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1. Hajau ru cute Tpojku on1 peanHu OpoeBH (a,b,c) TakBu mTO ab+bc+ca=1u
a’b+c=b’c+a=c’a+b.

2. Heka n e mo3utuBeH mnpupojeH Opoj. Ha maxoBcka Tabia co IUMEH3UM 2nx2n ce
CTaBEHU JJOMHWHA, TaKa IITO CEKOe KBajapaTdye o] TabjiaTa € COCeTHO CO TOYHO €IHO KBaapaTde
IITO € MOKPUEHO CO JOMHHO. 3a CeKoj Opoj n, Hajau T'O HAJrOJIEMHUOT OpOj Ha JOMHHA IITO
MOYKE JIa ce CTaBaT Ha TabjaTa Ha OBOj HAYHH.

(domuno e mmouka co TUMEH3MH 2x1 WK 1x 2. JlJoMHHATa ce CTaBEHHW Ha TabjiaTa Taka
IITO CEKOe JOMHHO MOKPHBA TOYHO JBE KBaJlpaT4Hiba O] TabjiaTa U JBE JTOMHUHA HE MOXE Ja
ce mpekJjonar. Benume fneka JBe KBaJpaTuHiba ce COCeOHU aKO C€ Pa3IMYHU M aKo HMMaaT
3aeIHMYKA CTpaHa.)

3. Heka ABC e TpmaroiHuk TakoB ITO XCAB><ABC M Heka | € IeHTap Ha Heromara
BIMIIaHa kpykHuna. Heka D e Touka ox orceukara BC TakBa mTO XCAD = xABC. Heka o e
KpYXXHMIIAa KOja ja nornupa AC BO ToukaTa A M MHMHYyBa HM3 Toukara | . Heka X e BropaTa
TOYKa BO KOja C€ ceyaT KPY)KHUIATa @@ W OIUINAHATa KPYKHULA HA TPUArOJIHUKOT ABC.
Joxaxu neka cuMmerpanuTe Ha armre £DAB W CXB ce ceyaT BO TOYKa Koja JIC)KH Ha
npasara BC .

Language: Macedonian
Bpeme 3a pabora: 4 yaca u 30 MUHYTH.
Cekoja 3agaua ce BpeAHyBa cO 7 MOCHHU.
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4. Heka ABC e TpMarojHMK TakOB IITO | € IIEHTap Ha HEroBara BIHILAHA KpPYKHUIA.
KpyxHuiara mro MUHyBa HU3 Toukata B u ja monmupa Al Bo ToukaTa |, ja ceye cTpaHata AB
MOBTOPHO BO Toukara P . KpyxHumara mro MuHyBa HHM3 ToukaTa C U ja gomupa Al BO
ToukaTta |, ja cede cTpaHata AC MOBTOPHO BO Toukata Q. /lokaxku Jeka PQ e TaHreHTa Ha

BIIMIIIaHATa KPY>KHUIA HA TPUAroJIHUKOT ABC.

5. Heka n>2 e npupojneH 6poj U HEKa a,,a,,...a, C€ MO3UTUBHU NPUPOJHU OpoeBu. Jlokaxu
JIeKa T0CTOjaT MO3UTUBHU MPUPOJHU OpoeBHU b, b,,...b, KOM ITO I'M 3a/0BOJIyBaaT CJIEIHUBE
TPH YCIIOBU:

(A) a<hb3ai=L2..,n;
(B) ocrarorre Ha OpoeBuTe b,b,,...b, JOOMEHH MPU JETICHE CO N Ce MONAPHO PA3IUYHU; U

(C) b+...+b, gn(”z‘1+[""1+"'+aﬂﬂ

n
(Bo mociemHMOT ycnoB, |Xx| To O3HauyBa IENHOT eI HAa PEaTHHOT Opoj X, OJHOCHO
HAjTOJIEMHOT 11e71 OPOj TToMat O X .)

6. Anuna nanprana 2019 teTuBu Bo enHa KpykHuUIa. Mery ceOe, TETUBUTE UMaaT pa3InyHU

KpajHu Touku. Touka ce cMeTa 3a MapKupaHa, ako € Win

(1) emna ox 4038-Te KpajHU TOYKU HA TETHBUTE; WU

(i) mpeceuna Touka Ha GapeM J[BE TCTHUBH.
Ha cexoja mapkupana Touka, AJMHA U IpUAPYXKHUIA U 3anuiana exeH 0poj. Ox 4038-te Touku
IITO TO 3a70BoJyBaaT kputepuymot (i), AnuHa mojoBuHaTa o1 HHB, TO4HO 2019 ToukM TH
Mapkupaia co Opojor 0, a Apyrara moJIOBUHA OJ HUB, OMHOCHO octraHatute 2019 Touku ru
Mapkupana co 0pojot 1. Toukure mrTo ro 3amoBosyBaaT KpurepuyMmot (ii) Taa T MapKupaia
CO MPOU3BOJIEH 11eJ1 Opoj (HE € 3aJI0JDKUTEITHO OBOj OpOj J1a € TIO3UTHUBEH).

Bnomx cekoja TeruBa, AlMHA TW pasrieayBa CHTE€ OTCEUKHM KOHM MOBP3YBaaT MapKUpaHU
toukd. (TeruBa co k MapKuMpaHU TOYKH, COAPKU k-1 BakBM oTceuku.) Jlo cekoja ol oBUE
OTCeYKH, AJIMHA IO 3amMilaga co *ojiTa 06oja 30UpOoT Ha OpOoeBHTE KOM TM MMaaT KpajHHUTE
TOYKU Ha OTCEYKaTa, a co cuHa 00ja arcolyTHAaTa BPEAHOCT HA HUBHATA pa3jMKa.

AnuHa 3a0ernexana JeKa KoITUTe OpoeBu ce TouHO N +1 Ha Opoj U CeKoja MMa 3a BPEIHOCT
TOYHO eJieH o1 OpoeBute 0,1...,N . Jlokaxku neka 6apem eeH cuH Opoj € JIeIuB co 3.

(Temuea e orcedka Koja MOBP3yBa JBE PA3IMYHKA TOYKHU O €HA KPY)KHHIIA. )

Language: Macedonian
Bpeme 3a padora: 4 yaca u 30 MUHYTH.
Cexkoja 3agaua ce BpeAHyBa cO 7 IMOCHHU.



Day 1. Solutions

Problem 1 (Netherlands). Find all triples (a, b, ¢) of real numbers such that ab+ bc +
ca =1 and
a’b+c=bc+a=ca+b.

Solution 1. First suppose that a = 0. Then we have bc = 1 and ¢ = b*c = b. So b = c,
which implies 5> = 1 and hence b = +1. This leads to the solutions (a,b,c) = (0,1,1)
and (a,b,c) = (0,—1,—1). Similarly, b = 0 gives the solutions (a,b,c) = (1,0,1) and
(a,b,c) = (—1,0,—1), while ¢ = 0 gives (a,b,¢) = (1,1,0) and (a,b,c) = (=1, —1,0).
Now we may assume that a,b,c¢c #= 0. We multiply ab + bc + ca = 1 by a to find
a’*b+ abc + ca® = a, hence a?b = a — abc — a®c. Substituting this in a?b+c = b*c+a yields
a — abc — a*c+ ¢ = b*c + a, so b’c + abc + a’c = c. As ¢ #= 0, we find b? +ab+ a® = 1.
Analogously we have b2 + bc + c? = 1 and a? + ac + ¢* = 1. Adding these three equations
yields 2 (a® + b* + ¢2) + ab + bc + ca = 3, which implies a® + b* + ¢* = 1. Combining this
result with b2 +ab+a?> =1, we get 1 —ab=1— 2, so ¢® = ab.

