

41st Balkan Mathematical Olympiad
27th April - 2nd May 2024
Varna, Bulgaria
Language: English
Monday, April 29, 2024

Problem 1. Let $A B C$ be an acute-angled triangle with $A C>A B$ and let D be the foot of the A-angle bisector on $B C$. The reflections of lines $A B$ and $A C$ in line $B C$ meet $A C$ and $A B$ at points E and F respectively. A line through D meets $A C$ and $A B$ at G and H respectively such that G lies strictly between A and C while H lies strictly between B and F. Prove that the circumcircles of $\triangle E D G$ and $\triangle F D H$ are tangent to each other.

Problem 2. Let $n \geq k \geq 3$ be integers. Show that for every integer sequence $1 \leq a_{1}<a_{2}<\ldots<$ $a_{k} \leq n$ one can choose non-negative integers $b_{1}, b_{2}, \ldots, b_{k}$, satisfying the following conditions:
(i) $0 \leq b_{i} \leq n$ for each $1 \leq i \leq k$,
(ii) all the positive b_{i} are distinct,
(iii) the sums $a_{i}+b_{i}, 1 \leq i \leq k$, form a permutation of the first k terms of a non-constant arithmetic progression.

Problem 3. Let a and b be distinct positive integers such that $3^{a}+2$ is divisible by $3^{b}+2$. Prove that $a>b^{2}$.

Problem 4. Let $\mathbb{R}^{+}=(0, \infty)$ be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ and polynomials $P(x)$ with non-negative real coefficients such that $P(0)=0$ which satisfy the equality

$$
f(f(x)+P(y))=f(x-y)+2 y
$$

for all real numbers $x>y>0$.

Problems with Solutions

Language: English
Monday, April 29, 2024

Problem 1. Let $A B C$ be an acute-angled triangle with $A C>A B$ and let D be the foot of the A-angle bisector on $B C$. The reflections of lines $A B$ and $A C$ in line $B C$ meet $A C$ and $A B$ at points E and F respectively. A line through D meets $A C$ and $A B$ at G and H respectively such that G lies strictly between A and C while H lies strictly between B and F. Prove that the circumcircles of $\triangle E D G$ and $\triangle F D H$ are tangent to each other.

Solution 1. Let X and Y lie on the tangent to the circumcircle of $\triangle E D G$ on the opposite side to D as shown in the figure below. Regarding diagram dependency, the acute condition with $A C>A B$ ensures E lies on extension of $C A$ beyond A, and F lies on extension of $A B$ beyond B. The condition on ℓ means the points lie in the orders E, A, G, C and A, B, H, F.

Using the alternate segment theorem, the condition that $\odot E D G$ and $\odot F D H$ are tangent at D can be rewritten as

$$
\Varangle H F D=\Varangle Y D H
$$

But using the same theorem, we get $\Varangle Y D H=\Varangle X D G=\Varangle D E G$. So we can remove G, H from the figure, and it is sufficient to prove that $\Varangle D E A=\Varangle D F B$.

The reflection property means that $A D$ and $B D$ are external angle bisectors in $\triangle E A B$ and hence D
is the E-excentre of this triangle. Thus $D E$ (internally) bisects $\Varangle B E A$, giving

$$
\Varangle D E A=\Varangle D E B
$$

Now observe that the pairs of lines $(B E, C E)$ and $(B F, C F)$ are reflections in $B C$ thus E, F are reflections in $B C$. Also D is its own reflection in $B C$. Hence $\Varangle D E B=\Varangle D F B$ and so

$$
\Varangle D E A=\Varangle D E B=\Varangle D F B
$$

as required.

Problem 2. Let $n \geq k \geq 3$ be integers. Show that for every integer sequence $1 \leq a_{1}<a_{2}<\ldots<$ $a_{k} \leq n$ one can choose non-negative integers $b_{1}, b_{2}, \ldots, b_{k}$, satisfying the following conditions:
(i) $0 \leq b_{i} \leq n$ for each $1 \leq i \leq k$,
(ii) all the positive b_{i} are distinct,
(iii) the sums $a_{i}+b_{i}, 1 \leq i \leq k$, form a permutation of the first k terms of a non-constant arithmetic progression.

