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1. Најди ги сите тројки од реални броеви ( , , )a b c такви што 1ab bc ca    и 

2 2 2a b c b c a c a b     . 

2. Нека n  е позитивен природен број. На шаховска табла со димензии 2 2n n  се 

ставени домина, така што секое квадратче од таблата е соседно со точно едно квадратче 

што е покриено со домино. За секој број n , најди го најголемиот број на домина што 

може да се стават на таблата на овој начин. 

 (Домино е плочка со димензии 2 1  или 1 2 . Домината се ставени на таблата така 

што секое домино покрива точно две квадратчиња од таблата и две домина не може да 

се преклопат. Велиме дека две квадратчиња се соседни ако се различни и ако имаат 

заедничка страна.)   

3. Нека ABC  е триаголник таков што CAB ABC  и нека I  е центар на неговата 

впишана кружница. Нека D  е точка од отсечката BC  таква што CAD ABC . Нека   е 

кружница која ја допира AC  во точката A  и минува низ точката I . Нека X  е втората 

точка во  која се сечат кружницата   и опишаната кружница на триаголникот ABC . 

Докажи дека симетралите на аглите DAB  и CXB  се сечат во точка која лежи на 

правата BC .     

 

 

 

 

 

Language: Macedonian 

Време за работа: 4 часа и 30 минути. 

Секоја задача се вреднува со 7 поени. 

Language: Macedonian

Day: 1



European 
Girls’ 
Mathematical 
Olympiad
Kyiv, Ukraine 2019

Среда, 10 април  2019 година 

4.  Нека ABC  е триаголник таков што I  е центар на неговата впишана кружница. 

Кружницата што минува низ точката B  и ја допира AI  во точката I , ја сече страната AB  

повторно во точката P . Кружницата што минува низ точката C  и ја допира AI  во 

точката I , ја сече страната AC  повторно во точката Q . Докажи дека PQ  е тангента на 

впишаната кружница на триаголникот ABC .  

 

5.  Нека 2n   е природен број и нека 
1 2
, ,

n
a a a  се позитивни природни броеви. Докажи 

дека постојат позитивни природни броеви 
1 2
, ,

n
b b b кои што ги задоволуваат следниве 

три услови: 

(А)  
i i

a b за 1,2, ,i n ; 

(B) остатоците на броевите 
1 2
, ,

n
b b b  добиени при делење со n  се попарно различни; и 

(С) 1

1

1

2

n

n

a an
b b n

n

     
     

  
. 

(Во последниот услов, x    го означува целиот дел на реалниот број x , односно 

најголемиот цел број помал од x .)   

 

6.  Алина нацртала 2019 тетиви во една кружница. Меѓу себе, тетивите имаат различни 

крајни точки. Точка се смета за маркирана, ако е или  

(i) една од 4038-те крајни точки на тетивите; или 

(ii) пресечна точка на барем две тетиви. 

На секоја маркирана точка, Алина и придружила и запишала еден број. Од 4038-те точки 

што го задоволуваат критериумот (i), Алина половината од нив, точно 2019 точки ги 

маркирала со бројот 0, а другата половина од нив, односно останатите 2019 точки ги 

маркирала со бројот 1. Точките што го задоволуваат критериумот (ii) таа ги маркирала 

со произволен цел број (не е задолжително овој број да е позитивен). 

Вдолж секоја тетива, Алина ги разгледува сите отсечки кои поврзуваат маркирани 

точки. (Тетива со k  маркирани точки, содржи 1k   вакви отсечки.) До секоја од овие 

отсечки, Алина го запишала со жолта боја збирот на броевите кои ги имаат крајните 

точки на отсечката, а со сина боја апсолутната вредност на нивната разлика.   

Алина забележала дека жолтите броеви се точно 1N   на број и секоја има за вредност 

точно еден од броевите 0,1, , N . Докажи дека барем еден син број е делив со 3. 

(Тетива е отсечка која поврзува две различни точки од една кружница.)   
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Day 1. Solutions

Problem 1 (Netherlands). Find all triples (a, b, c) of real numbers such that ab+ bc+
ca = 1 and

a2b+ c = b2c+ a = c2a+ b.

Solution 1. First suppose that a = 0. Then we have bc = 1 and c = b2c = b. So b = c,
which implies b2 = 1 and hence b = ±1. This leads to the solutions (a, b, c) = (0, 1, 1)
and (a, b, c) = (0,−1,−1). Similarly, b = 0 gives the solutions (a, b, c) = (1, 0, 1) and
(a, b, c) = (−1, 0,−1), while c = 0 gives (a, b, c) = (1, 1, 0) and (a, b, c) = (−1,−1, 0).

Now we may assume that a, b, c 6== 0. We multiply ab + bc + ca = 1 by a to find
a2b+abc+ ca2 = a, hence a2b = a−abc−a2c. Substituting this in a2b+ c = b2c+a yields
a− abc− a2c+ c = b2c+ a, so b2c+ abc+ a2c = c. As c 6== 0, we find b2 + ab+ a2 = 1.

Analogously we have b2 + bc+ c2 = 1 and a2 + ac+ c2 = 1. Adding these three equations
yields 2 (a2 + b2 + c2) + ab+ bc+ ca = 3, which implies a2 + b2 + c2 = 1. Combining this
result with b2 + ab+ a2 = 1, we get 1− ab = 1− c2, so c2 = ab.

Analogously we also have b2 = ac and a2 = bc. In particular we now have that ab, bc and
ca are all positive. This means that a, b and c must all be positive or all be negative.
Now assume that |c| is the largest among |a|, |b| and |c|, then c2 ≥ |ab| = ab = c2, so we
must have equality. This means that |c| = |a| and |c| = |b|. Since (a, b, c) must all have
the same sign, we find a = b = c. Now we have 3a2 = 1, hence a = ±1

3

√
3. We find the

solutions (a, b, c) =
(
1
3

√
3, 1

3

√
3, 1

3

√
3
)
and (a, b, c) =

(
−1

3

√
3,−1

3

√
3,−1

3

√
3
)
.

We conclude that all possible triples (a, b, c) are (0, 1, 1), (0,−1,−1), (1, 0, 1), (−1, 0,−1),
(1, 1, 0), (−1,−1, 0),

(
1
3

√
3, 1

3

√
3, 1

3

√
3
)
and

(
−1

3

√
3,−1

3

√
3,−1

3

√
3
)
.

Solution 2. From the problem statement ab = 1− bc− ca and thus b2c+ a = a2b+ c =
a−abc−a2c+ c, c (b2 + a2 + ab− 1) = 0. If c = 0 then ab = 1 and a2b = b, which implies
a = b = ±1. Otherwise b2 + a2 + ab = 1. Cases a = 0 and b = 0 are completely analogous
to c = 0, so we may suppose that a, b, c 6= 0. In this case we end up with

a2 + b2 + ab = 1,

b2 + c2 + bc = 1,

c2 + a2 + ca = 1,

ab+ bc+ ca = 1.

Adding first three equations and subtracting the fourth yields 2(a2 + b2 + c2) = 2 =
2(ab + bc + ca). Consequently, (a − b)2 + (b − c)2 + (c − a)2 = 0. Now we can easily
conclude that a = b = c = ± 1√

3
.

Solution by Achilleas Sinefakopoulos, Greece. We have

c(1− b2) = a(1− ab) = a(bc+ ca) = c(ab+ a2),

and so
c(a2 + ab+ b2 − 1) = 0.

Similarly, we have

b(a2 + ac+ c2 − 1) = 0 and a(b2 + bc+ c2 − 1) = 0.

1



If c = 0, then we get ab = 1 and a2b = a = b, which give us a = b = 1, or a = b = −1.
Similarly, if a = 0, then b = c = 1, or b = c = −1, while if b = 0, then a = c = 1, or
a = c = −1.

So assume that abc 6= 0. Then

a2 + ab+ b2 = b2 + bc+ c2 = c2 + ca+ a2 = 1.

Adding these gives us
2(a2 + b2 + c2) + ab+ bc+ ca = 3,

and using the fact that ab+ bc+ ca = 1, we get

a2 + b2 + c2 = 1 = ab+ bc+ ca.

Hence

(a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2)− 2(ab+ bc+ ca) = 0

and so a = b = c = ± 1√
3
.

