BueBnmcannbie OKPY2KHOCTHN 1N AIO2KWUHbI TOY€EK.
(IIpencraBasiercsas B. @unumonoBbiM 1 A. 3aciaBCKUM. )
O nmogBJIeHUU 3TOM cepum 3aaa4.

Bceé magasoch co ciemyroreit 3agaqm, Koropyio Mmue coobmmt JI. Tepérmma.

Bamaga (/. Tepémun). Paccmorpum Tpeyronbank ABC u JiBe ero BHEBIHCAHHBIE OKPYXKHOCTH, OJ[HA
n3 KOTOpbIX Kacaercss ctopoubl AC B Touke K u mpomomxkenuit cropon AB u BC B Ttoukax L uM, a
npyrast — cropoubl AB B Touke P u mpojoskenuit cropor AC u BC' B Toukax ) uR. Jlokaxkute, 1T0
Touka nepecedenus X npsameix LM u QR jexxuT Ha BbICOTE (IIPOBEIEHHON M3 BEPIUHBI A) TPEyroJbHIKA
ABC.

Cx0y TeOMETPUIECKOTO PEIIeHusT ITON 3a1aun HAWTH HE YIAJ0Ch, PabOTAN JIUITh BBITHUCIUTEIbHDIE
criocobbl. HekoTopbie HaOIIIO/IeHNS TOOABUIN HHTPUTY B 3TOT cioxkeT. OKa3as0Ch, 9TO TaKyKe TOUKA Iepece-
genust Y upsMbeix K M u PR jexxut Ha BbicoTe TpeyroibHuka ABC, a KpoMme TOro, IjuHbl 0OTpe3koB AY u
AX paBHBI COOTBETCTBEHHO PAJINYCy BIUCAHHON OKPY>KHOCTH ¥ BHEBIUCAHHON OKPYKHOCTH, KACAIOIIEHCST
croporbl BC. Boiiun obHapyKeHBI JpyTrue MHOIOYUC/IEHHbBIE (DAKTHI, OOHAPYKUJIACh CBS3b C MU3BECTHBIME
TPYAHBIMU 33J[@9aMy OJMMINaJL (HEKOTOPBIe U3 HUX MPUCYTCTBYIOT B cepui). 2Kesranne mosy9uTs 9ucTo
reoMeTpuYecKre 00bsICHEHUS STUX PAKTOB IMOOYIUIO PACCMOTPETH 0oJIee TTOAPOOHO TOUKU KACAHUST CTOPOH
C BIIMCAHHO 1 BHEBIIUCAHHBIMU OKPYKHOCTSIMU, U IIPSIMbI€, UX COEUHSIONIIE. DTH Y€THIPE OKPYKHOCTH 00-
JIAJIAIOT PA3IUIUIMY, CBI3aHHBIMU C T€OMETPUIECKUM PACIIOJIO2KEHUEM: CKaYKeM, BIIMCaHHAs OKPYKHOCTh
BCerJia MEHbIIle BHEBIIMCAHHON, BIMCAHHAs PACIIOJOKEHA BHYTPH, & BHEBIHCAHHAS — BHE TPEYTOJbHUKA.
OnHaKo, 5TU OKPYKHOCTH MMET o0Iue TJyDOKHe CBOMCTBA: KaXKJasi U3 HUX KACAETCs TPEX MPSMbIX,
COJIEPKAIIIX CTOPOHBI TPEYTOJIbHUKA, HMEHTD KaXKJI0# N3 HUX JIEXKHUT Ha IlepecedeHnH TPEX OUCCEKTPHUC
YIJIOB TPEyTOJIbHUKA (€cjiu 1o OMCCEKTPUCOil TTOHUMATh BHYTPEHHIOK JIMOO BHEIIHIO OGUCCEKTPHCY), U
KaK IIPaBUJIO, HAJWINE HEKOTOPOr'O CBOWCTBA Y OJHON M3 OKPYKHOCTEHl BJIEUET HAJNYNE ITOTO CBOICTBA
(nm amajsiora STOro cpoiicrBa) u y japyrux. [losromy BrmcaHHasi U BHEBIHCAHHBIE OKDYXKHOCTU B HEKO-
TOPOM CMBICJIE PABHOIPABHLI 110 OTHOIIEHHUIO K JAHHOMY TPEYTOJBHUKY, W s MOHUMAaHUsI HEKOTOPBIX
BayKHBIX I'€OMETPUYIECKUX (DAKTOB IIOHAI0OMIIOCH OJIHOBPEMEHHOE DACCMOTDEHUE BCEHl UeTBEPKHU OKPYK-
HOCTel. DTUM OObSICHSIETCSI BBEJICHUE He BIIOJIHE CTaHJAPTHBIX, HO <«PABHOIPABHBIX» OOO3Ha4YeHuii (cM.
HITKE).

Pasnesnsr A, B, C sT0it cepun mosiBUJINCh B pesysibrare paboThl aBTopa TeKcTa coBMmectHO ¢ M. Borma-
HOBBIM, pasznes D mobapien A. Sacinapckum. Biaaromapum A. Axonsina u B. IIporacosa 3a mposiBieHHOE
BHUMAHUE U 3aMEYAHUSI.

I1. KoxxeBHUKOB

O6o3HaueHud.

Bce paccMoTpeHust TPOUCXOIST B MPOU3BOIBHOM HepaBHOOeApeHHOM Tpeyrosibauke A BC. Ha mporsike-
HUU BCEl CepUM MPUJIEPKUBAEMCH CJIEIYIONINX 0D03HAYEHUH JIJIi OObEKTOB, CBI3aHHBIX C TPEYTOJbHUKOM
ABC.

R,p — pammychl onncaHHO# U BINCAHHOM OKPYKHOCTH, ITOJTyIEPUMETD;

a,b, ¢ — nyuubl croporn BC, C'A, AB;

A', B, C" — cepeaunnr cropon BC, CA, AB;

AH,, BH,, CH. — BoicoTbl, H — opTonenTtp Tpeyroabunka ABC,

) — onmcaHHast OKPyKHOCTh, O — €€ IeHTp;

W — BIHCAHHAs OKPY’KHOCTb, [y — €€ IEeHTD; w1, Wo, W3 — BHEBIIMCAHHBIE OKPYKHOCTHU (KaCAIOIMINECs
coorBercrBenHo cropon BC, CA, AB), I, Iz, I3 — ux 1eHTPBI, T; — PAJIUYChl OKPYKHOCTEN W;;

I}, I1, I}, I — nenTpbl BIUCAHHOI M BHEBIHCAHHBLIX OKpyzkHOCTEll Tpeyrosbuuka A'B'C.

B mpesyioxenHbIX 0003HAMEHHAX IPUCYTCTBYET CJIe/IyIoIas CAMMEeTPHUs: 3aMeTuM, 9To 6 npamerx I;1;
(i # j)— BHemHue n BHyTpeHuue 6uccekTpucel rpeyroibauka ABC. Tlosromy gersépka Touek Iy, I, I, I3
— oprolleHTpuYIecKast, u TpeyrojbHuk ABC — opToTpeyrojibHUK (TO €CTh TPEyrOJbHUK C BepIIMHAMU B
OCHOBAHMSX BBICOT JIIO60T0 m3 4eThIpEX TpeyronbHukos Ioly s, 111313, IoI31y, I3lply). Ilpu sToM Toukm
A, B, C 0JIHO3BHAYHO COOTBETCTBYIOT Da30MEHMsIM MHOXKECTBa U3 4eThipeéx uHjekcos {0, 1,2,3} Ha napsr:

A=1IgyiNIi3, B=1ylonNIiI3, C = IylsNI1s.



Cepus A: llepBasi qioXkmMHa: TOYKU KACAHUS

[Mycrs A;, B, C; (i =0,1,2,3) — Toukn Kacanusi OKpy>KHocTH w; ¢ upsimbimu BC, C' A, AB coorser-
cTBeHHO (Ha puc. A — KpacHble TOYKH, UX 12 MITYK).

Al.

A2.

A3.

Ad#

A5
A6#

Ao u Ay, a takzke Ao u Az cummerpuunbl orHocuTeabHo A’ npuuém AgAz = A1As = ¢, Agdy =
AjA3=b, AAy = A'A = V);C‘, A'Ay = A A3 = % (AHAJIOTUYIHO — CUMMETPUsT OTHOCUTETHHO
B'uC")

a) Ilpsimbie AA;, BB;, CC; nepecekaloTcsi B OIHOIN TOUKe.

6) Ilpsimble AA;, BBs, CCs nepecekarorcst B OjiHO# Touke. (AHAJIOMMIHO, TPOHKM mpsiMbix AAp,
BB3, CCy; AAy, BBy, CCy; AAs, BBy, CC niepeceKaloTcsi B OJIHON TOYKH WJIN [TAPAJIICIHHBI. )

Pajukaibible ocH Hap OKPYKHOCTEHl w; M wj — BHYTPEHHHE U BHEIIHHE OUCCEKTPUCHL YIJIOB Tpe-
yrombauka A’ B'C’. (Haiiaure pasmkaibHble MEHTPBI BCEBOBMOXKHBIX TPOEK M3 OKPYKHOCTEN wy, w1,
w2, w3')

Cpein OKpy>KHOCTEM, KACAIONUXCsI TPONKU OKPY>KHOCTEH w1, Wg, W3, €CTh TPU OKPYKHOCTH, IIPOXO-
) ) ) 37 )
JdInye yepe3 TOUKY I(). (Jokakure aHAJIOTMIHOE YTBEPKICHUE JIJIsT APYTUX TPOEK OKPYKHOCTEH. )

AA; || InA” (anamoruano AAg || 1A', AAy || I3A', AAs || LA ur n.).
IIpsambie IgAq, 11 Ag, 15 A3, I3As nepecekaiores B oaHoil Touke. UTo 3T0 3a TOYKA?

Cepusa B: Bropasa aioxkuHa: «poOKyChI»

O6o3nauuM Touku Iepecevenuss By = By = AgBy N A1B1, By = B3y = AsBy N A3Bs. (S,ZLer
AgBo N A1By — 310 umenHo Byi, a He Agy, Tak Kak A COOTBETCTBYeT PasOMEHMIO MHOXKECTBA UHIEKCOB
{0,1,2,3} ma mapsr 0,1 u 2,3.) AHasIoriIHO onpeiesuM To4YKE Bee 12 Touek: A;j, tue i € {0,1}, j € {2,3}
(Besme momaraem A;;j = Aji); Bij, e i € {0,2}, j € {1,3}; Cjj, rne i € {0,3}, j € {1,2}. Ha puc. B1, B2
BCE 9TU TOUYKHU — (PUOJIETOBLIC TOUKHU.

JlokaxkuTe ceayromye yTBepsKIeHUs.

BO.
Bl1.

B2.

B3.

B4.
B5.

B6.

B7#.

Hokazkure, 910 yros By BggBs — npsiMoii (TO e Jijlsi aHAJOINYIHBIX YIJIOB).

Touku Bas, Ca3, Ag, A3 jexur Ha ojHON OKpy:KHOCTH. Haiiaure nentp 31oii okpyzkHOCcTH. (AHATIO-
ruuno Touku Bgi, Co1, Ag, A1 Jilexkar Ha OHON OKPYKHOCTH, U T. JI., TAKAM 00PA30M IOJIYIAETCs,
9TO KpacHble U (DUOJETOBBIE TOYKH PACIOIOXKEHBI Ha MIECTH OKPY’KHOCTSIX. )

A;j nexar Ha cpenmeit suanun B'CY (anasmormuno, B;; u Cjj jexar Ha CPEJHUX JIMHUSAX, TAKIM
o6pazoM, 12 GroseToBLIX TOUEK pactookenst o 4 Ha Tpéx npsveix A'B’; B'C’, C'A).

A1s (u anasoruano Agg, B, Beg siexkar Ha okpyzkHOCTH ¢ uamerpoM A B, (npuuém Age By A13Basg —
npsiMmoyTosibHUK. ) (Takum 06pazom, GpuoIeTOBbIE TOUKN — PACIIOJIOXKEHBI 110 4 Ha TPEX OKPYKHOCTSIX
¢ muamerpamu BC, CA, AB).

Beipaszure qmunbt Ags Ags u T.J1. gepes a, b, c.

Touxka A;; nexxur Ha npsmoit I;1;, npuraém A;; siBasiercst npoeknueii Touku A Ha npsmyio I; 1. (Takum
obpazom, 12 HroIEeTOBBIX TOUEK JIeXKAT O JBE Ha MIeCTH OHCCeKTpHcax yriaoB Tpeyrojibauka ABC).

Touku Age 1 Cpa — dokycbl oKpyKHOCTEl wy 1 wa (TO ecTb Agz n Cpg — Mapa TOUYEK, HHBEPCHBIX
OTHOCHUTEIFHO KaXKJI0ii u3 9Tux JAByX oKpyzkHocreil). (Takum obpasom, duoserossie ToUKN pasduBa-
forcst Ha 6 map (POKyCcOB; OTCIO/IA, B YACTHOCTH, CJIEJIYET, YTO BHYTPU KarXKJOi U3 OKPYKHOCTEH w;
JIEZKUT POBHO TpU (PUOJIETOBBIE TOUKH).

HaIU/I,HI/ITe PaJuKaJIbHbIC HEHTPLI BOCbMU TPOEK TaKUX Opr}KHOCTeﬁ C pa3HbIMU HEHTPaMU U3 3a/a491

B1.