Solution 1. Let the resulting progression be $A n s:=\left\{a_{k}-(k-1), a_{k}-(k-2), \ldots, a_{k}\right\}$ and a_{t} be the largest number not belonging to Ans. Clearly the set $A n s \backslash\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ has cardinality t; let its members be $c_{1}>c_{2}>\cdots>c_{t}$. Define $b_{j}:=c_{j}-a_{j}$ for $1 \leq j \leq t$ or zero otherwise. Since $\left\{c_{j}\right\}$ is decreasing and $\left\{a_{j}\right\}$ is increasing, all b_{j} are distinct and clearly $b_{1}<n$. After we add b_{j} to a_{j} we get a permutation of Ans as desired.

Solution 2. Let the resulting progression be $A n s:=\left\{a_{k}-(k-1), a_{k}-(k-2), \ldots, a_{k}\right\}$.
We proceed with the following reduction. Let δ be the smallest b we used before (in the beginning it is n). While $a_{1} \notin A n s$ we map a_{1} to the largest element q of $A n s \backslash\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and put $\delta_{\text {new }}:=b_{1}:=q-a_{1}$. Now we rearrange the sequence of a-s. We do not touch $\operatorname{Ans} \cap\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ so every b is defined at most once (in the end undefined b-s become zeros). Also $b<\delta$ and δ decreases at each step, because q decreases and a_{1} grows, and hence all nonzero b-s are distinct.

Problem 3. Let a and b be distinct positive integers such that $3^{a}+2$ is divisible by $3^{b}+2$. Prove that $a>b^{2}$.

Solution 1. Obviously we have $a>b$. Let $a=b q+r$, where $0 \leq r<b$. Then

$$
3^{a} \equiv 3^{b q+r} \equiv(-2)^{q} \cdot 3^{r} \equiv-2 \quad\left(\bmod 3^{b}+2\right)
$$

So $3^{b}+2$ divides $A=(-2)^{q} .3^{r}+2$ and it follows that

$$
\left|(-2)^{q} \cdot 3^{r}+2\right| \geq 3^{b}+2 \text { or }(-2)^{q} \cdot 3^{r}+2=0
$$

We make case distinction:

1. $(-2)^{q} .3^{r}+2=0$. Then $q=1$ and $r=0$ or $a=b$, a contradiction.
2. q is even. Then

$$
A=2^{q} \cdot 3^{r}+2=\left(3^{b}+2\right) \cdot k
$$

Consider both sides of the last equation modulo 3^{r}. Since $b>r$:

$$
2 \equiv 2^{q} \cdot 3^{r}+2=\left(3^{b}+2\right) k \equiv 2 k \quad\left(\bmod 3^{r}\right)
$$

so it follows that $3^{r} \mid k-1$. If $k=1$ then $2^{q} .3^{r}=3^{b}$, a contradiction. So $k \geq 3^{r}+1$, and therefore:

$$
A=2^{q} .3^{r}+2=\left(3^{b}+2\right) k \geq\left(3^{b}+2\right)\left(3^{r}+1\right)>3^{b} .3^{r}+2
$$

It follows that

$$
2^{q} .3^{r}>3^{b} .3^{r}, \text { i.e. } 2^{q}>3^{b}, \text { which implies } 3^{b^{2}}<2^{b q}<3^{b q} \leq 3^{b q+r}=3^{a} .
$$

Consequently $a>b^{2}$.
3. If q is odd. Then

$$
2^{q} .3^{r}-2=\left(3^{b}+2\right) k
$$

Considering both sides of the last equation modulo 3^{r}, and since $b>r$, we get: $k+1$ is divisible by 3^{r} and therefore $k \geq 3^{r}-1$. Thus $r>0$ because $k>0$, and:

$$
\begin{array}{r}
2^{q} .3^{r}-2=\left(3^{b}+2\right) k \geq\left(3^{b}+2\right)\left(3^{r}-1\right), \text { and therefore } \\
2^{q} .3^{r}>\left(3^{b}+2\right)\left(3^{r}-1\right)>3^{b}\left(3^{r}-1\right)>3^{b} \frac{3^{r}}{2}, \text { which shows } \\
2^{q+1}>3^{b} .
\end{array}
$$

But for $q>1$ we have $2^{q+1}<3^{q}$, which combined with the above inequality, implies that $3^{b^{2}}<2^{(q+1) b}<3^{q b} \leq 3^{a}$, q.e.d. Finally, If $q=1$ then $2^{q} .3^{r}-2=\left(3^{b}+2\right) k$ and consequently $2.3^{r}-2 \geq 3^{b}+2 \geq 3^{r+1}+2>2.3^{r}-2$, a contradiction.