Analogously we also have b*> = ac and a? = be. In particular we now have that ab, bc and
ca are all positive. This means that a, b and ¢ must all be positive or all be negative.
Now assume that |c| is the largest among |al, |b| and |c|, then ¢* > |ab| = ab = ¢?, so we

must have equality. This means that |c| = |a| and |¢| = |b|. Since (a, b, c) must all have
the same sign, we find a = b = ¢. Now we have 3a? = 1, hence a = i%\/ﬁ We find the

solutions (a, b, c) = (%\/g, %\/g, %\/g) and (a,b,c) = (—% 3, —% 3, —%\/g)
We conclude that all possible triples (a, b, ¢) are (0,1, 1), (0,—1,-1), (1,0,1), (—=1,0,—1),
(1,1,0), (-=1,-1,0), (3v/3,1v/3,1V/3) and (—1v3,—1v3,—-1V3).

Solution 2. From the problem statement ab = 1 — bc — ca and thus b’c +a = a’b+c =
a—abc—a*c+c, c(b*+a*+ab—1)=0. If c = 0 then ab = 1 and a?b = b, which implies
a =b=+1. Otherwise b?> + a® +ab = 1. Cases a = 0 and b = 0 are completely analogous
to ¢ = 0, so we may suppose that a, b, c # 0. In this case we end up with

a?+b* +ab=1,

b* 4+ be =1,

A +a’+ca=1,

ab+bc+ca=1.

Adding first three equations and subtracting the fourth yields 2(a? + 0* + ¢?) = 2 =
2(ab + bc + ca). Consequently, (a — b)* + (b — ¢)* + (¢ — a)®> = 0. Now we can easily
conclude that a = b =c = j:\/ig.

Solution by Achilleas Sinefakopoulos, Greece. We have
c(1 —bv*) = a(l — ab) = a(bc + ca) = c(ab + a?),

and so
c(a®+ab+b* — 1) = 0.

Similarly, we have
b(a*+ac+c*—1)=0 and a(b®+bc+c*—1)=0.
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If c = 0, then we get ab = 1 and a?h = a = b, which give usa =b=1,ora=b= —1.
Similarly, if a = 0, then b = c =1, or b = ¢ = —1, while if b = 0, then a = ¢ =1, or
a=c=—1.

So assume that abc # 0. Then
A +ab+b* =0 +bc+c=c+ca+a®=1.

Adding these gives us
2(a* +b* + ¢®) + ab + be + ca = 3,

and using the fact that ab + bc + ca = 1, we get
a>+b*+c®=1=ab+ bc+ ca.
Hence

(a—0)*+(b—c)*+(c—a)* =2(a* +b*+ ) —2(ab+bc+ca) =0
andsoa=b=c=+—.
V3
Therefore, the solutions (a,b,c) are (0,1,1), (0,—1,—1), (1,0,1), (=1,0,—1), (1,1,0),

(~1,-1,0), (2 0 ), (=~ = 72)

Solution by Eirini Miliori (HEL2). It is ab + bc + ca = 1 and
a’b+c=bc+a=ca+b. (1)
We have
ab+ce=bc+a <= d’b—a="bc—c

< alab—1) =c(b* - 1)

<= a(—bc—ac) =c(b* —1)

< —aca+b)=c(b®>—1) (2)
First, consider the case where one of a, b, ¢ is equal to 0. Without loss of generality, assume

that @ = 0. Then bc = 1 and b = ¢ from (1), and so b* = 1 giving us b = 1 or —1. Hence
b=c=1lorb=c=—1.

Therefore, (a, b, ¢) equals one of the triples (0,1,1), (0, —1, —1), as well as their rearrange-
ments (1,0,1) and (—1,0,—1) when b =0, or (1,1,0) and (—1,—1,0) when ¢ = 0.

Now consider the case where a # 0, b # 0 and ¢ # 0. Then (2) gives us
—ala+b) = -1 = —a*—ab=b" -1 <= a*+ab+b*—1=0.

The quadratic P(x) = 2% + bz + b* — 1 has z = a as a root. Let x; be its second root
(which could be equal to a in the case where the discriminant is 0). From Vieta’s formulas
we get

2_
ra=0—-1 <+— 5 =51

a

{:1:1+a:—b <= 11 =—-b—a, and

2



Using a?b + ¢ = c*a + b we obtain b(a® — 1) = c¢(ac — 1) yielding a®* + ac +¢* —1 =0 in
a similar way. The quadratic Q(z) = 2? + cx + ¢* — 1 has x = a as a root. Let x5 be its
second root (which could be equal to a in the case where the discriminant is 0). From
Vieta’s formulas we get

2_
Toa=c*—1 = xp=L

{x2+a:—c < Iy =—c—a, and

Then

b2—1 + -1

a a

r1+29=—-b—a—c—a, and
$1+l’2:

which give us

-1 -1

—(2a+b+c)= + < 20> —ba—ca="b*+c"—2
a a
= bc—1-2a>=0*+c* -2
— 20+ b+ =1+bc (3)
By symmetry, we get
20> + a* + > = 1 + ac, and (4)
2¢2 +a® +b* =1+ be (5)

Adding equations (3), (4), and (5), we get

4@+ b+ ) =3+ab+bctca <= 4>+ +7)=4 = *+bP+F=1.

From this and (3), since ab+ bc + ca = 1, we get
a>=bc=1—ab—ac < ala+b+c)=1.

Similarly, from (4) we get

bla+b+c) =1,
and from (4),
cla+b+c)=1.
Clearly, it is a + b+ ¢ # 0 (for otherwise it would be 0 = 1, a contradiction). Therefore,
a = b = C = ;’
a+b+c
1

and so 3a®> =1 givingusa=b=c=+—.

V3
In conclusion, the solutions (a, b, ¢) are (0,1,1), (0,—1,—1), (1,0,1), (—1,0,—1), (1,1,0),

1 1 1 1 1 1
(—1,-1,0), (%, ﬁ’ﬁ)’ and (—%,—ﬁ,—ﬁ).

Solution by ISR5. First, homogenize the condition a?b + ¢ = b*c +a = c®a + b by

replacing ¢ by c(ab + bc + ca) (etc.), yielding

a®b + ¢ = a*b + abc + bc* + c*a = abc + Za2b + (c®b — b*c) = abc + Za2b + be(c —b).
cyc cyc
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Thus, after substracting the cyclicly symmetric part abc + chc a’b we find the condition
is eqivalent to

D :=be(c —b) = cala — ¢) = ab(b — a).

Ending 1. Tt is easy to see that if e.g. @ = 0 then b = ¢ = £1, and if e.g. a = b then either
a=b=c= j:\/%; ora =b=41,c=0, and these are indeed solutions. So, to show that
these are all solutions (up to symmetries), we may assume by contradiction that a, b, c
are pairwise different and non-zero. All conditions are preserved under cyclic shifts and
under simultaenously switching signs on all a, b, ¢, and by applying these operations as
necessary we may assume a < b < c. It follows that D3 = a?b*c*(c —b)(a — ¢)(b — a) must
be negative (the only negative term is a — ¢, hence D is negative, i.e. bc,ab < 0 < ac. But
this means that a, ¢ have the same sign and b has a different one, which clearly contradicts
a < b < ¢! So, such configurations are impossible.

Ending 2. Note that 3D = >_c*b — > b%c = (¢ — b)(c — a)(b — a) and D3 = a*b*c*(c —
b)(a —c)(b—a) = —3a*b?c®>D. Since 3D and D3 must have the same sign, and —3a?b*c?
is non-positive, necessarily D = 0. Thus (up to cyclic permutation) a = b and from there
we immediately find either a =b==+1l,c=00ra=0b=c= i\%.



Problem 2 (Luxembourg). Let n be a positive integer. Dominoes are placed on a
2n x 2n board in such a way that every cell of the board is adjacent to exactly one cell
covered by a domino. For each n, determine the largest number of dominoes that can be
placed in this way.

(A domino is a tile of size 2 x 1 or 1 x 2. Dominoes are placed on the board in such a
way that each domino covers exactly two cells of the board, and dominoes do not overlap.
Two cells are said to be adjacent if they are different and share a common side.)

Solution 1. Let M denote the maximal number of dominoes that can be placed on the
chessboard. We claim that M = n(n 4 1)/2. The proof naturally splits into two parts:
we first prove that n(n + 1)/2 dominoes can be placed on the board, and then show that
M < n(n+1)/2 to complete the proof.