B8#.

BO#.

[Tecrépka Touek AggAg2Co2Ca3BosBos J1eXKUT HA OJHOl OKPY’KHOCTU (MMEIOTCsI eIl TPU aHAJIOTUY-
Hble OKpYy2KHOCTH). Haiigure 1enTpel 9TuxX OKpy:KHOCTEil. Bhipasure ux pamychl 4epe3 9J1eMeHTHI
tpeyroibuuka ABC.

Apz 1 A3 — IIEHTPHI COOTBETCTBEHHO BIMCAHHON U BHEBIHMCAHHOI, MO0 JIBYX BHEBIHCAHHBIX OKPY K-
Hocreil g1 Tpeyronbauka B’ H, Hy,.

Cepus C: Tperbs AioXKHHA: «IIepecevyeHnss — Ha BbICOTAaX»

Honoxkum Azy = AgCo N A1 By (3mecy AgCy N A1 By — 310 MMeHHO A3), a ne Ay, TaKk Kak TOUKe
C coorBercTByeT pasdbmeHnto wHIEKCOB Ha mapbl 0, 3 u 1, 2, u uHIEKC 3 — 5TO BTOPOI WHIEKC U3 MAPhI,
coaepzKalei O) Amnajyiormyno, A(Q) = AgBy N AC1, A(O) = Ay By N A3(Cs, A(l) = AyC5 N A3B3, u To4HO
TaK K€ BBOJIATCS TOYKHU B(Z-) u C’(i) — Bcero 12 Tovek, OHU OTMedYeHbI 3eJI6HbIM Ha puc. C.

JokaxkuTe ciiejlytomiye yTBepK/IeHUs.

C1.

C2.
C3.
C4.

C5.

C6.

C7.#
C8.#

C9.4

[onoxkum Cf = AgBoN A1 Ba, n anajgorndno seejieM 12 Todek A]

Touku A;y nexar na npamoit AH, (1 aHAJIOPMYHO J1J1sT TOYEK By n C;), Takum obpaszom 12 zeséubix
TOYEK JIEXKAT 110 4 TOUKHU Ha KaXKJIOi u3 BbICOT Tpeyroibauka ABC).

Otrpesok AA(;) pasen 10 jjmHe 7.
Hpsamas A ;) A; napasienbia onolt us 6uccekTpuc yria A.

Hoxazkure, aro npsmbre A(1)A1, B(g)B2 u C(3)C3 nepecexatorcst B oHoit Touke. (AHaIorudHo, mie-
IOTCsl €IIE TPU TPONKM NPSMBIX, IlepeceKalomuxcs B ofuolt Touke: Ag) Ao, B(sg)Bs u Cp)Ca; A(3)As,
B(O)BO n C(I)C’l; A(Q)Ag, B(l)Bl " C(O)CO)

Tpeyronbruukn A1 B2Cs u Ay B()C(p) nenrpanbio cummMerpudnbl. Hafiure ux nenTp cumMMeTpu.
(Amanormano, maper Tpeyrombankos AgB3Co u A1) B1)C(1), A3BoC1 1 A)B(2)C(2), A2B1Cy n
A(3)B(3)C\3) MeATPaILHO CUMMETPHYHDL. )

Ornucannbie OKPY2KHOCTHU TpPEYT'OJIbHUKOB A(l)B(Q)C(3), A(O)B(g)C(Q), A(g)B(O)C(l), A(Q)B(l)C(O)
UMEIOT OOMIHii MEHTD (TaKuM 00pa30M 3eJIEHbIe TOYKU PACIIOJIIOXKEHBI 110 TPU HA YETHIPEX KOHIIEH-
TPUYECKUX OKPY’KHOCTsIX ). Haiiure obmuii eHTp 9TUX 9eThIPEX OKPYKHOCTEH.

Beipasure gnunnt orpeskos AH, BH, C'H uepe3 pajuychl 7.

BripasuTe pajtuyc onmucannoit okpyzkHocTn Tpeyroabanka A1y BoyCs) vepes R u ro. (AHanmormanbiv
06pa30M, BeIpas3uTe PaJInychl OKpyzKHOCTeil u3 3aaa4n C6.)

[Tpamag I; A’ npoxoaur yepes A(i) (amasiornuno I; B’ npoxonut uepes By, I;C’" npoxoaut yepes C(i)).

Cepus D: YerBepras AroXKuHa.

¥, Bf, Cf (na puc. D onm nokparenst

CI/IHI/IM). (HOCTpOeHI/Ie 9TUX TOYEK JIETKO OIIMChbIBACTCs CJIEAYIOIIUM o6pa30M: BozbpMmém OJHY U3 OKPY?KHO-

creit,

HaIIpuMepP wo. Bo3bMEM TOUKH €€ KacaHWsI C JBYMsl CTOpOHaMu, HanpuMep Ag, By. BosbMéM Toukm

KACAHUs ITUX YK€ CTOPOH C JIBYMSI JIPYTUMU OKPY2KHOCTSIMU, KOTOPbIE CUMMETPUYHbBI BHIOPAHHBIM paHee OT-
HOCHTEJIbHO COOTBETCTBYIOIIMX CEPeNH, B JaHHOM cirydae Ai, Bs. [locTpouM TOUKY mepecedeHnst MPsIMbIX,

COEJIMHSIIONINX J[BE BBIODAHHBIX HAapbl TOUYEK KACAHUS).
JlokarkuTte CJIeIyIONINe YTBEPIKICHUA.

D1.

D2.

D3.

Cropons! Tpeyromsnuka A} B} CY mpoxonar depes Bepmmasl ABC.

ITpoeeném uepes C; npousBosbHYIO NpsiMyto u Haitgem toukn A", B” eé nepecevdenns co croponamu
BC, AC. Torga upsimeie A” BY, B" A¥ nepecekarorcst B nekoropoii rouxe C” croponst AB.

IIpsimpbre AA” BBH CC” IepeceKaloTcss B OJHON TOYKe, M30TOHAJILHO COIPSIXKEHHAST K KOTOPOI
) ) )
JIC2KUT Ha HpHMOﬁ OLJ



D4.
D5.

D6.

Dr7.

Oxpyzxnocts A” B”C" npoxonut uepes Touky Peitepbaxa F;. Hapeproe, ecTb emnié Kakue-To cBoiicTBa.

Yerbipe cunue 10K, 0003HAUEHHBIE OJIHOM OYKBOIA, JIEYKAT HA OHON HMPSMON — COOTBETCTBYIOIIEH
CTOPOHE OPTOTPEYTOJHLHIKA.

* % Yk
a) Tpeyromsuuxu AfB;CY u ABC nepcrekTuBHbI (TO €CTb HPsIMble, COEIUHSIONIIE COOTBETCTBYIO-
I7e BEPIIUHBL 3TUX TPEYTOJbHUKOB, IEPECEKAIOTCS B OHON TOUKE).

b) [TomprraiiTech OTBICKATH KAKHE-TUO0 COOTHONICHUST MEXKJLy YETHIPbMsI IEHTPAMHU [EPCIIEKTHBHI.

(O606menne 3amaan D4) Pacemorpum npomnssosbhyio Touky C** na npsimoit H, Hp. Ilposeném de-
pes C** npousso/bHyIO psaMyio u Haiigem Touku A”, B” eé nepeceuenus: co croponamu BC, AC.
[Tycts P — Touka nepeceuennus npaMmbix AA” u BB”, a C" — touka nepeceuenusa CP u AB. Torna
OIMCaHHBIe OKPY?KHOCTH Beex Tpeyroabaukos A” B”C" umeror o6y ToUKy.



Al.

A2.
A3.

Ad#.

AB5#.

AG#.

BO.

Bl1.

B2.

B3.

B4.

BueBnmcannbie OKPY2KHOCTHN 1N AIO2KWUHbI TOY€EK.

YkazaHusl, pelieHnsi, KOMMEHTAPUU.
Cepusa A: dioXuHa TOYEeK KaCaHUS

Cuietyer U3 1mojicuéra OTPE3KOB KacaTeIbHbIX, Hanpumep, 2AB1 = AB1 + AC; = AB+ BAy+ AC +

b
+ CAg = 2p, orkyna B'By = p — 3= ¢ _2‘_ < (Cm. Takxke 3aMedanue K 3aja4e B5.)

Caenryer u3 Teopembl HUeBbl (HCIOIB3YeTCsl PABEHCTBO OTPE3KOB KACATEIbHBIX ).

W3 zanaun Al caenyer, uro Touka A’ mmeer paBHBIE CTEHEHH OTHOCUTEILHO OKPYXKHOCTEl wo U w3,
sHaunT A’ exxuT Ha MX pajuMKasbHON ocu. Kpome Toro, sTa pajuKasbHas OCh HepHeHIUKYIaApHa
JuHuM HeHTpoB Iol3, To ecTh napaJuienbua (BuyTpenneii) 6uccekrpuce yria BAC nm yrona B'A'CY.
Taxum 006paszoM, pajuKajibHas och — ouccekTpuca yriaa B'A'C’. Vickomble paJiKabHble IeHTPbI —
rouku I, I}, I}, I.

(Dra 3amaua Gopmynuposansach Kak rumnoresa B jokiajge K. Kysmnerosoit (Besmkue Jlykn) na xon-
depennun mkosbauKoB «Crapr B Hayky — 2009»)

U3 3agaan A3 ciejyer, 94TO CyIIECTBYeT MHBEPCHUsi C LEHTPOM I(), epeBosast Kax iy U3 OKPY K-
HOCTeH w1, wa, wy B cebs. Ilpu sroit muaBepcun upsmbie AB, BC, C A nepeiinyT B OKPY*KHOCTH,
npoxozsinye depe3 I u kacaomuecst OKpyKHOCTel wi, w2, w3.

lomorernst ¢ nearpoM A, nepesousdias wi B wg, nepesoaut auamerp K A; B nmamerp AgL. Takum
obpasom, npsimast AA; coenamaer ¢ npsimoit LA;. Ilocsie a3Toro Hab/IIONEHNST YTBEPKIACHUE 381891
ciemyer us toro, uro IgpA' — cpenuas munmii Tpeyrosbanka AgLA;.

B o6o3nauennsx u3 pertennst npeasLayeii 3agaan: rpeyronsanku Ay LAy u A AH, romoreTndns! (¢
nenTpom Aj ), nosromy npsimas Ajly siBisiercst Mmeguanoii B rpeyrosibiuke Ay AH,, TO €CTh IIPOXOHT
qepes cepeauHy BeicoTbl AH,.

Cepus B: Bropas groxkuna: «@poKycbi»

Cuaestyer u3 Toro, uro npsimbie A; B; napaJsuiesbhbl 6uccekrpucam yria C (BHeIIHel 1w BHY TPeHHelk ).

Wz zamaun BO cienyer, urto AsBas 1L A3Boz u AsCss L A3Chs, mo3TOMY yKas3aHHbIE 4 TOUKHU JIeXKaT

Ha OJIHOI OKpyxKHocTH ¢ juamerpoM AsAs. Mz Al ciemyer, uro mentp sToit okpyxkuocru — A’
+c

. Ananormano, Touku By, Cy1, Ag, A1 J1eskaT Ha 0IHOI OKPYXKHOCTH C IEHTPOM
|b B C| )
2

(a paguyc pasen

A’ (u pagmycom

° em A2), 1o-

3TOMY pasHOOepentbie Tpeyroabauku Ay A’ Bog u AoC By romorernannt, u A’ Bas || AC, 10 ectb Bog
JexxuT Ha cpenneit munun A'CY.

B upsimoyrosbaoMm Tpeyrosibuuke AsBogAs umeem: A'Bog = A’As, (u pasho

3amedanue. By3 TakKe JIEXKUT Ha OKPYKHOCTH C JuamerpoMm B Bs.

c
Buast, mmuy A'Bas (em. B1), merko maiitn C'Bas = A'Bog = A'C! = 5 1O3TOMY Bo3 Jjiexkur Ha

C "
OKDPY2KHOCTH paJluyca 5 C IEHTPOM C/. ,HJIH APYyrux To4YeK TUulla B,Lj II0ACYET aHaJIOTHYICH.

b
Vs B2 jerko nomyuntb: A13A10 = A13C" + C'B' + B'A15 = % = p; A13Ap3 = A13412 —

— Ap3A1a = p — b (rak kak Ag3Ai1o — nuamerp okpyxkHoctu u3 B2). Anamornano Ag3Ags = p — a,
ApgA12 =p—c



Bb5.

B6.

B7#.

B8#.

BO#.

C1-3.

(OHa m3 BO3MOXKHBIX KOHbUrypanuii 3roii 3ajaun — B 3aade 1.66 B 3amaunuke [IpacosioBa, cwm.
takxke crarbio [Iporacosa («Ksanr», Ne 4 — 2008); takxke cMm. 3amady 255 u3 3amadanka [lapeiruma
9 — 11, KoTOpyIO aBTOP JaxKe orMedaer (CJaydaitHo ju?) B MPEIUCIOBIM. )

3 Bl u B2 umeem: C'Bag || AC u C'Bog = C'A, orkyna /BosAC' = /0’ ABgg = /B3 AB3, Takum
obpasom, ABog — BHelHsIst buccekTpuca yriia BAC. Kpome Toro, uz B2 cienyer, uro BBog 1 ABss.
st 1pyrux TOYeK NOKA3aTeILCTBO AHAIOMUIHO.

