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Problem 1. Let ABC be an acute-angled triangle with AC > AB and let D be the foot of the

A-angle bisector on BC. The reflections of lines AB and AC in line BC meet AC and AB at points

E and F respectively. A line through D meets AC and AB at G and H respectively such that G

lies strictly between A and C while H lies strictly between B and F . Prove that the circumcircles of

4EDG and 4FDH are tangent to each other.

Problem 2. Let n ≥ k ≥ 3 be integers. Show that for every integer sequence 1 ≤ a1 < a2 < . . . <

ak ≤ n one can choose non-negative integers b1, b2, . . . , bk, satisfying the following conditions:

(i) 0 ≤ bi ≤ n for each 1 ≤ i ≤ k,

(ii) all the positive bi are distinct,

(iii) the sums ai + bi, 1 ≤ i ≤ k, form a permutation of the first k terms of a non-constant arithmetic

progression.

Problem 3. Let a and b be distinct positive integers such that 3a + 2 is divisible by 3b + 2. Prove

that a > b2.

Problem 4. Let R+ = (0,∞) be the set of all positive real numbers. Find all functions f : R+ → R+

and polynomials P (x) with non-negative real coefficients such that P (0) = 0 which satisfy the equality

f(f(x) + P (y)) = f(x− y) + 2y

for all real numbers x > y > 0.

Time is 4 hours and 30 minutes

Each problem is worth 10 points



Problems with Solutions Language: English
Monday, April 29, 2024

Problem 1. Let ABC be an acute-angled triangle with AC > AB and let D be the foot of the
A-angle bisector on BC. The reflections of lines AB and AC in line BC meet AC and AB at points
E and F respectively. A line through D meets AC and AB at G and H respectively such that G

lies strictly between A and C while H lies strictly between B and F . Prove that the circumcircles of
△EDG and △FDH are tangent to each other.

Solution 1. Let X and Y lie on the tangent to the circumcircle of △EDG on the opposite side to
D as shown in the figure below. Regarding diagram dependency, the acute condition with AC > AB

ensures E lies on extension of CA beyond A, and F lies on extension of AB beyond B. The condition
on ℓ means the points lie in the orders E,A,G,C and A,B,H, F .
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Using the alternate segment theorem, the condition that ⊙EDG and ⊙FDH are tangent at D can be
rewritten as

�HFD = �Y DH.

But using the same theorem, we get �Y DH = �XDG = �DEG. So we can remove G,H from the
figure, and it is sufficient to prove that �DEA = �DFB.

The reflection property means that AD and BD are external angle bisectors in △EAB and hence D



is the E-excentre of this triangle. Thus DE (internally) bisects �BEA, giving

�DEA = �DEB.

Now observe that the pairs of lines (BE,CE) and (BF,CF ) are reflections in BC thus E,F are
reflections in BC. Also D is its own reflection in BC. Hence �DEB = �DFB and so

�DEA = �DEB = �DFB,

as required.

Problem 2. Let n ≥ k ≥ 3 be integers. Show that for every integer sequence 1 ≤ a1 < a2 < . . . <

ak ≤ n one can choose non-negative integers b1, b2, . . . , bk, satisfying the following conditions:

(i) 0 ≤ bi ≤ n for each 1 ≤ i ≤ k,

(ii) all the positive bi are distinct,

(iii) the sums ai + bi, 1 ≤ i ≤ k, form a permutation of the first k terms of a non-constant arithmetic
progression.

Solution 1. Let the resulting progression be Ans := {ak − (k − 1), ak − (k − 2), . . . , ak} and at be
the largest number not belonging to Ans. Clearly the set Ans \ {a1, a2, . . . , ak} has cardinality t; let
its members be c1 > c2 > · · · > ct. Define bj := cj − aj for 1 ≤ j ≤ t or zero otherwise. Since {cj} is
decreasing and {aj} is increasing, all bj are distinct and clearly b1 < n. After we add bj to aj we get
a permutation of Ans as desired.

Solution 2. Let the resulting progression be Ans := {ak − (k − 1), ak − (k − 2), . . . , ak}.

We proceed with the following reduction. Let δ be the smallest b we used before (in the beginning
it is n). While a1 /∈ Ans we map a1 to the largest element q of Ans \ {a1, a2, . . . , ak} and put
δnew := b1 := q − a1. Now we rearrange the sequence of a-s. We do not touch Ans ∩ {a1, a2, . . . , ak}
so every b is defined at most once (in the end undefined b-s become zeros). Also b < δ and δ decreases
at each step, because q decreases and a1 grows, and hence all nonzero b-s are distinct.

