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Problem 1. Let ABC be an acute-angled triangle with AC > AB and let D be the foot of the
A-angle bisector on BC. The reflections of lines AB and AC in line BC meet AC and AB at points
E and F respectively. A line through D meets AC' and AB at G and H respectively such that G
lies strictly between A and C' while H lies strictly between B and F. Prove that the circumcircles of
AEDG and AFDH are tangent to each other.

Problem 2. Let n > k > 3 be integers. Show that for every integer sequence 1 < a1 < ag < ... <

ar < n one can choose non-negative integers by, bs, . .., bx, satisfying the following conditions:
(i) 0<b; <nforeach 1 <i<k,
(ii) all the positive b; are distinct,

(iii) the sums a; 4+ b;, 1 < i < k, form a permutation of the first k& terms of a non-constant arithmetic

progression.

Problem 3. Let a and b be distinct positive integers such that 3¢ + 2 is divisible by 3* + 2. Prove
that a > b?.

Problem 4. Let R = (0,00) be the set of all positive real numbers. Find all functions f : RT — R*
and polynomials P(x) with non-negative real coefficients such that P(0) = 0 which satisfy the equality

f(f(@)+ Py) = flx —y) +2y

for all real numbers x > y > 0.

Time is 4 hours and 30 minutes

Each problem is worth 10 points
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Problem 1. Let ABC be an acute-angled triangle with AC' > AB and let D be the foot of the

A-angle bisector on BC. The reflections of lines AB and AC in line BC meet AC and AB at points
E and F respectively. A line through D meets AC and AB at G and H respectively such that G

lies strictly between A and C' while H lies strictly between B and F. Prove that the circumcircles of
AEDG and AFDH are tangent to each other.

Solution 1. Let X and Y lie on the tangent to the circumcircle of AEDG on the opposite side to

D as shown in the figure below. Regarding diagram dependency, the acute condition with AC' > AB
ensures F lies on extension of C' A beyond A, and F lies on extension of AB beyond B. The condition
on ¢ means the points lie in the orders F, A,G,C and A, B, H, F.

Using the alternate segment theorem, the condition that ©EDG and ©®F DH are tangent at D can be
rewritten as

JSHFD =<<YDH.

But using the same theorem, we get Y DH = < XDG = <DEG. So we can remove G, H from the
figure, and it is sufficient to prove that <DEA = <DFB.

The reflection property means that AD and BD are external angle bisectors in AFAB and hence D



is the E-excentre of this triangle. Thus DE (internally) bisects xBEA, giving

S<DEA=<DEB.

Now observe that the pairs of lines (BE,CFE) and (BF,CF) are reflections in BC thus E, F are
reflections in BC'. Also D is its own reflection in BC. Hence <<DEB = <<DF B and so

J<DFEA =<4DEB = 4DFB,

as required.

Problem 2. Let n > k > 3 be integers. Show that for every integer sequence 1 < a; < as < ... <

ar < mn one can choose non-negative integers by, bo, .. ., bi, satisfying the following conditions:
(i) 0<b; <nmforeach 1 <i<k,
(ii) all the positive b; are distinct,

(iii) the sums a; +b;, 1 < i < k, form a permutation of the first & terms of a non-constant arithmetic

progression.

Solution 1. Let the resulting progression be Ans := {a; — (k — 1),ar, — (k —2),...,ax} and a; be
the largest number not belonging to Ans. Clearly the set Ans\ {ai,as,...,ar} has cardinality ¢; let
its members be ¢; > ¢2 > -+ > ¢;. Define b; := ¢; — a; for 1 < j <t or zero otherwise. Since {c;} is
decreasing and {a;} is increasing, all b; are distinct and clearly by < n. After we add b; to a; we get

a permutation of Ans as desired.

Solution 2. Let the resulting progression be Ans := {ar — (k — 1),ar — (k — 2),...,ax}.

We proceed with the following reduction. Let § be the smallest b we used before (in the beginning
it is m). While a1 ¢ Ans we map a; to the largest element ¢ of Ans \ {a1,as,...,ar} and put
Onew := b1 := ¢ — a1. Now we rearrange the sequence of a-s. We do not touch Ans N {ay,as,...,ax}
so every b is defined at most once (in the end undefined b-s become zeros). Also b < § and § decreases

at each step, because g decreases and a; grows, and hence all nonzero b-s are distinct.