We construct placings of the dominoes by induction. The base cases n = 1 and n = 2

correspond to the placings
w . E

Next, we add dominoes to the border of a 2n x 2n chessboard to obtain a placing of
dominoes for the 2(n + 2) x 2(n + 2) board,

depending on whether n is odd or even. In these constructions, the interior square is filled
with the placing for the 2n x 2n board. This construction adds 2n 4+ 3 dominoes, and
therefore places, in total,

n(n+1)
2

(n+2)(n+3)
2

+(2n+3) =

dominoes on the board. Noticing that the contour and the interior mesh together appro-
priately, this proves, by induction, that n(n + 1)/2 dominoes can be placed on the 2nn
board.

To prove that M < n(n+1)/2, we border the 2n x2n square board up to a (2n+2) x (2n+2)
square board; this adds 8n + 4 cells to the 4n? cells that we have started with. Calling
a cell covered if it belongs to a domino or is adjacent to a domino, each domino on the
2n x 2n board is seen to cover exactly 8 cells of the (2n 4 2) x (2n + 2) board (some of
which may belong to the border). By construction, each of the 4n? cells of the 2n x 2n
board is covered by precisely one domino.



If two adjacent cells on the border, away from a corner, are covered, then there will be at
least two uncovered cells on both sides of them; if one covered cell lies between uncovered
cells, then again, on both sides of it there will be at least two uncovered cells; three or
more adjacent cells cannot be all covered. The following diagrams, in which the borders
are shaded, x marks an uncovered cell on the border, + marks a covered cell not belonging
to a domino, and — marks a cell which cannot belong to a domino, summarize the two
possible situations,

or one of the following situations, in which the corner cell of the original board is not
covered by a domino, may occur:

or

It is thus seen that at most half of the cells on the border, i.e. 4n+2 cells, may be covered,
and hence

8 2 9

M <
- { 2 * 2
which completes the proof of our claim.

4n2+(4n+2)} _ {M 1] _n(n+1)

Solution 2. We use the same example as in Solution 1. Let M denote the maximum
number of dominoes which satisfy the condition of the problem. To prove that M <
n(n+1)/2, we again border the 2n x 2n square board up to a (2n +2) x (2n + 2) square
board. In fact, we shall ignore the corner border cells as they cannot be covered anyway
and consider only the 2n border cells along each side. We prove that out of each four
border cells next to each other at most two can be covered. Suppose three out of four
cells A, B, C, D are covered. Then there are two possibilities below:

| | | |
or
| | | + |



The first option is that A, B and D are covered (marked with + in top row). Then the
cells inside the starting square next to A, B and D are covered by the dominoes, but
the cell in between them has now two adjacent cells with dominoes, contradiction. The
second option is that A, B and C are covered. Then the cells inside the given square next
to A, B and C' are covered by the dominoes. But then the cell next to B has two adjacent
cells with dominoes, contradiction.

Now we can split the border cells along one side in groups of 4 (leaving one group of 2
if n is odd). So when n is even, at most n of the 2n border cells along one side can be
covered, and when n is odd, at most n + 1 out of the 2n border cells can be covered. For
all four borders together, this gives a contribution of 4n when n is even and 4n + 4 when
n is odd. Adding 4n? and dividing by 8 we get the desired result.

Solution (upper bound) by ISR5. Consider the number of pairs of adjacent cells,
such that one of them is covered by a domino. Since each cell is adjacent to one covered
cell, the number of such pairs is exactly 4n%. On the other hand, let ny be the number
of covered corner cells, ns the number of covered edge cells (cells with 3 neighbours), and
ny be the number of covered interior cells (cells with 4 neighbours). Thus the number of

pairs is 2ns + 3ns + 4ny = 4n?, whereas the number of dominoes is m = 4—"”"2‘ L4

Considering only the outer frame (of corner and edge cells), observe that every covered
cell dominates two others, so at most half of the cells are ccovered. The frame has a total
of 4(2n—1) cells, i.e. ng+n3 < 4n—2. Additionally ny < 4 since there are only 4 corners,
thus

8m = dny+4Ans+4dny = (2no+3ng+4ny)+(notns)+ny < An*+(4n—2)+4 = dn(n+1)-+2

ThusmSM—l—i,soinfactmg

n(n+1)
2 2

Solution (upper and lower bound) by ISR5. We prove that this is the upper bound
(and also the lower bound!) by proving that any two configurations, say A and B, must
contain exactly the same number of dominoes.

Colour the board in a black and white checkboard colouring. Let W be the set of white
cells covered by dominoes of tiling A. For each cell w € W let NV, be the set of its adjacent
(necessarily black) cells. Since each black cell has exactly one neighbour (necessarily
white) covered by a domino of tiling A, it follows that each black cell is contained in
exactly one N, i.e. the N, form a partition of the black cells. Since each white cell has
exactly one (necessarily black) neighbour covered by a tile of B, each B,, contains exactly
one black tile covered by a domino of B. But, since each domino covers exactly one white
and one black cell, we have

Al = W] =[{Ny : w e W}| =B

as claimed.



Problem 3 (Poland). Let ABC be a triangle such that ZCAB > ZABC, and let [
be its incentre. Let D be the point on segment BC' such that ZCAD = ZABC. Let w
be the circle tangent to AC' at A and passing through /. Let X be the second point of
intersection of w and the circumcircle of ABC. Prove that the angle bisectors of ZDAB
and ZC'X B intersect at a point on line BC'

Solution 1. Let S be the intersection point of BC' and the angle bisector of ZBAD, and
let T be the intersection point of BC' and the angle bisector of ZBXC. We will prove
that both quadruples A, I, B,S and A, I, B,T are concyclic, which yields S =T.

Firstly denote by M the middle of arc AB of the circumcenter of ABC which does not
contain C'. Consider the circle centered at M passing through A, I and B (it is well-known
that MA = MI = MB); let it intersect BC at B and S’. Since ZBAC > ZCBA it is
easy to check that S’ lies on side BC'. Denoting the angles in ABC by «, 3,y we get

/BAD = /BAC — ZDAC = a — (3.
Moreover since ZMBC = ZMBA + ZABC = 3 + 3, then
/BMS' = 180° — 2/MBC = 180° — v — 28 — a — f.

It follows that /BAS" =2/BMS" = 2/BAD which gives us S = 5.

Secondly let N be the middle of arc BC of the circumcenter of ABC which does not
contain A. From /BAC > ZC BA we conclude that X lies on the arc AB of circumcircle
of ABC not containing C'. Obviously both Al and X7 are passing through N. Since
ZNBT = § = ZBXN we obtain ANBT ~ ANX B, therefore

NT-NX = NB?> = NI

It follows that ANTI ~ ANIX. Keeping in mind that /Z/NBC = /NAC = ZIX A we
get
LTIN = /ZIXN =/NXA—-/IXA=/NBA—-/NBC = /TBA.

It means that A, I, B, T are concyclic which ends the proof.

Solution 2. Let /BAC = o, ZABC = 3, /BCA =~ ZACX = ¢. Denote by W;
and W5 the intersections of segment BC' with the angle bisectors of /BXC and /BAD
respectively. Then BW,;/W,C = BX/XC and BWy/WyD = BA/AD. We shall show
that BW; = BW,.