Therefore, the solutions (a, b, c) are (0, 1, 1), (0,−1,−1), (1, 0, 1), (−1, 0,−1), (1, 1, 0),

(−1,−1, 0), ( 1√
3
,
1√
3
,
1√
3
), (− 1√

3
,− 1√

3
,− 1√

3
)

Solution by Eirini Miliori (HEL2). It is ab+ bc+ ca = 1 and

a2b+ c = b2c+ a = c2a+ b. (1)

We have

a2b+ c = b2c+ a ⇐⇒ a2b− a = b2c− c
⇐⇒ a(ab− 1) = c(b2 − 1)

⇐⇒ a(−bc− ac) = c(b2 − 1)

⇐⇒ −ac(a+ b) = c(b2 − 1) (2)

First, consider the case where one of a, b, c is equal to 0. Without loss of generality, assume
that a = 0. Then bc = 1 and b = c from (1), and so b2 = 1 giving us b = 1 or −1. Hence
b = c = 1 or b = c = −1.

Therefore, (a, b, c) equals one of the triples (0, 1, 1), (0,−1,−1), as well as their rearrange-
ments (1, 0, 1) and (−1, 0,−1) when b = 0, or (1, 1, 0) and (−1,−1, 0) when c = 0.

Now consider the case where a 6= 0, b 6= 0 and c 6= 0. Then (2) gives us

−a(a+ b) = b2 − 1 ⇐⇒ −a2 − ab = b2 − 1 ⇐⇒ a2 + ab+ b2 − 1 = 0.

The quadratic P (x) = x2 + bx + b2 − 1 has x = a as a root. Let x1 be its second root
(which could be equal to a in the case where the discriminant is 0). From Vieta’s formulas
we get {

x1 + a = −b ⇐⇒ x1 = −b− a, and
x1a = b2 − 1 ⇐⇒ x1 =

b2−1
a
.
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Using a2b + c = c2a + b we obtain b(a2 − 1) = c(ac − 1) yielding a2 + ac + c2 − 1 = 0 in
a similar way. The quadratic Q(x) = x2 + cx + c2 − 1 has x = a as a root. Let x2 be its
second root (which could be equal to a in the case where the discriminant is 0). From
Vieta’s formulas we get {

x2 + a = −c ⇐⇒ x2 = −c− a, and
x2a = c2 − 1 ⇐⇒ x2 =

c2−1
a
.

Then {
x1 + x2 = −b− a− c− a, and
x1 + x2 =

b2−1
a

+ c2−1
a
,

which give us

−(2a+ b+ c) =
b2 − 1

a
+
c2 − 1

a
⇐⇒ −2a2 − ba− ca = b2 + c2 − 2

⇐⇒ bc− 1− 2a2 = b2 + c2 − 2

⇐⇒ 2a2 + b2 + c2 = 1 + bc. (3)

By symmetry, we get

2b2 + a2 + c2 = 1 + ac, and (4)
2c2 + a2 + b2 = 1 + bc (5)

Adding equations (3), (4), and (5), we get

4(a2 + b2 + c2) = 3 + ab+ bc+ ca ⇐⇒ 4(a2 + b2 + c2) = 4 ⇐⇒ a2 + b2 + c2 = 1.

From this and (3), since ab+ bc+ ca = 1, we get

a2 = bc = 1− ab− ac ⇐⇒ a(a+ b+ c) = 1.

Similarly, from (4) we get
b(a+ b+ c) = 1,

and from (4),
c(a+ b+ c) = 1.

Clearly, it is a+ b+ c 6= 0 (for otherwise it would be 0 = 1, a contradiction). Therefore,

a = b = c =
1

a+ b+ c
,

and so 3a2 = 1 giving us a = b = c = ± 1√
3
.

In conclusion, the solutions (a, b, c) are (0, 1, 1), (0,−1,−1), (1, 0, 1), (−1, 0,−1), (1, 1, 0),
(−1,−1, 0), ( 1√

3
,
1√
3
,
1√
3
), and (− 1√

3
,− 1√

3
,− 1√

3
).

Solution by ISR5. First, homogenize the condition a2b + c = b2c + a = c2a + b by
replacing c by c(ab+ bc+ ca) (etc.), yielding

a2b+ c = a2b+ abc+ bc2 + c2a = abc+
∑
cyc

a2b+ (c2b− b2c) = abc+
∑
cyc

a2b+ bc(c− b).

3



Thus, after substracting the cyclicly symmetric part abc+
∑

cyc a
2b we find the condition

is eqivalent to
D := bc(c− b) = ca(a− c) = ab(b− a).

Ending 1. It is easy to see that if e.g. a = 0 then b = c = ±1, and if e.g. a = b then either
a = b = c = ± 1√

3
or a = b = ±1, c = 0, and these are indeed solutions. So, to show that

these are all solutions (up to symmetries), we may assume by contradiction that a, b, c
are pairwise different and non-zero. All conditions are preserved under cyclic shifts and
under simultaenously switching signs on all a, b, c, and by applying these operations as
necessary we may assume a < b < c. It follows that D3 = a2b2c2(c− b)(a− c)(b− a) must
be negative (the only negative term is a− c, hence D is negative, i.e. bc, ab < 0 < ac. But
this means that a, c have the same sign and b has a different one, which clearly contradicts
a < b < c! So, such configurations are impossible.

Ending 2. Note that 3D =
∑
c2b −

∑
b2c = (c − b)(c − a)(b − a) and D3 = a2b2c2(c −

b)(a− c)(b− a) = −3a2b2c2D. Since 3D and D3 must have the same sign, and −3a2b2c2
is non-positive, necessarily D = 0. Thus (up to cyclic permutation) a = b and from there
we immediately find either a = b = ±1, c = 0 or a = b = c = ± 1√

3
.
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Problem 2 (Luxembourg). Let n be a positive integer. Dominoes are placed on a
2n × 2n board in such a way that every cell of the board is adjacent to exactly one cell
covered by a domino. For each n, determine the largest number of dominoes that can be
placed in this way.

(A domino is a tile of size 2 × 1 or 1 × 2. Dominoes are placed on the board in such a
way that each domino covers exactly two cells of the board, and dominoes do not overlap.
Two cells are said to be adjacent if they are different and share a common side.)

Solution 1. Let M denote the maximal number of dominoes that can be placed on the
chessboard. We claim that M = n(n + 1)/2. The proof naturally splits into two parts:
we first prove that n(n+ 1)/2 dominoes can be placed on the board, and then show that
M ≤ n(n+ 1)/2 to complete the proof.

We construct placings of the dominoes by induction. The base cases n = 1 and n = 2
correspond to the placings

and

Next, we add dominoes to the border of a 2n × 2n chessboard to obtain a placing of
dominoes for the 2(n+ 2)× 2(n+ 2) board,

or

depending on whether n is odd or even. In these constructions, the interior square is filled
with the placing for the 2n × 2n board. This construction adds 2n + 3 dominoes, and
therefore places, in total,

n(n+ 1)

2
+ (2n+ 3) =

(n+ 2)(n+ 3)

2

dominoes on the board. Noticing that the contour and the interior mesh together appro-
priately, this proves, by induction, that n(n + 1)/2 dominoes can be placed on the 2nn
board.

To prove thatM ≤ n(n+1)/2, we border the 2n×2n square board up to a (2n+2)×(2n+2)
square board; this adds 8n + 4 cells to the 4n2 cells that we have started with. Calling
a cell covered if it belongs to a domino or is adjacent to a domino, each domino on the
2n × 2n board is seen to cover exactly 8 cells of the (2n + 2) × (2n + 2) board (some of
which may belong to the border). By construction, each of the 4n2 cells of the 2n × 2n
board is covered by precisely one domino.
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If two adjacent cells on the border, away from a corner, are covered, then there will be at
least two uncovered cells on both sides of them; if one covered cell lies between uncovered
cells, then again, on both sides of it there will be at least two uncovered cells; three or
more adjacent cells cannot be all covered. The following diagrams, in which the borders
are shaded, ×marks an uncovered cell on the border, +marks a covered cell not belonging
to a domino, and − marks a cell which cannot belong to a domino, summarize the two
possible situations,

· · · × × + + × × · · ·
− + + −

− + + −
− −

...
...

or

· · · × × + × × · · ·
− + + −
− + + −

− + −
... − ...

Close to a corner of the board, either the corner belongs to some domino,

× + + × × · · ·
+ + −
× + + −
× − −
...

or one of the following situations, in which the corner cell of the original board is not
covered by a domino, may occur:

× × + + × × · · ·
× + + −
× + + + −
+ + −
+ + −
...

or

× × × × + + · · ·
× + + +
+ + + +
× + +
× − −
...

It is thus seen that at most half of the cells on the border, i.e. 4n+2 cells, may be covered,
and hence

M ≤
[
4n2 + (4n+ 2)

8

]
=

[
n(n+ 1)

2
+

1

2

]
=
n(n+ 1)

2
,

which completes the proof of our claim.

