
The problems of 5th IGO along with their solutions
Elementary Level

Problems:

1 As shown below, there is a 40 × 30 paper with a filled 10 × 5 rectangle inside of it. We want to
cut out the filled rectangle from the paper using four straight cuts. Each straight cut is a straight
line that divides the paper into two pieces, and we keep the piece containing the filled rectangle.
The goal is to minimize the total length of the straight cuts. How to achieve this goal, and what
is that minimized length? Show the correct cuts and write the final answer. There is no need to
prove the answer.

2 Convex hexagon A1A2A3A4A5A6 lies in the interior of convex hexagon B1B2B3B4B5B6 such that
A1A2 ∥ B1B2, A2A3 ∥ B2B3,..., A6A1 ∥ B6B1. Prove that the areas of simple hexagons A1B2A3B4A5B6

and B1A2B3A4B5A6 are equal. (A simple hexagon is a hexagon which does not intersect itself.)

3 In the given figure, ABCD is a parallelogram. We
know that ∠D = 60◦, AD = 2 and AB =

√
3 + 1.

Point M is the midpoint of AD. Segment CK is
the angle bisector of C. Find the angle CKB.



4 There are two circles with centers O1, O2 lie inside of circle ω and are tangent to it. Chord AB
of ω is tangent to these two circles such that they lie on opposite sides of this chord. Prove that
∠O1AO2 + ∠O1BO2 > 90◦.

5 There are some segments on the plane such that no two of them intersect each other (even at the
ending points). We say segment AB breaks segment CD if the extension of AB cuts CD at some
point between C and D.

(a) Is it possible that each segment when extended from both
ends, breaks exactly one other segment from each way?

(b) A segment is called surrounded if from both sides of it,
there is exactly one segment that breaks it.
(e.g. segment AB in the figure.) Is it possible to have all
segments to be surrounded?



Solutions:
1 As shown below, there is a 40 × 30 paper with a filled 10 × 5 rectangle inside of it. We want to

cut out the filled rectangle from the paper using four straight cuts. Each straight cut is a straight
line that divides the paper into two pieces, and we keep the piece containing the filled rectangle.
The goal is to minimize the total length of the straight cuts. How to achieve this goal, and what
is that minimized length? Show the correct cuts and write the final answer. There is no need to
prove the answer.

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. The answer is 65. Here is an example of the solution:

.

■



2 Convex hexagon A1A2A3A4A5A6 lies in the interior of convex hexagon B1B2B3B4B5B6 such that
A1A2 ∥ B1B2, A2A3 ∥ B2B3,..., A6A1 ∥ B6B1. Prove that the areas of simple hexagons A1B2A3B4A5B6

and B1A2B3A4B5A6 are equal. (A simple hexagon is a hexagon which does not intersect itself.)

Proposed by Mahdi Etesamifard - Hirad Aalipanah
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. As you can see, we have divided the area between two polygons into 6 trapezoids. In
each trapezoid is it easy to see that the triangles which have the same area (like B1A1A2 and
B2A1A2) each belongs to one of the simple hexagons. Therefore, if we add up their areas and add
the common area (the area of A1A2A3A4A5A6) to them, we can conclude that the areas of the two
simple hexagons are equal.

■



3 In the given figure, ABCD is a parallelogram. We
know that ∠D = 60◦, AD = 2 and AB =

√
3 + 1.

Point M is the midpoint of AD. Segment CK is
the angle bisector of C. Find the angle CKB.

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1. Let X be a point on AB such that AX = 1 and XB =

√
3. We know that ∠MAX =

120◦. Therefore by Pythagoras theorem we know that MX =
√
3. So we have ∠MBX = 15◦ and

∠CBK = 45◦. Hence, ∠CKB = 180◦ − 60◦ − 45◦ = 75◦.

■
Solution 2. Let N be the midpoint of side BC. MN intersects CK at L. It’s clear that the triangle
CNL is equilateral. Therefore, we have LN = CN = NB. So, BCL is a right-angled triangle.
Because of Pythagoras’s theorem we have BL =

√
3. On the other hand, we have ML =

√
3 and

∠BLN = 30◦. Because of that, we have ∠LBM = 15◦ and so we have ∠CBK = 30◦ + 15◦ = 45◦.
Hence, ∠CKB = 180◦ − 60◦ − 45◦ = 75◦.