Since ZDAC = ZCBA, triangles ADC and BAC are similar and therefore

DC  AC
AC  BC"
By the Law of sines
BW, BA BC sina

WoD AD AC  sinf’

Consequently ‘
BD _ W2D+1: S?nﬁ—kl,
BWy5  BW, sin «
BC BC BD 1 BD 1 BD
BW, BD BW, 1-DC/BC BW, 1—AC?2/BC?2 BW,
sin’a sin B + sin « sin o
sin?a —sin? 3 sin a T sina —sing’

Note that AXBC' is cyclic and so ZBXC = ZBAC = «. Hence, ZXBC = 180° —
/LBXC — /ZBCX = 180° — a — ¢. By the Law of sines for the triangle BXC, we have

BC_W10+1_CX+1_sinéCBX+1_
W\B ~ W,B -~ BX ~ sing N
sin (o + ¢)

- + 1 =sinacot ¢ + cosa + 1.
sin ¢

So, it’s enough to prove that

sin « )
——————— =sinacot ¢ + cos a.
sina — sin 3

Since AC' is tangent to the circle AIX, we have ZAXI = ZIAC = «/2. Moreover
LXAl = L/XAB+/4BAI = ¢p+a/2and LXTA =180°—LXAI - ZAXT = 180°—a—¢.
Applying the Law of sines again X AC, X AI, I AC we obtain

AX Al
sin (o +¢)  sina/2’
AX AC AC
sin(y—¢) sinZAXC  sinf’
Al AC

sinvy/2  sin(a/2+7/2)
Combining the last three equalities we end up with

sin(y—¢) Al sinf sin 3 sin~y /2

sin(a+¢)  AC sina/2  sina/2 sin(a/2+7/2)

sin(y —¢)  sinycot¢ —cosy  2sinf3/2siny/2
sin (a4+ @)  sinacotd +cosa sin a/2
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sinasinvycot ¢ —sinacosy  2sin3/2cosa/2
sinysinacot ¢ +sinycosa cosy/2

Subtracting 1 from both sides yields

—sinacosy —sinycosa  2sin3/2cos /2 -

sinysinacot ¢ +sinycosa cosy/2

2sin /2 cos a/2 — sin (/2 + 3/2) _ sin /2 cos /2 — sina/2 cos /2

cos /2 cosy/2 ’
—sin(a + ) _ sin(f/2 — a/2)
sinysinacot ¢ +sinycosa cosy/2 ’
—sin

sin a cot ¢ + cos siny/2sin (5/ a/2)

2cos(8/24+ a/2)sin(B/2 — a/2) =sinf —sinq,
and the result follows. We are left to note that none of the denominators can vanish.
Solution by Achilleas Sinefakopoulos, Greece. We first note that
/BAD = /BAC — /DAC = /A — /B.

Let CX and AD meet at K. Then /CXA = /ZABC = ZKAC. Also, we have /I XA =
LA/2, since w is tangent to AC' at A. Therefore,

/DAl = |/B—ZA)2| = |/KXA— ZIXA| = /KXI,

(the absolute value depends on whether ZB > ZA/2 or not) which means that X KTA is
cyclic, i.e. K lies also on w.

Let /K meet BC at E. (If ZB = ZA/2, then I K degenerates to the tangent line to w at
I.) Note that BETA is cyclic, because

LFETA=180°—- ZKXA=180° — LZABE.

We have ZEKA =180° — LZAXI =180° — LA/2 and LAEI = ZABI = ZB/2. Hence

/EAK =180° — /ZEKA — /AEI
— 180° — (180° — LA/2) — ZB/?2
— (LA~ /B)/2
— /BAD/2.

This means that AFE is the angle bisector of ZBAD. Next, let M be the point of inter-
section of AE and BI. Then

/EMI =180° — /B/2 — /ZBAD/2 = 180° — ZA/2,
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and so, its supplement is
LAMI = ZA)2 = LAXI,

so X, M, K,I,A all lie on w. Next, we have

/XMA=/XKA
— 180° — ZADC — /XCB
= 180° — ZA— /XCB
— /B+ /XCA
— /B+ /XBA
— /XBE,

and so X, B, E, M are concyclic. Hence

/EXC =/EXM + /MXC
— /MBE + /MAK
= /B/2+ /BAD/?2
= /A)2
—= /BXC/2.

This means that X F is the angle bisector of ZBX (' and so we are done!

11



Solution based on that by Eirini Miliori (HEL2), edited by A. Sinefakopoulos,
Greece. It is ZABD = ZDAC, and so AC is tangent to the circumcircle of ABAD at
A. Hence CA*=CD - CB.
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Triangle AABC' is similar to triangle ACAD, because ZC is a common angle and
LCAD = ZABC, and so ZADC = ZBAC = 2.

Let @ be the point of intersection of AD and CX. Since Z/ZBXC = /BAC = 2y, it
follows that BDQX is cyclic.Therefore, CD - CB = CQ - CX = C'A? which implies that
Q@ lies on w.

Next let P be the point of intersection of AD with the circumcircle of triangle AABC.
Then /PBC = ZPAC = LZABC = ZAPC yielding CA = CP. So, let T be on the side
BC such that CT = CA = CP. Then

/TAD = /TAC — /DAC = (900 _ %) _ .44 ; 4B ABQAD’

that is, line AT is the angle bisector of ZBAD. We want to show that X7 is the angle
bisector of ZBXC. To this end, it suffices to show that ZTXC = ¢.

It is CT? = CA%? = CQ - CX, and so CT is tangent to the circumcircle of AXTQ at
T. Since /TXQ = ZQTC and ZQDC = 2¢, it suffices to show that L/TQD = ¢, or, in
other words, that I, @), and T" are collinear.

Let 7" is the point of intersection of I1Q and BC. Then AAIC is congruent to AT'IC,
since they share C'I as a common side, ZACI = ZT'C1I, and

ZIT'D =2p — /T'QD =20 — ZIQA=2p — LZIXA=p=/IAC.

Therefore, CT' = CA = CT, which means that T coincides with 7" and completes the
proof.

Solution based on the work of Artemis-Chrysanthi Savva (HEL4), completed
by A. Sinefakopoulos, Greece. Let G be the point of intersection of AD and CX.
Since the quadrilateral AX BC'is cyclic, it is ZAXC = ZABC.
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Let the line AD meet w at K. Then it is ZAXK = ZCAD = ZABC, because the angle
that is formed by a chord and a tangent to the circle at an endpoint of the chord equals
the inscribed angle to that chord. Therefore, ZAXK = ZAXC = ZAXG. This means
that the point GG coincides with the point K and so G belongs to the circle w.

Let E be the point of intersection of the angle bisector of ZDAB with BC'. It suffices to

show that
CE B XC

BE XB’
Let F be the second point of intersection of w with AB. Then we have ZIAF = % =
ZIX F, where I is the incenter of AABC, because ZIAF and ZI X F are inscribed in the
same arc of w. Thus AAIF is isosceles with Al = I'F. Since [ is the incenter of AABC,
we have AF = 2(s — a), where s = (a + b+ ¢)/2 is the semiperimeter of AABC'. Also, it
is CE = AC = b because in triangle AACE, we have

LAEC = LABC + ZBAE

= /ABC + 2BAD

LBAC — LZABC

= /LABC + 5

LACE
2 )
and so ZCAE =180° — ZAEC — ZACE = 90° — £CE = /AEC. Hence

— 90° —

BF =BA—-AF=c—2(s—a)=a—-b=CB—-CFE=BE.
Moreover, triangle ACAX is similar to triangle ABF X, because ZACX = ZFBX and
LXFB=/XAF + /ZAXF = /XAF + LCAF = LCAX.
Therefore
CE AC XC
BE BF XB’
as desired. The proof is complete.

Solution by TRL1 and IRL 5. Let w denote the circle through A and I tangent to
AC'. Let Y be the second point of intersection of the circle w with the line AD. Let L
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be the intersection of BC' with the angle bisector of ZBAD. We will prove ZLXC =
1/2/BAC =1/2/BXC.

We will refer to the angles of AABC as ZA, /B, /C. Thus /BAD = /A — /B.

On the circumcircle of AABC, we have ZAXC = ZABC = ZCAD, and since AC' is
tangent to w, we have ZCAD = ZCAY = ZAXY . Hence C, X, Y are collinear.

Also note that ACAL is isosceles with ZCAL = ZCLA = 5(/BAD)+ /ABC = (LA+
ZB) hence AC' = CL. Moreover, C1 is angle bisector to ZACL so it’s the symmetry axis
for the triangle, hence ZILC = ZIAC = 1/2/A and ZALI = ZLIA = 1/2/B. Since
AC is tangent to w, we have LAY = LIAC =1/2/A = LZLAY + ZALI. Hence L,Y, I

are collinear.