Solution 2. $D=a-b$, and we shall show $D>b^{2}-b$. We have $3^{b}+2 \mid 3^{a}+2$, so $3^{b}+2 \mid 3^{D}-1$. Let $D=b q+r$ where $r<b$. First suppose that $r \neq 0$. We have

$$
1 \equiv 3^{D} \equiv 3^{b q+r} \equiv(-2)^{q+1} 3^{r-b} \quad\left(\bmod 3^{b}+2\right) \Longrightarrow 3^{b-r} \equiv(-2)^{q+1} \quad\left(\bmod 3^{b}+2\right)
$$

Therefore

$$
3^{b}+2 \leq\left|(-2)^{q+1}-3^{b-r}\right| \leq 2^{q+1}+3^{b-r} \leq 2^{q+1}+3^{b-1}
$$

Hence

$$
2 \times 3^{b-1}+2 \leq 2^{q+1} \Longrightarrow 3^{b-1}<2^{q} \Longrightarrow \frac{\log 3}{\log 2}(b-1)<q
$$

Which yields $D=b q+r>b q>\frac{\log 3}{\log 2} b(b-1) \geq b^{2}-b$ as desired. Now for the case $r=0,(-2)^{q} \equiv 1$ $\left(\bmod 3^{b}+2\right)$ and so

$$
3^{b}+2 \leq\left|(-2)^{q}-1\right| \leq 2^{q}+1 \Longrightarrow 3^{b-1}<3^{b}<2^{q} \Longrightarrow \frac{\log 3}{\log 2}(b-1)<q
$$

and analogous to the previous case, $D=b q+r=b q>\frac{\log 3}{\log 2} b(b-1) \geq b^{2}-b$.

Problem 4. Let $\mathbb{R}^{+}=(0, \infty)$ be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ and polynomials $P(x)$ with non-negative real coefficients such that $P(0)=0$ which satisfy the equality

$$
f(f(x)+P(y))=f(x-y)+2 y
$$

for all real numbers $x>y>0$.

Solution 1. Assume that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and the polynomial P with non-negative coefficients and $P(0)=0$ satisfy the conditions of the problem. For positive reals with $x>y$, we shall write $Q(x, y)$ for the relation:

$$
f(f(x)+P(y))=f(x-y)+2 y
$$

1. Step 1. $f(x) \geq x$. Assume that this is not true. Since $P(0)=0$ and P is with non-negative coefficients, $P(x)+x$ is surjective on positive reals. If $f(x)<x$ for some positive real x, then setting y such that $y+P(y)=x-f(x)$ (where obviously $y<x$), we shall get $f(x)+P(y)=x-y$ and by $Q(x, y), f(f(x)+P(y))=f(x-y)+2 y$, we get $2 y=0$, a contradiction.
2. Step 2. $P(x)=c x$ for some non-negative real c. We will show $\operatorname{deg} P \leq 1$ and together with $P(0)=0$ the result will follow. Assume the contrary. Hence there exists a positive l such that $P(x) \geq 2 x$ for all $x \geq l$. By Step 1 we get

$$
\forall x>y \geq l: f(x-y)+2 y=f(f(x)+P(y)) \geq f(x)+P(y) \geq f(x)+2 y
$$

and therefore $f(x-y) \geq f(x)$. We get $f(y) \geq f(2 y) \geq \cdots \geq f(n y) \geq n y$ for all positive integers n, which is a contradiction.
3. Step 3. If $c \neq 0$, then $f\left(f(x)+2 z+c^{2}\right)=f(x+1)+2(z-1)+2 c$ for $z>1$. Indeed by $Q(f(x+z)+c z, c)$, we get

$$
f\left(f(f(x+z)+c z)+c^{2}\right)=f(f(x+z)+c z-c)+2 c=f(x+1)+2(z-1)+2 c
$$

On the other hand by $Q(x+z, z)$, we have:

$$
f(x)+2 z+c^{2}=f(f(x+z)+P(z))+c^{2}=f(f(x+z)+c z)+c^{2} .
$$

Substituting in the LHS of $Q(f(x+z)+c z, c)$, we get $f\left(f(x)+2 z+c^{2}\right)=f(x+1)+2(z-1)+2 c$.
4. Step 4. There is x_{0}, such that $f(x)$ is linear on $\left(x_{0}, \infty\right)$. If $c \neq 0$, then by Step 3, fixing $x=1$, we get $f\left(f(1)+2 z+c^{2}\right)=f(2)+2(z-1)+2 c$ which implies that f is linear for $z>f(1)+2+c^{2}$. As for the case $c=0$, consider $y, z \in(0, \infty)$. Pick $x>\max (y, z)$, then by $Q(x, x-y)$ and $Q(x, x-z)$ we get:

$$
f(y)+2(x-y)=f(f(x))=f(z)+2(x-z)
$$

which proves that $f(y)-2 y=f(z)-2 z$ and there fore f is linear on $(0, \infty)$.
5. Step 5. $P(y)=y$ and $f(x)=x$ on $\left(x_{0}, \infty\right)$. By Step 4 , let $f(x)=a x+b$ on $\left(x_{0}, \infty\right)$. Since f takes only positive values, $a \geq 0$. If $a=0$, then by $Q(x+y, y)$ for $y>x_{0}$ we get:

$$
2 y+f(x)=f(f(x+y)+P(y))=f(b+c y) .
$$

Since the LHS is not constant, we conclude $c \neq 0$, but then for $y>x_{0} / c$, we get that the RHS equals b which is a contradiction.

Hence $a>0$. Now for $x>x_{0}$ and $x>\left(x_{0}-b\right) / a$ large enough by $P(x+y, y)$ we get:
$a x+b+2 y=f(x)+2 y=f(f(x+y)+P(y))=f(a x+a y+b+c y)=a(a x+a y+b+c y)+b$.
Comparing the coefficients before x, we see $a^{2}=a$ and since $a \neq 0, a=1$. Now $2 b=b$ and thus $b=0$. Finally, equalising the coefficients before y, we conclude $2=1+c$ and therefore $c=1$.

Now we know that $f(x)=x$ on $\left(x_{0}, \infty\right)$ and $P(y)=y$. Let $y>x_{0}$. Then by $Q(x+y, x)$ we conclude:

$$
f(x)+2 y=f(f(x+y)+P(y))=f(x+y+y)=x+2 y .
$$

Therefore $f(x)=x$ for every x. Conversely, it is straightforward that $f(x)=x$ and $P(y)=y$ do indeed satisfy the conditions of the problem.

Solution 2. Assume that the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and the polynomial with non-negative coefficients $P(y)=y P_{1}(y)$ satisfy the given equation. Fix $x=x_{0}>0$ and note that:

$$
f\left(f\left(x_{0}+y\right)+P(y)\right)=f\left(x_{0}+y-y\right)+2 y=f\left(x_{0}\right)+2 y .
$$

Assume that $g=0$. Then $f(f(x+y))=f(x)+2 y$ for $x, y>0$. Let $x>0$ and $z>0$. Pick $y>0$. Then:

$$
2 y+f(x+z)=f(f(x+y+z))=f(f(x+z+y))=f(x)+2(z+y) .
$$

Therefore $f(x+z)=f(x)+2 z$ for any $x>0$ and $z>0$. Setting $c=f(1)$, we see that $f(z+1)=c+2 z$ for all positive z. Therefore if $x, y>1$ we have that $f(x+y)=c+2(x+y-1)>1$. This shows that:

$$
f(f(x+y))=c+2(f(x+y)-1)=3 c+4(x+y)-4
$$

On the other hand $f(x)+2 y=c+2 x+2 y$. Therefore the equality $f(f(x+y))=f(x)+2 y$ is not universally satisfied.

From now on, we assume that $g \neq 0$. Therefore P is strictly increasing with $P(0)=0, \lim _{y \rightarrow \infty} P(y)=$ ∞, i.e. g is bijective on $[0, \infty)$ and $P(0)=0$.

Let $x>0, y>0$ and set $u=f(x+y), v=P(y)$. From above, we have $u>0$ and $v>0$. Therefore:

$$
f(f(u+v)+P(v))=f(u)+2 v=f(f(x+y))+2 P(y)
$$

On the other hand $f(u+v)=f(f(x+y)+P(y))=f(x)+2 y$. Therefore we obtain that:

$$
f(f(x)+2 y+P(P(y)))=f(f(x+y))+2 P(y)
$$

Since g is bijective from $(0, \infty)$ to $(0, \infty)$ for any $z>0$ there is t such that $P(t)=z$. Applying this observation to $z=P(P(y))+2 y$ and setting $x^{\prime}=x+t$, we obtain that:
$f(f(x+t+y))+2 P(y)=f\left(f\left(x^{\prime}+y\right)\right)+2 P(y)=f\left(f\left(x^{\prime}\right)+P(P(y))+2 y\right)=f(f(x+t)+P(t))=f(x)+2 t$.