■



4 There are two circles with centers O1, O2 lie inside of circle ω and are tangent to it. Chord AB
of ω is tangent to these two circles such that they lie on opposite sides of this chord. Prove that
∠O1AO2 + ∠O1BO2 > 90◦.

Proposed by Iman Maghsoudi
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let AC,BC be tangents from A,B to the circle with center O1 and AD,BD be tangents
from A,B to the circle with center O2. It’s enough to show that ∠CAD + ∠CBD > 180◦. Or to
show that ∠ACB + ∠ADB < 180◦.
We know that C,D lie on the outside of circle ω. Therefore, we can always say that ∠ACB <
∠AXB and ∠ADB < ∠AY B because of the exterior angles. But we know that ∠AXB+∠AY B =
180◦. Hense, we can conclude that ∠ACB + ∠ADB < 180◦ and the statement is proven.

■



5 There are some segments on the plane such that no two of them intersect each other (even at the
ending points). We say segment AB breaks segment CD if the extension of AB cuts CD at some
point between C and D.

(a) Is it possible that each segment when extended from both
ends, breaks exactly one other segment from each way?

(b) A segment is called surrounded if from both sides of it,
there is exactly one segment that breaks it.
(e.g. segment AB in the figure.) Is it possible to have all
segments to be surrounded?

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



Solution.

(a) No. Consider the convex hull of the endpoints of these segments. Let A be a vertex of the
convex hull, where AB is one of the segments.

We know that there exist segments CD,EF as in the figure. So A lies inside the convex hull
of C,D,E, F and therefore it cannot be a vertex of the main convex hull. Contradiction! □

(b) Yes. The figure below shows that it is possible for all segments to be surrounded.

□

■



The problems of 5th IGO along with their solutions
Intermediate Level

Problems:

1. There are three rectangles in the following figure. The lengths of some segments are shown.
Find the length of the segment XY .

2. In convex quadrilateral ABCD, the diagonals AC and BD meet at the point P . We know
that ∠DAC = 90◦ and � 2∠ADB = ∠ACB. If we have ∠DBC + 2∠ADC = 180◦ prove that
2AP = BP .

3. Let ω1, ω2 be two circles with centers O1 and O2, respectively. These two circles intersect each
other at points A and B. Line O1B intersects ω2 for the second time at point C, and line O2A
intersects ω1 for the second time at point D . Let X be the second intersection of AC and ω1.
Also Y is the second intersection point of BD and ω2. Prove that CX = DY .

4. We have a polyhedron all faces of which are triangle. Let P be an arbitrary point on one of
the edges of this polyhedron such that P is not the midpoint or endpoint of this edge. Assume
that P0 = P . In each step, connect Pi to the centroid of one of the faces containing it. This
line meets the perimeter of this face again at point Pi+1. Continue this process with Pi+1 and
the other face containing Pi+1. Prove that by continuing this process, we cannot pass through
all the faces. (The centroid of a triangle is the point of intersection of its medians.)

5. Suppose that ABCD is a parallelogram such that ∠DAC = 90◦. Let H be the foot of perpen-
dicular from A to DC, also let P be a point along the line AC such that the line PD is tangent
to the circumcircle of the triangle ABD. Prove that ∠PBA = ∠DBH.

1



Solutions:
1. There are three rectangles in the following figure. The lengths of some segments are shown.

Find the length of the segment XY .

Proposed by Hirad Aalipanah
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Let us continue the rectangular sides to get the ABC triangle. Because AB = BC we can say
that ∠BCA = ∠BAC = 45◦. Therefore, we can determine some of the segments using the
Pythagoras’s theorem such as AD = 2

√
2, DX =

√
2, CE = 2

√
2 and EY =

√
2
2

. So, we have

XY = AC − AD −DX − CE − EY = 10
√
2− 2

√
2−

√
2− 2

√
2−

√
2

2
=

9
√
2

2

2



2. In convex quadrilateral ABCD, the diagonals AC and BD meet at the point P . We know
that ∠DAC = 90◦ and � 2∠ADB = ∠ACB. If we have ∠DBC + 2∠ADC = 180◦ prove that
2AP = BP .