Sameuanune. O6parTuM BHUMAHKE HA MHOXKECTBO MAPaJIJIEIONPAMMOB Ha PUCYHKE (CTOPOHBI KOTOPBIX
napaJuIesIbHBL 100 cropoHaM Tpeyroibanka ABC, mubo ero 6uccekrpucam). CkazxkeM, u3 napaJuie-
sorpamMoB AgA13A23C 1 BA13A93A9 BuiHO reoMerpudeckoe obbsicHenne 3amadn Al.

Tpeyronbuuku IyAga By u Io ByCopz 110106HbI (B mojicuére yrios uctosib3yeM, uro ByCpe napasuieabaa
BHerHell 6uccekrpuce yria ABC), orkyna InAgs - InCoa = r%.

Vckomble pajinKaJibHBIE IIEHTPBI — 3TO TOYKHU [;, a TaK>Ke TOUYKU, CHMMETPUIHBIE UM OTHOCHUTEHHO
[IEHTPAa OIUCAHHOI OKpy2KHOCTH Tpeyrojbauka ABC.

HaHpI/IMep, u3 B6 CJIeyeT, 9TO IOADQ . I()CQQ = IDA03 . IoBog = IQBDl . 10001 = T(Q), 3HA4YUT CTe-
[eHU TOYKHU Iy OTHOCUTEIbHO OKPYKHOCTEl, MOCTPOEHHBIX Ha oTpe3kax AgAi, BgBs, CoCsy Kak Ha
muamerpax (cm. Bl), paBHbr.

Hanee, paccMoTpuM, HATPUMED, OKPY>KHOCTH ¢ quaMmerpamu Ao Az, By Bs u C1Cy. Touka I3 nexxur Ha
PaJIMKaIbHOM OCH TIEPBBIX JIBYX OKPY2KHOCTEl, TaK KaK paBHBIE 0Tpe3Kn I3 Ao u I3 By sIBJISTIOTCST Kaca-
TEJIHBIMHU K 9TUM OKpYyKHOCTsM. Kpome Toro, pajinkajibHasi OCh HEPIeHIUKYIISPHA JTHHIH [IEHTPOB
9TUX OKPYXKHOCTEH, TO ecTh cpejHeil iuaun Tpeyroibauka ABC. Tpu Takux npsiMble IEPeceKaroTCs
B TOUKe, cuMMeTpudHoii I orHocuTenbuo O.

!
DTO OKPY?KHOCTH C TeHTpamu I;.

B camom nene, mycrn, crazkem, X — mpoeknust ) na B'C’. Torna n3 B3 soivekaer: X Ajp = XB' +

I L /42— x2yx A2, — BT
+B'Ajp = —t3=5% Torma IgAfy = IpX*+X A7y = 1 AHaJIOrI9HO KBAJPAT PACCTOSHIA
, r2 4 p?
or Touknu I mo mr060it u3 rouek Aoz, Aoz, Coz, Ca3, B2z, Bos paBer ————
2 2
/ i+ (p — a)
Taxum >xe 006pa30M, JOKa3bIBAETCS, YTO OKPYXKHOCTh € LEHTPOM [| HMeeT paamyc B E— u

T. 1.

3ameyanue. Ha camoMm jiejre, HETPYIHO yCTAHOBUTH OOIMUil dakT: Tpyu mapbl (POKYCOB I TPEX
OKDYKHOCTEH, IEHTPBI KOTOPBIX HE JIeXKAT Ha OJHO IPSIMOIi, JIe’KaT Ha OJIHOM OKpYKHOCTH (J10-
Ka3aTeJbCTBO — YIPaXKHEHWe Ha CTEleHb TOYKHU ILUIIOC TOT (PaKT, UYTO PAJUKAJILHBIE OCU JIOJIZKHBI
[IePECEKATbCsST B OJ[HON TOUKeE).

3amMmeuanme. IT0 OfHA U3 OKPYKHOCTEl cemeiicTBa Tyxepa mjst TpeyrosbHuka I11o13.

(Cm. makxke crarbio B. IIporacoBa 3 «Ksanra» Ne 4 — 2008, sra 3aja4a urpaer BayKHYIO POJIb
B JiokazaresnbcTBe Teopembl Deiiepbaxa.) CyApe — Guccekrpuca yria AB'H, (u3 cummerpun). Pac-
CMOTPHUM OKPYZKHOCTD JIeBATH TOYEK, TpeyroibHuk B’ H, H}, BUMCAHHLIA B 9Ty OKPYZKHOCTb, U TOUYKY
C" — cepenuny nyru H,Hy. Tak xax (em. B3) C'Agy = C'H, = C'Hy, T0 1m0 Teopeme, 06paTHOi
JIeMMe O Tpe3ydle, moJjydaeM, 9To Agy — LUEHTDp BIMCAHHON WM BHEBIHMCAHHONR OKPY?KHOCTH JIJIS
Tpeyroabnuka B’ H, Hy.

Cepnﬂ C: TpeTbﬂ AI02KMWHA: «IIepecevdeHrus — Ha BbICOTax»

U3 B5 cnenyer, uro AAge AgAgs — napasuresiorpamm (€ro CTOPOHbI apaJlieJbHbl (BHEITHUM ) OHCCEK-

tpucam yrios CBA u ACB). Taxxe A g)Ao2loAoz — napasienorpamm (ero cTOpOHBI HAPAJLIIEIIBHBI
— —_—
(BryTpemnmnm) 6uccextpucam yrios CBA u ACB). Hostomy IpAg 1 AgyA cummerpudb oTHOCH-

TesIbHO cepeunbl orpeska Ag2Agz. Orciona serrekaer Cl n C2. Tak kax IpAgA A — napaesno-
rpavm, To A A; || Aly.



C4.

C5.

C6.

C7-8.

C9.#

C10.4

(7o zamaua Emenbsnosa 10.7 ¢ 5 srana Beepoccuiickoit omuvnuazpr 20027 roga.) U3 C3 Beitekaer,
4TO 9TU NPAMBIE — BbICOTBI Tpeyrosbiuka A1) B2)C(3).

3ameuanme. M0oKHO 1I0Ka3aThb, 9TO TOYKA [E€PECEUEHUs] YKA3AHHBIX TPEX NPSIMBIX CHMMETPUYHA
oproueHTpy Tpeyronasuuka AgByCy orHOCHTENBHO TOUKE ().

HOKa}KeM, 9TO UCKOMBIEC NEHTPbI CUMMETPUU — TOYKHU Il/

Tak Kak pajKaJbHasi OCh JIEJUT TOMOJaM OTPE3KH OOIIUX KACATEIbHBIX, 13 3a7a9u A3 BBITEKAET,
ato npambie BaCy (= BaCg)) u B3Cs (= C3B(p)) cnmvmerpudnbl oTHOCHTETBHO nipsivoit A’ Iy, mm
OTHOCUTEJILHO TOUKY ). AHAJIOIMYHO, IIPSIMBIE A1C gy u C3A(g) CUMMETPUIHBI OTHOCUTEIHHO I). 910
O3HAMACT, 4TO COOTBETCTBYIONHE TouKn repecedenus Cg) n C3 CHUMMETPHYIHBI OTHOCHTETLHO I

Wckowmpbrit ienTp — Touka H.

Uz C1 mpr sHaem, uro nanpumep, Ay = A3C3 N AH, n Cp) = A3C3 N CH.. Tax kak A3C3
napaJutenbua ouccekrpuce yria B, To A3Cs obpasyer Takzke paBHbIe yIibl ¢ Boicotamu AH, u CH.,.
Orcrona BerTekaer, uto Tpeyroabuuk H A(g)Co) pasaobepennbli, To ectb H pasnoyaiena ot A g

Paanycer onmcannbix okpyzkHocreil u3 3amaan C6 pasuer |p;|, tne po = AH +r; = BH + 1y =
=CH+r3, pp =1r9— AH = BH —r3 = CH —ry, p2 = AH —r3 = ro — BH = CH — rq,
ps = AH —ry = BH —r; = ro — CH (3neco AH u T. 7. 103BOJIUM OBbITH OTPHUIIATEJIbHBIME, €CJIU
COOTBETCTBYIOIIHIA yroJl TpeyrojbHuka Tymoii). Orciona seipaxkaem AH, BH, CH 4epe3 pajuycsbl

TZ-AH:T0+T1_£T2+T3—rl,BH:TO+r1;T2+T3—TQ,CH:TO+T1;T2+T3—T3.
ro+ri+rat+rs To+T1—T2— T3 ro—T1+7r2— 173
Ilomyuaem: pg = > , P1 = 5 , P2 = 5 , p3 =

To—T1—T2+7T3 ..
= , WX C YIETOM COOTHOIIEHUs 71 + 72 + 13 = 4R + 19 (cM. 3amaanuk [Ipacomosa

2
1224), po =10+ 2R, p1 = |’l“1 — 2R|, p2 = |r2 — 2R|, p3 = |’I"3 — 2R|

—
W3 3amaun A5 BeITEKaet, uTo, ckaxkeM, IgA’ mepecekaer Boicory AH, B TOouke S Takoii, uro AS =

—

Iy Ap, To ectb B TOUKe A(() (cM. 3amaum C1-2).

(zamaua npejioxkena 1. IIpokonenko) 1. Herpyauo Bujers, uro A — cepenuna M N, 1o3romy AA
CEepeIMHHBIN TIePIeHINKYIAp B Tpeyroapauke M AgN.

2. Uz samaqu C3 caenyet, uro AgA(gy u Agly cuMMeTpuiHbI OTHOCHTENIBLHO 6uccekTpucht yriaa M AgN.
Tax xak Aoy — BbICOTA TPEyTOIBHIKA, TO IIpAMas AgA gy COIEPKHUT EHTP ONMCAHHOI OKPYKHOCTH
rpeyrosbauka M AgN. U3 1 u 2 cienyer Tpebyemoe.

Oreet: opToreHTpoM Tpeyroabauka AgM N saBasercs Touka, cuMMeTpudHas Ay OTHOCHTETLHO Ij).

Bajauu cepun D mpejcTaBiasior coboit epedopMyIUPOBKY YTBEPKICHUS TeopeMbl EMe/IbSHOBBIX, U
X pereHnst MOTyT ObITh Haiimenbl B kaure «Jlerane Kondepennuu Typrupa ['opomos. N36panubie maTe-
puajel. Berryck 1.» MITHMO, 2009.



Excircles and Dozens of Points.

(Presented by V. Filimonov and A. Zaslavsky.)

On the Origin of this Series of Problems.

The work on this series started from the problem posed by D. Tereshin.

Problem (D. Tereshin). Cousider triangle ABC' and its excircles: one of them touches the side AC
at K and touches the lines AB and BC at L and M, the other touches the side AB at P and touches the
lines AC' and BC at Q and R. Prove that the intersection point X of the lines LM and QR lies on the
altitude (passing through A) of the triangle ABC.

At once the geometrical solution was not found, only calculations work. Some observations made this
problem more exciting. It appears that the intersection point Y of lines KM and PR lies on the altitude
of triangle ABC, and the length of the segments AY and AX equal to the radii of incircle and excircle
touching the side BC. Some other results were obtained, and some connections with known problems
from olympiads were established. In search for the geometrical explanation of these results we tried to
consider in details the touch points of the sides with incircle and excircles, and the lines joining these
touch points.

The incircle and the excircles have some different properties (for example, the incircle is smaller
than any of the excircles, the incircle lies inside the triangle while the excircle lies outside the triangle).
Nevertheless, these four circles have deep common properties: each of them touches the three sidelines of
the triangle, the center of each circle is the intersection of three angle bisectors (either internal or external).
So as a rule, if one of the four circles has some property, then the others have an analogous property.
That is why these four circles in some sense enjoy equal rights with respect to the original triangle. To
understand some important geometrical results we need to consider all the four circles simultaneously.
Thus we introduce some non-regular but symmetrical notation (see below).

The sections A, B, C of the project were made by the author of the text jointly with I. Bogdanov,
the section D was added by A. Zaslavsky. Also A. Akopyan, D. Prokopenko, and V. Protassov had made
many useful notes and additions.

P. Kozhevnikov



Excircles and Dozens of Points.

Notation.

In a fixed non-equilateral triangle ABC' let us denote:

R, p — the radius of the circumcircle and semiperimeter;

a,b,c — lengths of BC, CA, AB;

A’, B', C" — midpoints of BC, CA, AB;

AH,, BH,, CH. — altitudes, H — orthocenter of triangle ABC

) — circumcircle, O — circumcenter;

wo — incircle, Iy — incenter; wy, wy, wg — excircles (touching segments BC, C' A, AB, respectively),
11, I>, I3 — centers of the excircles, r; — radii of wy;

I}, I, I}, It — centers of incircle and excircles of triangle A’B'C".

The notation has the following symmetry: Note that 6 lines I;/; (i # j) are internal and external
bisectors of triangle ABC. Therefore the quadruple Iy, I1, I, I3 is orthocentric, and ABC' is the orthotri-
angle (that is the triangle having feet of altitudes as vertices) for each of triangles IoI1 1o, I1I213, I2131),
I3IpIh). To each of the points A, B,C' we put into correspondence a partition of 4-element set {0, 1,2, 3}
into two 2-element subsets: A = Igly N Iol3, B = Igls N 1113, C' = Iyls N 11 1.