Problem 3. Let a and b be distinct positive integers such that 3a + 2 is divisible by 3b + 2. Prove
that a > b2.

Solution 1. Obviously we have a > b. Let a = bq + r, where 0 ≤ r < b. Then

3a ≡ 3bq+r ≡ (−2)q.3r ≡ −2 (mod 3b + 2)
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So 3b + 2 divides A = (−2)q.3r + 2 and it follows that

|(−2)q.3r + 2| ≥ 3b + 2 or (−2)q.3r + 2 = 0.

We make case distinction:

1. (−2)q.3r + 2 = 0. Then q = 1 and r = 0 or a = b, a contradiction.

2. q is even. Then
A = 2q.3r + 2 = (3b + 2).k.

Consider both sides of the last equation modulo 3r. Since b > r:

2 ≡ 2q.3r + 2 = (3b + 2)k ≡ 2k (mod 3r),

so it follows that 3r|k−1. If k = 1 then 2q.3r = 3b, a contradiction. So k ≥ 3r+1, and therefore:

A = 2q.3r + 2 = (3b + 2)k ≥ (3b + 2)(3r + 1) > 3b.3r + 2

It follows that

2q.3r > 3b.3r, i.e. 2q > 3b, which implies 3b
2

< 2bq < 3bq ≤ 3bq+r = 3a.

Consequently a > b2.

3. If q is odd. Then
2q.3r − 2 = (3b + 2)k.

Considering both sides of the last equation modulo 3r, and since b > r, we get: k+1 is divisible
by 3r and therefore k ≥ 3r − 1. Thus r > 0 because k > 0, and:

2q.3r − 2 = (3b + 2)k ≥ (3b + 2)(3r − 1), and therefore

2q.3r > (3b + 2)(3r − 1) > 3b(3r − 1) > 3b
3r

2
, which shows

2q+1 > 3b.

But for q > 1 we have 2q+1 < 3q, which combined with the above inequality, implies that
3b

2

< 2(q+1)b < 3qb ≤ 3a, q.e.d. Finally, If q = 1 then 2q.3r − 2 = (3b + 2)k and consequently
2.3r − 2 ≥ 3b + 2 ≥ 3r+1 + 2 > 2.3r − 2, a contradiction.

Solution 2. D = a− b, and we shall show D > b2 − b. We have 3b +2|3a +2, so 3b +2|3D − 1. Let
D = bq + r where r < b. First suppose that r ̸= 0. We have

1 ≡ 3D ≡ 3bq+r ≡ (−2)
q+1

3r−b (mod 3b + 2) =⇒ 3b−r ≡ (−2)q+1 (mod 3b + 2)
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Therefore
3b + 2 ≤ |(−2)q+1 − 3b−r| ≤ 2q+1 + 3b−r ≤ 2q+1 + 3b−1

Hence
2× 3b−1 + 2 ≤ 2q+1 =⇒ 3b−1 < 2q =⇒ log 3

log 2
(b− 1) < q

Which yields D = bq + r > bq > log 3
log 2b(b − 1) ≥ b2 − b as desired. Now for the case r = 0, (−2)

q ≡ 1

(mod 3b + 2) and so

3b + 2 ≤ |(−2)q − 1| ≤ 2q + 1 =⇒ 3b−1 < 3b < 2q =⇒ log 3

log 2
(b− 1) < q

and analogous to the previous case, D = bq + r = bq > log 3
log 2b(b− 1) ≥ b2 − b.

Problem 4. Let R+ = (0,∞) be the set of all positive real numbers. Find all functions f : R+ → R+

and polynomials P (x) with non-negative real coefficients such that P (0) = 0 which satisfy the equality

f(f(x) + P (y)) = f(x− y) + 2y

for all real numbers x > y > 0.

Solution 1. Assume that f : R+ → R+ and the polynomial P with non-negative coefficients and
P (0) = 0 satisfy the conditions of the problem. For positive reals with x > y, we shall write Q(x, y)

for the relation:
f(f(x) + P (y)) = f(x− y) + 2y.

1. Step 1. f(x) ≥ x. Assume that this is not true. Since P (0) = 0 and P is with non-negative
coefficients, P (x) + x is surjective on positive reals. If f(x) < x for some positive real x, then
setting y such that y+P (y) = x−f(x) (where obviously y < x), we shall get f(x)+P (y) = x−y

and by Q(x, y), f(f(x) + P (y)) = f(x− y) + 2y, we get 2y = 0, a contradiction.

