ by 1, and then add the
number 1 anywhere; all these permutations are fresh, except the ones where 1 is added at the
front, which can be made fresh by swapping the 1 and the 2. It is again straightforward to check
that we obtain nf,_; permutations that are fresh and distinct, although a little extra care is
needed to account for the fact that we increased the entries of our original permutation.

Solution B. Assuming n > 3, we construct f,_; - n different fresh permutations.

Consider a fresh permutation of the n — 1 numbers 1,3,4,...,n (the number 2 has been re-
moved), by which we mean a permutation (z1,...,2,—1) such that z; # 1 and {z1,...,2x} #
{1,3,...,k+1} for all kK with 2 < k <n — 2. There are exactly f,,—1 such permutations.

By inserting 2 anywhere in such a permutation, i.e. before or after all entries, or between two
entries x;, z;y1, we generate the following list of n distinct permutations of 1,2,...,n, which we
claim are all fresh:

(27£C17...,{I?n,1)7 ey (£C17...,5172'7172,.%“...,%”,1), ey ((El,...7$n,1,2).

In order to verify freshness, suppose that some permutation above is not fresh, that is, for some
1 <k <mn-—1, the first k elements are 1,..., k. If K = 1 then the first element is 1; but the first
element is either 2 or x7 and z1 # 2, so this is not possible. If k& > 2 then the first k£ elements

must contain 2 and x1,...,25—1, so {z1,...,zx-1} = {1,3,...,k}, in contradiction to the fact
that (x1,...,2,—1) is fresh.
We have thus constructed f,,_; - n different fresh permutations, so f,, > fn_1 - n. O

Comment. Note that the construction from solution B can also be performed by placing n —1
instead of 2, or indeed any k between 2 and n — 1 (in which case it will work for n > k + 1).

Moreover, similar arguments can be made while choosing to work with non-fresh permutations
rather than fresh permutations. Indeed, in order to show that n!— f, < n((n—1)!— f,_1) for all
n > 3, which is equivalent to the problem statement, one can argue as follows. Given a non-fresh

permutation (o1,...,0,) of 1,2,... n, erasing n — 1 from it and changing n to n — 1 yields a
permutation which cannot be fresh. Moreover, each non-fresh permutation of 1,2,...,n — 1 can
be obtained in this way from at most n different non-fresh permutations of 1,2, ...,n. This type

of argument would essentially mirror the one carried out in Solution B.

11
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Solution C. By considering all permutations of 1,2,...,n and considering the smallest k for
which the first £ numbers are 1,2,..., % in some order, one can deduce the recursion
n
Skt o=
k=1

which holds for any n > 1.
Therefore, if n > 3 we have

O=nl—(n+1)n-1)'+m-1)(n—-2)!
n—1

n—2
=k fi—=(n+1)> (n=1=k)! fit(n=1)> (n=2—k)!- fi
k=1

1

I
M=

B
Il

1

=~
Il

:fn*nfn_1+i(n*27k)!~((n*k‘)(n7k71)*(n+1)(n71€*1)+(n71))'fk

n—2
:fn_nfn—1+2(n_2_k)'k(k+2_n)fkgfn_nfn—la
k=1
which rewrites as f, > nfn,_1. O

Solution D. We first show that for any n > 2 we have

n—1
fo=> k(n—1-k) fi
k=1
To deduce this relation, we imagine obtaining permutations of 1,2,...,n by inserting n into a
permutation of the numbers 1,2,...,n — 1. Specifically, let (o1,...,0,-1) be any permutation

of 1,2,...,n—1, and let 1 < k <n — 1 be minimal with {o1,...,0,} ={1,2,...,k}. Note that
there are (n — 1 — k)! - fi such permutations. Furthermore, inserting n in this permutation will
give a fresh permutation if and only if n is inserted before oy, so there are k options to do so.
Consequently, if n > 3,

n—1

fa=) kln—1=k) fi

k=1

n—2
=(m=1) facr+ Y _k(n—1-k)!-fi

k=1
n—2

> (n—1)- facr + 3 k(n—2— )L i
k=1

= (’ﬂ— ]-) : fnfl +fn71 =n: fnfh

completing the proof. O

Comment. Fresh permutations are known as indecomposable permutations or irreducible per-
mutations in the literature. The problem asks to prove that the probability that a randomly
chosen permutation of 1, 2, ..., n is indecomposable is a non-decreasing function of n. In fact,
it turns out that this probability goes to 1 as n — oco: for large n, almost all permutations of 1,
2, ..., n are indecomposable. More can be found in:

Y. Koh & S. Ree. Connected permutation graphs. Discrete Mathematics 307 (21):2628-2635,
2007.

12
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Solutions to Problem 5

Solution A. The angle bisector of ZECD intersects the circumcircle of CDE (which is T') at
the midpoint M of arc DBE. It is well-known that the incentre is the intersection of the angle
bisector segment C'M and the circle with centre at M and passing through D, E. We will verify
this property for P.