Also see the further notation

Series A: The First Dozen: Touch Points

Let A;, B;, C; (1 = 0,1,2,3) be touch points of w; and lines BC, CA, AB, respectively (see 12 red
points in Fig. A).
Prove the following statements.

Al

A2.

A3.

A4

A5.
A6.

Ap u A; (and also Ay and Aj) are symmetric with respect to A’, moreover, AgAs = A14s = ¢,

Aody — Ajdg — b Aldg = A4, = 2= qray — aray — % (Similarly there is symmetry
with respect to B’ and C".)

a) AA;, BB;, CC; are concurrent.

6) AAy, BBy, CCj5 are concurrent. (Similarly, triples of lines AAy, BBs3, CCy; AAs, BBy, CCy;
AAs, BBy, CC) are either concurrent or parallel.)

Radical axis of pairs w; and w; are internal and external bisectors of triangle A’B’'C’. (Find the
radical centers of triples of circles wy, w1, wa, ws.)

In the set of circles touching wi, wa, ws there exist three circles passing through [j). (Formulate and
prove the similar statement for the other triples of circles.)

AA1 || I()A/ (similarly AAO || IlA/7 AA2 || IgA/, AAg || IQA,, etc.).

IgAq, 11 Ao, I3 A3, I3A5 are concurrent. Determine the intersection point of these lines.



Series B: The Second Dozen: ”Foci”

Let us denote By = B1g = AgBy N A1B1, Bag = Bgy = Ay By N A3Bs. (Here AyBo N A1 B is By,
and not Ay, since A corresponds to the partition of {0,1,2,3} into pairs 0,1 and 2,3.) Similarly define
all 12 points: Aij with ¢ € {0, 1}, jE {2,3} (we put A,‘j = Aji); sz with ¢ € {0,2}, je {1,3}; Cij with
i €{0,3}, j € {1,2}. (See 12 violet points in Fig. B1, B2.)

Prove the following statements.

BO

B1.

B2.

B3.

B4.
B5.

B6.

B7.

BS.

B9.

/By By3Bs = 90° (similarly for the other angles).

323, 023, AQ, A3 are COHCyCliC.

Find the center of the circle passing through these points. (Similarly, By, Co1, Ag, A1 are concyclic,
etc., thus red and violet points belong to 6 circles.)

A;; lies on the midline B'C’
(similarly, B;; and Cj; lie on midlines, thus 12 violet points lie on 3 lines A'B’, B'C’, C'A').

A1z (the same for Agg, Bo1, Ba3) lie on the circle with diameter AB,
(moreover, AgaBy1A13Ba3 is a rectangle.)
(Thus 12 violet points lie on 3 circles with diameters BC, C A, AB).

Find the lengths AgzAps, etc., in terms of a, b, c.

A;; lies on I;I;, moreover, A;; is the projection of A to I;I;. (thus 12 violet points belong to 6
bisectors of triangle ABC).

Ap2 and Coy are foci of wy and we (Foci means that Age and Cpy is a pair of points inverse to each
other with respect to each of two circles). (Thus 12 violet points are partitioned into 6 pairs of foci;
in particular, from that it follows that each of w; contains exactly 3 violet points).

Determine the radical centers of triples of circles from Problem B1 having distinct centers.

Six points Ags, Aoz, Coz, Ca3, Bas, Bos lie on a circle (also there exist 3 circles constructed in the same
manner). Determine the centers of these circles. Find the radii of these circles in terms of a, b, c.

Age and Ai3 are either the centers of incircle and excircle or the centers of excircles, for the triangle
B'H,H,.

Series C: The Third Dozen: Intersections on the Altitudes

Let A3y = AgCoNA1 By (Here AgCoN A1 By is A(3), and not A(y), since C corresponds to the partition of
{0,1,2, 3} into pairs 0,3 and 1,2, here 3 belongs to the pair containing 0). Similarly, A = AgBoNA1C1,

Ao)

= A2By N A3C3, A1) = A203 N A3Bg; in the same manner define B(;) and C(;) — totally 12 green

points in Fig. C.
Prove the following statements.

Cl.

C2.
C3.
C4.

Points A;) lie on the line AH, (similarly for B(;) and C(;), thus 12 green points lie on the altitudes
of triangle ABC).

The length of AA(; is equal to r;.
Ay Ai is parallel to one of two bisectors of angle A.

Prove that A)A1, B)B2, and C(3)Cs are concurrent. (Similarly, there exist three triples of con-
current lines: A(O)Ao, B(g)Bg, C(Q)CQ; A(g)Ag, B(O)BQ, C(l)Cl; A(z)AQ, B(l)Bl, C(O)CO)

3



C5.

C6.

Cr.
C8.

C9.
C10.

Triangles A1 B2C3 and A(g)B()C o) are symmetric (with respect to a point). Define the center of
symmetry. (Similarly, pair of triangles AgBsCy and A(l)B(l)C(l)u A3ByCy and A(Q)B(Q)C(Q), AyB1C)y
and A3y B(3)C 3y are symmetric. )

Triangles A(l)B(Q)C(3), A(O)B(3)C(2), A(3)B(0)C(1), A(Q)B(I)C(O) Have a common circumcenter (thus
green points lie on 4 concentric circles). Define the common circumcenter.

Find AH, BH, C'H in terms of radii r;.

Find the radius of the circumcircle of triangle A(;)B2)C(3) in terms of R and 7. (Similarly, find the
radii of the circles from Problem C6.)

I; A" passes through A(; (similarly, I; B passes through By;), I;C’ passes through C(;)).

Let [, be a line passing through A and parallel to BC. M = AqgCy Ny, N = AgBgNl,. Prove that
A is the circumcircle of the triangle AgMN.

Determine the orthocenter of the triangle AgM N.

Series D: The Fourth Dozen.

Let C§ = AgBy N A By, and similarly define 12 blue points A}, B}, C/ (see Fig. D). (The description
of these points is as follows: Take one of the circles, for example wg. Take its two touch points, say Ao,
By. Take the touch points of these sides with two other circles that are symmetric to Ag, By with respect
to the midpoints of the sides — A, By. Take the intersection points of the lines joining pairs of these
points.)

Prove the following statements.

D1.

D2.

D3.
D4.
D5.
D6.

D7.

The sidelines of triangle A} B;C} pass through the vertices of triangle ABC.

A line passing through C; intersects BC, AC at A”, B”, respectively. Show that A”B; and B"Af
intersect at some point C” of the line AB.

AA”, BB", CC" have a common point that is isogonally conjugate to some point of the line OI;.
The circumcircle of triangle A” B”C” passes through the Feuerbach point F;.
Four blue points denoted by the same letter lie on a sideline of the orthotriangle.

a) Triangles A B!C and ABC are perspective (i.e. the lines joining corresponding vertises of these
triangles are concurrent)

b)Try to find some relations between four centers of perspective.

(The generalization of the problem D4) Let C** be a point on line H,Hy,. An arbitrary line passing
through C** intersects BC, AC at A”, B”, respectively. Let P be the point of intersection of lines
AA” and BB”, and C” be the point of intersection of lines CP and AB. Then the circumcircles of
all triangles A” B”C" have the common point.

Tasks from series A, B, C marked # and also from series D were given to the paticipants after the
intermediate finish.



Al

A2.
A3.

Ad#,

A5,

AG#.

BO.
Bl1.

B2.

B3.

B4.

B5.

Excircles and Dozens of Points.
Hints, Solutions, Comments.
Series A: The First Dozen: Touch Points

Follows from the calculation of the tangent segments, for example, 2AB; = AB; + AC; = AB +

b
BAg+ AC + CAp = 2p, hence B'B; = p — 5= a ;_ c (Also see a comment on B5)

Follows from Ceva Theorem using the equality of the segments of tangents).

From A1l it follows that A’ equal powers with respect to the circles wy and ws, hence A’ lies on the
radical axis of these circles. This radical axis is perpendicular to IoI3, hence it is parallel to the
bisector of the angle BAC (or B’A’C"). Thus this radical axis as a bisector of the angle B’A'C".
Hence radical centers of the triples of circles are I, I7, I}, I.

(This Problem was formulated in thesis of K. Kuznetsova (Velikie Luki) at the Conference ”Start v
Nauku — 2009”)

From A3 it follows that there exists an inversion with center I{) that takes each of the circles wy, wa,
ws to itself. This inversion takes AB, BC, C'A to the circles passing through I and touching wy,
w2, W3.

The homothety with center A taking w; to wp takes diameter K A; to diameter AgL. Thus AA;
coincides to LA;. IpA’ is a midline of the triangle AgLA;. This completes the solution.

Using the notation of the previous solution: triangles A1 LAy and A; AH, are homothetic (with center
A1), hence A;ly is the median in triangle A1 AH, passing through the midpoint of the altitude AH,.

Series B: The Second Dozen: ”Foci”

The statement follows since A;B; is parallel to a bisector (either internal or external) of angle C.

From BO it follows that AsBog 1 A3Bog u AsCo3 1. A3C53, hence 4 mentioned points lie on the circle

with diameter AyAs. From Al it follows that the center of this circle is A’ (and radius equals to

b h—
%. Similarly, points By, Co1, Ao, A1 lie on the circle with center A’ (and radius equals | 5 C‘.

b
In a right-angled triangle Ao BagAs: A'Bog = A’As, (= ;— € see A2), hence equilateral triangles

As A’ Bog and AsC By are homothetic, and A'Bog || AC, that means that Bz lies on the midline
A'C.

Note. Bys also lies on the circle with diameter By Bs.

Determine the length A’ Bag (see B1), and obtain C'Byz = A'Beg = A'C’ = g, hence Bss lies on the

. . c . . . .
circle of radius 3 with center C’. For the other points the calculation could be done in the same
manner.

b
From B2 it is easy to obtain: Aj3Ai;s = A13C" + C'B' 4+ B'A19 = % = p; Aiz3Aps =

A13A19—Ap3 A1 = p—b (since Ag3 A2 is a diameter of the circle from B2). Similarly, Agp3Ag2 = p—a,
AgeA12 =p—c.

(One of the possible configurations — Problem 1.66 in the book of Prassolov, also see the article of
V. Protassov (”Quant”, Ne 4 — 2008); also see Problem 255 from the book of Sharygin 9 — 11, this
Problem is specially mentioned in the Preface.)

From B1 and B2 it follows: C,B23 || AC n C/ng = C,A, hence ZBQgAC/ = ZC’ABQ;; = ZBQgABg,
thus ABs3 is the external bisector of angle BAC. Moreover, from B2 it follows that BBos | ABos.
Similarly for other points.



B6.

B7#.

B8#.

BY#.

C1-3.

C4.

Cs.

Comment. Note that Fig. contain many parallelograms (the sides of which are parallel either to
the sides or to the bisectors of the triangles ABC). For example, taking parallelograms Az A;3A23C
and BA13A423A5 we see another explanation of the equality from Al.

Triangles Iy Ag2 By and Iy ByCpo are similar (in the calculations of angles we use that ByCpq is parallel
to the external bisector of the angle ABC'), hence IyAg - InCo2 = 3.

The radical centers are points I; and points symmetrical to them with respect to the circumcenter
of triangle ABC.

For example, from B6 it follows that IgAgs - IoCo2 = IpAos - 1oBos = 1oBo1 - 10Co1 = T’g, hence I
has equal powers with respect to the circles with diameters AgA1, ByBa, CoCs (see B1).

Then, consider, for instance, the circles with diameters As A3, B1 B3 and C;C5. The point I3 lies on
the radical axis of the first two circles, because the equal segments I3 A, and I3B; are tangent lines
to these circles. Moreover, the radical axis is perpendicular to the line joining the centers of the
circles, i.e. the medial line of ABC'. Three such lines intersect in the point symmetrical to I with
respect to O.

These are the circles with centers I{ .

—-b b

Let X be the projection of I} to B'C’. Then from B3 it follows: X A3 = XB'+B'Ajp = %%—5 =
r2 4 p?

0 . Similarly, the square of the distance from I/, to each

. r? + p?
of the points Aoz, A2, Co2, Ca3, Bas, Bos equals to 1

p
5 Purther, INA2, = [[X? + X A2, =

2
.- . . . r
In the same way it is proved that the radius of the circle with center I} equals to —

Comment. The following general result holds: three pair of foci for three circles which centers are
not collinear lie on a circle (the proof is an exercise on a power of a point with respect to a circle).

Comment. This circle is of so called Tucker circles for the triangle I 1515.

(Also see the article of V. Protassov in ”Quant” Ne 4 — 2008, this problem plays an important role in
the proof of Feuerbach Theorem.) CpAy; is a bisector of angle AB’'H,, (this follows from symmetry).
Consider a nine-point circle, triangle B’ H,H}, is inscribed to this circle, C’ is a midpoint of the arc
H,H,. Since (see B3) C'Ape = C'H, = C'Hp, we have that Agpg is a center of either inscribed or
exscribed circle of triangle B'H, Hy,.

Series C: The Third Dozen: Intersections on the Altitudes

From B5 it follows that AAp2AgAops is a parallelogram (its sides are parallel to bisectors of angles
CBA and ACB). Also A(g)Ao2loAp3 is a parallelogram (its sides are parallel to bisectors of angles

CBA and ACB). Therefore IpAg and A(p)A are symmetric with respect to the midpoint of the
segment Agz Apz. This implies C1 and C2. Since IpAgA()A is a parallelogram, A;)A; || Alp.

