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\ KOSOVA
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Samaua 1. 3a mosuruben e 6poj N, HeKa ¢] < ¢o < -+ < ¢ Ce CUTe MO3UTUBHU Ieu OpoeBn
nomasn oj N 1mro ce 3aemHo nipoctu co N. Hajau ru cure N > 3 TakBu mro

H3IA(N,c; +cip1) #1

3a cute 1 <1 <m—1.

Kane H3/I(a,b) e najrosieMnoT mo3uTuBeH 1eJt geintes u Ha a u Ha b. [leaure 6poesu a u b ce 3aeMHO
upocru ako H3/I(a,b) = 1.

Sagauda 2. Beckoneuna pacreuka HU3a a1 < ao < ag < --- OJI IO3UTUBHU IieJii OPOEBU Cce HAPEKYBa
[EHTPAJHA aKO 32 CEeKO] IIO3UTUBEH Iiesl OpOj 1, apuTMeTHIKaTa CpeAuHa Ha IIPBUTE G, YIEHOBHU Ha
HM3aTa € €IHAKBa Ha O,.

Hokaxku jexa mocTom beckKoHeuHa HmM3a by, by, b3, ... O MMO3UTHUBHU IIeJN OPOEBM TaKBa INTO 3a
CeKoja IeHTpaJHa HUA3a a1, 42, G3, ..., IOCTOjaT OECKOHEYHO MHOI'Y IO3UTHUBHH 1€ OPOEBH 1 38 KOU
BaXXU ay, = by,

Samaua 3. Heka ABC e ocrpoarosien tpuaroinuk. Toukure B, D, E u C jexar Ha ucTa Ipaga BO
T0j pejnocien u Baxxu BD = DE = EC. Heka M u N ce cpeauminau Toukn Ha AD u AF, coonBeTHO.
Heka H e opromenTap 3a ocrpoarosuaunoT tpuariiuk ADFE. Heka P u () ce Touku o npasure BM
u C'N, coonperno, Takpu 1o D, H, M u P jiexkat Ha ucTa KPYKHUIA U 110 TAPOBU C€ PA3JINIHU, U F,
H, N u @ nexkar Ha WCTa KPYXKHUIA U 110 TapoBu ce pasjaundHu. Hokaxu neka P, (), N u M jexar
HA UCTA KPYXKHUIIA.

Toukara BO KOja ce ce4aT BUCUHHUTE HA TPUATOJHUKOT C€ HAPEKYBa OPTOIEHTAD.

Language: Macedonian Bpewme: 4 qaca u 30 munytu
Cexkoja 3amada ce BpeJHyBa CO 7 IIOCHU
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Samaua 4. Heka ABC e ocTpoaroJieH TpHaroJHUK CO IeHTap Ha BhumiaHa Kpyxkuauma [ u AB # AC.
Heka npasure BI u C1 ja ceyar onuimanara KpyKHHIA oKosy Tpuaroaaukor ABC Bo P # B u
Q # C, coonserno. Toukure R u S ce taksu mro AQRB u ACSP ce napasesnorpavu (co AQ || RB,
AB || QR, AC | SP,u AP || CS). Heka T e npeceunara Touka Ha npasure RB n SC. Jlokaxn meka

R, S, T, u I nexxar Ha uCcTa KPY>KHUIIA.

Samada 5. Heka n > 1 e npupomen 6poj. Bo kouduryparmuja Ha Tabjaa co TUMEH3UH 1 X 1 , CEKOE O]
n? TOJMEbA CONPIKU CTPEJIKA, KOja IIOKaXKyBa, rope, JOJy, JEBO, I JECHO. 3a [ajeHaTa IIOYeTHATA
KOH(UTypaIyja, moKaBoT TypHO 3all09HYyBa BO €HO O]l MOJIMEATa Ha Tabjara U ce JIBUXKU O I0JIe
Bo mosie. Bo cekoj morer, Typbo ce momectyBa 3a €IHO IOJI€ BO HACOKA KOja ja MOKarKyBa CTPeJIKaTa
Ha I0JIETO BO Koe ce Haola (IpuToa MOXKe ! Jla msJjese u Hajsop oj rtabsara). [Tocse cekoj morer,
CTPeJIKUTE BO CHTE MOoJnkha ce porupaar 3a 90° Bo obparHa HACOKa Ol CTPEJKHTE Ha YACOBHHUKOT.
[Tosero ro HapekyBame J00pO akKo, MOYHYBajKU o1 Toa moJje, Typbo moMUHAT HU3 CEKOe IoJe O
TabJjiaTa TOYHO eaHall, 6e3 j1a ja HamymTu TabjaTa, U ce Bpaka BO modeTHOTO moje. Oupean o, BO

OJHOC Ha T, MaKCUMaJIHUOT 6pOJ o1 ,HO6pI/I II0JIMIba BO OJHOC Ha CUTE€ MO2KHHU ITOYCTHU KOH(bI/IpraL(I/II/I.

Sagaqda 6. Bo cekoe mosie o 2025 x 2025 Tabja, ce 3aluIllyBa HEHETATHBEH peaJieH Opoj, HA TaKOB
HaYUH IITO 30MPOT Ha OPOEBUTE BO CEKOja PEIuIla € eIHAKOB Ha 1, n 30upoT Ha OGPOEBUTE BO CEKOja
kosioHa e 1. Jledunupame r; jga 6uye Hajrojemara BPEJHOCT BO {-TaTa peauna, u Heka R = 1] +
ro + -+ + T9g25. Ciimuno, meduHEpaMe ¢; Jia OuUe HajrojemMara BPEIHOCT BO §-TaTa KOJIOHA, W HEKa
C=ci+ca+--+ conos.

Koja e najromemara mMoxkHa BPEIHOCT HA %?

Language: Macedonian Bpewme: 4 gaca u 30 munyTu
Cexkoja 3amada ce BpeJHyBa CO 7 IIOCHU



EGMO 2025

PROBLEMS AND SOLUTIONS

Day 1

P1.

Solution 1.

Solution 2.

For a positive integer NV, let ¢; < ¢z < -+ < ¢y, be all the positive integers smaller than N that are
coprime to N. Find all N > 3 such that

ged(Nye; +ciq1) #1

foralll1 <i<m—1.
Here ged(a,b) is the largest positive integer that divides both a and b. Integers a and b are coprime if
ged(a,b) = 1.

The answer is all even integers and all powers of 3. First we show that these work.

e When N is even, all ¢; are odd, and so 2 | ged(N, ¢; + ¢;+1) for every i.

e When N is a power of 3, the ¢; are exactly the numbers in the range 1,2,..., N — 1 that are not
divisible by 3. So, the sequence ¢y, ...,c,, alternates between numbers congruent to 1 (mod 3)
and 2 (mod 3). Thus 3 | gcd(N, ¢; + ¢i41) for every i.