2. Step 2. P (x) = cx for some non-negative real c. We will show degP ≤ 1 and together with
P (0) = 0 the result will follow. Assume the contrary. Hence there exists a positive l such that
P (x) ≥ 2x for all x ≥ l. By Step 1 we get

∀x > y ≥ l : f(x− y) + 2y = f(f(x) + P (y)) ≥ f(x) + P (y) ≥ f(x) + 2y

and therefore f(x− y) ≥ f(x). We get f(y) ≥ f(2y) ≥ · · · ≥ f(ny) ≥ ny for all positive integers
n, which is a contradiction.

3. Step 3. If c ̸= 0, then f(f(x) + 2z + c2) = f(x + 1) + 2(z − 1) + 2c for z > 1. Indeed by
Q(f(x+ z) + cz, c), we get

f(f(f(x+ z) + cz) + c2) = f(f(x+ z) + cz − c) + 2c = f(x+ 1) + 2(z − 1) + 2c.
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On the other hand by Q(x+ z, z), we have:

f(x) + 2z + c2 = f (f (x+ z) + P (z)) + c2 = f (f (x+ z) + cz) + c2.

Substituting in the LHS of Q(f(x+z)+cz, c), we get f(f(x)+2z+c2) = f(x+1)+2(z−1)+2c.

4. Step 4. There is x0, such that f(x) is linear on (x0,∞). If c ̸= 0, then by Step 3, fixing x = 1, we
get f(f(1)+2z+c2) = f(2)+2(z−1)+2c which implies that f is linear for z > f(1)+2+c2. As
for the case c = 0, consider y, z ∈ (0,∞). Pick x > max(y, z), then by Q(x, x−y) and Q(x, x−z)

we get:
f(y) + 2(x− y) = f(f(x)) = f(z) + 2(x− z)

which proves that f(y)− 2y = f(z)− 2z and there fore f is linear on (0,∞).

5. Step 5. P (y) = y and f(x) = x on (x0,∞). By Step 4, let f(x) = ax + b on (x0,∞). Since f

takes only positive values, a ≥ 0. If a = 0, then by Q(x+ y, y) for y > x0 we get:

2y + f(x) = f(f(x+ y) + P (y)) = f(b+ cy).

Since the LHS is not constant, we conclude c ̸= 0, but then for y > x0/c, we get that the RHS
equals b which is a contradiction.

Hence a > 0. Now for x > x0 and x > (x0 − b)/a large enough by P (x+ y, y) we get:

ax+ b+ 2y = f(x) + 2y = f(f(x+ y) + P (y)) = f(ax+ ay + b+ cy) = a(ax+ ay + b+ cy) + b.

Comparing the coefficients before x, we see a2 = a and since a ̸= 0, a = 1. Now 2b = b and thus
b = 0. Finally, equalising the coefficients before y, we conclude 2 = 1 + c and therefore c = 1.

Now we know that f(x) = x on (x0,∞) and P (y) = y. Let y > x0. Then by Q(x+ y, x) we conclude:

f(x) + 2y = f(f(x+ y) + P (y)) = f(x+ y + y) = x+ 2y.

Therefore f(x) = x for every x. Conversely, it is straightforward that f(x) = x and P (y) = y do
indeed satisfy the conditions of the problem.

Solution 2. Assume that the function f : R+ → R+ and the polynomial with non-negative coeffi-
cients P (y) = yP1(y) satisfy the given equation. Fix x = x0 > 0 and note that:

f(f(x0 + y) + P (y)) = f(x0 + y − y) + 2y = f(x0) + 2y.

Assume that g = 0. Then f(f(x + y)) = f(x) + 2y for x, y > 0. Let x > 0 and z > 0. Pick y > 0.
Then:

2y + f(x+ z) = f(f(x+ y + z)) = f(f(x+ z + y)) = f(x) + 2(z + y).
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Therefore f(x+z) = f(x)+2z for any x > 0 and z > 0. Setting c = f(1), we see that f(z+1) = c+2z

for all positive z. Therefore if x, y > 1 we have that f(x+ y) = c+2(x+ y− 1) > 1. This shows that:

f(f(x+ y)) = c+ 2(f(x+ y)− 1) = 3c+ 4(x+ y)− 4.

On the other hand f(x) + 2y = c + 2x + 2y. Therefore the equality f(f(x + y)) = f(x) + 2y is not
universally satisfied.