E

By the conditions we have AP = OA = OB = OC = OD = OF = R. Both lines OM
and APB are perpendicular to ED, therefore AP||OM; in the quadrilateral AOM P we have
AP =0OA =AM = R and AP||OM, so AOMP is a rhombus and its fourth side is PM = R.
In the convex quadrilateral OM BP we have OM|PB, so OMBP is a symmetric trapezoid;
the perpendicular bisector of its bases AO and PB coincide. From this symmetry we obtain
MD =0OD =R and ME = OF = R. (Note that the triangles OEM ad OM D are equilateral.)
We already have MP = MD = MFE = R, so P indeed lies on the circle with center M and
passing through D, E. (Notice that this circle is the reflection of T" about DE.)

From PB = PC and OB = OC we know that B and C are symmetrical about OP; from the
rhombus AOMP we find that A and M are also symmetrical about OP. By reflecting the
collinear points B, P, A (with P lying in the middle) we get that C, P, M are collinear (and P is
in the middle). Hence, P lies on the line segments CM. d

13



@

uropean Girls’ Mathematical Olympiad

Solution B. Let X be the second intersection of C P with I'. Using the power of the point P in
the circle I" and the fact that PB = PC, we find that PX = PA = R. The quadrilateral AOX P
has four sides of equal length, so it is a rhombus and in particular OX is parallel to AP. This
proves that OX BP is a trapezoid, and because the diagonals PX and OB have equal length,
this is even an isosceles trapezoid. Because of that, DFE is not only the perpendicular bisector
of PB, but also of OX.

In particular we have XD = XP = XO = XFE = R, which proves that X is the middle of the
arc DE and P belongs to the circle with center X going through D and E. These properties,

together with the fact that C, P, X are collinear, determine uniquely the incenter of CDE.
O

14
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Solution C. Let Y be the circumcenter of triangle BPC. Then from Y B = Y P it follows that
Y lies on DE (we assume D lies in between Y and E), and from YB = Y C' it follows that ¥
lies on OP, where O is the center of IT".

From LZAOC =2/ABC = ZAPC (because ZPBC = ZPCB) we deduce that AOPC' is a cyclic
quadrilateral, and from AP = R it follows that AOPC' is an isosceles trapezoid. We now find
that ZYCP = £ZY PC = 180° — ZOPC = 180° — LZACP, so Y lies on AC.

Y

E

Power of a point gives YO-YP =YC-YA=YD -YFE, so D, P, O and E are concyclic. It
follows that 2/DAE = /DOFE = /DPE = /DBE =180° — ZDAE, so ZDAFE = 60°. We can
now finish the proof by angle chasing.

From AB 1 DFE we have ZAOD + /BOFE = 180° and from /DOFE = 2/DAFE = 120° it
follows that /BOD + Z/BOFE = 120°. It follows that ZAOD — ZBOD = 180° — 120° = 60°.
Let ZOAB = ZOBA = 23; then ZAOD + Z/BOD = ZAOB = 180° — 43. Together with
/AOD — Z/BOD = 60°, this yields ZAOD = 120° — 28 and ZBOD = 60° — 28. We now find
LAED = %AAOD = 60° — B, which together with ZDAFE = 60° yields ZADE = 60° + .
From the isosceles trapezoid AOPC we have ZCDA = Z/CBA = 3/CPA = $/PAO = §3, so
/CDE = /ZCDA+ ZADE = 3+ 60° + 3 = 60° + 24.

From ZBOD = 60° — 283 we deduce that Z/BED = 30° — 3; together with ZDBFE = 120° this
yields ZEDB = 30° + 3. We now see that /PDE = /BDFE = 30° + 8 = %ACDE, so P is
on the angle bisector of ZCDE. Similarly, P lies on the angle bisector of ZCED, so P is the
incenter of CDE. ([

15
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Solution D. We draw the lines DP and EP and let D’ resp. E’ be the second intersection
point with T,

The triangles APD’ and DPB are similar, and the triangles APE’ and EPB are also similar,
hence they are all isosceles and it follows that E’, O, P, D’ lie on a circle with center A. In
particular AOD’ and AOE’ are equilateral triangles. Angle chasing gives

/CDP = /CDD' = %ACOD’ = %(60" + LCOA)

1 1
/EDP =/EDD' = /EE'D' = /PE'D' = §LPAD’ = 5(60O + ZPAO)

Similarly we prove ZCEP = £(60° — ZCOA) and ZDEP = 1(60° — ZPAO) so if we can prove
that ZCOA = ZPAO, we will have proven that P belongs to the angle bisector of ZCED and
to the angle bisector of ZC'DE, which is enough to prove that P is the incenter of the triangle
CDE.
Let p = ZABC = ZPCB. We have ZAPC = 28 and ZAOC = 28, so AOPC is an inscribed
quadrilateral. Moreover, since the diagonals AP and C'O have equal length, this is actually an
isosceles trapezoid, and hence ZPAO = ZCPA = ZCOA which concludes the proof.