(This is the Problem of Emelyanov No 10.7 from All-Russian Olympiad — 20027.) From C3 it
follows that these lines are the altitudes of the triangle A1) B9)C(3).

Note. One can show that the intersection point of these three lines is symmetric to the orthocenter
of triangle AgByCy with respect to I

Show that the centers are points I..

Radical axis bisects the segments of common tangents, hence from A3 it follows that BoCy (= BQC(O))
and B3C3 (= 3B(g)) are symmetruc with respect to the line A'Ij, and also with respect to point ;.
Similarly, A41C(p and 34 ) are symmetric with respect to Ij. This means that the corresponding
points of intersection C(g) and C3 are symmetric with respect to I).



C6. The center is H.

From C1 we know that, for example, that A = A3C3 N AH, and C(9) = A3C3 N CH,. Since A3C3
is parallel to the bisector of the angle B, the angles between A3C5 and the altitudes AH, and C'H,

are equal. From that it follows that triangle HA)C(9) is equilateral, hence H is equidistant from
A(O) and C(g)

C7-8. The radii of the circumcircles from C6 equal |p;|, where pg = AH +r = BH +ry = CH + r3,
P1 = TO*AH == BH*T‘g == C’H*T27 P2 = AH*T‘g :’I“O*BH == CH*Th pP3 = AH*TQ == BH*Tl ==
ro—CH (here AH, ect., could be negative if the corresponding angle of the triangle is obtuse). From

this we have AFf = O P2y gy D ENERED o S0 EDEET

ro+1r1+7ro+13 ro+ 711 —T9 — T3 ro—1T1+1r2—1T3
Further, pg = , Pl = 5 ,y P2 = 5 )

2
5 , and putting the relation r1 + ro + r3 = 4R + 19 (see the book of Prassolov,
Problem 12.24), po = 9 + 2R, p1 = |r1 — 2R)|, p2 = |r2 — 2R)|, p3 = |r3 — 2R).

r3.

p3 =
ro—1T1—r2+7T3

C9.# From A5 it follows that that IoA’ intersects the altitude AH, at point S such that A_S) = IyAp, that
is the point Ay (see Problems C1-2).

C10.# (This Problems was proposed by D. Prokopenko) 1. Tt is easy to show that A is the midpoint of
MN, hence AA ) is the perpendicular bisector of MN.

2. From C3 it follows that AgA ) and Aglp are symmetric with respect to the bisector of the angle
MAgN. Since Aglp is the altitude of the triangle, AgA(y) contains the circumcenter of triangle
MAyN.

Combining 1 and 2 we get the required statement.
The orthocenter of triangle AgM N is the point symmetric to Ay with respect to Ij.
The tasks of series D are the reformulation of the Emelyanovs’ Theorem, and their solutions can be

found in the book ”Summer Conferences of the Tournament of Towns. Selected matherials. Volume 1.”
(MCCME, 2009, in Russian)






Marndeckue rpadusr

K. Koxacs, . PocTroBckuit

Onpedenenus u 0603HAGUEHUS

Bce paccmarpuBaembie rpadbl He IMEIOT U30JMPOBAHHBIX BEPIINH, KDATHBIX PEOEP U II€Teb.

Cii0Ba «IIMKJI» U «IIyThb» BCIOAY O3HAYAIOT Npocmol MUK U npocmot myTh B rpade.

I'pad HA3BIBAETCS NOAYMALUYECKUM, ECIIA HA €10 PEOPaX MOYKHO PACCTABUTH IOJIOXKHUTEJIbHBIE YHC/Ia (BeCca) Tak, 9TO JJIs KaXK (ol
BEPIINHBI CyMMa BeCOB PEGEp, BBIXOAANNX U3 HeE, paBHA OJHOMY M TOMY 2Ke dnciy s. ['pad Ha3bIBaeTcs mazuveckum, €CI BOSMOXKHA
TaKas PACCTAHOBKA C IIONAPHO PAa3/IMYHBIMUA YUCJIAMH. 3aMETHM, YTO B IOJyMArnIecKOM rpade Bucsdas BePIIMHA MOYXKET ObITh TOJIBKO
KOHIIOM M30JINPOBAHHOIO pebpa, NpuyuéM B MarmdeckoM rpade takoe pedbpo B rpade MOKeT OBITb TOJIBKO OJIHO.

IMoarpad F' manuoro rpada G Ha3blBaeTCsi ero ckeaemom, ecyu jobas BepiiuHa G sBJISIETCsl BEPIIUHON OJIHOTO U3 ero pébep.
CkeJter Ha3bIBaeTCsl 1-2-cKeaemom, eciid CTeNeHb JII00OH ero BePIINHBI paBHa 1 WU 2, IPUYEM CTENIeHU BEPINUH B KaXKJ0H KOMIIOHEHTE
CBA3HOCTH OJMHAKOBBL. VlHade roBopsi, 1-2-ckesieT COCTOMT M3 M30JMPOBAHHBIX PEGED M HEIEepPeCEeKAIOIINXCsl MPOCTBIX IUKJIOB. Eciaun
sadukcupoan 1-2-ckesier F' rpada G, To Bce pébpa rpada G Jeidrcsd HA TPU TIPYIIBL TPUHAJIEXKAIINE Yukiuveckol dactu F
(obosnaunm eé F.); npunaiyexamuye aunelinotd dactu F (obosnauum eé Fy), T.e. m3osupoBanuble pébpa B F'; HakoHer, BooOme He
npunajexanme F. Bynem roBoputs, uto 1-2-ckener pasdeasem pébpa e1 u ez, ecym 9tu Ba pebpa JiesKaT B pa3HbIX rpymnnax. VHbmmun
CJIOBaMu, XOTsI Obl OJIHO M3 HUX JIOJI?KHO IpuHa Iexkarh F, Ho He 0b6a B F. u He oba B Fj.

Bynem ucnonb3osars obosnadennst: Cp, — UK u3 n pébep (n > 3); P, — nyTb u3 n pébep; K, — mosublit rpad ¢ n BepmmHaMy;
Kp,,n, — HOJIHBIN ABY/IOJIBHBINA I'Ppad C JIOJISMHU IO 11 ¥ 1 BEPIINH.

<& W

Hukn Cs ITyte Ps ITonuwrit rpacd K4 [Tonuerit nBynonbHEb Tpad Ko 3

Puc. 1. Hekoropsie cranmapTabie rpadbl

Hpsmovim npoussedenuem F X G nByx rpados HasbiBaeTcs rpad, y KOTOPOro MHOXKECTBO BEPIIUH €CTh MHOXKECTBO BCEBO3MOXKHBIX
nap suga (v, w), rae v — epumna F| w — seprmmna G. Bepmmnet (v1,w1) u (v2, w2) coenmuaenst pebpoM, ecau smbo v1 = vz U B rpade
G ectb pebpo wiws, b0 w1 = we u B rpade F' ecTb pebpo viv2. Ydsoenuem rpada G 6ymem HasbiBaTh rpad G X Pi. [awmeaed Oymem
Ha3bIBaTh Ipad, cocToAmuil JMbo U3 JIBYyX HEYETHBIX IUKJIOB, IEPECEKAIONINXCS POBHO IO OJHON BepiinHe, JUbO U3 JABYyX HEUYETHBIX

[IUKJIOB, COeJIMHEHHBIX MYTEM JIFOOOM JIJIMHBI. j

Puc. 2. I'pad C5 x P Puc. 3. I'pad u ero yasoenue Puc. 4. TanTenn

1 IIpumepdvi

1.1. Y6enurech, 910 Marndeckux rpadoB MeHbIIE UeM ¢ 5 BepIIMHAMHA He CYIIECTBYET, 3a HCKJrodeHneM rpada Pp (oxHO
pebpo).

1.2. Jokaxure, 9To 000 JBYAOILHBIN rpad ¢ HEYETHBIM YUCIOM BEPINUH — HE MArmdecKuii. A Kak y aTux rpados c
[TOJIy MArTIHOCTHIO !

1.3. Uccuenyiite ciemyromnue rpadbl HA HOLYMATHIHOCTD U MArMYHOCTH (OTBETBI MOI'YT 3aBUCETH OT 7 U T):
a) Kp; b) Kpn; ¢) P, x Pr; d) P, X P, upu n, m > 1; e) Cp x Pr; ) Ch, x Ppyn >3, m>1;

g) IIUKJI U3 2n BepHinH, B KOTOPOM IIPOTUBOIIOJIOZKHBIE BEPIITUHDBI IIOIIAPHO COCJINHEHDBI.

2 Ioaymazuueckue 2pagdot

2.1. [Jokaxkure, 9T0 ecyiu 1oayMarudeckuii rpad G coaepKuT 4éTHbI nuki, 70 B G HAlAETC oJIyMarndeckuii ckesier (T. e.
CKEJIET, KOTOPDIH KaK CaMOCTOATE/IbHBIN rpad ABJIAETCS MOJIyMArndCKuM rpadom ), copepKanmii He Bece pebpa 3TOro 1uK/Ia.



2.2. Jlokaxkute, 9T0 eciau nosymarmdecknii rpad G comepkut ranreio, T0 B G HAWAETCH MOyMAarndecKuii CKeJeT, COIep-
JKammmit He Bce péOpa ITOM raHTe .

2.3. Jokazkure, 9TO B JIIOOOM IOJIyMAarndecKOM rpade MOXKHO BbIOPATH 1-2-CKeJieT.

2.4. OcHoBHas TeopeMa o0 nonymarudeckux rpadgpax. Jlokazkure, 9To rpad TOrjga U TOJLKO TOIJIA SIBJISIETCS MOJIyMArndecKuM,
KOrJia B HEM J1I000€e pebpo NMpUHAJIEXKUT HEKOTOPOMY 1-2-CcKeJiery.

Cutefiyrolnye 3a/1a491 MOCBSIIIEHBI BBISICHEHUIO BOIIPOCA, B KAKUX CJIydasx rpad comep:kur 1-2-ckesner. CHadasia pasbepémcsi ¢ 1-ckeste-
TaMu (B KOTOPBIX KaXKJ[asl BEPIIMHA UMeeT creredb 1). Bynem HasbBaTh rpad mazkum, €CJIU OH HE COIEPKUT 1-CKesleTa, & B IPOTUBHOM
caydae OyJleM Ha3blBaTh €ro meépdvim. Msrkuii rpad OygeM HA3bIBATH HACHIUEHHbLM, €CTH TIPU JOOABJIEHUN B HETO IIPOU3BOJIBHOTO
pebpa OH CTaHOBUTCSA TBEPIbIM. Harnpumep, moHbii rpad ¢ HEYETHBIM YUCJIOM BEPIIUH — MATKUANA U HACBIIEHHBIHA.

IIycts G — npousBosbHBIA rpad, S — HEKOTOpOe MHOXKECTBO ero BepmuH. epes G\ S 0603HaunM rpad, MOJSyYeHHbIH yIaaeHueM
u3 (G BCex BEpIIMH MHOXKeCTBa S U ux pedep.

2.5. Ilycte G — HachlmeHHbIH MIrKuii rpad, S — MHOXKECTBO BCEX BEPIIUH B HEM, KaXKjiasi U3 KOTOPBIX COeJMHEHa PEOpaMu
€O BCEMHU OCTAJIbHBIMU BepIiuHaMu. J{oKaxKuTe, 9T0 KOMIIOHEHTHI cBsisHoCTH Tpada G \ S sIBISIIOTCsI TT0JHBIMEA Tpadamu.

2.6. OcHoBHasi TeopeMa O MSAMKMX HacbiWweHHbIX rpacax. ['padp G — MATKHH M HACBIIEHHBIA TOT/IA W TOJBKO TOTJA, KOTIa
b0

a) G nosHblit rpad ¢ HEIETHBIM YUCIOM BEPIIUH; JubO

b) uucao Bepmun rpada G 9ETHO U B HEM MOXKHO BBIIEJIMTH TAKHE HEIlePeceKalomuecs 1oJnble noarpadst Sy, G1, Ga,
ooy G, vae k = |Sp| + 2, uro upu Beex @ B KaxkjoM (G UUCJIO BepUIMH HEYETHO U KaxKlas BepimHa (; coejuHeHa pebpoM
CO BCEMHU BepIIUHAME S, 1 HUKAKUX JIPYrux pédep B rpadye HeT.

2.7. Hokazkure, uro rpad G TBEPHBIH TOTIa U TOJBKO TOIZA, KOIJAA IJIsd KaXKIOro IOAMHOYKECTBA S MHOXKECTBA BEPIIMH
rpada G rpad G \ S umeer He Goiee |\S| HEUETHBIX KOMIIOHEHT CBSI3HOCTH.

2.8. Jokaxwure, uro rpad G obmamaer 1-2-cKeaeToM B TOM U TOJBKO TOM CJIydYae, €CJIN JJIs KaKJOTO IOJAMHOYXKeCTBa S
mHOxkecTBa BepunH rpada G rpad G\ S umeer e Gosiee | S| U30JIMPOBAHHBIX BEPIIKH.

3 Maezuuecxue epagot

3.1. Jlokazkure, 9To0 Jit00OOI Marndeckuii rpad objamaer JAByMsl CBONCTBAMMU:

(1) JTroGoe ero pebpo NPUHAJIEKUT KaKOMy-HUOyIb 1-2-cKesiery.