Now we show that no other positive integer works. For the sake of contradiction, consider an odd
candidate N that is not a power of 3, and suppose it satisfies the problem condition. Then, since
c; =1 and ¢; = 2, we have ged(N,1+2) # 1, so 3 | N. Thus, we can write N as 3*M, where k > 1
and ged(M,6) = 1. We have M > 5 (as M # 1 by assumption) and M +2 < N.

We now split into two cases based on M modulo 3.
Case 1. M =1 (mod 3).

As 3| M —1and M | M, neither M — 1 nor M are in the sequence {¢;}. As M is odd and M =1
(mod 3), M — 2 and M + 1 are congruent to 1 (mod 3), are coprime to M, and are smaller than N.
Thus, both M —2 and M +1 are in the sequence, and they are consecutive terms. However, this means
ged(N,2M — 1) # 1. This gives a contradiction, as both 3 and M are coprime to 2M — 1.

Case 2. M =2 (mod 3).

This case is similar to Case 1. Neither M nor M + 1 are in the sequence, but M — 1 and M + 2 are.
We obtain a similar contradiction from ged(N,2M + 1) # 1.

We give an alternative way to show that any odd N has to be the power of 3. Suppose for contradiction
that N has at least 2 distinct prime factors. Choose integers a,b > 1 such that

e ab| N;
e ¢ and b are coprime;

e Every prime divisor of NV divides ab.

We use the Chinese Remainder Theorem, to find an integer n € [1,ab] such that

n=1 (mod a),
n=2 (mod b).

We claim that there is an index ¢ such that ¢; =n — 3 and ¢;11 = n. Indeed, we note the following:



e 1 is consecutive to a multiple of a, so ged(a,n) = 1. In a similar way we get that ged(b,n—3) = 1.
e n is 2 away from a multiple of b, therefore as 2 { b, ged(b,n) = 1. In a similar way we get that
ged(a,n —3) = 1.
en<ab<Nandn-3>(a+1)—3>0asa>2.
This implies that n and n — 3 coprime with N, whereas neither n — 2 nor n — 1 are coprime with IV,

which proves our claim. Finally, we claim that ¢; + ¢;41 = (n — 3) + n = 2n — 3 is coprime with N.
Indeed we have 2n —3 = —1 (mod a) and 2n —3 =1 (mod b). This implies that N is a prime power.

When N is odd, since ¢; = 1 and ¢3 = 2, we have ged(N, 1+ 2) # 1, so 3 | N, which implies that N is
necessarily a power of 3. This concludes our proof.



P2.

Solution 1.

Solution 2.

An infinite increasing sequence a; < ag < ag < --- of positive integers is called central if for every
positive integer n, the arithmetic mean of the first a,, terms of the sequence is equal to a,.

Show that there exists an infinite sequence by, b, bs, . .. of positive integers such that for every central
sequence a1, s, as, . . ., there are infinitely many positive integers n with a,, = b,.
We claim that the sequence b1, ba, b3, ... defined by b; = 2¢ — 1 has this property.

Let d; = a; — b; = a; —2i + 1. The condition a; < a;y1 now becomes d; +2i — 1 < d;41 + 2¢ + 1, which
can be rewritten as d;4+1 > d; — 1. Thus, if d; 11 < d;, then d;11 must be equal to d; — 1. This implies
in particular that if d;, > 0 but d;; < 0 for some indices ¢; > 7y, there must be some intermediate
index 79 <7 < 91 with d; = 0.

Because the average of the first a,, terms of the sequence is equal to a,,, we know for all n that

idi:i(ai—%—i—l):iai—i(%—l):ai—aizo.
i=1 i=1 i=1 i=1

Because the sequence (a,) is increasing, this implies that the sequence (d;) contains infinitely many
non-negative (d; > 0) and infinitely many non-positive (d; < 0) terms. In particular, we can find
arbitrarily large indices 49 < ¢; such that d;, > 0 and d;; < 0. By our earlier observation, it follows
that there are infinitely many i such that d; = 0, as desired.

We give an alternative proof that the sequence b; = 2i — 1 works. This proof is by contradiction, so
we assume that there are only finitely many a; such that a; = 27 — 1.

n
Let S(n) = Y a;. We have S(a,) = a? and S(ant+1) = a?, ;. If ant1 = a,, + 1, then it follows that

i=1
S(an+1) - S(an) = ai_H - a?z = a?),—&-l - (an+1 - 1)2 =2ap41 — 1.

On the other hand, if ay41 = an+1, then S(ay41)—S(ay) is aq,,, ,, so it follows that a,,,, = 2a,41—1.
By assumption, this can only happen finitely many times, so for all sufficiently large n we must have
(n41 = an + 2.

For large enough n, we now know that a, > 2n — 1 implies ap4+1 > (2n — 1) +2=2(n+ 1) — 1. This
means that there are two cases possible:

(A) For all sufficiently large n (say n > N4) we have a,, > 2n — 1.

(B) For all sufficiently large n (say n > Np) we have a,, < 2n — 1.

In case (A), we know for m > N4 that

m m

S(m)=S(Na)+ > a;i=S8(Na)+ Y 2i=5(Na)+m(m+1)—Na(Na+1)
i=Na+1 i=Na+1

=m®+m+ S(Na) — Na(Na+1).

For m large enough (e.g. m > N4(N4 + 1)), this expression is always larger than m?, contradicting
S(an) = a2 for all n.
Similarly, in case (B), we similarly know for m > Np that
S(m)=S(Np)+ >  ai<S(Np)+ > 2(i—1)=S8(Np)+m(m—1)—Np(Np—1)
i=Np+1 i=Np+1

=m? —m+ S(Ng) — Ng(Np —1).

For m large enough (e.g. m > S(Np)), this expression is always smaller than m?, again contradicting
S(a,) = a2 for all n.



Solution 3. We claim that the sequence by, bo, b3, ... defined by b; = 2i — 1 has this property.

Lemma. If there are no terms a; such that a; —aj—1 =1, then a; = aj_1 + 2 for all j.

Proof. Let ¢ be such that ay = ¢ for some d. Now

ay+ag 4 +a. =’
Equality holds for a; = 2i — 1 for 1 < ¢ < ¢, so if any difference between two consecutive terms is
greater, the left-hand side of the equation is greater than ¢?, a contradiction. O

Lemma. If both d and d+ 1 are terms of the sequence, i.e. a. = d and acy1 = d+ 1 for some ¢, then
agy1 =2d+1="bgyq.

Proof. We have ay+as+---+aq = d? and a; +as+---+agy1 = (d+1)2. Hence ag,1 = (d+1)2—d? =
2d + 1. O

From the observations above, we see that we are done if there are infinitely many gaps of size 1. The
only remaining case is one with finitely many gaps of size 1. This will be the subject of the following
lemma.

Lemma. If there are only finitely many indices j such that aj41 —a; = 1, then there is an index ng
such that for all k > ng, we have ap, = 2k — 1.