O
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Solution E. Without loss of generality we assume that D and C are in the same half-plane
regarding line AB.

Since PC' = BP and ABCD is inscribed quadrilateral we have Z/PCB = ZCBP = ZCEA = a.
As in the other solutions, AOPC is an isosceles trapezoid and 2a« = ZCPA = ZPCO

Let K be intersection of EO and I'. Then ZKDE = 90°, AB||DK and KDBA is isosceles
trapezoid. We obtain DP = BD = AK, which implies that DPAK is a parallelogram and
hence DK = PA = R = OD = OK. We see that DOK is an equilateral triangle. Then
/ECD = /ZFEKD = 60°.

Further we prove that PC bisects ZECD using /DCB = /DKB = ZKDA (from isosceles
trapeziod DK AB) and that ZKEC = ZOEC = ZOCE (from isosceles triangle OCE):

LDCP =/DCB+ /BCP =/KDA+a=/KEC+ /ZCEA+a=/0CE+2a=/PCE

Further by /DCP = /PCFE = %AECD = 30° distances between P and sides ACDFE are
%PC = %PB (as ratio between cathetus and hypotenuse in right triangle with angles 60° and
30°). So, we have found incentre. O
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Solution F. Let F, G, H be the projections of P on the sides DE, DC resp. CE. If P is indeed
the incenter, then the three line segments PF, PG, PH have the same length. This means
that the problem is equivalent to proving that PG = PH = PF = 1PB = 1PC and thus
trigonometry in the right-angled triangles CPG and CPH tells us that it is enough to prove
that /ZDCP = ZECP = 30°.

A
MP F B

60°,

We introduce the point X as the second intersection of the line CP with I". Because O is the
center of I' we can reduce the problem to proving that /XOD = ZXOFE = 60°, or equivalently
that XOD and XOF are equilateral triangles. This last condition is equivalent to X being the
reflection of O on the line DE. Following the chain of equivalences, we see therefore that in
order to solve the problem it is enough to prove that X is the reflection of O on DE. We prove
this property as in Solution B, using the fact that OX BP is an isosceles trapezoid.

O

Solution G. Assume AB is parallel to the horizontal axis, and that T' is the unit circle. Write
f(0) for the point (cos(#),sin(f)) on I'. As in Solution C, assume that ZAOB = 180° — 40; then
we can take B = f(28) and A = f(180° — 2/3). As in Solution C, we observe that AOPC is an
isosceles trapezoid, which we use to deduce that ZABC = %ZAPC = %AOAB = . We now
know that C' = f(180° — 453).

The point P lies on AB with AP = R = 1, so P = (cos(180° — 23) + 1,sin(28)) = (1 —
cos(23),sin(23)). The midpoint of BP therefore has coordinates (3,sin(23)), so D and E have
z-coordinate % Without loss of generality, we take D = f(60°) and E = f(—60°).

We have now obtained coordinates for all points in the problem, with one free parameter (3).
To show that P is the incenter of CDE, we will show that P lies on the bisector of ZCDF;
analogously, one can show that P lies on the bisector of angle CED. The bisector of angle CDE
passes through the midpoint M of the arc CE not containing DE; because C' = f(180° — 40)
and E = f(—60°), we have M = f(240° — 25).

It remains to show that P = (1 — cos(26),sin(20)) lies on the line connecting the points D =
(cos(60°),sin(60°)) and M = (cos(240°—23),sin(240°—203)) = (— cos(60° —23), — sin(60° —273)).
The equation for the line DM is

(Y +sin(60° — 28))(cos(60°) 4 cos(60° — 23)) = (sin(60°) 4 sin(60° — 23)) (X + cos(60° — 20)),

which, using the fact that cos(60°)+cos(60° —28) = 2 cos(8) cos(60° — ) and sin(60°)+sin(60° —
2f3) = 2 cos(B) sin(60° — ), simplifies to

(Y + sin(60° — 20)) cos(60° — ) = (X + cos(60° — 243)) sin(60° — 3).