Solution 2. We use the same example as in Solution 1. Let M denote the maximum
number of dominoes which satisfy the condition of the problem. To prove that M ≤
n(n+ 1)/2, we again border the 2n× 2n square board up to a (2n+ 2)× (2n+ 2) square
board. In fact, we shall ignore the corner border cells as they cannot be covered anyway
and consider only the 2n border cells along each side. We prove that out of each four
border cells next to each other at most two can be covered. Suppose three out of four
cells A, B, C, D are covered. Then there are two possibilities below:

+ + × +
+

or + + + ×
+

6



The first option is that A, B and D are covered (marked with + in top row). Then the
cells inside the starting square next to A, B and D are covered by the dominoes, but
the cell in between them has now two adjacent cells with dominoes, contradiction. The
second option is that A, B and C are covered. Then the cells inside the given square next
to A, B and C are covered by the dominoes. But then the cell next to B has two adjacent
cells with dominoes, contradiction.

Now we can split the border cells along one side in groups of 4 (leaving one group of 2
if n is odd). So when n is even, at most n of the 2n border cells along one side can be
covered, and when n is odd, at most n+ 1 out of the 2n border cells can be covered. For
all four borders together, this gives a contribution of 4n when n is even and 4n+ 4 when
n is odd. Adding 4n2 and dividing by 8 we get the desired result.

Solution (upper bound) by ISR5. Consider the number of pairs of adjacent cells,
such that one of them is covered by a domino. Since each cell is adjacent to one covered
cell, the number of such pairs is exactly 4n2. On the other hand, let n2 be the number
of covered corner cells, n3 the number of covered edge cells (cells with 3 neighbours), and
n4 be the number of covered interior cells (cells with 4 neighbours). Thus the number of
pairs is 2n2 + 3n3 + 4n4 = 4n2, whereas the number of dominoes is m = n2+n3+n4

2
.

Considering only the outer frame (of corner and edge cells), observe that every covered
cell dominates two others, so at most half of the cells are ccovered. The frame has a total
of 4(2n−1) cells, i.e. n2+n3 ≤ 4n−2. Additionally n2 ≤ 4 since there are only 4 corners,
thus

8m = 4n2+4n3+4n4 = (2n2+3n3+4n4)+(n2+n3)+n2 ≤ 4n2+(4n−2)+4 = 4n(n+1)+2

Thus m ≤ n(n+1)
2

+ 1
4
, so in fact m ≤ n(n+1)

2
.

Solution (upper and lower bound) by ISR5. We prove that this is the upper bound
(and also the lower bound!) by proving that any two configurations, say A and B, must
contain exactly the same number of dominoes.

Colour the board in a black and white checkboard colouring. Let W be the set of white
cells covered by dominoes of tiling A. For each cell w ∈ W let Nw be the set of its adjacent
(necessarily black) cells. Since each black cell has exactly one neighbour (necessarily
white) covered by a domino of tiling A, it follows that each black cell is contained in
exactly one Nw, i.e. the Nw form a partition of the black cells. Since each white cell has
exactly one (necessarily black) neighbour covered by a tile of B, each Bw contains exactly
one black tile covered by a domino of B. But, since each domino covers exactly one white
and one black cell, we have

|A| = |W | = |{Nw : w ∈ W}| = |B|

as claimed.
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Problem 3 (Poland). Let ABC be a triangle such that ∠CAB > ∠ABC, and let I
be its incentre. Let D be the point on segment BC such that ∠CAD = ∠ABC. Let ω
be the circle tangent to AC at A and passing through I. Let X be the second point of
intersection of ω and the circumcircle of ABC. Prove that the angle bisectors of ∠DAB
and ∠CXB intersect at a point on line BC.

Solution 1. Let S be the intersection point of BC and the angle bisector of ∠BAD, and
let T be the intersection point of BC and the angle bisector of ∠BXC. We will prove
that both quadruples A, I,B, S and A, I,B, T are concyclic, which yields S = T .

Firstly denote by M the middle of arc AB of the circumcenter of ABC which does not
contain C. Consider the circle centered atM passing through A, I and B (it is well-known
that MA = MI = MB); let it intersect BC at B and S ′. Since ∠BAC > ∠CBA it is
easy to check that S ′ lies on side BC. Denoting the angles in ABC by α, β, γ we get

∠BAD = ∠BAC − ∠DAC = α− β.

Moreover since ∠MBC = ∠MBA+ ∠ABC = γ
2
+ β, then

∠BMS ′ = 180◦ − 2∠MBC = 180◦ − γ − 2β = α− β.

It follows that ∠BAS ′ = 2∠BMS ′ = 2∠BAD which gives us S = S ′.

Secondly let N be the middle of arc BC of the circumcenter of ABC which does not
contain A. From ∠BAC > ∠CBA we conclude that X lies on the arc AB of circumcircle
of ABC not containing C. Obviously both AI and XT are passing through N . Since
∠NBT = α

2
= ∠BXN we obtain 4NBT ∼ 4NXB, therefore

NT ·NX = NB2 = NI2.

It follows that 4NTI ∼ 4NIX. Keeping in mind that ∠NBC = ∠NAC = ∠IXA we
get

∠TIN = ∠IXN = ∠NXA− ∠IXA = ∠NBA− ∠NBC = ∠TBA.

It means that A, I,B, T are concyclic which ends the proof.

Solution 2. Let ∠BAC = α, ∠ABC = β, ∠BCA = γ ∠ACX = φ. Denote by W1

and W2 the intersections of segment BC with the angle bisectors of ∠BXC and ∠BAD
respectively. Then BW1/W1C = BX/XC and BW2/W2D = BA/AD. We shall show
that BW1 = BW2.
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Since ∠DAC = ∠CBA, triangles ADC and BAC are similar and therefore

DC

AC
=
AC

BC
.

By the Law of sines
BW2

W2D
=
BA

AD
=
BC

AC
=

sinα

sin β
.

Consequently
BD

BW2

=
W2D

BW2

+ 1 =
sin β

sinα
+ 1,

BC

BW2

=
BC

BD
· BD
BW2

=
1

1−DC/BC
· BD
BW2

=
1

1− AC2/BC2
· BD
BW2

=

sin2α

sin2 α− sin2 β
· sin β + sinα

sinα
=

sinα

sinα− sin β
.

Note that AXBC is cyclic and so ∠BXC = ∠BAC = α. Hence, ∠XBC = 180◦ −
∠BXC − ∠BCX = 180◦ − α− φ. By the Law of sines for the triangle BXC, we have

BC

W1B
=
W1C

W1B
+ 1 =

CX

BX
+ 1 =

sin∠CBX
sinφ

+ 1 =

sin (α + φ)

sinφ
+ 1 = sinα cotφ+ cosα + 1.

So, it’s enough to prove that

sinα

sinα− sin β
= sinα cotφ+ cosα.

Since AC is tangent to the circle AIX, we have ∠AXI = ∠IAC = α/2. Moreover
∠XAI = ∠XAB+∠BAI = φ+α/2 and ∠XIA = 180◦−∠XAI−∠AXI = 180◦−α−φ.
Applying the Law of sines again XAC, XAI, IAC we obtain

AX

sin (α + φ)
=

AI

sinα/2
,

AX

sin (γ − φ)
=

AC

sin∠AXC
=

AC

sin β
,

AI

sin γ/2
=

AC

sin (α/2 + γ/2)
.

Combining the last three equalities we end up with

sin (γ − φ)
sin (α + φ)

=
AI

AC
· sin β

sinα/2
=

sin β

sinα/2
· sin γ/2

sin (α/2 + γ/2)
,

sin (γ − φ)
sin (α + φ)

=
sin γ cotφ− cos γ

sinα cotφ+ cosα
=

2 sin β/2 sin γ/2

sinα/2
,
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sinα sin γ cotφ− sinα cos γ

sin γ sinα cotφ+ sin γ cosα
=

2 sin β/2 cosα/2

cos γ/2

Subtracting 1 from both sides yields

− sinα cos γ − sin γ cosα

sin γ sinα cotφ+ sin γ cosα
=

2 sin β/2 cosα/2

cos γ/2
− 1 =

2 sin β/2 cosα/2− sin (α/2 + β/2)

cos γ/2
=

sin β/2 cosα/2− sinα/2 cos β/2

cos γ/2
,

− sin(α + γ)

sin γ sinα cotφ+ sin γ cosα
=

sin (β/2− α/2)
cos γ/2

,

− sin β

sinα cotφ+ cosα
= 2 sin γ/2 sin (β/2− α/2) =

2 cos (β/2 + α/2) sin (β/2− α/2) = sin β − sinα,

and the result follows. We are left to note that none of the denominators can vanish.

Solution by Achilleas Sinefakopoulos, Greece. We first note that

∠BAD = ∠BAC − ∠DAC = ∠A− ∠B.