Since AC is tangent to w, we have ACAY ~ ACXA hence CA? = CX - CY. However
we proved CA = CL hence CL? = CX - CY. Hence ACLY ~ ACXL and hence
LCXL=/CLY = ZLCAI =1/2/A.

Solution by IRL 5. Let M be the midpoint of the arc BC. Let w denote the circle
through A and I tangent to AC. Let N be the second point of intersection of w with AB
and L the intersection of BC' with the angle bisector of ZBAD. We know % = 4D and

B ~ 4B
XB _ LB
want to prove $7 = 7&.

First note that ACAL is isosceles with ZCAL = ZCLA = {(£/BAD) + ZABC hence

AC:CLaHd%:%.

XB.
Now we calculate %c:

Comparing angles on the circles w and the circumcircle of AABC we get AXIN ~
AXMB and hence also AXIM ~ AXNB (having equal angles at X and proportional
XB _ NB

adjoint sides). Hence &7 = 737

Also comparing angles on the circles w and the circumcircle of AABC' and using the

tangent AC we get AXAI ~ AXCM and hence also AXAC ~ AXIM. Hence % =
AC

IM*
Comparing the last two equations we get % = %. Comparing with % = %, it remains
to prove NB = LB.
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We prove AINB = AILB as follows:

First, we note that [ is the circumcentre of AALN. Indeed, CI is angle bisector in the
isosceles triangle AC'L so it’s perpendicular bisector for AL. As well, AT AN is isosceles
with ZINA = ZC'AI = ZIAB hence [ is also on the perpendicular bisector of AN.

Hence IN = IL and also ZNIL = 2/NAL = LA — ZB = 2/NIB (the last angle is
calculated using that the exterior angle of ANIB is ZINA = ZA/2. Hence ZNIB =
ZLIB and AINB = AILB by SAS.

Solution by ISR5 (with help from IRL5). Let M, N be the midpoints of arcs
BC, BA of the circumcircle ABC', respectively. Let Y be the second intersection of
AD and circle ABC. Let E be the incenter of triangle ABY and note that E lies
on the angle bisectors of the triangle, which are the lines YN (immediate), BC (since
LCBY = ZCAY = LZCAD = ZABC) and the angle bisector of ZDAB; so the question
reduces to showing that E is also on X M, which is the angle bisector of ZC'X B.

We claim that the three lines C X, ADY, I E are concurrent at a point D’. We will complete
the proof using this fact, and the proof will appear at the end (and see the solution by
HELS for an alternative proof of this fact).

To show that X EM are collinear, we construct a projective transformation which projects
M to X through center E. We produce it as a composition of three other projections.
Let O be the intersection of lines AD'DY and C'IN. Projecting the points Y NCM on
the circle ABC through the (concyclic) point A to the line C'N yields the points ONC1.
Projecting these points through E to the line AY yields OY DD’ (here we use the facts
that D’ lies on [F and AY). Projecting these points to the circle ABC through C yields
NY BX (here we use the fact that D’ lies on C'X'). Composing, we observe that we found
a projection of the circle ABC' to itself sending Y NCM to NY BX. Since the projection
of the circle through E also sends Y NC' to NY B, and three points determine a projective
transformation, the projection through E also sends M to X, as claimed.
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Let B’, D' be the intersections of AB, AD with the circle AX I, respectively. We wish to
show that this D’ is the concurrency point defined above, i.e. that CD'X and ID'E are
collinear. Additionally, we will show that I is the circumcenter of AB'E.

Consider the inversion with center C' and radius C'A. The circles AXT and ABD are
tangent to CA at A (the former by definition, the latter since ZCAD = ZABC), so
they are preserved under the inversion. In particular, the inversion transposes D and B
and preserves A, so sends the circle CAB to the line AD. Thus X, which is the second
intersection of circles ABC and AX, is sent by the inversion to the second intersection

of AD and circle AXI, which is D’. In particular CD’X are collinear.

In the circle AIB’, Al is the angle bisector of B’A and the tangent at A, so [ is the
midpoint of the arc AB’, and in particular Al = IB’. By angle chasing, we find that
AC'E is an isosceles triangle:

LCOAE = LOAD + Z/DAE = ZABC + LEAB = ZABE + /EAB = ZAEB = ZAEC,

thus the angle bisector CI is the perpendicular bisector of AE and Al = IE. Thus [ is
the circumcenter of AB'E

We can now show that I D'E are collinear by angle chasing:

/EIB'=2/EAB' =2/FAB = /DAB = /D'AB' = /D'IB'.

Solution inspired by ISR2. Let W be the midpoint of arc BC, let D’ be the second
intersection point of AD and the circle ABC. Let P be the intersection of the angle
bisector XW of ZCXB with BC'; we wish to prove that AP is the angle bisector of
DAB. Denote o = 402’43, 8 =/ABC.

Let M be the intersection of AD and XC'. Angle chasing finds:

IMXI] = ZAX]T — LZAXM = LCAI — LZAXC = LCAI — ZABC =a — 8
=/LCAI — LCAD = ZDAI = ZMAI

And in particular M is on w. By angle chasing we find
LXTA=ZLIXA+ /XAl = ZLICA+ LXA]l = LXAC = ZXBC = ZXBP

and /ZPXB =a=/CAl = ZAXI, and it follows that AXTA ~ AXBP. Let S be the
second intersection point of the cirumcircles of XITA and X BP. Then by the spiral map
lemma (or by the equivalent angle chasing) it follows that I.SB and ASP are collinear.

17



Let L be the second intersection of w and AB. We want to prove that ASP is the angle
bisector of ZDAB = ZMAL, i.e. that S is the midpoint of the arc ML of w. And this
follows easily from chasing angular arc lengths in w:

Al = L/CAI = a
IL=/IAL =«

MI=/MXI=a-p

Al - SL=/ABI =4

And thus

Solution by inversion, by JPN Observer A, Satoshi Hayakawa. Let E be the
intersection of the bisector of ZBAD and BC, and N be the middle point of arc BC' of
the circumcircle of ABC'. Then it suffices to show that F is on line X N.

We consider the inversion at A. Let P* be the image of a point denoted by P. Then
A, B*,C*, E* are concyclic, X*, B*, C* are colinear, and X*I* and AC™* are parallel. Now
it suffices to show that A, X* E* N* are concyclic. Let Y be the intersection of B*C*
and AE*. Then, by the power of a point, we get
A, X* E*, N* are concyclic<—= Y X" - YN*"=YA.-YE*
— YX" YN =YB*"-YC".
(A, B*,C*, E* are concyclic)

Here, by the property of inversion, we have

LAI"B* = ZABI = %ZABC = %ZC*AD*.
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Define @), R as described in the figure, and we get by simple angle chasing
LQAT" = LZQI"A, /LRAI" = /B*I"A.
Especially, B*R and AI* are parallel, so that we have

YB* YR YX*
YN* YA YO+’

and the proof is completed.
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Day 2. Solutions

Problem 4 (Poland). Let ABC be a triangle with incentre I. The circle through B
tangent to Al at I meets side AB again at P. The circle through C' tangent to Al at [
meets side AC' again at ). Prove that P(Q is tangent to the incircle of ABC.

Solution 1. Let QX, PY be tangent to the incircle of ABC, where X, Y lie on the
incircle and do not lie on AC', AB. Denote /BAC = «a, Z/CBA =3, ZACB = .

Since Al is tangent to the circumcircle of CQI we get ZQIA = ZQCT = 3. Thus

/1QC = /TAQ + /QIA = % + %

By the definition of X we have ZIQC = ZXQI, therefore

ZAQX = 180° — /XQC = 180° — a — vy = 8.

Similarly one can prove that ZAPY = ~. This means that @), P, X, Y are collinear which
leads us to the conclusion that X =Y and QP is tangent to the incircle at X.

Solution 2. By the power of a point we have

AQ _ 4B
AP AC

AD - AC = AI* = AP - AB, which means that

and therefore triangles ADP, ABC' are similar. Let J be the incenter of AQP. We obtain
LJPQ = ZICB = /ZQCI = ZQ1J,

thus J, P, I, () are concyclic. Let S be the intersection of Al and BC'. It follows that
ZIQP =/Z1JP = /ZSIC = Z1QC.