(2) JIiobas napa ero pébep pasuessaercs KakKuM-Hubyib 1-2-ckeserom.
3.2. Jlokazkure obparTHOe yTBEPXKIeHne: JTH000i rpad, yI0BIETBOPSIOIINANA 3TUM JIBYM YCJIOBUSIM, SIBJISIETCS MATrUIECKUM.
3.3. I'pad G’ mosyden uz marndeckoro rpada G nobapieHneM HOBOro pebpa, IPUYEéM 3T0 peOpo MPUHAJICKUT HEKOTOPOMY
1-2-ckenery rpada G’. Hokaxkure, uro rpadp G’ — Marudeckuii.
3.4. I'pad G cocrour u3z aByx (HEM30MOpP(MHBIX) KOMIOHEHT CBI3HOCTH, KaxKJas COAEPXKUT He MeHblne 3 Bepiuun. O6e
KOMIIOHEHTBI SIBJISIFOTCSI Marundeckumu rpadamu. Bepro s, uro rpad G 00si3aTesIbHO SBJISIETCS MArM9IeCKUM !
3.5. a) Ecsin nosymarudeckuii rpad G He COZEP:KUT U30JIMPOBAHHBIX PEGEp, u s Jiroboro pebpa e Haiinércsa 1-2-ckeser,
[UKJINYECKAsl 9aCTh KOTOPOI'O He COJEPXKHUT €, TO yiaBoeHne (G — Marmdeckuii rpad.

b) IIycrs G — nosnymarndeckuit rpad 6e3 n30gupoBaHHBIX pébep, a H — npousBosbHbI rpad 6e3 M30JUPOBAHHBIX
BEPIIUH U U30JIMPOBAHHBIX pébep, To rpad G X H — Marudeckuii.
3.6. Jlan rpad G, B koropom He Menee 4 BepmuH. ['pad G nosyden jpobasiienneM K G OIIHOIT HOBOW BEPINUHBI, KOTOPasI
coenuHeHa co Bcemu BeprmHamu G. /lokaxkure, yro (G Marmveckuii TOTIa U TOJIBKO TOrJA, Korja G uMmeer 1-2-ckejier u He
“MeeT M30JIMPOBAHHBIX PEOEP.
3.7. a) Ecom B rpacbe n > 5 BepmuH 1 CTENeHH BCEX BEPIIHH He Menbine 4 + 1, To rpad Marmdeckui.

b) CymecrBytor Hemosymarudeckue rpadbl CO CKOJIb YIOJHO GOJIBIIAM YHCJIOM BEDIIUH 7, ¥ KOTOPBIX MUHUMAJIbHAS
CTeleHb BEepINUHbI paBHa 1/ 2.
3.8. Ilycrs G — cBsi3HBIIN Marudeckuii rpad ¢ n > 5 BepmmHamu u r pédbpamu. Torga r > %n.
3.9. Jlist kaxkjoro n = 5, 6, 7, 8§ npuBeuTe IPUMED CBSI3HOT'O MAIUYeCcKOro rpada ¢ n BepIiuHaMu U r pédpamu, rie r —
HaMMeHbIIlee HATYPAJIbHOE YHCJIO0, YAOBJIETBOPSIONEe HEDABEHCTRY 1 > %n.
3.10. ITocrpoiire Takoii rpad Jisi TPOU3BOJILHOIO 1. 2= 5.
3.11. Jlokaxxure, 9TO CBA3HBII MarndecKuii rpad ¢ n BepmuHamMu u 7 pédpamMu CyIecTBYeT [JIst JII00O0it mapsl n, 1, B KOTOPOit

(n+1)

5 n(ntl)
Zn<r§ 5 -

ITpomestcymounsviti puruus

4 Odnopodnwvie epagol

OpHoponabie Tpadbl cTeneHr 1 U 2 yCTPOEHBI UCKJIIOYUTETHHO MTPUMUTHBHO M BOMPOC 00 MX MArMYHOCTH PENIAeTCs OYE€BUIHBIM
obpazom. [losromy orpanmyunmcs fasiee caydaeM CTeleHel, He MEHBIINX 3.



HazoséMm ncesdoyuriom Habop pébep, 06pasyronumii Y6 THBIA IUKJI MU FAHTETIO (HAIIOMHUM, ITO 00a IIUKJIA B FaHTe/Ie — HEYETHDIE).

Paccmorpum HeKOTOpBIH 9€THBIN UK/ PaccTaBuM MBICJIEHHO Ha ero pébpax momepemMeHHO ducia 1 u —1, a Ha Bcex pébpax, He
BXO/ISIIIIE B 9TOT IUKJI, — HyJIX. By/teM roBoputh, 9T0 nBa pebpa cAab0 pasdeastomcs STAM IUMKJIOM, €CJIU OHH IIPU 9TOH pacCTaHOBKE
[oJIydaT pa3Hble Beca. AHAJOrMYHO, BLIOPAB HEKOTOPYIO TAHTENIO, pacCTaBUM Ha Heil yucia +1 n +2 kaxk Ha puc. 5 npu a = 1, a Ha
He BOILIEAIINX B Heé pébpax paccTaBuM Hyqu. JIBa pebpa caabo pasdensromcs STOH raHTesel, eCju OHU IIPH 3TOW PacCTaHOBKE IOJIydaT
pasuble Beca. Hakoner, OyzemM roBoputb, 49TO ABa pebpa caabo pasdeasromcs ncesloyuKAaMU, eCIN CYIIECTBYeT YETHBIN IIUKJI MJIN
rafTesis, caabo pasjessionas 3Tu peopa.

Puc. 5. 3nakonepementbie Beca pebep raHTe N

4.1. Jlokaxkute, 9TO B OJHOPOJHOM rpade crernenn d > 3 Jitoboe pedpo COAEPKUTCS B IICEBIOIUKIIE.

4.2. Jlokaxkure, 9TO OJHOPOJHBIN rpad cremenn d > 3 sBJsIETCS MATMYECKUM TOTJA U TOJIBKO TOIJA, KOI/a B HEM JIFOObIE
JaBa pebpa c1abo pasiessioTcs ICeBIOIMKIaMMA.

4.3. Jokaxure caemyomyo Teopemy: llycrs G — ommopomusiii rpad crenenu d > 3, u Gy, ..., G — €ro KOMIIOHEHTHI
cBsizaocTu. Torga G — marudeckuil rpad TOrja U TOJIBKO TOrja, Korjaa Bece (G; — Marundeckue rpadml.

Hazosém nnnekcom pébeproit ceasuoctu £(G) rpada G HanMmenblnee 9ucyo pééep, KOTOpble HeOOXOMMO U3 HErO BHIKMHYTh, ITOOBI
OH ITOTEPSLI CBI3HOCTD.

4.4. Ilycre G — cBa3HBIN OMHOPOJHBIN ABYIOIbHBIN Tpad. [Jokaxnure, 9T0 €ro MArmdHOCTb WA HEMATMIHOCTD 3ABUCHT
TOJIbKO OT Besmuunbl £(() 1 IpoBeuTe OJIHOE UCC/IeJI0BAHNE ITOH 3aBUCUMOCTH.

5 lobasaernus

5.1. Jobaenenue k 3agade 1.3.a. I'pad Ha3BIBaETCS cynepmazuseckum, eCIM Ha HEM CyIIECTBYET Marndeckasi pacCTaHOBKA,
Beca pédep B KOTOPOH — IOCJIe/I0BATE/bHBIE HATYPAJIHHBIE YUCJIA.
[Ipu xaxux n rpad K, saBisieTcs cynepMarnaecKum?

5.2. [JobaeneHue k 3agade 3.7. B rpade 2009 Bepmun, crenenb kKaxaoit He menbme 1006. B rpade ymamumm ne 6oaee 500
pé6ep. Hokaxkure, 94T0 Tpad OCTAJICI MArUIECKIM.



Pemennga

1 IIpumepnoi

1.1. Ecau B rpade na 4 Beprmmuaax 1 miam 2 pebpa, TO B HEM eCTb M30JMPOBAHHBIE BepIUHBI. B j06oMm rpade ¢ 3 mwim 4
pEOpaMu ecTh JiBe CMEXKHbIE BEPIIMHBI CTEIEHN 2, 9YTO IPOTUBOpPEYUT MarnuHoctu. Ecym pébep 6, To 910 mosubiii rpad Ky,
obcyxkmasmuiica B 3agade 1.3a). Hakonen, ecim pébep 5, To rpad upeacrasysier coboit muka ABCD ¢ guaronansio AC.
Torma 2s — 1. e. cymma BecoB pébep npu Bepiuaax A u C' — 310 cymMMa BecoB Beex pébep rpada ¢ yIBOEHHBIM BeCOM pebpa
AC. C gpyroit cToponbl, 25 — cymMMa BecoB pébep nipu Bepmmaax B u D, T.e. cymma BecoB Beex pébep, kpome AC. Ho ato
3HA4UT, 9T0 pebpo AC mMeer HYJIEBOI BEC, YTO 3aIPEIIEHO.

1.2. OrBeT: rpad He nmogymarndeckuii. [lycrs mepBast 10Jist comep:kut k BepIinwH, Bropas — { BepIIUH, § — CyMMa BECOB
pébep y Kaxkjoif BepmuHbl. Ecim rpad nosiymarudeckuii, To cymMMa BecoB Bcex pEbGep rpada paBHa cyMMe BecoB pebep,
BBIXO/ISINIUX U3 BEPIIUH IEPBOi /101, T. €. kS, M OHa »Ke paBHa CyMMe BECOB pébep, MPUXOISINUX BO BTOPYIO JIOJIIO, T.e. £s.
3uaunt, £ = k, 970 HEBO3MOXKHO, €CJIU O0IIee YNUCII0 BEPITHH HEIETHO.

1.3. a) O rBer: rpad Bcerja noJayMarndecKuil, Marn4eCKuM OH siBJIAETCS IIPU 1 = 2 U 1pu n > 5.

[TosrymaruanocTs odeBuHa. Kak u BO BCSIKOM OJIHOPOIHOM I'pade, MOXKHO BCe BeCa B3siTh PABHBIMU €JIUHUIIE.

ITpu n = 3 rpad He Marudeckuii — 3TO TOXKE OYEBUJTHO.

ITpu n = 4 umeem 4 Bepmmnst A, B, C', D. Jomycrum, 9To rpad Maradeckwuii, ycTb § — CyMMa BECOB PEDED, CXOISIIIIXCS
B ouoit Beprimue. Toryma 2s — 1. e. cymma BecoB pédep npu Beprnuaax A u C' — 910 cymMa BecoB Bcex pébep rpada 6e3 Beca
pebpa C'D, Ho ¢ ynBoerubiM BecoMm pebpa AC. Jlenas anajmorndubiit nojcaér s Bepmud B u D, HaxoauM, 910 Beca pédbep
AC u BD pasHBL.

IIpu n > 5 rpad mMarudeckuii. IT0 MOXKHO YCTAHOBUTH CJIEIYIOIMM 00pa3oM. I1ockoJIbKY rpad OHOPOEH, Mbl MOYXKEM
paccMaTpUBaTh IPOM3BOJIbHBIE (He 00s3aTesbHO MOJI0KUTEeNbHBIE) Beca pEbep. (B peryusipaoM rpade Mbl Beerga MoxKeM
CHIeJIATH BECA MOJIOXKUTEJIbHBIME, J0OABUB KO BCEM BeCAM OJHY U TY 2Ke OOJIBIIYIO IIOJIOKUTEIbHYI0 KOHCTaHTY.) Onmiem
KOHCTPYKIIMIO [TOCTPOEHUsT MATHMIECKIX METOK OJHOPOIHOTO rpada ¢ IOMOIIBHIO0 YETHBIX ITUKJIOB.

Beimmuirem Bce 9éTHBIE UKIIBL, ABISIONIECS HoArpadamu Harero rpada, 1 IpoHyMepyeM ux ducaamu ot 1 go N
(rme N — ux xosmuectso). st k-ro nukia B HalleM CHUCKe HA3HAYUM Beca ero pébep — HOIEPEMEHHO ILII0C U
muryc 3F, 5TH Beca IOCTABIM B KAUeCTBE METOK BO3JIE COOTBETCTBYIOMIX pébep. ITocste TOro Kax Mbl IPOCMOTPEIIH
BCe IUKJIBbI, CJIOKUM BCE METKHU, CTOSIIIINE OKOJIO KaXKJI0ro pebpa.