Let CX and AD meet at K. Then ∠CXA = ∠ABC = ∠KAC. Also, we have ∠IXA =
∠A/2, since ω is tangent to AC at A. Therefore,

∠DAI = |∠B − ∠A/2| = |∠KXA− ∠IXA| = ∠KXI,

(the absolute value depends on whether ∠B ≥ ∠A/2 or not) which means that XKIA is
cyclic, i.e. K lies also on ω.

Let IK meet BC at E. (If ∠B = ∠A/2, then IK degenerates to the tangent line to ω at
I.) Note that BEIA is cyclic, because

∠EIA = 180◦ − ∠KXA = 180◦ − ∠ABE.

We have ∠EKA = 180◦ − ∠AXI = 180◦ − ∠A/2 and ∠AEI = ∠ABI = ∠B/2. Hence

∠EAK = 180◦ − ∠EKA− ∠AEI

= 180◦ − (180◦ − ∠A/2)− ∠B/2

= (∠A− ∠B)/2

= ∠BAD/2.

This means that AE is the angle bisector of ∠BAD. Next, let M be the point of inter-
section of AE and BI. Then

∠EMI = 180◦ − ∠B/2− ∠BAD/2 = 180◦ − ∠A/2,
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and so, its supplement is
∠AMI = ∠A/2 = ∠AXI,

so X,M,K, I, A all lie on ω. Next, we have

∠XMA = ∠XKA

= 180◦ − ∠ADC − ∠XCB

= 180◦ − ∠A− ∠XCB

= ∠B + ∠XCA

= ∠B + ∠XBA

= ∠XBE,

and so X,B,E,M are concyclic. Hence

∠EXC = ∠EXM + ∠MXC

= ∠MBE + ∠MAK

= ∠B/2 + ∠BAD/2

= ∠A/2

= ∠BXC/2.

This means that XE is the angle bisector of ∠BXC and so we are done!
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Solution based on that by Eirini Miliori (HEL2), edited by A. Sinefakopoulos,
Greece. It is ∠ABD = ∠DAC, and so AC is tangent to the circumcircle of 4BAD at
A. Hence CA2 = CD · CB.
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Triangle 4ABC is similar to triangle 4CAD, because ∠C is a common angle and
∠CAD = ∠ABC, and so ∠ADC = ∠BAC = 2ϕ.

Let Q be the point of intersection of AD and CX. Since ∠BXC = ∠BAC = 2ϕ, it
follows that BDQX is cyclic.Therefore, CD · CB = CQ · CX = CA2 which implies that
Q lies on ω.

Next let P be the point of intersection of AD with the circumcircle of triangle 4ABC.
Then ∠PBC = ∠PAC = ∠ABC = ∠APC yielding CA = CP. So, let T be on the side
BC such that CT = CA = CP . Then

∠TAD = ∠TAC − ∠DAC =

(
90◦ − ∠C

2

)
− ∠B =

∠A− ∠B
2

=
∠BAD

2
,

that is, line AT is the angle bisector of ∠BAD. We want to show that XT is the angle
bisector of ∠BXC. To this end, it suffices to show that ∠TXC = ϕ.

It is CT 2 = CA2 = CQ · CX, and so CT is tangent to the circumcircle of 4XTQ at
T. Since ∠TXQ = ∠QTC and ∠QDC = 2ϕ, it suffices to show that ∠TQD = ϕ, or, in
other words, that I,Q, and T are collinear.

Let T ′ is the point of intersection of IQ and BC. Then 4AIC is congruent to 4T ′IC,
since they share CI as a common side, ∠ACI = ∠T ′CI, and

∠IT ′D = 2ϕ− ∠T ′QD = 2ϕ− ∠IQA = 2ϕ− ∠IXA = ϕ = ∠IAC.

Therefore, CT ′ = CA = CT , which means that T coincides with T ′ and completes the
proof.

Solution based on the work of Artemis-Chrysanthi Savva (HEL4), completed
by A. Sinefakopoulos, Greece. Let G be the point of intersection of AD and CX.
Since the quadrilateral AXBC is cyclic, it is ∠AXC = ∠ABC.
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Let the line AD meet ω at K. Then it is ∠AXK = ∠CAD = ∠ABC, because the angle
that is formed by a chord and a tangent to the circle at an endpoint of the chord equals
the inscribed angle to that chord. Therefore, ∠AXK = ∠AXC = ∠AXG. This means
that the point G coincides with the point K and so G belongs to the circle ω.

Let E be the point of intersection of the angle bisector of ∠DAB with BC. It suffices to
show that

CE

BE
=
XC

XB
.

Let F be the second point of intersection of ω with AB. Then we have ∠IAF = ∠CAB
2

=
∠IXF, where I is the incenter of 4ABC, because ∠IAF and ∠IXF are inscribed in the
same arc of ω. Thus 4AIF is isosceles with AI = IF. Since I is the incenter of 4ABC,
we have AF = 2(s− a), where s = (a+ b+ c)/2 is the semiperimeter of 4ABC. Also, it
is CE = AC = b because in triangle 4ACE, we have

∠AEC = ∠ABC + ∠BAE

= ∠ABC +
∠BAD

2

= ∠ABC +
∠BAC − ∠ABC

2

= 90◦ − ∠ACE
2

,

and so ∠CAE = 180◦ − ∠AEC − ∠ACE = 90◦ − ∠ACE
2

= ∠AEC. Hence

BF = BA− AF = c− 2(s− a) = a− b = CB − CE = BE.

Moreover, triangle 4CAX is similar to triangle 4BFX, because ∠ACX = ∠FBX and

∠XFB = ∠XAF + ∠AXF = ∠XAF + ∠CAF = ∠CAX.

Therefore
CE

BE
=
AC

BF
=
XC

XB
,

as desired. The proof is complete.

Solution by IRL1 and IRL 5. Let ω denote the circle through A and I tangent to
AC. Let Y be the second point of intersection of the circle ω with the line AD. Let L
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be the intersection of BC with the angle bisector of ∠BAD. We will prove ∠LXC =
1/2∠BAC = 1/2∠BXC.

We will refer to the angles of 4ABC as ∠A,∠B,∠C. Thus ∠BAD = ∠A− ∠B.

On the circumcircle of 4ABC, we have ∠AXC = ∠ABC = ∠CAD, and since AC is
tangent to ω, we have ∠CAD = ∠CAY = ∠AXY . Hence C,X, Y are collinear.

Also note that 4CAL is isosceles with ∠CAL = ∠CLA = 1
2
(∠BAD)+∠ABC = 1

2
(∠A+

∠B) hence AC = CL. Moreover, CI is angle bisector to ∠ACL so it’s the symmetry axis
for the triangle, hence ∠ILC = ∠IAC = 1/2∠A and ∠ALI = ∠LIA = 1/2∠B. Since
AC is tangent to ω, we have ∠AY I = ∠IAC = 1/2∠A = ∠LAY + ∠ALI. Hence L, Y, I
are collinear.

Since AC is tangent to ω, we have 4CAY ∼ 4CXA hence CA2 = CX · CY . However
we proved CA = CL hence CL2 = CX · CY . Hence 4CLY ∼ 4CXL and hence
∠CXL = ∠CLY = ∠CAI = 1/2∠A.

A

B C

I

D

X

L

Y

Solution by IRL 5. Let M be the midpoint of the arc BC. Let ω denote the circle
through A and I tangent to AC. Let N be the second point of intersection of ω with AB
and L the intersection of BC with the angle bisector of ∠BAD. We know DL

LB
= AD

AB
and

want to prove XB
XC

= LB
LC

.

First note that 4CAL is isosceles with ∠CAL = ∠CLA = 1
2
(∠BAD) + ∠ABC hence

AC = CL and LB
LC

= LB
AC

.

Now we calculate XB
XC

:

Comparing angles on the circles ω and the circumcircle of 4ABC we get 4XIN ∼
4XMB and hence also 4XIM ∼ 4XNB (having equal angles at X and proportional
adjoint sides). Hence XB

XM
= NB

IM
.

Also comparing angles on the circles ω and the circumcircle of 4ABC and using the
tangent AC we get 4XAI ∼ 4XCM and hence also 4XAC ∼ 4XIM. Hence XC

XM
=

AC
IM

.

Comparing the last two equations we get XB
XC

= NB
AC

. Comparing with LB
LC

= LB
AC

, it remains
to prove NB = LB.
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A

B

C

I

M

D

X

L

N

We prove 4INB ≡ 4ILB as follows:

First, we note that I is the circumcentre of 4ALN . Indeed, CI is angle bisector in the
isosceles triangle ACL so it’s perpendicular bisector for AL. As well, 4IAN is isosceles
with ∠INA = ∠CAI = ∠IAB hence I is also on the perpendicular bisector of AN .