Proof. Let r and s be indices such that for all the j satisfying a;41 — a; = 1, we have j < r,s.
Furthermore, assume s > r and that there are i; and ¢s such that a;, = r and a;, = s. The first goal
is to show that as > 2s — 1. If a, > 2r — 1, this is clearly the case. Assume now a, < 2r — 1. Now
a, > 2r —1—m, where m is the number of indices j with a;11 —a; = 1. Denote a,41 = 2r+1—-—m-+04,
Gry2 = 2r + 3 — m + 03, etc. Remember that a,1 ;11 — ar4; > 2 always. Now 0 < 01 < 0y < ...
Furthermore, write s = r + h. Now

h
(r+h)? =1 =am1+ama+-+aun=3 2r—14+2j—m+0;.
j=1
From this we deduce .
2rh+h® = 2rh —h—mh+h(h+1)+ Y _0;.
j=1

h
So we obtain ) 6; = mh. Since the sequence 6; is increasing, we have ), > m. Hence, a5 = aryp >
j=1
2r—1—-m+2h+m=2r+2h—1=2s—1.

Now as is exactly the desired shape. If for any ¢ > s, we have a; — a;—1 > 2, then
s+ agpr+ - ap > 12— 5,

again a contradiction. O



Solution 4. Note that a; = 1 because if it is not the case, then a% =a1+--+aq >ar+a+---+a; = a%.

Assume by contradiction that there are only finitely many indices k such that ay = 2k — 1. Set i to
be the largest integer such that a; = 2¢ — 1 (which must exist as a; = 1). Assume that there exists
j = i such that aj41 —a; = 1. Then 2a;41 — 1 = a]2+1 — a? = aq,,, and since ap = k for all k, we
have a;11 > j+ 1 > 4, which contradicts the definition of ¢. Thus for all j > i, we have a;j4+1 > a; + 2,
which implies by induction that a; > 2j — 1 for j > ¢, and even a; > 2j if j > 1.

There are two ways to finish the solution from here.

First way to finish the solution
For all n such that a,, > i, we have

a’727,+1 - ai = Qapyy T Gapyy—1 1+ Qo1 2 2an41 + 2(apgr — 1)+ +2(an +1)

= (an+1 - an)(an+1 +ay, + 1)

2

2
> Apyy — Gy

This gives a contradiction.

Second way to finish the solution

For all n such that a, > ¢, we introduce z,, = a,4+1 — a,. We have

Tn
2 2 2 .
Ty + 2znan = App1 = Qp = Qay gy + Aayyq—1 + oot G, 41 2 E (aan + 2]) > Tnla, + {En(.i?n + 1)'
Jj=1

By simplifying, we get a,, < 2a, — 1, which gives a contradiction.

Comment. Proving that a; = 1 is not necessary for this solution. If there exists no i such that
a; = 2i — 1, then the same argument implies that there exists no j such that a;j;1 —a; = 1, thus
aj =>2j—1forj>1.



P3. Let ABC be an acute triangle. Points B, D, E, and C lie on a line in this order and satisfy BD =

Solution 1.

Solution 1’.

Solution 2.

DFE = EC. Let M and N be the midpoints of AD and AFE, respectively. Let H be the orthocentre of
triangle ADE. Let P and @ be points on lines BM and CN, respectively, such that D, H, M, and P
are concyclic and F, H, N, and @) are concyclic. Prove that P, (Q, N, and M are concyclic.

The orthocentre of a triangle is the point of intersection of its altitudes.

Denote by B’ and C’ the reflections of B and C' in M and N, respectively. Points C’, A, B’ are clearly
collinear and DEB’A is a parallelogram. Since EH | AD, we have EH 1 EB’. Also HA L AB’, so
points H, E, B’, A are concyclic. This gives

/C'QH = /NQH = /NEH = /AEH = /AB'H = /C'B'H,

and so points C’, B’, Q, H are concyclic. Analogously points C’, B’, P, H are concyclic, and so all points
B’',C',P,Q, H are. Now we have

/NMB' = /AB'M = /C'B'P = /C'QP = /ZNQP,

which proves that P, Q, N, M are also concyclic.

Introduce points B’,C’ as above. Also define A’ = B'ENC'D, so that FADA’ is a parallelogram
and ADE is the medial triangle of A’B’C’. It that follows that the orthocentre H of ADE is the
circumcentre of A’B’C’, and in particular

/C'B'H =90° - /B'A'C' =90° — /DAE = /AFH = /NEH = /NQH = Z/C'QH.
So again we have that C’, B’,QQ, H are concyclic and conclude as in Solution 1.

Let X be the second intersection of (DHM) and (EHN) and let O’ be the circumcentre of (AMN).
Note that ZMXN = /MDH+ /NEH = 180° —2/DAEFE and since ZMO’'N = 2/DAFE we have that
X, M,0' N is cyclic and since /M X H = /NXH it means that HX is the angle bisector of /M XN
but since O'M = O'N it means that H, X, O’ are collinear. Let BM and CN intersect at T and let K
and L be the midpoints of M N and BC. Note that L is also the midpoint of DE. Since M N is parallel
to BC' it means that T', K, and L are collinear, but since A, K, and L are collinear we get that A, T
K, and L are collinear. Now, % = % = 6. Since KL = KA it means that AT = TLTﬂ =4 so
by the lemma below, T lies on HO’'. Since HO' is the radical axis of (DHM) and (EHN) we finish

the problem using the Radical Axes Theorem (TM -TP =TN -TQ).



Lemma. Let A’ be the reflection of A around the orthocentre H of NABC and O and M be the
circumcentre of ANABC and the midpoint of BC, respectively. Let T be the intersection of A'O and
AM. Then AL = 4.

Proof. Since OM || AA’ we have AL — A4 _ 241 _ 408 — 4. We used here that AH =20M. O

TM oM oM

Solution 2’. As in solution 2, we will prove that O’ is both on line HT and the radical axis of the circles, hence T
is on the radical axis, from which we conclude the required concyclicity. We present alternative proofs
of both facts, discovered by contestants.

Let My, N7 be the midpoints of AM, AN, respectively, so that AM; : M1D = AN, : NiE=1:3. Tt
is easy to verify (e.g. by applying the theorems of Ceva or Menelaus, or by computing in barycentric
coordinates as in Solution 3) that T lies on EM; and DN;. Note that M; Ny || DE, and also M0’ ||
HE as both are perpendicular to AM D, and similarly N;O' || HD. It follows that DEH and Ny M;0’
are homothetically similar triangles, and the center of their (negative) homothety is T'= DN; N EM;.

Therefore T also lies on HO', as claimed. (We also have that the homothety is by factor Ng g L= —i.)