Problem 3. Let a and b be distinct positive integers such that 3% + 2 is divisible by 3° + 2. Prove
that a > b2.

Solution 1. Obviously we have a > b. Let a = bg + r, where 0 < r < b. Then

37 = 3%+ = (=2)9.3" = -2 (mod 3° + 2)



So 3% + 2 divides A = (—2)?9.3" + 2 and it follows that
|(—2)%.3" +2| >3 + 2 or (—2)%.3" +2 = 0.

We make case distinction:
1. (-2)?2.3"+2=0. Then ¢ =1 and r = 0 or @ = b, a contradiction.

2. q is even. Then
A=213"+2=(3"4+2).k.

Consider both sides of the last equation modulo 3". Since b > r:
2=213"4+2=(3"4+2)k =2k (mod 3"),
so it follows that 37|k — 1. If k = 1 then 29.3" = 3°, a contradiction. So k > 3" + 1, and therefore:
A=213"+2=(3"+2)k> (3" +2)(3" +1) >3°3" 42
It follows that
293" > 303" ie. 27 > 3%, which implies 3°° < 207 < 37 < 3ba+r — 30,

Consequently a > b2.
3. If ¢ is odd. Then
293" — 2 = (3* + 2)k.

Considering both sides of the last equation modulo 3", and since b > r, we get: k+ 1 is divisible
by 3" and therefore k£ > 3" — 1. Thus r > 0 because k > 0, and:

27.3" — 2 = (3" +- 2)k > (3* +-2)(3" — 1), and therefore
37‘
293" > (3° +2)(3" - 1) > 33" - 1) > 3b5, which shows
2071 > 3P,
But for ¢ > 1 we have 297! < 39 which combined with the above inequality, implies that

35° < 2(a+Db < gab < 3% q.e.d. Finally, If ¢ = 1 then 29.3" — 2 = (3* 4 2)k and consequently
23" —2>3"42>3" 42> 23" —2 a contradiction.

Solution 2. D = a— b, and we shall show D > b?> —b. We have 3% 4 2|3% +2, so 3° +2|3” — 1. Let
D = bg + r where r < b. First suppose that r # 0. We have

1=3P =3+ = (—2)9'37 " (mod 3" +2) = 3" = (=2)7"!  (mod 3° +2)



Therefore
3b 42 S |(_2)q+1 _ 3b77’| S 2q+1 + 3b77“ S 2q+1 + 3b71
Hence

]
9 x 30-1 1 9 < 90l — go-1 _ 90 —, 1083

b—1
1OgQ( ) <4q

Which yields D = bg + r > bq > %gigb(b —1) > b? — b as desired. Now for the case r =0, (—2)? =1
(mod 3° + 2) and so

log 3

3b+2§|(f2)‘1—1|g2f1+1:»3”*1<3b<2‘1:»1 5
og

b-1)<gq

and analogous to the previous case, D = bq +r = bq > igggb(b —1)>b% -0

Problem 4. Let RT = (0,00) be the set of all positive real numbers. Find all functions f : RT™ — R™
and polynomials P(x) with non-negative real coefficients such that P(0) = 0 which satisfy the equality

f(f(@)+ Py) = flz —y) +2y

for all real numbers z > y > 0.

Solution 1. Assume that f : RT — R* and the polynomial P with non-negative coefficients and
P(0) = 0 satisfy the conditions of the problem. For positive reals with « > y, we shall write Q(z,y)

for the relation:

f(f(z)+ P(y)) = f(z —y) +2y.

1. Step 1. f(z) > x. Assume that this is not true. Since P(0) = 0 and P is with non-negative
coefficients, P(x) 4 x is surjective on positive reals. If f(z) < x for some positive real z, then
setting y such that y+ P(y) = z — f(z) (where obviously y < x), we shall get f(z)+ P(y) =z —y
and by Q(x,y), f(f(x) + P(y)) = f(z — y) + 2y, we get 2y = 0, a contradiction.