Hence IN = IL and also ∠NIL = 2∠NAL = ∠A − ∠B = 2∠NIB (the last angle is
calculated using that the exterior angle of 4NIB is ∠INA = ∠A/2. Hence ∠NIB =
∠LIB and 4INB ≡ 4ILB by SAS.

Solution by ISR5 (with help from IRL5). Let M,N be the midpoints of arcs
BC,BA of the circumcircle ABC, respectively. Let Y be the second intersection of
AD and circle ABC. Let E be the incenter of triangle ABY and note that E lies
on the angle bisectors of the triangle, which are the lines Y N (immediate), BC (since
∠CBY = ∠CAY = ∠CAD = ∠ABC) and the angle bisector of ∠DAB; so the question
reduces to showing that E is also on XM , which is the angle bisector of ∠CXB.

We claim that the three lines CX,ADY, IE are concurrent at a pointD′. We will complete
the proof using this fact, and the proof will appear at the end (and see the solution by
HEL5 for an alternative proof of this fact).

To show that XEM are collinear, we construct a projective transformation which projects
M to X through center E. We produce it as a composition of three other projections.
Let O be the intersection of lines AD′DY and CIN . Projecting the points Y NCM on
the circle ABC through the (concyclic) point A to the line CN yields the points ONCI.
Projecting these points through E to the line AY yields OYDD′ (here we use the facts
that D′ lies on IE and AY ). Projecting these points to the circle ABC through C yields
NY BX (here we use the fact that D′ lies on CX). Composing, we observe that we found
a projection of the circle ABC to itself sending Y NCM to NY BX. Since the projection
of the circle through E also sends Y NC to NY B, and three points determine a projective
transformation, the projection through E also sends M to X, as claimed.
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Let B′, D′ be the intersections of AB,AD with the circle AXI, respectively. We wish to
show that this D′ is the concurrency point defined above, i.e. that CD′X and ID′E are
collinear. Additionally, we will show that I is the circumcenter of AB′E.

Consider the inversion with center C and radius CA. The circles AXI and ABD are
tangent to CA at A (the former by definition, the latter since ∠CAD = ∠ABC), so
they are preserved under the inversion. In particular, the inversion transposes D and B
and preserves A, so sends the circle CAB to the line AD. Thus X, which is the second
intersection of circles ABC and AXI, is sent by the inversion to the second intersection
of AD and circle AXI, which is D′. In particular CD′X are collinear.

In the circle AIB′, AI is the angle bisector of B′A and the tangent at A, so I is the
midpoint of the arc AB′, and in particular AI = IB′. By angle chasing, we find that
ACE is an isosceles triangle:

∠CAE = ∠CAD + ∠DAE = ∠ABC + ∠EAB = ∠ABE + ∠EAB = ∠AEB = ∠AEC,

thus the angle bisector CI is the perpendicular bisector of AE and AI = IE. Thus I is
the circumcenter of AB′E.

We can now show that ID′E are collinear by angle chasing:

∠EIB′ = 2∠EAB′ = 2∠EAB = ∠DAB = ∠D′AB′ = ∠D′IB′.

Solution inspired by ISR2. Let W be the midpoint of arc BC, let D′ be the second
intersection point of AD and the circle ABC. Let P be the intersection of the angle
bisector XW of ∠CXB with BC; we wish to prove that AP is the angle bisector of
DAB. Denote α = ∠CAB

2
, β = ∠ABC.

Let M be the intersection of AD and XC. Angle chasing finds:

∠MXI = ∠AXI − ∠AXM = ∠CAI − ∠AXC = ∠CAI − ∠ABC = α− β
= ∠CAI − ∠CAD = ∠DAI = ∠MAI

And in particular M is on ω. By angle chasing we find

∠XIA = ∠IXA+ ∠XAI = ∠ICA+ ∠XAI = ∠XAC = ∠XBC = ∠XBP

and ∠PXB = α = ∠CAI = ∠AXI, and it follows that 4XIA ∼ 4XBP . Let S be the
second intersection point of the cirumcircles of XIA and XBP . Then by the spiral map
lemma (or by the equivalent angle chasing) it follows that ISB and ASP are collinear.
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Let L be the second intersection of ω and AB. We want to prove that ASP is the angle
bisector of ∠DAB = ∠MAL, i.e. that S is the midpoint of the arc ML of ω. And this
follows easily from chasing angular arc lengths in ω:

ÃI = ∠CAI = α

ÎL = ∠IAL = α

M̄I = ∠MXI = α− β
ÃI − S̃L = ∠ABI = β

2

And thus
M̄L = M̄I + ÎL = 2α− β = 2(ÃI − β

2
) = 2S̃L.

Solution by inversion, by JPN Observer A, Satoshi Hayakawa. Let E be the
intersection of the bisector of ∠BAD and BC, and N be the middle point of arc BC of
the circumcircle of ABC. Then it suffices to show that E is on line XN .

We consider the inversion at A. Let P ∗ be the image of a point denoted by P . Then
A,B∗, C∗, E∗ are concyclic, X∗, B∗, C∗ are colinear, and X∗I∗ and AC∗ are parallel. Now
it suffices to show that A,X∗, E∗, N∗ are concyclic. Let Y be the intersection of B∗C∗
and AE∗. Then, by the power of a point, we get

A,X∗, E∗, N∗ are concyclic⇐⇒ Y X∗ · Y N∗ = Y A · Y E∗

⇐⇒ Y X∗ · Y N∗ = Y B∗ · Y C∗.
(A,B∗, C∗, E∗ are concyclic)

Here, by the property of inversion, we have

∠AI∗B∗ = ∠ABI =
1

2
∠ABC =

1

2
∠C∗AD∗.
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Define Q,R as described in the figure, and we get by simple angle chasing

∠QAI∗ = ∠QI∗A, ∠RAI∗ = ∠B∗I∗A.

Especially, B∗R and AI∗ are parallel, so that we have

Y B∗

Y N∗
=
Y R

Y A
=
Y X∗

Y C∗
,

and the proof is completed.
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Day 2. Solutions

Problem 4 (Poland). Let ABC be a triangle with incentre I. The circle through B
tangent to AI at I meets side AB again at P . The circle through C tangent to AI at I
meets side AC again at Q. Prove that PQ is tangent to the incircle of ABC.

Solution 1. Let QX, PY be tangent to the incircle of ABC, where X, Y lie on the
incircle and do not lie on AC, AB. Denote ∠BAC = α, ∠CBA = β, ∠ACB = γ.

Since AI is tangent to the circumcircle of CQI we get ∠QIA = ∠QCI = γ
2
. Thus

∠IQC = ∠IAQ+ ∠QIA =
α

2
+
γ

2
.

By the definition of X we have ∠IQC = ∠XQI, therefore

∠AQX = 180◦ − ∠XQC = 180◦ − α− γ = β.

Similarly one can prove that ∠APY = γ. This means that Q,P,X, Y are collinear which
leads us to the conclusion that X = Y and QP is tangent to the incircle at X.

Solution 2. By the power of a point we have

AD · AC = AI2 = AP · AB, which means that
AQ

AP
=
AB

AC

and therefore triangles ADP , ABC are similar. Let J be the incenter of AQP . We obtain

∠JPQ = ∠ICB = ∠QCI = ∠QIJ,

thus J , P , I, Q are concyclic. Let S be the intersection of AI and BC. It follows that

∠IQP = ∠IJP = ∠SIC = ∠IQC.

This means that IQ is the angle bisector of ∠CQP , so QP is indeed tangent to the incircle
of ABC.

Comment. The final angle chasing from the Solution 2 may simply be replaced by the
observation that since J , P , I, Q are concyclic, then I is the A-excenter of triangle APQ.

Solution 3. Like before, notice that AQ · AC = AP · AB = AI2. Consider the positive
inversion Ψ with center A and power AI2. This maps P to B (and vice-versa), Q to C
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(and vice-versa), and keeps the incenter I fixed. The problem statement will follow from
the fact that the image of the incircle of triangle ABC under Ψ is the so-called mixtilinear
incircle of ABC, which is defined to be the circle tangent to the lines AB, AC, and the
circumcircle of ABC. Indeed, since the image of the line QP is the circumcircle of ABC,
and inversion preserves tangencies, this implies that QP is tangent to the incircle of ABC.

We justify the claim as follows: let γ be the incircle ofABC and let ΓA be theA-mixtilinear
incircle of ABC. Let K and L be the tangency points of γ with the sides AB and AC,
and let U and V be the tangency points of ΓA with the sides AB and AC, respectively.
It is well-known that the incenter I is the midpoint of segment UV . In particular, since
also AI ⊥ UV , this implies that AU = AV = AI

cos A
2

. Note that AK = AL = AI · cos A
2
.