From now on, we assume that g ̸= 0. Therefore P is strictly increasing with P (0) = 0, limy→∞ P (y) =

∞, i.e. g is bijective on [0,∞) and P (0) = 0.

Let x > 0, y > 0 and set u = f(x+ y), v = P (y). From above, we have u > 0 and v > 0. Therefore:

f(f(u+ v) + P (v)) = f(u) + 2v = f(f(x+ y)) + 2P (y).

On the other hand f(u+ v) = f(f(x+ y) + P (y)) = f(x) + 2y. Therefore we obtain that:

f(f(x) + 2y + P (P (y))) = f(f(x+ y)) + 2P (y).

Since g is bijective from (0,∞) to (0,∞) for any z > 0 there is t such that P (t) = z. Applying this
observation to z = P (P (y)) + 2y and setting x′ = x+ t, we obtain that:

f(f(x+t+y))+2P (y) = f(f(x′+y))+2P (y) = f(f(x′)+P (P (y))+2y) = f(f(x+t)+P (t)) = f(x)+2t.

Thus if we denote h(y) = P (P (y))+ 2y, then t = P (−1)(h(y)) and the above equality can be rewritten
as:

f(f(x+ P (−1)(h(y)) + y)) = f(x) + 2P (−1)(h(y))− 2P (y) = f(x) + 2P (−1)(h(y)) + 2y − 2y − 2P (y).

Let s(y) = P (−1)(h(y))+y and note that since h is continuous and monotone increasing, g is continuous
and monotone increasing, then so are P (−1) and consequently P (−1) ◦ h and s. It is also clear, that
limy→0 s(y) = 0 and limy→∞ s(y) = ∞. Therefore s is continuously bijective from [0,∞) to [0,∞)

with s(0) = 0.

Thus we have:
f(f(x+ s(y))) = f(x) + 2s(y)− 2y − 2P (y)

and using that s is invertible, we obtain:

f(f(x+ y)) = f(x) + 2y − 2s(−1)(y)− 2P (s(−1)(y)).

Now fix x0, then for any x > x0 and any y > 0 we have:

f(x) + 2y − 2s(−1)(y)− 2P (s(−1)(y)) = f(f(x+ y)) = f(f(x0 + x+ y − x0))

= f(x0) + 2(x+ y − x0)− 2s(−1)(x+ y − x0)− 2P (s(−1)(x+ y − x0)).
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Setting y = x0, we get:

f(x) + 2x0 − 2s(−1)(x0)− 2P (s(−1)(x0)) = f(x0) + 2x− 2s(−1)(x)− 2P (s(−1)(x)).

Since this equality is valid for any x > x0 we actually have that:

f(x)− 2x+ 2s(−1)(x) + 2P (s(−1)(x)) = c for some fixed constant c ∈ R and all x ∈ R+.

Let ϕ(x) = −x+2s(−1)(x)+2P (s(−1)(x)). Then f(x) = x−ϕ(x)+c and since ϕ is a sum of continuous
functions that are continuous at 0. Therefore f is continuous and can be extended to a continuous
function on [0,∞). Back in the original equation we fix x > 0 and let y tend to 0. Using the continuity
of f and g on [0,∞) and P (0) = 0 we obtain:

f(f(x)) = lim
y→0+

f(f(x) + P (y)) = lim
y→0+

(f(x− y) + P (y)) = f(x) + P (0) = f(x).

Finally, fixing x = 1 and varying y > 0, we obtain:

f(f(1 + y) + P (y)) = f(1) + 2y.

It follows that f takes every value on (f(1),∞). Therefore for any y ∈ (f(1),∞) there is z such that
f(z) = y. Using that f(f(z)) = f(z) we conclude that f(y) = y for all y ∈ (f(1),∞).

Now fix x and take y > f(1). Hence

f(x) + 2y = f(f(x+ y) + P (y)) = f(x+ y + P (y)) = x+ y + P (y).

We conclude f(x)− x = P (y)− y for every x an y > f(1). In particular f(x1)− x1 = f(x2)− x2 for
all x1, x2 ∈ (0,∞) and since f(x) = x for x ∈ (f(1),∞), we get f(x) = x on (0,∞).

Finally, x+2y = f(x) + 2y = f(f(x+ y) +P (y)) = f(x+ y) +P (y) = x+ y+P (y), which shows that
P (y) = y for every y ∈ (0,∞).

It is also straightforward to check that f(x) = x and P (y) = y satisfy the equality:

f(f(x+ y) + P (y)) = f(x+ 2y) = x+ 2y = f(x) + 2y.
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