2. Step 2. P(x) = cx for some non-negative real ¢. We will show deg P < 1 and together with
P(0) = 0 the result will follow. Assume the contrary. Hence there exists a positive | such that
P(z) > 2z for all z > 1. By Step 1 we get

Ve>y>1:flx—y)+2y = f(f(z)+ Py) = f(x) + Ply) = f(z) + 2y

and therefore f(x —y) > f(x). We get f(y) > f(2y) > --- > f(ny) > ny for all positive integers

n, which is a contradiction.

3. Step 3. If ¢ # 0, then f(f(z) +22+c?) = f(x +1) +2(z — 1) + 2¢ for 2 > 1. Indeed by
Q(f(x+ 2z) +cz,¢), we get

fffx+2)+e)+A) =f(fx+2)+ez—c)+2c= flx+1)+2(z — 1)+ 2¢c.



On the other hand by Q(z + z, z), we have:
f@)+22+=f(fz+2)+P(2)+c=f(f(@+2)+ez) +c

Substituting in the LHS of Q(f(z+2)+cz,¢c), we get f(f(x)+22+c?) = f(z+1)+2(z—1)+2c.

4. Step 4. There is xg, such that f(x) is linear on (zg, c0). If ¢ # 0, then by Step 3, fixing z = 1, we
get f(f(1)+2z+c?) = f(2) +2(2 —1)+2c which implies that f is linear for z > f(1)+2+c2. As
for the case ¢ = 0, counsider y, z € (0,00). Pick > max(y, z), then by Q(z,z —vy) and Q(z,z —z2)
we get:

f) +2(@ —y) = f(f(2) = f(2) + 2(z — 2)
which proves that f(y) — 2y = f(z) — 2z and there fore f is linear on (0, c0).

5. Step 5. P(y) = y and f(x) = z on (x9,00). By Step 4, let f(z) = ax + b on (xg,00). Since f

takes only positive values, a > 0. If a = 0, then by Q(z + y,y) for y > xo we get:

2y + f(x) = f(f(x+y)+ P(y) = f(b+cy).

Since the LHS is not constant, we conclude ¢ # 0, but then for y > xo/c, we get that the RHS

equals b which is a contradiction.

Hence a > 0. Now for > x¢ and © > (z¢ — b)/a large enough by P(z + y,y) we get:
ar +b+2y = f(z)+2y=f(f(zr+y)+ Ply) = flax + ay + b+ cy) = alax + ay + b+ cy) + b.

Comparing the coefficients before z, we see a? = a and since a # 0, a = 1. Now 2b = b and thus

b = 0. Finally, equalising the coefficients before y, we conclude 2 = 1 4 ¢ and therefore ¢ = 1.

Now we know that f(z) =z on (xg,00) and P(y) =y. Let y > x¢. Then by Q(z + y, z) we conclude:

fl@)+2y=f(flzx+y)+Ply) =flz+y+y) =x+2y.

Therefore f(x) = x for every x. Conversely, it is straightforward that f(z) = « and P(y) = y do
indeed satisfy the conditions of the problem.

Solution 2. Assume that the function f : RT — RT and the polynomial with non-negative coeffi-
cients P(y) = yP;(y) satisfy the given equation. Fix & = xg > 0 and note that:

f(f(xo+y) +Py) = flxo+y—y) +2y = f(zo) + 2y.

Assume that ¢ = 0. Then f(f(z 4+ y)) = f(x) + 2y for x,y > 0. Let > 0 and z > 0. Pick y > 0.
Then:

y+ flet+z2)=f(fle+y+2) =Ffflz+z+y) = fl2)+2(z+y)



Therefore f(x+z) = f(x)+2z for any z > 0 and z > 0. Setting ¢ = f(1), we see that f(z+1) = c+2z
for all positive z. Therefore if 2,y > 1 we have that f(x +y) = c+2(x+y—1) > 1. This shows that:

f(fle+y)=c+2(f(z+y)—1) =3c+4(z +y) — 4

On the other hand f(x) 4+ 2y = ¢+ 2z + 2y. Therefore the equality f(f(z +y)) = f(z) + 2y is not

universally satisfied.