Proposed by Iman Maghsoudi
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.

Let M be the intersection point of the angle bisector of ∠PCB with segment PB. Since
∠PCM = ∠PDA = θ and ∠APD = ∠MPC, we get that △PMC ∼ △PAD, which means
∠PMC = 90◦.
Now in triangle CPB, the angle bisector of vertex C is the same as the altitude from C, this
means CPB is an isosceles triangle and so PM = MB,PC = CB.
In triangle DBC, we have

D̂BC + 2θ + P̂CD + P̂DC = 180◦.

This along with the assumption that ∠DBC + 2∠ADC = 180◦, implies ∠PCD = ∠PDC.
Therefore PC = PD and so △PMC ∼= △PAD, hence AP = PM = PB

2
. ■
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3. Let ω1, ω2 be two circles with centers O1 and O2, respectively. These two circles intersect each
other at points A and B. Line O1B intersects ω2 for the second time at point C, and line O2A
intersects ω1 for the second time at point D . Let X be the second intersection of AC and ω1.
Also Y is the second intersection point of BD and ω2. Prove that CX = DY .

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. First, we use a well-known lemma.
Lemma. Let PQRS be a convex quadrilateral with RQ = RS, ∠RPQ = ∠RPS and PQ ̸= PS.
Then PQRS is cyclic.
Proof. Assume the contrary, and let P ′ ̸= P be the intersection point of the circle passing
through R,S,Q with line PR.
Since P ′QRS is cyclic and RQ = RS, we get ∠SP ′R = ∠QP ′R. Now let’s considerate on
triangles SP ′P and QP ′P . In these two triangles we have ∠SP ′P = ∠QP ′P and also ∠P ′PQ =
∠P ′PS. This means these two triangles are equal, hence PQ = PS, which is a contradiction.
So the lemma is proved.
Back to the problem.

Triangles ADY and BXC are similar, because

ÂDY = B̂XC = 180◦ − B̂XA,

and
D̂Y A = B̂CX = 180◦ − ÂY B.

Note that O2 lies on the angle bisector of ∠AO1B, O2A = O2C and also O1A ̸= O1C. So we
can use the lemma and conclude that O1AO2C is cyclic. Similarly, we get that O2BO1D is
cyclic.

ÂY D = 180◦ − ÂY B = Ô1CA = Ô1O2A = Ô1BD.

Which means AC ∥ BD and so AY = BC. But since △ADY ∼ △BXC, we get that these
two triangle are equal and so CX = DY . ■

4



4. We have a polyhedron all faces of which are triangle. Let P be an arbitrary point on one of
the edges of this polyhedron such that P is not the midpoint or endpoint of this edge. Assume
that P0 = P . In each step, connect Pi to the centroid of one of the faces containing it. This
line meets the perimeter of this face again at point Pi+1. Continue this process with Pi+1 and
the other face containing Pi+1. Prove that by continuing this process, we cannot pass through
all the faces. (The centroid of a triangle is the point of intersection of its medians.)

Proposed by Mahdi Etesamifard - Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Suppose that AB is the edge that P lies on. Let M be the midpoint of AB
and without loss of generality, assume that P lies between B and M . We will prove that it is
impossible to pass through a face which doesn’t contain A. (Such face exists in any polyhedron)
Let B = B0, B1, B2, . . . be the vertices adjacent to A in this order. Let Mi be the midpoint of
ABi. By using induction, we prove that for each i, Pi lies on edge ABi, between Bi and Mi.
For i = 0 the claim is true. Now assume the claim for i and consider the triangle ABiBi+1 with
centroid Gi.