This means that () is the angle bisector of ZC'Q P, so QP is indeed tangent to the incircle
of ABC.

Comment. The final angle chasing from the Solution 2 may simply be replaced by the
observation that since J, P, I, ) are concyclic, then I is the A-excenter of triangle APQ.

Solution 3. Like before, notice that AQ - AC = AP - AB = AI*?. Consider the positive
inversion ¥ with center A and power AI%. This maps P to B (and vice-versa), Q to C
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(and vice-versa), and keeps the incenter I fixed. The problem statement will follow from
the fact that the image of the incircle of triangle ABC under ¥ is the so-called mixtilinear
incircle of ABC', which is defined to be the circle tangent to the lines AB, AC, and the
circumcircle of ABC. Indeed, since the image of the line QP is the circumcircle of ABC),
and inversion preserves tangencies, this implies that () P is tangent to the incircle of ABC.

We justify the claim as follows: let v be the incircle of ABC and let I" 4 be the A-mixtilinear
incircle of ABC'. Let K and L be the tangency points of v with the sides AB and AC),
and let U and V' be the tangency points of I'y with the sides AB and AC, respectively.
It is well-known that the incenter I is the midpoint of segment UV'. In particular, since

also AI L UV, this implies that AU = AV = C:;IA. Note that AK = AL = AI - cos 4.
Therefore, AU - AK = AV - AL = AI*, which means that U and V are the images of K

and L under ¥. Since I"4 is the unique circle simultaneously tangent to AB at U and to
AC at V, it follows that the image of v under ¥ must be precisely I' 4, as claimed.

Solution by Achilleas Sinefakopoulos, Greece. From the power of a point theorem,
we have

AP-AB = AI’ = AQ - AC.
Hence PBCQ is cyclic, and so, ZAPQ = ZBCA_.Let K be the circumcenter of ABIP
and let L be the circumcenter of AQIC. Then KL is perpendicular to Al at I.

Let N be the point of intersection of line K L with AB.Then in the right triangle ANTA,
we have ZANT = 90° — % and from the external angle theorem for triangle ABNI,
we have ZANI = % + ZNIB. Hence

JNIB — JANT — AAQBC _ (900_ AB2AC> B AAZBC _ AB2CA'

Since M1 is tangent to the circumcircle of ABIP at I, we have

/BPI =/BIM = /Z/NIM — ZNIB = 90° — ZBQCA.

Also, since ZAPQ = Z/BCA, we have

ZQPI =180° — LAPQ — ZBPI = 180° — ZBCA — (90O —

as well. Hence I lies on the angle bisector of ZBP(), and so it is equidistant from its
sides P() and PB. Therefore, the distance of I from P() equals the inradius of AABC,
as desired.



Solution by Eirini Miliori (HEL2). Let D be the point of intersection of AI and BC
and let R be the point of intersection of Al and PQ. We have /RIP = /PBI = %,
ZRIQ = ZICQ = 42, ZIQC = £DIC = x and ZBPI = /BID = ¢, since Al is
tangent to both circles.

From the angle bisector theorem, we have

RQ _AQ . AC_ DO

rP_ Ap ™% AB T BD



Since AT is tangent to both circles at I, we have AI? = AQ - AC and AI?> = AP - AB.

Therefore,
RQ DC  AQ-AC

. = =1. 1
RP BD AB-AP (1)
. . . . RQ RI
From the sine law in triangles AQRI and APRI, it follows that —= = — and
sin 57 siny
RP RI )
—5 = ———, respectively. Hence
sin 5> sinw
RQ Sin%g _ sinw @)
RP sin<f ~ siny’
. . . . ... DC ID
Similarly, from the sine law in triangles AIDC and AIDB, it is — = — and
sin sin 57
BD ID
- = ——5, and so
sing  sin 57
DC sinp Sin% 3)
BD sinz  sin 487

2

RQ DC si i
By multiplying equations (2) with (3), we obtain Rg 'BD Ziii = lerli(;’ which combined

with (1) and cross-multiplying yields
sinp - siny = sinw - sin . (4)

Let 6 = 90° + %. Since [ is the incenter of AABC, we have z = 90° + % —p=0-—0¢.
Also, in triangle APIQ, we see that w + y + % + % = 180°, and so y = 0 — w.

Therefore, equation (4) yields
sin ¢ - sin(f — w) = sinw - sin(0 — ),
or

(cos(w — 0+ ) —cos(w+ 6 —¢)),

DN | —

%(cos(gp—Q—l—w) —cos(p+0—w)) =

which is equivalent to
cos(p + 0 —w) = cos(w + 6 — ).

So
o+0—w=2k-180°+ (w+0—¢), (keZ.)

If op+60—w=2k-180°+ (w+ 0 — ), then 2(¢ — w) = 2k - 180°, with | — w| < 180°
forcing k =0 and p = w. If p+60 —w = 2k-180° — (w+ 60 — ), then 20 = 2k - 180°, which
contradicts the fact that 0° < 6 < 180°. Hence ¢ = w, and so PI is the angle bisector of
ZQPB.

Therefore the distance of I from PQ is the same ~with the distance of I from AB, which
is equal to the inradius of AABC'. Consequently, P() is tangent to the incircle of AABC.



Problem 5 (Netherlands).

Let n > 2 be an integer, and let ay, as, . .., a, be positive integers. Show that there exist
positive integers by, bs, . .., b, satisfying the following three conditions:

1.a; <bfori=1,2,...,n;

2. the remainders of by, by, ..., b, on division by n are pairwise different; and

1 o toa,
3br%~+hn§n<n2 +Lm+ +GJ>.

n

(Here, | x| denotes the integer part of real number z, that is, the largest integer that does
not exceed x.)

Solution 1. We define the b; recursively by letting b; be the smallest integer such

that b; > a; and such that b; is not congruent to any of by,...,b;,_1 modulo n. Then
b; —a; < i — 1, since of the 7 consecutive integers a;,a; +1,...,a; +7 — 1, at most i — 1
are congruent to one of by, ...,b;_; modulo n. Since all b; are distinct modulo n, we have

Sribi=>00(i—1) = sn(n—1) modulo n, so n divides Y7, b; — 3n(n—1). Moreover,

we have >0 b —> " a; <7 (i—1) = 3n(n—1), hence Y1 by —in(n—1) < 37 .
As the left hand side is divisible by n, we have

which we can rewrite as

as required.

Solution 2. Note that the problem is invariant under each of the following operations:
e adding a multiple of n to some a; (and the corresponding b;);
e adding the same integer to all a; (and all b;);
e permuting the index set 1,2,...,n.

We may therefore remove the restriction that our a; and b; be positive.

For each congruence class kmodulon (k=0,...,n— 1), let h(k) be the number of i such
that a; belongs to k. We will now show that the problem is solved if we can find a t € Z
such that

h(t) > 1,
h(t) + h(t+1) > 2,
h(t)+ h(t+1)+h(t+2) > 3,

Indeed, these inequalities guarantee the existence of elements a;, € t, a;, € t Ut + 1,
a;;, € tUt+1Ut+2, et cetera, where all i), are different. Subtracting appropriate
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multiples of n and reordering our elements, we may assume a; = t, as € {t,t + 1},
az € {t,t+1,t+ 2}, et cetera. Finally subtracting ¢ from the complete sequence, we may
assume a; = 0, az € {0,1}, ag € {0,1,2} et cetera. Now simply setting b; =i — 1 for all i
suffices, since a; < b; for all 7, the b; are all different modulo n, and

S, - nn =D <n(n_1)+n[w]

2 - 2 n

Put x; = h(i)—1for alli =0,...,n—1. Note that z; > —1, because h(i) > 0. If we have
x; > 0foralli=0,...,n— 1, then taking ¢ = 0 completes the proof. Otherwise, we can
pick some index j such that x; = —1. Let y; = x; where 1 =0,...,7—-1,7+1,...,n—1
and y; = 0. For sequence {y;} we have

n—1 n—1 n—1
D= m+1=> hi)-n+1=1,
i=0 i=0 i=0
so from Raney’s lemma there exists index & such that ij,g y; >0forall j=0,....,n—1
where y,4; = y; for j =0,...,k — 1. Taking t = k we will have
k+i k+i k+i
D Oht)—(i+1)=> x(t)>=> yt)—1>0,
t=k t=k t=k
forall i =0,...,n — 1 and we are done.
Solution 3. Choose a random permutation cq,..., ¢, of the integers 1,2,... n. Let
b; = a; + f(c;i — a;), where f(x) € {0,...,n — 1} denotes a remainder of x modulo n.