From now on, we assume that g # 0. Therefore P is strictly increasing with P(0) = 0, limy_, P(y) =

00, i.e. g is bijective on [0, 00) and P(0) = 0.
Let > 0,y > 0 and set u = f(z +y), v = P(y). From above, we have u > 0 and v > 0. Therefore:
f(futv)+ P) = f(u) +2v = f(f(z +y)) + 2P(y).

On the other hand f(u+v) = f(f(x +y) + P(y)) = f(x) + 2y. Therefore we obtain that:

f(f(@) +2y+ P(P(y))) = f(f(x +y)) +2P(y).

Since g is bijective from (0, 00) to (0,00) for any z > 0 there is ¢ such that P(¢t) = z. Applying this
observation to z = P(P(y)) + 2y and setting ' = x + t, we obtain that:

f(fe+t+y))+2P(y) = f(f(2"+y)+2P(y) = f(f(2")+P(P(y))+2y) = f(f(z+1)+P(t)) = f(x)+2t.

Thus if we denote h(y) = P(P(y)) + 2y, then t = P(~Y(h(y)) and the above equality can be rewritten

F(f@+ PEY(h(y) +y) = f(x) + 2PV (h(y) — 2P(y) = f(z) + 2PV (h(y)) + 2y — 2y — 2P(y).

Let s(y) = PCY(h(y))+y and note that since h is continuous and monotone increasing, g is continuous
and monotone increasing, then so are P(—1) and consequently P~V o h and s. It is also clear, that
lim, .o s(y) = 0 and lim,_,~ s(y) = co. Therefore s is continuously bijective from [0, c0) to [0, 00)
with s(0) = 0.

Thus we have:

f(f (@ +5(y))) = f(x) +2s(y) — 2y — 2P (y)
and using that s is invertible, we obtain:

F(f@+y) = f(@) +2y =250V (y) — 2P(s" D (y)).

Now fix xg, then for any = > x¢ and any y > 0 we have:

F@) +2y =250 (y) —2P(sV(w) = f(fle+y) = f(f(@o+a+y—0)
= flzo)+2x+y—x0) — 25V (@ +y—x0) — 2PV (z + y — x0)).



Setting y = x¢, we get:
f(x) + 220 — 25 (20) — 2P (s (o)) = f(wo) + 22 — 25V (2) — 2P (s ().
Since this equality is valid for any = > xy we actually have that:
f(x) — 224 25V (2) + 2P (s (2)) = ¢ for some fixed constant ¢ € R and all z € RT.

Let ¢(2) = —2+25(-V(2)+2P (s~ (x)). Then f(z) = 2 — ¢(z) +c and since ¢ is a sum of continuous
functions that are continuous at 0. Therefore f is continuous and can be extended to a continuous
function on [0, c0). Back in the original equation we fix > 0 and let y tend to 0. Using the continuity
of f and g on [0,00) and P(0) = 0 we obtain:

f(f(@)) = Tim f(f(z)+ P(y)) = lim (f(z —y) + P(y)) = f(z) + P(0) = f(z).

y—0+ y—0+

Finally, fixing = 1 and varying y > 0, we obtain:

f(f(1+y)+ P(y)) = f(1) +2y.

It follows that f takes every value on (f(1),00). Therefore for any y € (f(1),00) there is z such that
f(z) =y. Using that f(f(z)) = f(z) we conclude that f(y) =y for all y € (f(1), c0).

Now fix z and take y > f(1). Hence

f@)+2y=f(fle+y)+PW) = fl@e+y+Pl) =r+y+ Py
We conclude f(z) —x = P(y) —y for every x an y > f(1). In particular f(x1) —z1 = f(x2) — x2 for
all 21,22 € (0,00) and since f(x) =z for z € (f(1),00), we get f(x) =z on (0,00).

Finally, z + 2y = f(z) +2y = f(f(x +y) + P(y)) = f(x +y) + P(y) = x +y + P(y), which shows that
P(y) =y for every y € (0,0).

Tt is also straightforward to check that f(x) = z and P(y) = y satisfy the equality:

F(f@+y)+ Py) = fle+2y) =z +2y = fz) +2y.