Since Pi lies between Mi and Bi, we get that PiGi lies between MiGi and BiGi, which are the
medians of this triangle. So Pi+1 lies on ABi+1, between Mi+1 and Bi+1. So the claim is proved.
We proved that Pi’s lie on ABi’s, so the sequence of points Pi goes around A and therefore does
not pass through a face which doesn’t contain A. ■

5



5. Suppose that ABCD is a parallelogram such that ∠DAC = 90◦. Let H be the foot of perpen-
dicular from A to DC, also let P be a point along the line AC such that the line PD is tangent
to the circumcircle of the triangle ABD. Prove that ∠PBA = ∠DBH.

Proposed by Iman Maghsoudi
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Suppose that AB,AD meet the circumcircle of triangle PDB for the second time at points
X,Y respectively. Let ∠CDB = α and ∠ADB = θ. Therefore, we have ∠ABD = α, and so
∠ADP = α.
Also ∠PDB = ∠PXB = α + θ, and ∠PAX = ∠ACD = ∠DAH. Which implies

△
APX ∼

△
ADH =⇒ AP

AH
=

AX

AD
,

△
XAD ∼

△
Y AB =⇒ AY

AB
=

AX

AD
,

=⇒ AP

AH
=

AY

AB
.

Now since ∠HAB = ∠PAY = 90◦, It can be written that
△

APY ∼
△

AHB.

=⇒ ĤBA = P̂ Y A = P̂BD =⇒ P̂BA = D̂BH.

■
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The problems of 5th IGO along with their solutions
Advanced Level

Problems:

1. Two circles ω1, ω2 intersect each other at points A,B. Let PQ be a common tangent line of
these two circles with P ∈ ω1 and Q ∈ ω2. An arbitrary point X lies on ω1. Line AX intersects
ω2 for the second time at Y . Point Y ′ ̸= Y lies on ω2 such that QY = QY ′. Line Y ′B intersects
ω1 for the second time at X ′. Prove that PX = PX ′

2. In acute triangle ABC, ∠A = 45◦. Points O,H are the circumcenter and the orthocenter of
ABC, respectively. D is the foot of altitude from B. Point X is the midpoint of arc AH of the
circumcircle of triangle ADH that contains D. Prove that DX = DO.

3. Find all possible values of integer n > 3 such that there is a convex n-gon in which, each
diagonal is the perpendicular bisector of at least one other diagonal.

4. Quadrilateral ABCD is circumscribed around a circle. Diagonals AC,BD are not perpendicular
to each other. The angle bisectors of angles between these diagonals, intersect the segments
AB,BC,CD and DA at points K,L,M and N . Given that KLMN is cyclic, prove that so is
ABCD.

5. ABCD is a cyclic quadrilateral. A circle passing through A,B is tangent to segment CD at
point E. Another circle passing through C,D is tangent to AB at point F . Point G is the
intersection point of AE,DF , and point H is the intersection point of BE,CF . Prove that the
incenters of triangles AGF,BHF,CHE,DGE lie on a circle.

1



Solutions:
1. Two circles ω1, ω2 intersect each other at points A,B. Let PQ be a common tangent line of

these two circles with P ∈ ω1 and Q ∈ ω2. An arbitrary point X lies on ω1. Line AX intersects
ω2 for the second time at Y . Point Y ′ ̸= Y lies on ω2 such that QY = QY ′. Line Y ′B intersects
ω1 for the second time at X ′. Prove that PX = PX ′

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.

QY = QY ′ implies ∠QY Y ′ = ∠QY ′Y . Considering circle ω2, we have ∠QY Y ′ = ∠Y ′QP . This
means Y Y ′ ∥ PQ.
We also have ∠Y ′Y A = ∠Y ′BA and ∠ABX ′ = ∠AXX ′. This means XX ′ ∥ Y Y ′ ∥ PQ.
Therefore ∠PXX ′ = ∠X ′PQ = ∠PX ′X, so PX = PX ′ ■

2



2. In acute triangle ABC, ∠A = 45◦. Points O,H are the circumcenter and the orthocenter of
ABC, respectively. D is the foot of altitude from B. Point X is the midpoint of arc AH of the
circumcircle of triangle ADH that contains D. Prove that DX = DO.