Now, let My, Ns be the second intersection points of O’ M, O’ N with the circumcircles of HM D, HNE,
respectively. To prove that O’ is on the radical axis, it suffices to show that O’ M -O'My = O'N - O’ N,.
But by definition of O’ we have O'M = O’ N, so we must show O'Ms = O’ N, which is equivalent to
MyNs || MN. Angle chasing in circle MMy DH gives

/OMyH = /MM>sH = /MDH = /ADH = 90° — /ZEAD =90° — /NAM = Z/O'MN,

from which it follows that Mo H || M N. Similarly, we have NoH || M N, and the two facts together
imply that My, H, Ny are collinear and the line through them is parallel to M N, as claimed. O



Solution 3. We compute using linear combinations with respect to ADE. We have B = 2D — E, C = 2E — D,
M = A'*Q'D7 and N = #, from which we immediately obtain that the intersection of T'= BM NCN
isT = 3A+5D+E = GMS’B = 6N5’C. As in solution 2, we reduce to showing that 7" is on the radical
axis of HDM and HEN, whence TM - TP = TN - T(Q proves the concyclicity of P,Q, N, M.
Synthetic finish, similar to Solution 2. Let O be the circumcentre of ADE and O’ = A%O be the
circumcentre of AMN. As in Solution 2, we have that O’ is on the desired radical axis, so it is enough
to show T'€ O'H. Let G = A*% be the barycentre of ADE. By properties of the Euler line, we
also have G = %. Now using our known identities we find

_3A+D+E  24+43G 24+ H+20 H+40'

T
) 5 ) 5)

and in particular T € HO', as we wanted to show.

Computational finish. Let f(7T) be the power difference at T w.r.t. DHM and EHN. We compute
f(A) and f(L) where L = £ Since T = 34+£2L it is enough to show that 3P(A4) 4+ 2P(L) = 0.
In the following all lengths are directed. We compute trigonometrically: Let «, 3, be the angles of
ADE and assume the diameter of its circumcircle is 1. We have

AD? — AE?  sin*(y) —sin’(p)
£(A) = - .
2 2
To compute P(L), let D', E' be the second intersection points of HM D, HNE with DE, and let
M',N' F be the feet of the perpendiculars from H to AD, AE, DE, respectively. Note that DM’ =
sin « cos 3, thus

sin(a + )

sin(8 — )
5 T

M'M =DM — DM' = 5

—sinacos B =
We also have HM' = cosacos 3, HF = cos fcosy, and HM'M ~ HF D', therefore

HF cos~y sin(f — «)
= M'M —_—
HM' cos & 2

FD'

and similarly 4 sin( )
cos B sin(y — «

E'F =
COoS v 2



We also have the standard F'D = sinycos 8 and EF = sin 8 cosvy. We can finally compute

sin «v sin «v

f(L)=LD-LD'— LE-LE' = (LD'+ LE') = ——(FD' + FE' ~ FD ~ FE)

sin o

= Toos (cosysin(f — a) — cos Bsin(y — &) — 2 cos a(siny cos 8 — sin B cosy))
= 3O _ 3 (54 ) s — 7)) = 2 (eos(23) — cos(25))
= 2(sin?(8) — sin’(1)) =~ f(4). O

Solution 4. Let T'= BM N CN, let F be the foot of the altitude from A to BC, let O be the circumcentre of
(ADE), let D’ # D and E’ # FE be the second intersections of (DHM P) and (EHNQ) with line BC,
and let U and V' be the antipodes of D and E on (DHMP) and (EHNQ), respectively.

We begin with a bit of barycentric coordinates. Set barycentric coordinates in AABC), set so that
A = (1,0,0), B = (0,1,0), and C = (0,0,1). The definitions of D and E give D = (0,2/3,1/3)
and E = (0,1/3,2/3), whence M = (1/2,1/3,1/6) and N = (1/2,1/6,1/3). This means that line
BM is given by (1/2 : y : 1/6) while line CN is given by (1/2 : 1/6 : z). So their intersection T is

. . — (2.1 - _ 3A+B+C _ 3A+D+E
(1/2:1/6:1/6) = (3:1: 1), giving T = 34E5+C — 34+ D40

Our next tool is the linearity of the power of a point. Let f: R? — R be defined by

f(Z) =Powpump)(Z) —Powgung)(Z).

It suffices to show that f(T) = 0; from there, the required concyclicity will follow from TM - TP =
TN -TQ. The key observation is that f is a linear function. In particular, f(T) = w.
So, we need only show that 3f(A) + f(D) + f(F) = 0. Pick an arbitrary one-dimensional coordinate
system on the line BC and let 7 be the map from a point on BC' to its coordinate. We compute

2 _ 2 2 2
f(A):AM-AD—AN~AE:AD 2AE _ D 2FE

~(r(8) - 7o) () -7 (252,

f(D) = =DE-DE' = (7(E) - 7(D))(7(D) — 7(E')),
f(E) = ED-ED' = (7(E) — 7(D))(r(E) — 7(D")).

Rearranging, it suffices to show that 37(F) = 7(D’) + 7(E’) + 7((D + E)/2). This can be rewritten as
3F =D'+ E' + (D + E)/2. By projecting down to line BC, it suffices to show that the displacement
vector H + 2A — (O + U + V) is perpendicular to line BC.



We do this using complex numbers. Let (ADE) be the unit circle with A = a, D = d, and F = e,
so that O = 0 and H = h = a + d + e. Note that U satisfies UM L AD and UH L DH 1 AF.
Translating these conditions into equations, we have v = adu and v + aeuw = h + aeh. Rearranging

gives _
— dh + adeh
(d+ e)u = du + e(adu) = d(h + aeh) —> u = %.
Computing v similarly, we get that
d+ e)h + 2adeh deh 2d
Vi HA 24— (04U 4 V)= h42q- AEONF2deh [ adehy  2de
d+e d+e d+e

This displacement vector v satisfies v = dev and so it is orthogonal to line DFE, as desired.

Solution 5. This solution uses almost exclusively complex numbers. As in other solutions, we reduce to showing
that H, S := (DHM) N (EHN), and T := BM N CN are collinear; this is all of the synethetic
information we shall use. (If one computes T = W using means other than complex numbers,
the solution becomes much shorter.)