Therefore, AU · AK = AV · AL = AI2, which means that U and V are the images of K
and L under Ψ. Since ΓA is the unique circle simultaneously tangent to AB at U and to
AC at V , it follows that the image of γ under Ψ must be precisely ΓA, as claimed.

Solution by Achilleas Sinefakopoulos, Greece. From the power of a point theorem,
we have

AP · AB = AI2 = AQ · AC.

Hence PBCQ is cyclic, and so, ∠APQ = ∠BCA. Let K be the circumcenter of 4BIP
and let L be the circumcenter of 4QIC. Then KL is perpendicular to AI at I.

Let N be the point of intersection of line KL with AB.Then in the right triangle 4NIA,
we have ∠ANI = 90◦ − ∠BAC

2
and from the external angle theorem for triangle 4BNI,

we have ∠ANI = ∠ABC
2

+ ∠NIB. Hence

∠NIB = ∠ANI − ∠ABC
2

=

(
90◦ − ∠BAC

2

)
− ∠ABC

2
=

∠BCA
2

.

Since MI is tangent to the circumcircle of 4BIP at I, we have

∠BPI = ∠BIM = ∠NIM − ∠NIB = 90◦ − ∠BCA
2

.

Also, since ∠APQ = ∠BCA, we have

∠QPI = 180◦ − ∠APQ− ∠BPI = 180◦ − ∠BCA−
(

90◦ − ∠BCA
2

)
= 90◦ − ∠BCA

2
,

as well. Hence I lies on the angle bisector of ∠BPQ, and so it is equidistant from its
sides PQ and PB. Therefore, the distance of I from PQ equals the inradius of 4ABC,
as desired.
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Solution by Eirini Miliori (HEL2). Let D be the point of intersection of AI and BC
and let R be the point of intersection of AI and PQ. We have ∠RIP = ∠PBI = ∠B

2
,

∠RIQ = ∠ICQ = ∠C
2
, ∠IQC = ∠DIC = x and ∠BPI = ∠BID = ϕ, since AI is

tangent to both circles.

From the angle bisector theorem, we have

RQ

RP
=
AQ

AP
and

AC

AB
=
DC

BD
.
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Since AI is tangent to both circles at I, we have AI2 = AQ · AC and AI2 = AP · AB.
Therefore,

RQ

RP
· DC
BD

=
AQ · AC
AB · AP

= 1. (1)

From the sine law in triangles 4QRI and 4PRI, it follows that
RQ

sin ∠C
2

=
RI

sin y
and

RP

sin ∠B
2

=
RI

sinω
, respectively. Hence

RQ

RP
·

sin ∠B
2

sin ∠C
2

=
sinω

sin y
. (2)

Similarly, from the sine law in triangles 4IDC and 4IDB, it is
DC

sinx
=

ID

sin ∠C
2

and

BD

sinϕ
=

ID

sin ∠B
2

, and so

DC

BD
· sinϕ

sinx
=

sin ∠B
2

sin ∠C
2

. (3)

By multiplying equations (2) with (3), we obtain
RQ

RP
·DC
BD
· sinϕ
sinx

=
sinω

sin y
, which combined

with (1) and cross-multiplying yields

sinϕ · sin y = sinω · sinx. (4)

Let θ = 90◦ + ∠A
2
. Since I is the incenter of 4ABC, we have x = 90◦ + ∠A

2
− ϕ = θ − φ.

Also, in triangle 4PIQ, we see that ω + y + ∠B
2

+ ∠C
2

= 180◦, and so y = θ − ω.

Therefore, equation (4) yields

sinϕ · sin(θ − ω) = sinω · sin(θ − ϕ),

or

1

2
(cos(ϕ− θ + ω)− cos(ϕ+ θ − ω)) =

1

2
(cos(ω − θ + ϕ)− cos(ω + θ − ϕ)) ,

which is equivalent to
cos(ϕ+ θ − ω) = cos(ω + θ − ϕ).

So
ϕ+ θ − ω = 2k · 180◦ ± (ω + θ − ϕ), (k ∈ Z.)

If ϕ + θ − ω = 2k · 180◦ + (ω + θ − ϕ), then 2(ϕ − ω) = 2k · 180◦, with |ϕ − ω| < 180◦

forcing k = 0 and ϕ = ω. If ϕ+ θ−ω = 2k · 180◦− (ω+ θ−ϕ), then 2θ = 2k · 180◦, which
contradicts the fact that 0◦ < θ < 180◦. Hence ϕ = ω, and so PI is the angle bisector of
∠QPB.

Therefore the distance of I from PQ is the same with the distance of I from AB, which
is equal to the inradius of 4ABC. Consequently, PQ is tangent to the incircle of 4ABC.
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Problem 5 (Netherlands).

Let n ≥ 2 be an integer, and let a1, a2, . . . , an be positive integers. Show that there exist
positive integers b1, b2, . . . , bn satisfying the following three conditions:

1. ai ≤ bi for i = 1, 2, . . . , n;

2. the remainders of b1, b2, . . . , bn on division by n are pairwise different; and

3. b1 + · · ·+ bn ≤ n

(
n− 1

2
+

⌊
a1 + · · ·+ an

n

⌋)
.

(Here, bxc denotes the integer part of real number x, that is, the largest integer that does
not exceed x.)

Solution 1. We define the bi recursively by letting bi be the smallest integer such
that bi ≥ ai and such that bi is not congruent to any of b1, . . . , bi−1 modulo n. Then
bi − ai ≤ i − 1, since of the i consecutive integers ai, ai + 1, . . . , ai + i − 1, at most i − 1
are congruent to one of b1, . . . , bi−1 modulo n. Since all bi are distinct modulo n, we have∑n

i=1 bi ≡
∑n

i=1(i−1) = 1
2
n(n−1) modulo n, so n divides

∑n
i=1 bi−

1
2
n(n−1). Moreover,

we have
∑n

i=1 bi−
∑n

i=1 ai ≤
∑n

i=1(i− 1) = 1
2
n(n− 1), hence

∑n
i=1 bi−

1
2
n(n− 1) ≤

∑n
i=1.

As the left hand side is divisible by n, we have

1

n

(
n∑
i=1

bi −
1

2
n (n− 1)

)
≤

[
1

n

n∑
i=1

ai

]

which we can rewrite as
n∑
i=1

bi ≤ n

(
n− 1

2
+

[
1

n

n∑
i=1

ai

])

as required.

Solution 2. Note that the problem is invariant under each of the following operations:

• adding a multiple of n to some ai (and the corresponding bi);

• adding the same integer to all ai (and all bi);

• permuting the index set 1, 2, . . . , n.

We may therefore remove the restriction that our ai and bi be positive.

For each congruence class k modulo n (k = 0, . . . , n− 1), let h(k) be the number of i such
that ai belongs to k. We will now show that the problem is solved if we can find a t ∈ Z
such that

h(t) ≥ 1,
h(t) + h(t+ 1) ≥ 2,

h(t) + h(t+ 1) + h(t+ 2) ≥ 3,
...

Indeed, these inequalities guarantee the existence of elements ai1 ∈ t, ai2 ∈ t ∪ t+ 1,
ai3 ∈ t ∪ t+ 1 ∪ t+ 2, et cetera, where all ik are different. Subtracting appropriate

5



multiples of n and reordering our elements, we may assume a1 = t, a2 ∈ {t, t + 1},
a3 ∈ {t, t+ 1, t+ 2}, et cetera. Finally subtracting t from the complete sequence, we may
assume a1 = 0, a2 ∈ {0, 1}, a3 ∈ {0, 1, 2} et cetera. Now simply setting bi = i− 1 for all i
suffices, since ai ≤ bi for all i, the bi are all different modulo n, and

n∑
i=1

bi =
n(n− 1)

2
≤ n(n− 1)

2
+ n

[∑n
i=1 ai
n

]
.

Put xi = h(i)−1 for all i = 0, . . . , n−1. Note that xi ≥ −1, because h(i) ≥ 0. If we have
xi ≥ 0 for all i = 0, . . . , n− 1, then taking t = 0 completes the proof. Otherwise, we can
pick some index j such that xj = −1. Let yi = xi where i = 0, . . . , j − 1, j + 1, . . . , n− 1
and yj = 0. For sequence {yi} we have

n−1∑
i=0

yi =
n−1∑
i=0

xi + 1 =
n−1∑
i=0

h(i)− n+ 1 = 1,

so from Raney’s lemma there exists index k such that
∑k+j

i=k yi > 0 for all j = 0, . . . , n− 1
where yn+j = yj for j = 0, . . . , k − 1. Taking t = k we will have

k+i∑
t=k

h(t)− (i+ 1) =
k+i∑
t=k

x(t) ≥
k+i∑
t=k

y(t)− 1 ≥ 0,

for all i = 0, . . . , n− 1 and we are done.