Proposed by Fatemeh Sajadi
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.

Since ∠AXH = 90◦ and XA = XH, we conclude that ∠AHX = 45◦ = ∠ADX.
Also ∠BOC = 2∠A = 90◦, therefore points O,D lie on a circle with diameter BC. This implies

ÔDA = ÔBC = 45◦ =⇒ ÔDX = 90◦.

But note that
ÂCH = 90◦ − Â = 45◦ =

1

2
ÂXH.

This alongside with XA = XH means X is the circumcenter of triangle ACH and so XA = XC.
Thus OX is the perpendicular bisector of AC and so OX ⊥ AC. Now in triangle ODX, the
angle bisector of vertex D is the same as the altitude from D, hence it is an isosceles triangle
with DX = DO. ■

3



3. Find all possible values of integer n > 3 such that there is a convex n-gon in which, each
diagonal is the perpendicular bisector of at least one other diagonal.

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let m be the total number of the perpendicular bisectors of all diagonals in the given
n-gon. The statement of the problem implies that m is not less than the number of diagonals.
But it is clear that the total number of perpendicular bisectors of the diagonals does not exceed
the number of diagonals! Hence, we conclude that each diagonal is the perpendicular bisector
of exactly one other diagonal. Since the perpendicular bisector of a diagonal is a unique line, we
get that for each diagonal d, there is exactly one diagonal d′ such that d′ is the perpendicular
bisector of d.
Consider three adjacent vertices B,A,C of the n-gon, where A lies between B and C. BC is a
diagonal of the n-gon, and only diagonals that contain A have an intersection point with BC.
Specially, the diagonal which is the perpendicular bisector of BC passes through A. Hence
AB = AC. Using this similar idea, it is deduced that all sides of this n-gon have the same
length.

Similar to the previous part, consider four adjacent points of the n-gon, A,B,C,D with the
given order. If n > 4, then AD is a diagonal of the n-gon, and the only diagonals that contain
B or C, have an intersection point with AD. Therefore either B or C lie on the perpendicular
bisector of AD. Without loss of generality, assume that BA = BD. According to the previous
argument, BA = BC = CD. Thus triangle BCD is an equilateral and so ∠BCD = 60◦. (In
the other case we would have ∠ABC = 60◦.)

4



This implies that between any two adjacent vertices, there is one that has a 60 degree angle.
Hence there is at least n

2
angles of 60◦ in this n-gon.

It is known that the total number of 60 degree angles in an n-gon with n > 3 is at most 2. So
we must have n

2
≤ 2 which means n ≤ 4, a contradiction.

Clearly, any rhombus satisfies the desired property. So the answer is n = 4 . ■

5



4. Quadrilateral ABCD is circumscribed around a circle. Diagonals AC,BD are not perpendicular
to each other. The angle bisectors of angles between these diagonals, intersect the segments
AB,BC,CD and DA at points K,L,M and N . Given that KLMN is cyclic, prove that so is
ABCD.

Proposed by Nikolai Beluhov (Bulgaria)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let P be the intersection point of AC,BD. First we claim that KL and MN are not
parallel. Assume the contrary, that KL ∥ MN . Since KLMN is cyclic, we have KN = ML,
and PK = PL, PM = PN . We also have

KP

PM
=

PL

PN
.

Let AP = x,BP = y, CP = z and DP = t. Also let ∠APB = 2α and ∠BPC = 2θ. We have

KP =
xy

x+ y
cosα, PM =

zt

z + t
cosα =⇒ KP

PM
=

1
z
+ 1

t
1
x
+ 1

y

.

Similarly,
PL

PN
=

1
x
+ 1

t
1
y
+ 1

z

.

Since KP
PM

= PL
PN

, with a little of calculation, we shall have

1

yz
+

1

z2
+

1

zt
=

1

tx
+

1

x2
+

1

xy
=⇒

(
1

x
− 1

y

)(
1

x
+

1

y
+

1

z
+

1

t

)
= 0.

Which means x = z. But note that PK = PL implies
xy

x+ y
cosα =

yz

y + z
cos θ.