JlokarkeM, 4TO IOJIyIEHHas] pa3MeTKa peédbep rpada marmdeckas. JleiicTBUTEIBHO, KaXKIBIA UK JTAaET HYJIEBON cyMMap-
HBII BKJIaJT BECOB B KAaXKJIYIO BEPINUHY, TTO9TOMY CYMMa BECOB KasKJIOif BEpIIMHLI paBHa Hysio. [IpoBepum, 1UTO BCe Beca
pasymasbl. [i1s Kaxk10ro pebpa BBIMHIIEM CIIICOK HOMEPOB TeX IUKJIOB, B KOTOPbIE BXOJAUT 3T0 pebpo. OUeBuHO, 9TO Jist
JOOBIX IBYX pEGep rpada cyIecTByeT YETHBIN UK, COAepKaIiuil Juillb ofgHo u3 Hux. CiieoBaTeIbHO, JJIs JIIOOBIX JBYX
pEdep CIMCKU HOMEPOB IUKJIOB He COBIAai0T. Ho Torjia cyMMbl BECOB, HA3HAYEHHBIE C IIOMOIIBIO STUX IUKJIOB, JIJIs PA3HBIX
pébep TONapHO He paBHBI. DTO CJIEIYET U3 TOrO, YTO KAXKJIBI TAKO CyMMAapHBI BEC MOXKHO TPAaKTOBAThb Kak [N-3HaUHOE
YUCJI0 B TPOUYHON CHCTEeMe CUYHUC/IeHHs], B KOTOpPOil mcrosb3ytorces 1udpbl 0 u +1. HecoBuajienne crmckoB o3HAYaeT, 9TO
IIOJIyYEHHBIE YHCJIa PA3INYalOTCA B KAaKUX-TO Pa3pAgax TPOMYHON 3alllCH U II0O3TOMY HE DaBHBI.

b) OrBeT: rpad nosymarundeckuit ToJbKo upu m = n. Ilpu m = n > 2 oH Marudeckuii.

JIJist 1IOJIyMarn9HOCTH HEODXOJMMO, YTOOBI 4mcJa m U n ObLIn paBHbl. Ha 6ajy Kakjgas jgama TaHIEBaja C ISTHIO
KaBaJiepaMH, a KaXKJiblii KaBaJiep C ISIThio jgaMaMu. Jlokaxkure, 9T0 jaM u KapaJiepoB Ob11o moposHy. Hy uian 94ro-To B 3TOM
poJe.

[Ipu m = n rpad ogHOPOAHBINA U TOTOMY MosiyMarndeckuit. [Ipu m = n = 2 oH He Marudeckuif, 5T0 OYEBUIHO. A mpu
m =n > 2 rpad MArndecKuii, B 9€M MOXKHO yOEIUTHCS KOHCTPYKINEH aHAJIOIHIHON IPEIbIIYIINEMY DPEIIeHHIO.

¢) O TBeT: rpad NOTyMATHIECKUil, HO HE MAIMYECKHUIA.

JIJist TIOJIyMaru9HOCTH JIOCTATOYHO PAaCCTABUTh Ha JBYX KpallHUX pPEOpax JBOMKM, a HA OCTAJIBHBIX €JIUHUIBI. 1TOObI
ybenuThest, 9To rpad He MarmvecKuil, JOCTATOYHO IIOCMOTPETh Ha Pebpo, ¥ KOTOPOTro 06e BEPIIUHBI CTElleHNn 2, U CMEeXKHbIE
¢ HUM pébpa.

d) OrBeT: rpad Marmyeckuii, eciau m WM 1 HEYETHBI, U HE HOJLyMATUIECKUil, €CJIU U M, U N IETHBL.

ITpu 9érabx 7 u m rpad aByaonbHbE 1 umeer (n + 1)(m + 1) Beprma (HeuérHoe ancso). [To yrBepxkaenuto 3amaun 1.2
rpad He MOXKeT OBITh II0JIyMArnIeCKUM.

JokazkeM, 4T0 1IpH HEIETHOM 1 U m > 1 rpad Marmgeckuii.

Cuauajia paccmorpuM ciaydait m = 2. CraproBas MmoJiyMarndeckasi PacCTAHOBKA HEOTPUIATEHHBIX BECOB Ha Tpade
mokazana Ha puc. 6: xupubie pédpa mmeror Bec 2M, mynktupuasle — Bec 0, octasbHble pEOpa mmeior Bec M, rme M —
6OJIBIIIOE YHCJIO, KOTOPOE MbI BHIOEPEM UyTh I032KE. DTO €IIE He JIOKA3ATEIbCTBO MOJIyMArHYHOCTH, IIOCKOJIBKY HEKOTOPBIE
Beca HyJieBble, a rpad He OJHOPOJIHBIIA.

Tenepb MbI BBIIOJHAM OCHOBHYIO KOHCTPYKIUIO IIOCTPOEHUSI BECOB € IOMOIIBIO YETHBIX [HUKJIOB (CM. DEIleHHe 3aJauu
1.3a), HO ¢ Tpems nonpaskamu (Bcé-raku Haml rpad He omHOpOuHbIT). IlepBasi monpaBka COCTOMT B TOM, 4TO MbI OyleM
paccMaTpuBaTh HE BCE HUKJIbL, & TOJBKO 4-IMKJIbI (CTOPOHBI KJeToueK). Bropas HOIpaBka COCTOUT B TOM, 9TO UTOIOBBIH
Bec pedpa MBI [TOJIOXKUM DABHBIM CyMMe Beca, HA3HAYEHHOTO C ITOMOIIHI0 OCHOBHON KOHCTPYKIIAW, M BECa ITOTO ke pedpa



Puc. 6. Ilourn nonymaruyeckue Beca Ha rpade Pn, X Pa

B CTApTOBOI paccTraHoBKe. HakoHeI, TpeTbs MOIpaBKa — Ha3HAYAH IMOJIOKUTEJIbHBIE U OTPHUIATEIbHbIE Beca PEOep Kaxk-
JI0r0 nuKJIa (37eCh y HAC €CTh [IPOM3BOJI, ¢ KAKOIO 3HAKA HAYMHATD), Mbl OYyJIE€M CJIEAUTDb, 9TO0bl PEOpa, UMEIOIIe HyJIeBO
BeC B CTapTOBOIl PACCTAHOBKE, BCETa ITOJIyYaJsIu MOJOXKHUTEIbHBI Bec. Hakomer, Beibepem unciao M HACTOIBKO OOJIBIINM,
9TOOBI B PE3YJIbTATE BBIIOJHEHUSI BCEIl 9TOl KOHCTPYKIMK BCe BeCa PEOEP OKA3AJIMCH Obl MOJIOXKUTEJIbHBIMUA U Pa3INIHBIMHU.
TlostyuenHast pacCTaHOBKA BECOB OYJIET MArniecKoii.

B ciiyuae, korga n — HewéTHO, M > 2, MbI JeficTByeM aHajorudHo. CTapToBble paCCTAHOBKU BECOB ITOKa3aHbI Ha puUC. 7
(Heu8THAST CTOPOHA BEPTUKAJIBHA).

Puc. 7. [lonymaruygeckue Beca Ha rpade Pp X Pp,

e) O rBer: rpad Bcerga nosymarudeckuit. Marun4eckuMm OH SBJISIETCS JIAIID IPU IETHOM 7.

I'pad MOxKHO TIpejiCcTaBIATE cebe KaK HADOp BEPIINH U PEGEP N-yTOJIbHON MPU3MBI.

ITycrs n = 2k. B rpade ectb oveBumHble MUKIIbL JIHHBL 4 (KOHTYDBI TpaHeil) n jpa 2k-1ukia (KOHTYPbl OCHOBaHUIA).
31ech TaK»Ke BBIIIOJIHEHO CBONCTBO, YTO JjIsI JIFOOBIX JIByX pE0ep Hailf€Tcs YTHBIN [UKJI, COMEPKAIUN JIMIIb OIHO U3 HUX.
Takum 06pa3zoM, TPUMEHNMa OCHOBHAsT KOHCTPYKITUS JIJIsT OJTHOPOJIHBIX TPADOB.

IIycts n = 2k + 1. IIpoepum, wTo rpad me marmdeckuii. [lycts d — cymma BecoB pébep, cxomammxcs B BepmmuHe. Torma,
KaK HEeTPY/IHO BUJETh, CyMMa, BeCOB Bcex pédep rpada pasHa nd. Oboznatdnm Hatl rpad-upusmy depe3 A1 As ... Asgr1B1 ... Bogy1-
Cymma BecoB pébep, BeIxodanux u3d Bepmud Ai, As, ..., Askt1, B2, By, ..., Bag, paBHa nd 1 IPU 9TOM [IPEJICTABIISIET COOOM
CyMMy BecoB Bcex pébep rpada 6e3 pedpa By Bayy1, HO ¢ pebpom A Ag, 41, yarérabiM jiBaxkapl. Crie10BaTesbHO, Beca pébep
AyAgny1 u By Boy 1 paBHBL

f) Orser: rpad marugeckuii. Pemenune ananorngno 1.3d). Ilycrs A, ..., A1 — Bepruunsl rpada P,. Craprosas
[OJIyMarndeckasi pacCTaHOBKa HEOTPUIIATEIbHBIX BecoB Ha Tpade C), X P, BHINISJNAT CJIELYIONuM 00pa3oM: pébpa Beex IojI-
rpados Buga Cp, X A; nmeror Bec 2, ocrasbHble pédbpa nmeror sec 0. B kauecTBe HabOpa YETHBIX IUKJIOB ONATH PACCMATPUBAECM
4-TIAKJIBL.

g) OrBer: rpad Beerja NOIyMarndecKuii, a IpU HEYETHBIX 7 OH €INE U MArWIEeCKHUil.

IMosymaruyeckuit on, noToMy 9T0 ofHOpPOAHLIHA. [Ipu n = 2 aro rpad Ky, Mbl ero obcyxkaaau B 3agade 1.3 a). [Tpu neuér-
HOM 7 Tpad MaruvecKuii, IOCKOJIBKY paboTaeT OCHOBHAS KOHCTPYKIMS: €CTh XOPOIIUN 3alac YETHBIX IUKJIOB — 4-IIUKJIbI,
coJiepKalye CoCeJHIe MaMeTphl, U (1 + 1)-IUKJIBI BUJA <IIOJYKDPYT».

ITpu yérrom n rpad #e marudveckuii. [lycrs A1 As ... A, B, ... Bo By — Bepiunbl nukjia. PéOpa, BbIXOIAIINE U3 BEPIIUH
A;, B;, rie ¢ npoberaer Bce HeUETHBIE HHIEKCHI, — 9TO Bee pébpa rpada, kpome A, B,,, upudém pedbpo A1 B1 yUTEHO ABarKIbI.
Orcrofia cieyer, 9To B JIIO00H MOJyMAITIECKON PACCTAHOBKE BECOB ITPOTUBOIIOJIOKHBIE PEOPa 2Nn-TINKJIa UMEIOT OJIMHAKOBBII
BeC.

2 Ioaymazuueckue 2pagdot

2.1. Ilycrs @ — MuHEMAJBHBIN Bec pebpa B JaHHOM 49éTHOM Iukie. O6xonda nmuks, OyaeM IOIepEeMEeHHO TO yMEHBIIATD, TO

b b
yBEJIMYHMBATH Ha a Bec pébep nukja. B pesyibrare Bec HEKOTOPBIX pébep craHer HyseBbiM — coTpéM ux. Ocrasrmuiics rpad
C TOJIyYEHHOU PacCTaHOBKOI BECOB M OYIeT MCKOMBIM ITOJIyMAITIECKUM CKEJIETOM.

2.2. IlycTs A — BepIIMHa OJHOTO U3 HEUETHBIX [IUKJIOB TAHTEIH, K KOTOPOI IPUKPEIIeHa PyUKa raHTe I (Uin BTOPOH IIUKJI,
ecy pydkd Her). PaccMoTpuM ciiesyiomiee Ha3HAUYEHNE BECOB PEGep ranTesn. Bymem 06X0quTh HEYETHBINA NUKJI, HAYHHAS C
BepIuHbl A, 1 orepeMeHHO IpuCcBanBaTh péopam Beca +a. BepHyBinuch B BepiuHy A, MbI IOJIyIuM, 9T0 06a pebpa JaHHOTO
UKJa, cxojsdmuecs B Bepiumae A, umeror Bec a. [Ipogo/KuM JIBIKEHNE 110 PyUKe, MOTIEPEMEHHO HazHadas Beca eé pédbep



F2a. Hoiiast 10 BTOpOro mukJa, o0OWIEM ero, mpoIosikKasi Ha3HAYATh Beca £a. B pe3ysibrare MbI MOy IrM IOy MATHIECKOE
HA3HAYEHHE BECOB C HYJIEBO CyMMOIl B KakJioil Bepuinne (cM puc. 5).

[TpubaBuM mOCTPOEHHBIE Beca K y2Ke MMEIOIINMCs BecaM pébep ranTesn, IpuaéM Hoa0epéM a Tak, 9TOOBI BCe Beca ITOJIy-
YUJINCh B Pe3yJbTaTe HEeOTPUIATE/IbHBIMU M BEC 0 KpaiiHeil Mepe OJHOrO u3 pébep craj paseH Hysro. [lojyunrcs mosyma-
ruveckasl pasMerka pébep rpada, IpuUéM BCe HyJleBble PEOpa MOXKHO CTepeTh (0UeBH/IHO, M30JIMPOBAHHBIX BEPIIUH OT 3TOTO
HOABUTHCA He MOxKeT). OCTaHeTCsl HCKOMBIH I10JIyMArndeCKuil CKeJIeT.