Thus if we denote $h(y)=P(P(y))+2 y$, then $t=P^{(-1)}(h(y))$ and the above equality can be rewritten as:
$f\left(f\left(x+P^{(-1)}(h(y))+y\right)\right)=f(x)+2 P^{(-1)}(h(y))-2 P(y)=f(x)+2 P^{(-1)}(h(y))+2 y-2 y-2 P(y)$.

Let $s(y)=P^{(-1)}(h(y))+y$ and note that since h is continuous and monotone increasing, g is continuous and monotone increasing, then so are $P^{(-1)}$ and consequently $P^{(-1)} \circ h$ and s. It is also clear, that $\lim _{y \rightarrow 0} s(y)=0$ and $\lim _{y \rightarrow \infty} s(y)=\infty$. Therefore s is continuously bijective from $[0, \infty)$ to $[0, \infty)$ with $s(0)=0$.

Thus we have:

$$
f(f(x+s(y)))=f(x)+2 s(y)-2 y-2 P(y)
$$

and using that s is invertible, we obtain:

$$
f(f(x+y))=f(x)+2 y-2 s^{(-1)}(y)-2 P\left(s^{(-1)}(y)\right)
$$

Now fix x_{0}, then for any $x>x_{0}$ and any $y>0$ we have:

$$
\begin{aligned}
f(x)+2 y-2 s^{(-1)}(y)-2 P\left(s^{(-1)}(y)\right) & =f(f(x+y))=f\left(f\left(x_{0}+x+y-x_{0}\right)\right) \\
& =f\left(x_{0}\right)+2\left(x+y-x_{0}\right)-2 s^{(-1)}\left(x+y-x_{0}\right)-2 P\left(s^{(-1)}\left(x+y-x_{0}\right)\right)
\end{aligned}
$$

Setting $y=x_{0}$, we get:

$$
f(x)+2 x_{0}-2 s^{(-1)}\left(x_{0}\right)-2 P\left(s^{(-1)}\left(x_{0}\right)\right)=f\left(x_{0}\right)+2 x-2 s^{(-1)}(x)-2 P\left(s^{(-1)}(x)\right) .
$$

Since this equality is valid for any $x>x_{0}$ we actually have that:

$$
f(x)-2 x+2 s^{(-1)}(x)+2 P\left(s^{(-1)}(x)\right)=c \text { for some fixed constant } c \in \mathbb{R} \text { and all } x \in \mathbb{R}^{+} .
$$

Let $\phi(x)=-x+2 s^{(-1)}(x)+2 P\left(s^{(-1)}(x)\right)$. Then $f(x)=x-\phi(x)+c$ and since ϕ is a sum of continuous functions that are continuous at 0 . Therefore f is continuous and can be extended to a continuous function on $[0, \infty)$. Back in the original equation we fix $x>0$ and let y tend to 0 . Using the continuity of f and g on $[0, \infty)$ and $P(0)=0$ we obtain:

$$
f(f(x))=\lim _{y \rightarrow 0+} f(f(x)+P(y))=\lim _{y \rightarrow 0+}(f(x-y)+P(y))=f(x)+P(0)=f(x)
$$

Finally, fixing $x=1$ and varying $y>0$, we obtain:

$$
f(f(1+y)+P(y))=f(1)+2 y
$$

It follows that f takes every value on $(f(1), \infty)$. Therefore for any $y \in(f(1), \infty)$ there is z such that $f(z)=y$. Using that $f(f(z))=f(z)$ we conclude that $f(y)=y$ for all $y \in(f(1), \infty)$.

Now fix x and take $y>f(1)$. Hence

$$
f(x)+2 y=f(f(x+y)+P(y))=f(x+y+P(y))=x+y+P(y)
$$

We conclude $f(x)-x=P(y)-y$ for every x an $y>f(1)$. In particular $f\left(x_{1}\right)-x_{1}=f\left(x_{2}\right)-x_{2}$ for all $x_{1}, x_{2} \in(0, \infty)$ and since $f(x)=x$ for $x \in(f(1), \infty)$, we get $f(x)=x$ on $(0, \infty)$.
Finally, $x+2 y=f(x)+2 y=f(f(x+y)+P(y))=f(x+y)+P(y)=x+y+P(y)$, which shows that $P(y)=y$ for every $y \in(0, \infty)$.

It is also straightforward to check that $f(x)=x$ and $P(y)=y$ satisfy the equality:

$$
f(f(x+y)+P(y))=f(x+2 y)=x+2 y=f(x)+2 y .
$$