But θ = 90◦ − α, so we must have α = θ = 45◦, and so AC ⊥ BD, which is a contradiction.
Therefore the claim is proved. With the similar idea, we can show that KN and LM are not
parallel.
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By Menelaus’ theorem, KL and MN meet at a point Q on AC such that AQ
QC

= AP
PC

and LM

and NK meet at a point R on BD such that BR
RD

= BP
PD

.
Let the incircle ω of ABCD touch its sides at K ′, L′, M ′, and N ′. By Brianchon’s theorem,
AL′, CK ′, and BD are concurrent. By Ceva’s and Menelaus’ theorems, K ′, L′, and Q are
collinear. Analogously, M ′, N ′, and Q are collinear and L′M ′ and N ′K ′ meet at R.
By Brianchon’s theorem, K ′M ′ and L′N ′ meet at P . It follows the diagonals and opposite
sides of both KLMN and K ′L′M ′N ′ intersect at the vertices of △PQR. Therefore, both the
circumcircle of KLMN and ω coincide with the polar circle of △PQR.
Since K is a common point of AB and ω, K ≡ K ′. Analogously, L ≡ L′, M ≡ M ′, and N ≡ N ′.
Hence the angle bisector KM of AC and BD makes equal angles with AB and CD and ABCD
is cyclic, as needed. ■
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5. ABCD is a cyclic quadrilateral. A circle passing through A,B is tangent to segment CD at
point E. Another circle passing through C,D is tangent to AB at point F . Point G is the
intersection point of AE,DF , and point H is the intersection point of BE,CF . Prove that the
incenters of triangles AGF,BHF,CHE,DGE lie on a circle.

Proposed by Le Viet An (Vietnam)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.

Let I, J,K, L be the incenters of the triangles AGF,BHF,CHE,DGE respectively. Let ω be
the circumcircle of ABCD. In case of AB ∥ CD, we would conclude that ABCD is an isosceles
trapezoid and it is easy to see that IJKL is also an isosceles trapezoid.
So assume that AB ̸∥ CD and let M be the intersection point of rays BA and CD. Since
ABCD is cyclic, it is obtained that

MA ·MB = MD ·MC = PM(ω)

Since ME is tangent to ⊙ABE, we get

M̂EA = M̂BE.

We also have ME2 = MA ·MB = PM(⊙ABE) and MF 2 = MD ·MC = PM(⊙CDF ), which
implies ME = MF , and so M̂EF = M̂FE. Therefore,

ÂEF = M̂EF − M̂EA = M̂FE − M̂BE = B̂EF .

The latest equation means that EF is the interior angle bisector of ∠AEB. Similarly, FE is
the interior angle bisector of ∠CFD.
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Note that H, J,K are collinear and ∠FJH = 90◦ + ∠FBH
2

. Thus

F̂ JK = 90◦ +
M̂BE

2
= 90◦ +

M̂EA

2

= 90◦ +
180◦ − ÂEC

2
= 180◦ − ÂEC

2

= 180◦ − ÂEB + B̂EC

2
= 180◦ −

(
F̂EB + B̂EK

)
= 180◦ − F̂EK

This results in that EFJK is cyclic. With similar arguments, EFIL is also cyclic.
Since EF is the interior angle bisector of ∠GEH and ∠GFH, it is easy to see that triangles
GEF and HEF are equal. Therefore EG = EH and FG = FH, and so GE

GF
= HE

HF
= k.

Consider three lines, the exterior angle bisector of vertex G in △GEF , the exterior angle bisec-
tor of vertex H in △HEF and the line EF . According to the latest equation, there is two cases:

• These three lines are pairwise parallel. This means EFJK and EFIL are isosceles trape-
zoids. Hence the segments EF , JK and IL have the same perpendicular bisector and so
IJKL is an isosceles trapezoid. □

• These three points are concurrent at a point P where PE
PF

= k. Now we simply have

PJ · PK = PP (⊙EFJK) = PE · PF = PP (⊙EFIL) = PI · PL.

Which means IJKL is cyclic. □

■
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