Observe, that for such defined sequence the first two conditions hold. The expected value
of B:=by + ...+ b, is easily seen to be equal to a; + ...+ a, + n(n — 1)/2. Indeed, for
each ¢ the random number ¢; — a; has uniform distribution modulo n, thus the expected
value of f(¢; —a;) is (O+ ...+ (n—1))/n = (n — 1)/2. Therefore we may find such ¢
that B <ay + ...+ a, +n(n—1)/2. But B —n(n — 1)/2 is divisible by n and therefore
B <n[(a1 + ...+ a,)/n] +n(n—1)/2 as needed.

Solution 4. We will prove the required statement for all sequences of non-negative
integers a; by induction on n.

Case n =1 is obvious, just set b; = a;.
Now suppose that the statement is true for some n > 1; we shall prove it for n + 1.

First note that, by subtracting a multiple of n + 1 to each a; and possibly rearranging
indices we can reduce the problem to the case where 0 < a; < as < -+ < a, < a1 <
n—+ 1.

Now, by the induction hypothesis there exists a sequence dy, ds, . . ., d,, which satisfies the
properties required by the statement in relation to the numbers ay, ..., a,. Set I = {i|1 <
i <n and d; mod n > a;} and construct b;, for i = 1,...,n+ 1, as follows:

d; mod n, when i € [,
bi=<n+1+(d; modn), when i € {1,...,n}\ I,

n, for : =n + 1.



Now, a; < d; mod n < b; for i € I, while for i ¢ I we have a; < n < b;. Thus the sequence
(b;) ]! satisfies the first condition from the problem statement.

By the induction hypothesis, the numbers d; mod n are distinct for i € {1,...,n}, so the
values b; mod (n + 1) are distinct elements of {0,...,n — 1} for ¢ € {1,...,n}. Since
bn+1 = n, the second condition is also satisfied.

Denote k = |I|. We have

n+1 n n
Zbi:Zbi—kn:Zdimodn—i—(n—k)(n—i—l)—i—n:
i=1 i=1 i=1

1
ML - )+ 1)
hence we need to show that
n(n+1) n(n+1) Zﬁ_ﬁl i
) b =Ry < P oy | 2

equivalently, that
Z?: 11 a;

n+1

n—k<

Next, from the induction hypothesis we have

(n=1)  [XLa] .y
%4_71{71&}2;@:26&4-2@2

iel ig
Zd- modn—l—Z(n%—d‘ mod n) = M—l—(n—k)n
" , ' 2
iel ¢l
or .
n—k< [M} )
n

Thus, it’s enough to show that

1
Z?:l Qi < Z::—l a;

n - n+1
because then
n ) n+1 )
n— k< D iy G < Dimy Gi
- n | n+1

But the required inequality is equivalent to Y | a; < na,1, which is obvious.

Solution 5. We can assume that all a; € {0,1,...,n— 1}, as we can deduct n from both
a; and b; for arbitrary ¢ without violating any of the three conditions from the problem
statement. We shall also assume that a; < ... <aq,,.

Now let us provide an algorithm for constructing b, ..., b,.
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We start at step 1 by choosing f(1) to be the maximum 7 in {1,...,n} such that a; < n—1,
that is f(1) =n. We set byq) =n — 1.

Having performed steps 1 through j, at step 7+ 1 we set f(j+ 1) to be the maximum ¢ in
{1,...,n}\{f(1),..., f(5)} such that a; < n — j — 1, if such an index exists. If it does,
we set by(j41) = n — j — 1. If there is no such index, then we define 7' = j and assign to
the terms b;, where i ¢ f({1,...,;}), the valuesn,n+1...,2n—j — 1, in any order, thus
concluding the run of our algorithm.

Notice that the sequence (b;)"_; satisfies the first and second required conditions by con-
struction. We wish to show that it also satisfies the third.

Notice that, since the values chosen for the b;’s are those from n — T to 2n — T — 1, we
have

- -1
S b= %Jr (n —T)n.
i=1
It therefore suffices to show that
[a1+...+an} —
n

or (since the RHS is obviously an integer) ay + ...+ a, > (n — T)n.
First, we show that there exists 1 <7 < T such that n —i = b = ay@).

Indeed, this is true if a,, = n—1, so we may suppose a,, < n—1 and therefore a,,_; < n—2,
so that T" > 2. If a,_1 = n — 2, we are done. If not, then a,_; < n — 2 and therefore
an_o <n—3and T > 3. Inductively, we actually obtain 7" = n and necessarily f(n) =1
and a; = by = 0, which gives the desired result.

Now let ¢ be the largest such index i. We know that n —t = byy) = as() and therefore
ap < ... < ayy <n-—t If wehavea; = ... =ayy =n—1t, then T =t and we have
a; > n— T for all 4, hence ) . a;, > n(n —T). Otherwise, T' > ¢ and in fact one can show
T =t+ f(t + 1) by proceeding inductively and using the fact that ¢ is the last time for
which Aty = bf(t).

Now we get that, since ayi11)41 > n—t, then Y, a; > (n—t)(n—f(t+1)) = (n—T+ f(t+
1)()(n—j;(t—|—1)) =nn—T)+nf(t+1)—ft+1)(n—T+f(t+1)) =nn-T)+tf(t+1) >
n(n—1T).

Greedy algorithm variant 1 (ISR). Consider the residues 0,...,n — 1 modulo n
arranged in a circle clockwise, and place each a; on its corresponding residue; so that on
each residue there is a stack of all a;s congruent to it modulo n, and the sum of the sizes of
all stacks is exactly n. We iteratively flatten and spread the stacks forward, in such a way
that the a;s are placed in the nearest available space on the circle clockwise (skipping over
any already flattened residue or still standing stack). We may choose the order in which
the stacks are flattened. Since the total amount of numbers equals the total number of
spaces, there is always an available space and at the end all spaces are covered. The b;s
are then defined by adding to each a; the number of places it was moved forward, which
clearly satifies (i) and (ii), and we must prove that they satisfy (iii) as well.

Suppose that we flatten a stack of £ numbers at a residue 7, causing it to overtake a stack
of [ numbers at residue j € (i,7 + k) (we can allow j to be larger than n and identify it
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with its residue modulo n). Then in fact in fact in whichever order we would flatten the
two stacks, the total number of forward steps would be the same, and the total sum of
the corresponding b; (such that a; mod n € {i,j}) would be the same. Moreover, we can
merge the stacks to a single stack of k£ + [ numbers at residue ¢, by replacing each a; = 5
(mod n) by a} = a; — (j — i), and this stack would be flattened forward into the same
positions as the separate stacks would have been, so applying our algorithm to the new
stacks will yield the same total sum of > b; — but the a;s are strictly decreased, so > a;
2 ai

is decreased, so { J is not increased — so by merging the stacks, we can only make the

inequality we wish to prove tighter.

Thus, as long as there is some stack that when flattened will overtake another stack, we
may merge stacks and only make the inequality tighter. Since the amount of numbers
equals the amount of places, the merging process terminates with stacks of sizes k1, . .., kp,,
such that the stack j, when flattened, will exactly cover the interval to the next stack.

Clearly the numbers 1n each such stack were advanced by a total of Zf :1 = M , thus
Sbi=>a; + z ) Writing d>oa; =n-r+swith 0 < s < n, we must therefore
show k ) ( N

s+ Z R

Ending 1. Observing that both sides of the last inequality are congruent modulo n (both
are congruent to the sum of all different residues), and that 0 < s < n, the inequality is

ko (=1 -1 q -
J(é ) < =) Gince z(x — 1) is convex, and k; are non-

eqivalent to the simpler > ; < =5
negative integers with > ; kj = n, the left hand side is maximal when kj = n and the rest
are 0, and then eqaulity is achieved. (Alternatively it follows easily for any non-negative

reals from AM-GM.)