We use complex numbers with A = a, D = d, and E = e on the unit circle. Note that H =a+ d + e,

M = “;d, and B = 2d — e. We will make great use of the “arbitrary line intersection formula,” which

says that the intersection between lines WX and Y Z can be written explicitly as

(@ — w)(y — 2) — (w — 2)(7z — y2)
W—=7)(y —2) = (w—2)(7 - %)
We first use this to find 7' = t. We compute

a+d 3d—a—2e

b—m=(2d—e)—

2 2
o 3ae — de — 2ad
2ade
- 2¢e—d a+d a+d
bm — bm = A —(2d—e)- 50d
_ala+d)(2e —d) — (2d—e)(a+d)e  (a+d)(2ae+ €e* — ad — 2de)
B 2ade B 2ade '

If £ is some expression, we use the notation £ — {~} to denote & minus the expression formed by
swapping d and e in £. We now have

 m—bm)(c—n) — {~}
G—m)(c—n) - {~}

~ (a+d)(2ae + €* — ad — 2de)(3e — a — 2d) — {~}
N (3ae — de — 2ad)(3e — a — 2d) — {~}

[a®(d — 2¢) + a?(3d? — Tde + 5€?) + a(2d® — d?e — 3de? + 3e3) + de(4d? — 8de + 3¢?)] — {~}

[a?(2d — 3€) + a(4d? — 11de + 9e?) + de(2d — 3e)| — {~}
a3(3(d — e)) — a?(2(d® — €?)) + a(—(d® — €3) + 2de(d — e)) + de(d* — €?)
a?(5(d—e)) — a(5(d? — e?)) + de(5(d — e))

3a® —2a%(d +e) — a(d® — de + €2) + de(d + ¢)
B 5(a? — a(d + e) + de)
(a—d)(a—e)(3a+d+e) 3Ba+d+te

5(a—d)(a—e) 5 '

(The factorization in the last line can be motivated by noting that the expression, while cubic in a, is
only quadratic in d. When written out as a polynomial in d, each coefficient is divisible by a — e; by
symmetry, the numerator is divisible by a — d as well, and the factorization follows.)
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Solution 6.

Computing S = s is slightly harder, as it is the intersection of two circles rather than of two lines.
We get around this by noting that {h,d, m, s} are concyclic if and only if {0,h —d,h — m,h — s} are
concyclic, which happens if and only if {ﬁ, ﬁ, ﬁ} are collinear. (One can see this by inversion,
or just by writing out the cross-ratio in the special case when one of the points is zero.) Thus hi

S

is the intersection of the line through w := 72 and z := ;- and the line through y := ;- and
z 1= 1. We compute
1 1 a—d
wor= Tad L, d12
ate e (a+e)(a+d+ 2e)
ae?(a — d)
w—z=
(a + €)(2ad + ae + de)
_ _ ae 2 1 2ade
Wr — WT =

at+e at+d+2 a+e 2ad+ae+de
(2ad + ae + de) — d(a + d + 2e¢)
(a+e)(a+d+ 2¢e)(2ad + ae + de)
2ae(a — d)(d + e)
(a+e)(a+d+2e)(2ad + ac+de)’

= 2ae

Using the line intersection formula, we have

L (@r—wm)y—2)—{~)
s @Dy (~)

{_ 2ae(a—d)(d+e) ) (a—e) } —{~)
(a+e)(at+d+2e)(2ad+aet+de)  (a+d)(a+2d+e)

|:7 ae?(a—d) . (a—e) :| N {N}
(a+e)(2ad+ae+de) (a+d)(a+2d+e)

[e(ad + 2ae + de)| — {~}

[e2(a + d + 2¢)(ad + 2ae + de)| — {~}
[a(de + 2€?) + de?] — {~}
[a?(de? + 2¢3) + a(d?e? + bde? + 4e*) + de(de? + 2¢3)] — {~}
_ 2(d + e)(a(2(e? — d?)) + de(e — d))
(a2 4 de)(2(e3 — d3) + de(e — d)) + a(4(e* — d*) + bde(e? — €2))

B 2(d+e)(2a(d + e) + de)
(a2 4 de)(2d? + 3de + 2¢2) + a(d + €)(4d? + bde + 4e?)’

2(d+e)

=2(d+e)

Since h — t = %‘H‘le, this gives us

h—s 5 (a®+de)(2d® + 3de + 2¢?) + a(d + e)(4d? + 5de + 4e?)

h—t 4 (d+ e)(2ad + 2ae + de)(a + 2d + 2e)

It is easy to see that this is real by using the symmetry of the expressions (both the numerator and
denominator satisfy £ = a?d®e3£. We conclude that H, S, and T are collinear, as desired.

As usual, we reduce to proving T'= (34 + D + E)/5 is on the radical axis and compute; this time in
Cartesian coordinates.

Let A(0,h), D(b,0), E(c,0) be coordinates for ADE. Then H(0,—%), M (%, %), N(%, %) and T(2£<, 3.
We compute Op(xp,yp) the circumcentre of DM H and obtain Og by symmetry. We then have to
verify that OpOpg L HT, which can be done by comparing slopes.

The centre Op can be given by the intersection of perpendicular bisectors of DM and DH. This gives
the following system of equations on zp, yp:

11



h + _% ﬁ
DY =T gy,

302 h?
—b- h - __2 =
Tp + YD 1 + 1

Solving the system gives

3b2c  bc® R%b k¢

2 _ _e RO e
(h* +bc)xp = n 5 + 5 1
hb%  R® b3
2 T
(h* 4+ be)yp = 1 1 5

The formulas for xg,yg will be the same, swapping b <+ ¢ by symmetry; thus yp — yg and zp — zg
will be antisymmetric in b, ¢ and divisible by b — ¢, and explicitly:

b—c
4

(12 + be) yp — yp) = 7 “h(b+0)

(h® +be)(zp — xg) = (5bc 4 3h?)

Tp—TE ~ Bbc+3hZ"
The other slope is more immediate:

So Yp—YE _ h(b+c)

yr —yun _ 3h/5+bc/h 5bc + 3h? _ Tp—xp
TT — T (b+¢)/5 h(b+c) Yp — YE

so indeed the two slopes correspond to perpendicular lines.

12



Day 2

P4.

Solution 1.

Remark.

Let ABC be an acute triangle with incentre I and AB # AC. Let lines BI and CI intersect the
circumcircle of ABC at P # B and @ # C, respectively. Consider points R and S such that AQRB
and ACSP are parallelograms (with AQ || RB, AB || QR, AC || SP, and AP || CS). Let T be the
point of intersection of lines RB and SC. Prove that points R, S, T, and I are concyclic.

We will prove that ABIR ~ ACIS, since the statement then follows from /TRI = /BRI = Z/CSI =
/TSI.

Step 1. Let us prove ZRBI = ZSCI. We will use directed angles:

(BR,BI) = (BR, AB) + (AB, BI) = (AQ, AB) + (BI, BC)
= (CQ,BC) + (BI, BC) = (CI,CB) + (BI, BC),

which is symmetric in B, C. Therefore, analogously we would obtain the same expression for (C'S, CI).

Step 2. Let us prove BR/BI = CS/CI. Clearly BR = AQ and CS = AP. Angle chasing gives
/ZICB = ZQCB = ZAPQ, and similarly /PQA = ZCBI, and so AIBC ~ ANAQP, from which the
desired AQ/BI = AP/CI follows. This finishes the solution.

In the alternative solutions below, the notation (ABC) refers to the circle passing through points A,
B, and C. D will refer to the midpoint of arc BC' not containing point A, unless stated otherwise.

Let 14 be the A-excenter of AABC. It is well-known that points B, C, I, and I4 lie on a circle with
diameter I14. The center of this circle is point D. It is clear that A, I and D are collinear.