Solution 3. Choose a random permutation c1, . . . , cn of the integers 1, 2, . . . , n. Let
bi = ai + f(ci − ai), where f(x) ∈ {0, . . . , n − 1} denotes a remainder of x modulo n.
Observe, that for such defined sequence the first two conditions hold. The expected value
of B := b1 + . . . + bn is easily seen to be equal to a1 + . . . + an + n(n− 1)/2. Indeed, for
each i the random number ci − ai has uniform distribution modulo n, thus the expected
value of f(ci − ai) is (0 + . . . + (n − 1))/n = (n − 1)/2. Therefore we may find such c
that B ≤ a1 + . . .+ an + n(n− 1)/2. But B − n(n− 1)/2 is divisible by n and therefore
B ≤ n[(a1 + . . .+ an)/n] + n(n− 1)/2 as needed.

Solution 4. We will prove the required statement for all sequences of non-negative
integers ai by induction on n.

Case n = 1 is obvious, just set b1 = a1.

Now suppose that the statement is true for some n ≥ 1; we shall prove it for n+ 1.

First note that, by subtracting a multiple of n + 1 to each ai and possibly rearranging
indices we can reduce the problem to the case where 0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 <
n+ 1.

Now, by the induction hypothesis there exists a sequence d1, d2, . . . , dn which satisfies the
properties required by the statement in relation to the numbers a1, . . . , an. Set I = {i|1 ≤
i ≤ n and di mod n ≥ ai} and construct bi, for i = 1, . . . , n+ 1, as follows:

bi =


di mod n, when i ∈ I,
n+ 1 + (di mod n), when i ∈ {1, . . . , n} \ I,
n, for i = n+ 1.
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Now, ai ≤ di mod n ≤ bi for i ∈ I, while for i /∈ I we have ai ≤ n ≤ bi. Thus the sequence
(bi)

n+1
i=1 satisfies the first condition from the problem statement.

By the induction hypothesis, the numbers di mod n are distinct for i ∈ {1, . . . , n}, so the
values bi mod (n + 1) are distinct elements of {0, . . . , n − 1} for i ∈ {1, . . . , n}. Since
bn+1 = n, the second condition is also satisfied.

Denote k = |I|. We have

n+1∑
i=1

bi =
n∑
i=1

bi + n =
n∑
i=1

di mod n+ (n− k)(n+ 1) + n =

n(n+ 1)

2
+ (n− k)(n+ 1),

hence we need to show that

n(n+ 1)

2
+ (n− k)(n+ 1) ≤ n(n+ 1)

2
+ (n+ 1)

[∑n+1
i=1 ai
n+ 1

]
;

equivalently, that

n− k ≤

[∑n+1
i=1 ai
n+ 1

]
.

Next, from the induction hypothesis we have

n(n− 1)

2
+ n

[∑n
i=1 ai
n

]
≥

n∑
i=1

di =
∑
i∈I

di +
∑
i/∈I

di ≥

∑
i∈I

di mod n+
∑
i/∈I

(n+ di mod n) =
n(n− 1)

2
+ (n− k)n

or
n− k ≤

[∑n
i=1 ai
n

]
.

Thus, it’s enough to show that ∑n
i=1 ai
n

≤
∑n+1

i=1 ai
n+ 1

because then

n− k ≤
[∑n

i=1 ai
n

]
≤

[∑n+1
i=1 ai
n+ 1

]
.

But the required inequality is equivalent to
∑n

i=1 ai ≤ nan+1, which is obvious.

Solution 5. We can assume that all ai ∈ {0, 1, . . . , n− 1}, as we can deduct n from both
ai and bi for arbitrary i without violating any of the three conditions from the problem
statement. We shall also assume that a1 ≤ . . . ≤ an.

Now let us provide an algorithm for constructing b1, . . . , bn.
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We start at step 1 by choosing f(1) to be the maximum i in {1, . . . , n} such that ai ≤ n−1,
that is f(1) = n. We set bf(1) = n− 1.

Having performed steps 1 through j, at step j+ 1 we set f(j+ 1) to be the maximum i in
{1, . . . , n} \ {f(1), . . . , f(j)} such that ai ≤ n− j − 1, if such an index exists. If it does,
we set bf(j+1) = n− j − 1. If there is no such index, then we define T = j and assign to
the terms bi, where i /∈ f({1, . . . , j}), the values n, n+ 1 . . . , 2n− j− 1, in any order, thus
concluding the run of our algorithm.

Notice that the sequence (bi)
n
i=1 satisfies the first and second required conditions by con-

struction. We wish to show that it also satisfies the third.

Notice that, since the values chosen for the bi’s are those from n − T to 2n − T − 1, we
have

n∑
i=1

bi =
n(n− 1)

2
+ (n− T )n.

It therefore suffices to show that[
a1 + . . .+ an

n

]
≥ n− T,

or (since the RHS is obviously an integer) a1 + . . .+ an ≥ (n− T )n.

First, we show that there exists 1 ≤ i ≤ T such that n− i = bf(i) = af(i).

Indeed, this is true if an = n−1, so we may suppose an < n−1 and therefore an−1 ≤ n−2,
so that T ≥ 2. If an−1 = n − 2, we are done. If not, then an−1 < n − 2 and therefore
an−2 ≤ n− 3 and T ≥ 3. Inductively, we actually obtain T = n and necessarily f(n) = 1
and a1 = b1 = 0, which gives the desired result.

Now let t be the largest such index i. We know that n − t = bf(t) = af(t) and therefore
a1 ≤ . . . ≤ af(t) ≤ n − t. If we have a1 = . . . = af(t) = n − t, then T = t and we have
ai ≥ n− T for all i, hence

∑
i ai ≥ n(n− T ). Otherwise, T > t and in fact one can show

T = t + f(t + 1) by proceeding inductively and using the fact that t is the last time for
which af(t) = bf(t).

Now we get that, since af(t+1)+1 ≥ n−t, then
∑

i ai ≥ (n−t)(n−f(t+1)) = (n−T+f(t+
1))(n−f(t+1)) = n(n−T )+nf(t+1)−f(t+1)(n−T +f(t+1)) = n(n−T )+tf(t+1) ≥
n(n− T ).

Greedy algorithm variant 1 (ISR). Consider the residues 0, . . . , n − 1 modulo n
arranged in a circle clockwise, and place each ai on its corresponding residue; so that on
each residue there is a stack of all ais congruent to it modulo n, and the sum of the sizes of
all stacks is exactly n. We iteratively flatten and spread the stacks forward, in such a way
that the ais are placed in the nearest available space on the circle clockwise (skipping over
any already flattened residue or still standing stack). We may choose the order in which
the stacks are flattened. Since the total amount of numbers equals the total number of
spaces, there is always an available space and at the end all spaces are covered. The bis
are then defined by adding to each ai the number of places it was moved forward, which
clearly satifies (i) and (ii), and we must prove that they satisfy (iii) as well.

Suppose that we flatten a stack of k numbers at a residue i, causing it to overtake a stack
of l numbers at residue j ∈ (i, i + k) (we can allow j to be larger than n and identify it
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with its residue modulo n). Then in fact in fact in whichever order we would flatten the
two stacks, the total number of forward steps would be the same, and the total sum of
the corresponding bt (such that at mod n ∈ {i, j}) would be the same. Moreover, we can
merge the stacks to a single stack of k + l numbers at residue i, by replacing each at ≡ j
(mod n) by a′t = at − (j − i), and this stack would be flattened forward into the same
positions as the separate stacks would have been, so applying our algorithm to the new
stacks will yield the same total sum of

∑
bi – but the ais are strictly decreased, so

∑
ai

is decreased, so
⌊∑

ai
n

⌋
is not increased – so by merging the stacks, we can only make the

inequality we wish to prove tighter.

Thus, as long as there is some stack that when flattened will overtake another stack, we
may merge stacks and only make the inequality tighter. Since the amount of numbers
equals the amount of places, the merging process terminates with stacks of sizes k1, . . . , km,
such that the stack j, when flattened, will exactly cover the interval to the next stack.
Clearly the numbers in each such stack were advanced by a total of

∑kj−1
t=1 =

kj(kj−1)
2

, thus∑
bi =

∑
ai +

∑
j
kj(kj−1)

2
. Writing

∑
ai = n · r + s with 0 ≤ s < n, we must therefore

show
s+

∑
j

kj(kj − 1)

2
≤ n(n− 1)

2
.