Ending 2. If m =1 (and k; = n), then all numbers are in a single stack and have the
same residue, so s = 0 and equality is attained. If m > 2, then by convexity Z M

(n=1)(n=2)
2

is maximal for m = 2 and (kq, k2) = (n— 1,1), where it equals . Since we always

have s <n — 1, we find

3+Z (n_1)+(n—1)2(n—2):n(n2—1)

as required.

Greedy algorithm variant 1’ (ISR). We apply the same algorithm as in the previous
solution. However, this time we note that we may merge stacks not only when they
overlap after flattening, but also when they merely touch front-to-back: That is, we relax
the condition j € (i,i+ k) to j € (i,i+ k|; the argument for why such merges are allowed
is exactly the same (But note that this is now sharp, as merging non-touching stacks can
cause the sum of b;s to decrease).

We now observe that as long as there at least two stacks left, at least one will spread
to touch (or overtake) the next stack, so we can perform merges until there is only one
stack left. We are left with verifying that the inequality indeed holds for the case of only
one stack which is spread forward, and this is indeed immediate (and in fact equality is
achieved).



Greedy algorithm variant 2 (ISR). Let ¢; = a; mod n. Iteratively define b; = a; + I;
greedily, write d; = ¢; + [;, and observe that [; < n — 1 (since all residues are present in
@iy ...,a;+n—1), hence 0 < d; <2n—2. Let I ={i € I : d; > n}, and note that d; = b;
mod n if i ¢ I and d; = (b; mod n) +n if i € I. Then we must show

Sty =Y b2, FJ

= ) (ci+1) <D (b mod n) —i—n\‘ J
=l n|E8) o | E8| o et

Let k = ||, and for each 0 < m < nlet J,, = {i : ¢; > n—m}. We claim that there must
be some m for which |J,,| > m + k (clearly for such m, at least k of the sums d; with
j € J,, must exceed n, i.e. at least k of the elements of .J,,, must also be in I, so this m is
a “witness” to the fact |I| > k). Once we find such an m, then we clearly have

ZCiZ(n—m)]JM > (n—m)(k+m)=nk+m(n—(k+m))>nk=nl|l|

as required. We now construct such an m explicitly.

If £ =0, then clearly m = n works (and also the original inequality is trivial). Otherwise,
there are some d;s greater than n, and let » +n = maxd;, and suppose d; = r + n and
let s = ¢;. Note that » < s < r + n since [; < n. Let m > 0 be the smallest number
such that n —m — 1 is not in {di,...,d;}, or equivalently m is the largest such that
[n —m,n) C {dy,...,d;}. We claim that this m satisfies the required property. More
specifically, we claim that J), = {i <t:d; > n—m} contains exactly m + k elements and
is a subset of J,,.

Note that by the greediness of the algorithm, it is impossible that for [¢;, d;) to contain
numbers congruent to d; mod n with j > ¢ (otherwise, the greedy choice would prefer
d; to d; at stage i). We call this the greedy property. In particular, it follows that all
i such that d; € [s,d;) = [cr, dy) must satisfy i < ¢. Additionally, {d;} is disjoint from
[n+r+1,2n) (by maximality of d;), but does intersect every residue class, so it contains
[r + 1,n) and in particular also [s,n). By the greedy property the latter can only be
attained by d; with ¢ < ¢, thus [s,n) C {d,,...,d;}, and in particular n —m < s (and in
particular m > 1).

On the other hand n —m > r (since r ¢ {d;} at all), so n —m — 1 > r. It follows that
there is a time ¢’ > ¢ for which dy =n —m — 1 (mod n): If n — m — 1 = r then this is
true for ' =t with d; = n+1r = 2n —m — 1; whereas if n —m — 1 € [r + 1, n) then there
is some t’' for which dy =n —m — 1, and by the definition of m it satisfies ¢’ > ¢.

Therefore for all © < t < t' for which d; > n — m, necessarily also ¢; > n — m, since
otherwise dy € [c;, d;), in contradiction to the greedy property. This is also true for i = ¢,
since ¢; = s > n —m as previously shown. Thus, J! C J,, as claimed.

Finally, since by definition of m and greediness we have [n — m,n) U {d; : i € I} C
{dq,...,d;}, we find that {d; : j € J,} = [n—m,n)U{d; : i € I} and thus |J]| =
|[n —m,n)| + |I| = m+ k as claimed.
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Problem 6 (United Kingdom).

On a circle, Alina draws 2019 chords, the endpoints of which are all different. A point is
considered marked if it is either

(i) one of the 4038 endpoints of a chord; or

(ii) an intersection point of at least two chords.

Alina labels each marked point. Of the 4038 points meeting criterion (i), Alina labels
2019 points with a 0 and the other 2019 points with a 1. She labels each point meeting
criterion (ii) with an arbitrary integer (not necessarily positive).

Along each chord, Alina considers the segments connecting two consecutive marked points.
(A chord with k& marked points has k — 1 such segments.) She labels each such segment
in yellow with the sum of the labels of its two endpoints and in blue with the absolute
value of their difference.

Alina finds that the N + 1 yellow labels take each value 0,1,..., N exactly once. Show
that at least one blue label is a multiple of 3.

(A chord is a line segment joining two different points on a circle.)
Solution 1. First we prove the following:

Lemma: if we color all of the points white or black, then the number of white-black edges,
which we denote Ew g, is equal modulo 2 to the number of white (or black) points on the
circumference, which we denote Cy, resp. Cp.

Observe that changing the colour of any interior point does not change the parity of Fy g,
as each interior point has even degree, so it suffices to show the statement holds when all
interior points are black. But then Ey p = Cy so certainly the parities are equal.

Now returning to the original problem, assume that no two adjacent vertex labels differ
by a multiple of three, and three-colour the vertices according to the residue class of the
labels modulo 3. Let Ejy; denote the number of edges between 0O-vertices and 1-vertices,
and C denote the number of 0-vertices on the boundary, and so on.

Then, consider the two-coloring obtained by combining the 1-vertices and 2-vertices. By
applying the lemma, we see that Ey; + Egp = Cp mod 2.

Sunllarly E01 + E12 = Cl, and E02 -+ E12 = CQ, mod 2.

Using the fact that Cy = C; = 2019 and C5; = 0, we deduce that either Eyp, and Ei5 are
even and FEjy; is odd; or Ey and Ej5 are odd and Ey; is even.

But if the edge labels are the first N non-negative integers, then Fy = E15 unless N =0
modulo 3, in which case Ey; = Eps. So however Alina chooses the vertex labels, it is not
possible that the multiset of edge labels is {0,..., N}.

Hence in fact two vertex labels must differ by a multiple of 3.
Solution 2. As before, colour vertices based on their label modulo 3.

Suppose this gives a valid 3-colouring of the graph with 2019 0s and 2019 1s on the
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circumference. Identify pairs of O-labelled vertices and pairs of 1-labelled vertices on the
circumference, with one 0 and one 1 left over. The resulting graph has even degrees except
these two leaves. So the connected component C containing these leaves has an Eulerian
path, and any other component has an Eulerian cycle.

Let Ej, denote the number of edges between O-vertices and 1-vertices in C, and let Ej,
denote the number of such edges in the other components, and so on. By studying whether
a given vertex has label congruent to 0 modulo 3 or not as we go along the Eulerian path
in C, we find Ej;, + Ej, is odd, and similarly Ej, + E7, is odd. Since neither start nor end
vertex is a 2-vertex, Ej, + £}, must be even.

Applying the same argument for the Eulerian cycle in each other component and adding
up, we find that Ej, + E{,, E}, + El,, El, + E}, are all even. So, again we find Ey; + Fog,
Eo1 + Eq5 are odd, and Egs + Ejs is even, and we finish as in the original solution.

12



	solutions-day1.pdf
	solutions-day2.pdf