Because cos(60° — 2/3) sin(60° — 5) — sin(60° — 23) cos(60° — 3) = sin(/3), this equation further
simplifies to
Y cos(60° — 8) — X sin(60° — 3) = sin(f).

18
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Plugging in the coordinates of P, i.e., X = 1 — cos(28) and Y = sin(2/3), shows that P is on
this line: for this choice of X and Y, the left hand side equals sin(60° + 3) — sin(60° — 3) =

2 co0s(60°) sin(B), which is indeed equal to sin(/3). So P lies on the bisector DM of ZCDE, as
desired. O

Solution H. Let I'" be the complex unit circle and let AB be parallel with the real line and
0<p=argb< 3. Then

=1, a=-b, p=a+1=1-b.

5 — ?z are conjugate 6th

roots of unity; d®> = e® = -1, d+e =1, d> = —e, €2 = —d etc.
Point C' is the reflection of B in line OP. From argp = arg(l —b) = (7 — ¢), we can get

FromRed:Ree:RepTer:lwegetthatdzé—l—@iande:
P)

argc = 2argp —argb =1 — 2, soc=—b. B
Now we can verify that EP bisects ZCED. This happens if and only if (p — e)?(c —)(d — e) is
real. Since d — € = —+/3i, this is equivalent with Re [(p —e)?(c— é)} = 0. Here

(- )@ —2) = (1 - e)2(~b? — d) = (d— B)*(~4? - d)
— —[B]* + 2d[b|2b — d2b% — db” + 2d%b — d®
= —1-2db+db® —db" — 2db+ 1
— —2(db — db) + (db? — db"),

whose real part is zero. It can be proved similarly that DP bisects ZEDC. (]
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Solutions to Problem 6

Answer. The only such m are m = 2 and m = 10.

Solution A. Consider an integer m > 1 for which the sequence defined in the problem statement
contains only perfect squares. We shall first show that m — 1 is a power of 3.

Suppose that m—1is even. Then ay = 5m—1 should be divisible by 4 and hence m =1 (mod 4).
But then a5 = 5m? +3m — 1 = 3 (mod 4) cannot be a square, a contradiction. Therefore m — 1
is odd.

Suppose that an odd prime p # 3 divides m — 1. Note that a,, — ap—1 = ap—2 — an—3 (mod p).
It follows that modulo p the sequence takes the form 1, 1, 4, 4, 7, 7, 10, 10, ...; indeed, a simple
induction shows that asy = askx—1 = 3k — 2 (mod p) for k > 1. Since ged(p, 3) = 1 we get that
the sequence a,, (mod p) contains all the residues modulo p, a contradiction since only (p+1)/2
residues modulo p are squares. This shows that m — 1 is a power of 3.

Let h,k be integers such that m = 3¥ + 1 and a4 = h?. We then have 5 - 3F = (h — 2)(h + 2).
Since ged(h — 2, h +2) = 1, it follows that h — 2 equals either 1,3% or 5, and h + 2 equals either
5-3%,5 or 3%, respectively. In the first two cases we get k = 0 and in the last case we get k = 2.
This implies that either m = 2 or m = 10.

We now show the converse. Suppose that m = 2 or m = 10. Let ¢t = 1 or t = 3 so that m = t2+1.
Let by, b9, b3, ... be a sequence of integers defined by by = 1,0, = 1,b3 = 2, and

by = thy_1 +bp_o, foralln>4.

Clearly, a,, = b2 for n = 1,2,3. Note that if m = 2 then a4 = 9 and by = 3, and if m = 10 then
as = 49 and by = 7. In both the cases we have a4 = b3.
If n > 5 then we have

b 4 b7, = (thao1 + bn2)® + (bno1 — thp—2)? = (£ + 1) (0 _1 +bj_) = m(b_1 +bj ).
Therefore, it follows by induction that a, = b2 for all n > 1. This completes the solution. O

Solution B. We present an alternate proof that m = 2 and m = 10 are the only possible values
of m with the required property.
Note that

ag=55m—1,
as =5m? +3m —1,

ag =5m>+8m? —2m —4.
Since a4 and ag are squares, so is asag. We have
4agag = 100m* + 140m> — 72m? — 72m + 16..
Notice that

(10m? + 7m — 7)? = 100m* + 140m® — 91m? — 98m + 49 < 4asae ,
(10m? + 7m — 5)% = 100m* + 140m® — 51m? — 70m + 25 > 4ayag

so we must have
4asag = (10m* + Tm — 6)% = 100m* + 140m>® — 71m? — 84m + 36..

This implies that m? — 12m +20 = 0, so m = 2 or m = 10. O
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