In some of the solutions, some of the facts below may be used:

13



Solution 2.

Solution 3.

Solution 4.

e B,T,I,C are concyclic. Indeed, ZBTC = ZQAP = A+ 2t< =90° + 4 = ZBIC, so B,T,1,C
are concyclic.

e L/QAP = /BTC = ZRTS. Indeed, since QA || BT and PA || CT, then ZQAP = 4ZBTC =
/RTS.

e RQ and PS are tangents to (ABC). Indeed, ZRQB = ZQBA = ZQAB and similarly for PS.
e NAQP ~ IBC (see Solution 1 for the proof).

e QP is the perpendicular bisector of AI. Indeed, QA = QI and PA = PI so PQ 1 AI and PQ
bisects Al.

We use complex numbers, with (ABC) as the unit circle. Set D = d, P = p, Q@ = ¢, so that
A=a=-8 B=>b= —%, and C = ¢ = —%. Write z ~ w if z/w is a nonzero real number. We
observe that

R-T R-B Q-A q+% (d+p)g

S—T S—C P-A p+2  (d+qp

: I-R (d+p)g
So, it suffices to show that =% ~ T op Indeed,

d
I-R=(d+p+q)—(Q+B-A)= d—i—p-l—;q—@ = (d+p) (1+

)

(d —p)q> _ (d+p)(dp +dq —pq)
d

dp dp
SO d

I-R_ %2 (@d+p

I-S ddiq" (d+q)p

In the following, all segment notations denote vectors.

As mentioned above, we find AAQP ~ AIBC, and by definitions of the parallelograms we have
BR = AQ and CS = AP as well as ZRTS = ZQAP, so it suffices to show LZRIS = ZQAP. From the
similarity AAQP ~ AIBC, we have a spiral map A such that IB = AAQ and IC = MAP. It follows
that IR = IB+ BR = (A+ 1)AQ and IS = IC + CS = (A + 1)AP. Because A + 1 is also a spiral
map, we have ATRS ~ AAQP and in particular ZRIS = ZQAP, as we wanted to show.

Remark. This solution is deeply related to the complex numbers solution; indeed, the vectors can be
interpreted as complex numbers and the spiral map as a complex scalar multiplication. But it only
relies on the additive structure of the complex numbers as a real plane and the linear map acting
on them (rather than, e.g., multiplying two points together), making vectors a slightly more natural
language for the claims.

Remark. The number 1 in the solution above represents the identity map.
Let E, F, G be the midpoints of AI, BQ, CP. As in Solution 1, angle chase shows that AAQP ~
AIBC.

Note that by the Mean Geometry Theorem we have that %AQP + %I BC = EFG is similar to AIBC.
Homothety with center A and scale-factor 2 maps EFG to IRS. Hence /RIS = /FEG = ZQAP =
/BTC = /ZRTS, so R,T,1,S are concyclic.

Remark. As shown above, E lies on QP and AI | PQ. One can prove that /ZFEG = /ZBIC in
another way. Let J be the midpoint of PQ. Then /BIC = ZFJG by midlines and LFJG = LFEG
by the lemma below applied in BCPQ.

Lemma. Let ABCD is a cyclic quadrilateral and E is the intersection of its diagonals. Then the
midpoints of AB, BC, CD and the foot of the perpendicular from E to BC are concyclic.

14



Solution 5. Let O be the circumcenter of (ABC). Let M, N, and L be the midpoints of OD, PC, and @B,
respectively.

Claim 1. AOPQ and ADCB are directly similar.
Proof. Clearly DB = DC and OQ = OP. Also note that ZQOP =2/QDP =2/QDA+2/PDA =
ZBDA+ ZCDA = ZBDC. So the two triangles are directly similar by SAS.

Claim 2. ML = MN and ZLMN = 180° — Z/BAC.

Proof. Note that since AOQP ~ ADBC by the Mean Geometry Theorem, we have that the average
of the two triangles is also similar to them, therefore AMLN ~ ADBC = ML= MN and ZLMN =
/BDC = 180° — ZBAC.

Let K be the reflection of A over M.

Claim 3. K is the circumcenter of ARTS.

Proof. Note that since AQRB and APSC' are parallelograms we have that A — L — R are collinear
and that A — N — S are collinear. The homothety centered at A with scale-factor 2 maps ALM N to
ARKS, therefore KR = KS and ZRKS = ZLMN = /BDC = 2(180° — ZRTS) (and K and T are
in opposite sides of RS), implying that K is the circumcenter of ART'S.

Claim 4. KT = K1I.

Proof. Note that AOKD is a parallelogram. Let BT intersect the (ABC) again at point G. Since
/ABG = /ABT = /ZQAB = ZQCA = AQ = AG and also OQ = OG hence AO L QG. Then by
Reim’s theorem we have that QG || TT and also that AO | DK, so DK 1 TI. Since DI = DT, it
means that KD is the perpendicular bisector of T'I, therefore KT = K1.

This means that RTIS is cyclic with center K.
Remark. When K and T are on the same side of RS, it can be shown that ZRKS = 2/RT'S.

15



Solution 6. As shown above, we have that BTIC is cyclic. Let D and E be the second intersections of AC

and AB with this circle, respectively. Since the center of this circle lies on Al (by symmetry about
AI), we have that AB = AD and AC = AE, therefore BE = CD. Note that since C — I — Q
and A — B — E are collinear, by Reim’s theorem we have that AQ || EI and since AQ || BT, we
have that BT || EI. Similarly, we get CT || DI. Let F and G be the intersections of ID and
IE with PS and QR, respectively. Clearly, RGEB and FSCD are parallelograms. Since RGEB is
parallelogram and BEIT is isosceles trapezoid, we have that RGIT is isosceles trapezoid. Similarly,
SFEIT is isosceles trapezoid. Hence, both of them are cyclic. Note also that QR = AB = AD = PF
and QG = AE = AC = PS. Since QR and PS are tangents to the circumcircle of AABC we have
that R and F are symmetric (reflections) about the perpendicular bisector of PQ. Similarly, G and
S are symmetric about the perpendicular bisector of PQ. This gives us that QP || RF || GS and
that RFSG is an isosceles trapezoid, hence a cyclic quadrilateral with ZRGS = 180° — ZGQP =
180° — ZQAP = 180° — ZRTS = R,G,S,T are concylic. Combining all the facts about the cyclic
quadrilaterals we proved above, we have that R, G, S, F,1,T are concylcic. Therefore R,T,1,.S lie on
a circle.

16



Solution 7. Let E be the A-excenter of AABC. Let the midpoints of AQ,QB,CP, PA be the points
F,G, H, J, respectively. Both PD and EC are perpendicular to CI, hence PD || CE.