Ending 1. Observing that both sides of the last inequality are congruent modulo n (both
are congruent to the sum of all different residues), and that 0 ≤ s < n, the inequality is
eqivalent to the simpler

∑
j
kj(kj−1)

2
≤ n(n−1)

2
. Since x(x − 1) is convex, and kj are non-

negative integers with
∑

j kj = n, the left hand side is maximal when kj′ = n and the rest
are 0, and then eqaulity is achieved. (Alternatively it follows easily for any non-negative
reals from AM-GM.)

Ending 2. If m = 1 (and k1 = n), then all numbers are in a single stack and have the
same residue, so s = 0 and equality is attained. If m ≥ 2, then by convexity

∑
j
kj(kj−1)

2

is maximal for m = 2 and (k1, k2) = (n−1, 1), where it equals (n−1)(n−2)
2

. Since we always
have s ≤ n− 1, we find

s+
∑
j

kj(kj − 1)

2
≤ (n− 1) +

(n− 1)(n− 2)

2
=
n(n− 1)

2

as required.

Greedy algorithm variant 1’ (ISR). We apply the same algorithm as in the previous
solution. However, this time we note that we may merge stacks not only when they
overlap after flattening, but also when they merely touch front-to-back: That is, we relax
the condition j ∈ (i, i+ k) to j ∈ (i, i+ k]; the argument for why such merges are allowed
is exactly the same (But note that this is now sharp, as merging non-touching stacks can
cause the sum of bis to decrease).

We now observe that as long as there at least two stacks left, at least one will spread
to touch (or overtake) the next stack, so we can perform merges until there is only one
stack left. We are left with verifying that the inequality indeed holds for the case of only
one stack which is spread forward, and this is indeed immediate (and in fact equality is
achieved).
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Greedy algorithm variant 2 (ISR). Let ci = ai mod n. Iteratively define bi = ai + li
greedily, write di = ci + li, and observe that li ≤ n − 1 (since all residues are present in
ai, . . . , ai + n− 1), hence 0 ≤ di ≤ 2n− 2. Let I = {i ∈ I : di ≥ n}, and note that di = bi
mod n if i /∈ I and di = (bi mod n) + n if i ∈ I. Then we must show∑

(ai + li) =
∑

bi ≤
n(n− 1)

2
+ n

⌊∑
ai
n

⌋
⇐⇒

∑
(ci + li) ≤

∑
(bi mod n) + n

⌊∑
ci
n

⌋
⇐⇒ n|I| ≤ n

⌊∑
ci
n

⌋
⇐⇒ |I| ≤

⌊∑
ci
n

⌋
⇐⇒ |I| ≤

∑
ci
n

Let k = |I|, and for each 0 ≤ m < n let Jm = {i : ci ≥ n−m}. We claim that there must
be some m for which |Jm| ≥ m + k (clearly for such m, at least k of the sums dj with
j ∈ Jm must exceed n, i.e. at least k of the elements of Jm must also be in I, so this m is
a “witness” to the fact |I| ≥ k). Once we find such an m, then we clearly have∑

ci ≥ (n−m)|Jm| ≥ (n−m)(k +m) = nk +m(n− (k +m)) ≥ nk = n|I|

as required. We now construct such an m explicitly.

If k = 0, then clearly m = n works (and also the original inequality is trivial). Otherwise,
there are some dis greater than n, and let r + n = max di, and suppose dt = r + n and
let s = ct. Note that r < s < r + n since lt < n. Let m ≥ 0 be the smallest number
such that n − m − 1 is not in {d1, . . . , dt}, or equivalently m is the largest such that
[n − m,n) ⊂ {d1, . . . , dt}. We claim that this m satisfies the required property. More
specifically, we claim that J ′m = {i ≤ t : di ≥ n−m} contains exactly m+k elements and
is a subset of Jm.

Note that by the greediness of the algorithm, it is impossible that for [ci, di) to contain
numbers congruent to dj mod n with j > i (otherwise, the greedy choice would prefer
dj to di at stage i). We call this the greedy property. In particular, it follows that all
i such that di ∈ [s, dt) = [ct, dt) must satisfy i < t. Additionally, {di} is disjoint from
[n+ r+ 1, 2n) (by maximality of dt), but does intersect every residue class, so it contains
[r + 1, n) and in particular also [s, n). By the greedy property the latter can only be
attained by di with i < t, thus [s, n) ⊂ {d1, . . . , dt}, and in particular n−m ≤ s (and in
particular m ≥ 1).

On the other hand n −m > r (since r /∈ {di} at all), so n −m − 1 ≥ r. It follows that
there is a time t′ ≥ t for which dt′ ≡ n −m − 1 (mod n): If n −m − 1 = r then this is
true for t′ = t with dt = n+ r = 2n−m− 1; whereas if n−m− 1 ∈ [r+ 1, n) then there
is some t′ for which dt′ = n−m− 1, and by the definition of m it satisfies t′ > t.

Therefore for all i < t ≤ t′ for which di ≥ n − m, necessarily also ci ≥ n − m, since
otherwise dt′ ∈ [ci, di), in contradiction to the greedy property. This is also true for i = t,
since ct = s ≥ n−m as previously shown. Thus, J ′m ⊂ Jm as claimed.

Finally, since by definition of m and greediness we have [n − m,n) ∪ {di : i ∈ I} ⊂
{d1, . . . , dt}, we find that {dj : j ∈ J ′m} = [n − m,n) ∪ {di : i ∈ I} and thus |J ′m| =
|[n−m,n)|+ |I| = m+ k as claimed.
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Problem 6 (United Kingdom).

On a circle, Alina draws 2019 chords, the endpoints of which are all different. A point is
considered marked if it is either

(i) one of the 4038 endpoints of a chord; or

(ii) an intersection point of at least two chords.

Alina labels each marked point. Of the 4038 points meeting criterion (i), Alina labels
2019 points with a 0 and the other 2019 points with a 1. She labels each point meeting
criterion (ii) with an arbitrary integer (not necessarily positive).

Along each chord, Alina considers the segments connecting two consecutive marked points.
(A chord with k marked points has k − 1 such segments.) She labels each such segment
in yellow with the sum of the labels of its two endpoints and in blue with the absolute
value of their difference.

Alina finds that the N + 1 yellow labels take each value 0, 1, . . . , N exactly once. Show
that at least one blue label is a multiple of 3.

(A chord is a line segment joining two different points on a circle.)

Solution 1. First we prove the following:

Lemma: if we color all of the points white or black, then the number of white-black edges,
which we denote EWB, is equal modulo 2 to the number of white (or black) points on the
circumference, which we denote CW , resp. CB.

Observe that changing the colour of any interior point does not change the parity of EWB,
as each interior point has even degree, so it suffices to show the statement holds when all
interior points are black. But then EWB = CW so certainly the parities are equal.

Now returning to the original problem, assume that no two adjacent vertex labels differ
by a multiple of three, and three-colour the vertices according to the residue class of the
labels modulo 3. Let E01 denote the number of edges between 0-vertices and 1-vertices,
and C0 denote the number of 0-vertices on the boundary, and so on.

Then, consider the two-coloring obtained by combining the 1-vertices and 2-vertices. By
applying the lemma, we see that E01 + E02 ≡ C0 mod 2.

Similarly E01 + E12 ≡ C1, and E02 + E12 ≡ C2, mod 2.

Using the fact that C0 = C1 = 2019 and C2 = 0, we deduce that either E02 and E12 are
even and E01 is odd; or E02 and E12 are odd and E01 is even.

But if the edge labels are the first N non-negative integers, then E01 = E12 unless N ≡ 0
modulo 3, in which case E01 = E02. So however Alina chooses the vertex labels, it is not
possible that the multiset of edge labels is {0, . . . , N}.

Hence in fact two vertex labels must differ by a multiple of 3.

Solution 2. As before, colour vertices based on their label modulo 3.

Suppose this gives a valid 3-colouring of the graph with 2019 0s and 2019 1s on the
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circumference. Identify pairs of 0-labelled vertices and pairs of 1-labelled vertices on the
circumference, with one 0 and one 1 left over. The resulting graph has even degrees except
these two leaves. So the connected component C containing these leaves has an Eulerian
path, and any other component has an Eulerian cycle.

Let E∗01 denote the number of edges between 0-vertices and 1-vertices in C, and let E ′01
denote the number of such edges in the other components, and so on. By studying whether
a given vertex has label congruent to 0 modulo 3 or not as we go along the Eulerian path
in C, we find E∗01 +E∗02 is odd, and similarly E∗01 +E∗12 is odd. Since neither start nor end
vertex is a 2-vertex, E∗02 + E∗12 must be even.

Applying the same argument for the Eulerian cycle in each other component and adding
up, we find that E ′01 +E ′02, E ′01 +E ′12, E ′02 +E ′12 are all even. So, again we find E01 +E02,
E01 + E12 are odd, and E02 + E12 is even, and we finish as in the original solution.
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