Since PA = PC we have that AJHC' is an isosceles trapezoid so it is cyclic. Let K be the second
intersection of (AJHC) and AI. Then ZADP = LACP = LACH = ZAKH = DP || KH. So
KH is a line passing through the midpoint of the side C'P of trapezoid DPCE and parallel to the
bases, hence K is the midpoint of DE. Similarly, we show that the circle (AFGB) passes through
the midpoint of DE. Homothety centered at A with scale-factor 2 maps (AJH) to (APS), (AFG) to
(AQR), and line AT to line AI. This means that the circles (AQR) and (APS) intersect on Al, call
it point L.

17



Now, ZILR = 180° — ZAQR = ZQAB = ZQCB = 180° — ZITB = 180° — ZITR, therefore R, L, I,T
are concyclic. Similarly, we get that S, L, T, I are concyclic. Combining these, it means that R and S
belong to the circle (LIT). The conclusion follows.

18



P5.

Solution.

Let n > 1 be an integer. In a configuration of an n x n board, each of the n? cells contains an arrow,
either pointing up, down, left, or right. Given a starting configuration, Turbo the snail starts in one
of the cells of the board and travels from cell to cell. In each move, Turbo moves one square unit in
the direction indicated by the arrow in her cell (possibly leaving the board). After each move, the
arrows in all of the cells rotate 90° counterclockwise. We call a cell good if, starting from that cell,
Turbo visits each cell of the board exactly once, without leaving the board, and returns to her initial
cell at the end. Determine, in terms of n, the maximum number of good cells over all possible starting
configurations.

We will show that the maximum number of good cells over all possible starting configurations is

2
n . .
T if n is even and

0 if nis odd.

Odd n

First, we will prove that there are no good cells if n is an odd number.

For Turbo to reach her goal, she must return to her initial cell after visiting every cell exactly once.
Consider the chessboard coloring of the board. Without loss of generality, we assume that Turbo starts
in a black cell. Since, at every step, Turbo moves to a cell of a different color; she will be in a white
cell after n2 =1 mod 2 moves. Thus, it is impossible for Turbo to come back to her initial black cell
on her n?-th move, which is a contradiction. Thus there are no good cells.

Lower bound for even n

We will now construct a starting configuration with %2 good cells for even n.

Let (4,7) denote the cell in row ¢ and column j. Consider the following cycle

*«-.-._._._._. oo o f o oo ey
(1,1) = (1,2) = (1,3) = ... = (1,n) I N Y O O

—=(2,n) = (2,n—1) > ... > (2,2)

[ oh ke R SRR Y T T PR E

(20— 1,2) > (20— 1,3) = ... = (2i —1,n)
— (2i,n) > (2i,n—1) = ... = (24,2)

Rl EE R SRR (EEE P R R B

9 O O S P O

ol Gt Bl Rl T TEXETE PEY B

—>“(n, n)—= (n,n—1 — .= (n,2)
= n1l)=>Mnm-11)—..—(21) —(1,1).

EEEE EER SRR (R PRI ELE REE T

P e

Note that the cycle returns to the initial cell after visiting every cell exactly once. To prove that (1,1)
is good, we need to find a starting configuration such that Turbo traverses this cycle.

Let ¢; be the (i — 1)-th cell on the cycle: so we have ¢ = (1,1), coa = (1,2), ..., c,2_1 = (2,1). For
every i, we draw an arrow in cell ¢; pointing towards cell ¢;;1 (or pointing towards cg if i = n? — 1)
and then rotate this arrow ¢ times 90° in the clockwise direction. After i moves, the arrow in ¢; will
have rotated i times 90° counterclockwise and be in the same direction as on the path defined above.
Thus, Turbo will traverse the cycle co, ¢1,ca, ..., cpz_1, co and (1,1) is good.

Every four moves, all arrows point in the same direction as in the beginning. Moreover, the board
will return to its initial configuration after traversing the full cycle, since n2, the length of the cycle,
is divisible by 4. Therefore Turbo can also start at any ¢; with 4 | ¢ and follow the same route. Hence

n2

the cells cg, ¢4, ¢8, ..., cp2_4 are good and there are 7~ of such cells.
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Upper bound for even n

We will prove that for even n and any start configuration there are at most ”72 good cells.

Let ag be a good cell. Let ag,aq,as,...,a,2_1,a,2 = ag be the sequence of cells that Turbo visits
when she starts at ag. Now suppose there is another good cell by and let by, b1,b2,...,b,2_1,b,2 = by
be the sequence of cells that Turbo visits when she starts at bg.

Note that, since 4 | n2, the arrows are back to their initial configuration after n? steps. Thus, if Turbo
keeps walking after returning to her initial cell, she would just traverse the same cycle over and over
again.

Consider the upper left corner of the board. With standard row and column numbering, the corner
cell is (1,1). This cell has only two neighbours, so both the a-route and the b-route must have cells
(2,1),(1,1),(1,2) in that order or (1,2),(1,1),(2,1) in that order. Without loss of generality, a;_1 =
(2,1), a; = (1,1) and a;41 = (1,2) for some i. Let j be such that b; = (1,1). If b;_1 = (2,1) = a;_1,
then the arrow in cell (2,1) must be pointed in the same direction after ¢ — 1 steps and after j — 1
steps, so ¢ = j mod 4. But then the arrow in cell b; = (1,1) = a; must also be pointed in the same
direction after ¢ and after j steps, so Turbo moves to b; 11 = a;41 in both cases, and again finds the
arrow pointed in the same direction in both cases. Continuing, we find that the b-route is actually
identical to a4, a4¢41, - .., ap2 = ag,a1,...,a44—1, a4 for some ¢, as any other starting point would have
the arrows in the wrong direction initially.

Now suppose instead that bj11 = (2,1) = a;—1. Considering the a-route, the arrows in the upper left
corner after ¢ — 1 steps must be like this:

<_

1
T or

— |

Considering the b-route instead, the arrows after j — 1 steps must be like this:

— |

T or

(_

<_
%

From the arrows in cell (1,1) we see that i = j + 1 mod 4. However, for the cells (2,1) and (1,2) this
gives a contradiction.

We conclude that the only possible good cells are a4 for t = 0,1, ..., "72 — 1, which gives at most "72
good cells.
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P6.

Solution 1.

In each cell of a 2025 x 2025 board, a nonnegative real number is written in such a way that the
sum of the numbers in each row is equal to 1, and the sum of the numbers in each column is equal
to 1. Define 7; to be the largest value in row i, and let R =1 + 179 + - - - + r2925. Similarly, define
¢; to be the largest value in column ¢, and let C' = ¢ 4+ ¢co2 + - - - + ¢2025.

What is the largest possible value of %?

. 2025
Answer: =g5>.
2

In general, if the table is m? x m?2, the answer is S -

The example is as follows: label rows and columns from 1 to m?, from top to bottom and left to
right. For the first m columns, write i in all squares whose coordinates have the same residue

modulo m and place 0 everywhere else. For the remaining m? —m columns, place # everywhere.
ThenR:m2~%n =m, andC:m~%+(m27m)~# :27%. So the ratio is as claimed.

2 [0 13 |3

0 |5 | i |3

> [0 13 |3

0 |5 |5 |3
In particular, when n := m? = 2025, we get %. Now we need to show that % < %

For each row, select one cell having the largest value appearing in said row and colour it red.
Then, without loss of generality, we may rearrange the columns such that the red cells appear in
the first £ columns from the left, and each such column contains at least one red cell, for some
k <n.

For the j' column, for all 1 < j < k, let p; and n; denote the sum and number of red cells in
it, respectively. We observe that c;, the biggest number in the 4t column, is at least %7 for all
J

1 < j < k. For all other columns, the largest value they contain is at least %, as their sum is 1.
: —k

Thus,02%+%+...+%+n7.

We can also observe that R =p; +p2 + -+ + pi.

Therefore we have to show that:

P P2 Pk n—k>. (%)

n
< (£
Prtpattpe s 2y/n—1 (m ny N

By construction, ny + ns + - - - + nx = n, and, as the numbers in every column are nonnegative,
we see that p; <1 for every j. Also, since each number in a red cell is at least %, we also have
pj > L

Since our inequality is linear in each pj, it suffices to prove it when each variable equals one of
its two critical values. By relabeling, we may assume that p; = n—nj for 1 <j <t,and p; =1 for
t+1<j <k, for an integer 0 <t < k.

First, if t = k, we observe that py+po+- - -+pp = 2L 4+"24- - -4 2 = 1, and that %114—%4» . -+i—’; =
%, so the inequality becomes 1 < Q\/Qﬁ, which is true.

From now on we may assume that t < k. We need to show that:

ny+ -+ ng n
At S L AT A QLA (T T Rt
n + ~2y/n—1 (n+nt+1+ +nk+

By Cauchy—Schwarz inequality we have that:

t 1 1 n—k')

1 1 k_t2 k—t2
SR SR ) N ) o
Ni41 Nk nt+1+-..+nk n_(n1+...+nt)
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Solution 1'.

Solution 1”.

Let ny +---+ny =n-q, where 0 < ¢ < 1. Thus, it is now enough to show that:

fhote (L O nok
¢ “2yn—1\n n-ngqg n )

Let k —t = ¢ > 1. The inequality becomes:

2
q—l—ﬁg#- n—4~{+ ¢ .
2y/n — 1 1—¢

2

Rearranging this we get:

> 2(q + O)v/n.

bt
n
477

If ¢ = 0 the inequality is trivially true by AM — GM. Suppose now that 0 < ¢ < 1. Then, by

Cauchy-Schwarz, we have:
2

1—

€2 q2
l—q q
It is therefore enough to show that n + (¢ + €)% > 2(q + ¢)\/n, which is true by AM — GM,
completing the proof.
Remark. Another way to show n + g + % > 2(q + £)/n is to split it into two AM — GM’s, as:

q+

> (¢ + 0%
. (q+1)

2

1—g¢q

(n(l —q)+ >+ (ng + q) > 203/n + 2qv/n.

We prove the main inequality (*) in a slightly different manner. Instead of the strong lower bound
Dj > %, we use the weaker, simpler and more immediate lower bound p; > 0 (thus proving the
inequality in a larger regime).

As in Solution 1, suppose p; =0for 1 <j<tandp; =1fort+1<j <k, with{=k—t. We
also denote by m = n¢41 + - - +n;, and note that m < n —¢, since n; > 1 for each ¢ < t. We need

to prove that:
0 < n 1 T 1 n n—=k
T 2yn—1 \ng ng n '

Rearranging and using the same Cauchy-Schwarz (CS) as in Solution 1, we see it suffices to show
that:

2
(zﬁ—l)egn—wr%,
m

or equivalently, that:

€2
onl<n—t+ .
m

But since n —t > m this immediately follows from 2/nf < m+ %Q , which is a simple application
of AM — GM.

(Note that in Solution 1 the case t = k, which is equivalent to m = £ = 0, was dealt with separately,
to avoid the appearance of % terms such as %2. It is easy to verify that the corresponding term
should in fact be 0 and the final AM — GM replaced with 0 < 0, and all transitions are valid.

Alternatively, the case can be argued directly by simply noting that (%) evaluates to 0 < 2%5 T

which is obvious.)

This is an alternative way of getting the upper bound on g from

E< PL+p2+...+ Dk
- P p p n—k "
C~ gy pbegnck

Using the fact that Z§:1 n; = n, we can rewrite the above right hand side as follows:
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Solution 1".

k
k j -1\’

We notice that this is a quotient of affine functions in the p;’s, for which the denominator does
not vanish over the set defined by 0 < p; < 1. Therefore the maximum of this function is attained
when a certain number of p;’s are 1 and the others are 0. Without loss of generality we may
assume that the first ¢ are equal to 1 and the other £ — ¢ are 0 for some 0 < ¢ < k. Then one has
that the previous expression is at most

t
L ’ﬂjfl ’ﬂjfl :
di<j<t (n_,» + =5 ) + i<k

We now lower bound the denominator by observing that the second sum is non negative, while
each term of the first sum can be bounded by AM — GM as follows:

1 +71J—].

We therefore have

which finishes the proof.

We follow the same notation as above. First, we apply Cauchy-Schwarz as follows :

(£2) o) = (E0) -

We now write z; = 1 —p; for all 1 <4 < k, and observe that all z; are positive. Moreover, we have
that Zle z; = k — R, and Ele ping =N — Zle p;z;. Thus, from our last inequality we get

R2
RN S
ny N n—Y 0 Nz
As before we have C > %+_._+&+M’ and so
1 Nk n
2 _ 2 _p_Y\Fk )
o p— ook R Mt b DALY
n— iy % n n= i NiZi "
Putting everything together we get
R R n
C — R2 n—R-3"F 2 Rn n=3 2 -1
n—3%  niz n n—3%  niz R
. . R n : .
Applying AM — GM to the denominator we get — < , which finishes the

n - Zf:l i

- Zi:l n;z;

> 1.

proof by noting that
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Solution 2. This is an alternative approach that goes via an intermediary quantity in order to establish to
the upper bound on R/C.
Let x;; be the entry in row 4 and column j. Let n = 2025. The key idea is to analyze the

expression:
1
T .= E Tiymax | Tij, — | -
— n
i

On one hand, since ¢; > 1/n, we have z;; max(z;;, 2) < x;;¢; for every (i,j). So
T<Y D wye;=) ¢=C
j o1 J

On the other hand, let j; be one of the indices for which r; = z;;,. We therefore have:

1 1
T = Z T, max <3«”ij“ n) + Z Tj; Mmax <xij, n>

J#Ji

ZZ T,‘2+%inj

J#Ji
1 1 2 1 2 1
§ 2 E
: (rl nrﬁ_n)_ - (\/ﬁrl nn) (\/ﬁ ”)R

This gives the claimed result.
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