2.3. C nomoIpo KOHCTPYKIMi u3 perrenuit 3agad 2.1, 2.2 Mbl MOYKeM IOCJIE0BATEILHO YMEHBIIATH KOJMIECTBO PEdep
B rpade, paspyliasi YETHbIE [UKJIbI ¥ TAHTEJIN, ¥ COXPAHSIS IIPU STOM II0JyMATMIHOCTb. 3aMETHUM, YTO B CHJIY IOy MArndHOCTU
Hall rpad HU B KaKO# MOMEHT He OyJleT UMEeTh BUCSUUX BepIIUH (KPOMe BEPIIMH U30JMPOBAHHBIX PEGEp). 3aMeTHM TakxKe,
9TO €CJIM B KOMIIOHEHTa, CBSI3HOCTHU T'pada UMeeT JBa HEYETHBIX IUKJIA, TO B HEl MOXKHO HANTH YETHBIN IUKJI UJIA TAHTEJIIO.
Eciin ke KOMIIOHEHTa COIEPKUT POBHO OJUH (HEYETHBINA) IUKJI U HEe UMEET IIPH ITOM BUCIYUX BEPIIUH, TO HUYETrO, KPOME
9TOTO MUKJIA, OHA COEPXKATDH He MOXKET. SHAYNT, B TOT MOMEHT, KOTJ[a BCe YETHBIE TUKJIBI U TAHTEJN OyIyT pa3pyIieHsl, rpad
OyJer IPeICTaBIATh OO0 HECKOJIBKO U30JMPOBAHHBIX PEGED IJII0C HECKOJILKO U30JIUPOBAHHBIX (HEYETHBIX) IUKJIOB.

2.4. IlpoBepuM, 9TO B IOJyMarundeckoM rpade Jiroboe pedpo NpuHaJIeXKUT HeKoTopoMmy 1-2-ckesery. Ilycte G — Jr06oii
u3 rpadoB ¢ MUHUMAJBHBIM YHCJIOM PEGEp, MMerIuii pedpo e, He NpuHaJyIexKallee Hu ojHoMy 1-2-ckejiery. Oukrcupyem
[TOJIyMArUIeCKyI0 paccTaHoBKy VY BecoB Ha rpade . Bo3pMéM mpon3BoabHbI 1-2-CKeJIeT U ¢ MTOMOIIBIO HETO MOCTPOUM €IIé
OJIHY TIOJIyMArndecKyio PACCTAHOBKY BECOB S: IIyCTh KaXK70€ pedpPo M3 JTMHEHHON JacTh CKeJIeTa MMEET BEeC G, KaxKji0e pedpo
U3 NUKJIMYECKOl yacTu — Bec a/2, a pébpa, He BXojdiiue B ckeser, (1 B ToM unciie e) umeior sec 0. Hucsio a noabepém takum
06pa3oM, Beca U3 pacCTaHOBKU S He IPEBOCXOJMIM COOTBETCTBYIONIUX BECOB U3 pacCTaHOBKU VV 1 4T0OBI XOTsI ObI HA OJTHOM
pebpe paBeHCTBO JIOCTUTAJIOCh. Teneph BbiuTeM U3 BecoB pacctaHnoBku W Beca S. Ilosyunrces mosrymarndeckasi pacCTaHOBKA
BECOB, B KOTOPOIi HE BCe BeCca PABHBI HYJIIO, TAK KaK BeCc pebpa e He m3MeHmsIcA. Eciu Temepsb crepeTsh pedpa HyJIeBOrO Beca,
MOJTy9InTCsT IoyMarndecknii rpad G, KOTOpbIil sBasgercs ckeaeroM B (G, COEpKUT MeHbIne pédep, yem G, mpuaém pebpo
€ He IPUHAJJIEKUT HUKAKOMY 1-2-ckesiery G’ (OTOMY 9TO <«CKeJIeT MOEro CKejaeTa — MO CKesieT» ). DTO IPOTUBOPEUUT
onpeesenuto rpada G. CrenosareibHo, Takux rpacdos G He cymiecTByer, dli.

Teneps ybemumcst, 9To eciu B rpade jr060e pedbpo MPUHAJIEXKUT KaKOMY-HUOYIb 1-2-cKejiery, To rpad — MoJyMarmde-
ckuit. JTjist Kaxkoro 1-2-ckejiera MocTaBuM Ha, BCeX PEOpax ero MUKJIMIEeCKO YaCT Bec 1, a Ha BCeX 30/ IMPOBAHHBIX PEOpax —
Bec 2. Torma BkIa 1 9TOrO CKejieTa B KaXKIyio BepimHy Oyaer oguHakosbiM. [lepebupast Bce 1-2-cKeseTsl, IpOCyMMUpyeM Beca,
[TOJIyYEHHBIE TAKUM CIIOCOOOM. DTO U €CTh TpedyeMasi MOJIyMarndeckas pacCTaHOBKA BECOB.

2.5. Mb1 npusogum permerne u3 [1, §3.1.2]. Ilycrs A, B, C — Bepumnbl u3 G \ S, npuuém B coenunerno pebpom ¢ A u C.
Jlisi mokasaTesibCTBa yTBEPKIEHUs 3aa4i JOCTATOYHO IIPOBEPUTH, YTO B 3TOM ciiydae B rpad G couepxkur pebpo AC.
Hortycrum, uro 310 He Tak. [lo ompeesienuto MHOXKecTBa S, B rpade G Haiijércs Bepuaa D, He coenHéHHas ¢ B pebpom.
Ecmu k rpacdy G nobasuth pebpo AC, TO B CUJIy HACBHIIMIEHHOCTH, TIOJyJeHHBIH rpad Oyiaer obsagath 1-ckemeroMm u pebpo
AC Gyner npunajexxarh ToMy ckesiery. [Tokpacum 3ToT ckesler B KpacHBbI 1BeT. AHagorndHo npu j1obasiennu pebpa BD
Haiifném cunuii 1-ckeser, cogepxxkaiumii pedbpo BD. Ceiiuac Mbl U3 9TUX JBYX CKeJIETOB cObepéM 1-ckesier rpada G U 1mojryamm
[IPOTHUBOpEYHE.

O0beMHUM 3TU CKEJIETHI; KPATHOCTH PEGEP, KOTOPBIE OKA3AJIMCh OJIHOBPEMEHHO KPACHBIMU M CHHUMU, OyJIeM CUUTATH
pasabivu enuaUIe. [lomyanm 1-2-ckeser rpada G U AC U BD. Ouesuino, pédbpa AC u BD upunajjexkar MUKITIECKON
9acTu 9TOro 1-2-ckejera, IpUIEéM BCe IUKJIBI B HEll YETHBIE, TAK KAK KPACHBIE U CHHIE PEOPA B IUKJIAX I€PELyIOTCS.

Ecmu pébpa AC u BD nexar B pa3HbIX IUKJIAX, TO UCKOMbBINA 1-CKeJIeT TIOCTPOUTH COBCEM JIETKO: BO3bMEM 3a OCHOBY
KpacHbIii 1-cKejieT U Bce KpacHble PEOpa TOro IuKJIa, e jJexkuT pedbpo AC, 3amMeHnM Ha cuHUE PEOPA ITOTO Ke IUKJIA.

IIycres Teneps pébpa AC u BD jexar B omgHoM nukJjie 7. Hauyuém jBukeHue u3 BepumiuHbl B 110 cunemy pebpy BD
U JIAJIbIIE BJIOJIb IUKJIA 7y, TOKa He foiaéM no sepumabl A win C. Ilycts 510 Oymer A, 9Tu ciaydan COBEPIIEHHO aHAJTOTHIHBL.
TTockonbky Kpachoe pebpo, Haumnawmeecss B Bepimae A, — 310 AC, MbI B mporiecce JIBUKEHUS NpUl B A 10 cuHemy
pebpy. Takum obpas3oM, TPOeHHbIH TyTh 3 B B A HaUYNHAETCS U KOHYAETCsl CHHUM pebpoM. Bo3bMEM Toria CHHUIN CKeJIeT,
3aMEeHMM BCe cuHUe pébpa IPOHIEHHOro IyTH Ha KPacHbIEe, a Takxke jobasuM pebpo AB. Ilosyunrcst 1-ckeser rpada G.

2.6. Msr npuBojuM pemterne u3 [1, §3.1.2]. Ecsu uucsio BepIinH B HACBIIEHHOM MTKOM Ipade G HEUETHO, TO OYEBUJIHO,
910 oH mosHbI. [lycTs unciao Bepmun B G 9€THO U myCcTh S — MHOXKECTBO Bcex BepiiuH (G, KOTOPbIE COEIUHEHBI CO BCEMU
OCTaJIbHBIMU BEPIIUHAMH, § — UX KosmdecTBo; G, Ga, ..., G — xomunonenTs! casnoctu rpada G\ S. Io yreepxkaenuio
[IPEBIAYINel 331291 Mbl 3HAEM, 9TO OHU SBJISIIOTCS IOJHBIMU TpadaMu.

Eciu B G\ S sIBIsifOTCsSI HEY6THBIMU He G0Jiee S KOMIIOHEHT, TO 1-CKeJleT HaXOIUTCs JIETKO. PaccMoTpuM Torja ciydai,
koryia B rpade G\ S He MeHee s + 1 HEUETHOH KOMIIOHEHTBI, & C YI6TOM TOrO, YTO YUCJIO BepiimH B G 9ETHO — HE MeHee
s + 2 kommoHeHT. Ecm HeIETHBIX KOMIIOHEHT OKA3aJI0Ch OOJIbINe S + 2, COeIUHUM JIIOObIe JAB€ U3 HUX PEOPOM, IOJTyIUTCS
rpad G1, g KOTOPOro BepHo, uro rpad G\ S umeer GoJiblile s HEYETHBIX KOMIOHEHT CBS3HOCTH. B TakoM rpade He MOKeT
ObITh 1-CKesieToB (9TO OYEBUIHO, U K TOMY K€ CJIe/lyeT U3 IPOCTOH YacTu yTBepxKIeHus 3ajadu 2.7), 9TO IPOTUBOPEYUT
HacwIimennocTu rpada G.

Wrak, y rpacda G poBHO S+ 2 HeUéTHBIE KOMIIOHEHTHI. [10 aHAJIOTMYHBIM COOOPAYKEHHUSIM Y HETO HEe MOYKET OBIThH IIPU 3TOM
JETHBIX KOMIIOHEHT.

2.7. Dro yrBepxKiuenue — kiaaccuueckas reopema Tarra (W. Tutte) Mbl npuoguM €€ 10Ka3aTesIbCTBO, CJE/Lysl U3JI0KEHUIO
B [1, §3.1.2].

Eciau B rpade G HAIIOCh Takoe MHOXKECTBO BepimH S, 4To B rpade G\ S Gosbie |S| HeYETHBIX KOMIOHEHT CBSI3HOCTH,
1o rpad G MATKUit. TO OUYEBUIHO.



IIpoBepum obpartnoe yrBepxKaenue. JlomycTuM, 910 [JIst KayKI0TO MOAMHOXKECTBa S MHOXKecTBa BepriuH rpacda G rpad
G\ S umeer e 6osiee | S| HIETHBIX KOMIIOHEHT CBS3HOCTH, HO UpU 3ToM rpad G Markuii.

Yucso Bepiun rpada G 0/KHO OBITH 96THO, TAK KAK B IIPOTHUBHOM CJIydae Ipu S = & cpaldy MOoJIydaeM IPOTUBOPEIHeE.
Jo6apum K rpady G HECKOJLKO pébep, 4ToObI MOJIyIHJICA HAChIMeHHbI Markuii rpad G’. Ilycts S’ — MHOXKecTBO BepInH,
CMEXKHBIX € KaxKoii Bepmunoiit G, s — ux xosmdectBo. ITockobKy KosmdecTBo BepiuH B rpade G/ Takoe ke kak u B G,
T. €. 96THO, TO 110 OCHOBHOM TeopeMe O MAIKUX HACBIIEHHBbIX Ipadax, rpad G’ \ S’ conepxur s + 2 HEUETHbIE KOMIIOHEHTBI
(HaM BazKHO, 4TO uX DOJIbIIE ), KayKjas U3 KOTOPBIX — HOJHBL rpad. Y6epém Te pébpa, KOTOpble Mbl 100aBUIId, Jesast
rpad HACBIMIEHHBIM. BO3MOXKHO, IIPH 9TOM HEKOTOpble KoMoHeHThl rpada G\ S’ pacnagyres Ha YacTu, HO B JI06OM CJrydae
XOTs OBbI OJIH U3 «OCKOJIKOB» HEUETHON KOMIIOHEHTHI Oy/1eT HEYETHBIM U O0IIee YUC/IO HEYETHBIX KOMIIOHEHT OyIeT H60JIbIIe S.
Takum 06pa3oM, MOCTPOEHHOE MHOXKECTBO S’ oIpoBepraeT 0CHOBHOE 00cy K 1aeMoe cBoiicTBo rpada G.

2.8. Ilycrs n — kommuectso BepmmH rpada G. Ilocrponm HOBBIM rpad G’ ¢ 2n BepmuHamm: Kaxko0i Beprumne v rpada G
COOTBeTCTBYIOT B¢ Bepnmubl v’ u v B G; kKaxmomy pebpy uv B rpacde G cooTseTcTBYIOT nBa pebpa B rpade G — u'v” u
u”v" (npyrux pébep B G’ mer). fcno, aro G’ — nBymOABHBIH Tpad, W KOJIXIECTBO €ro pebep B JBa Pasa MPEBOCXOIUT TUCIIO
pédep B G.

Bamerum, 4TO CcymecTBoBanue 1-2-ckesera B HCXOAHOM rpade paBHOCHILHO TOMY, uTo B rpade G’ naiinércsa nmapocouera-
Hue u3 n pébep. B camom zeste, 1 KarKI0r0 MUKJIA V103 . . . Uy, IPUHAJJIEXKAIINEro cKesery, B rpade G’ npucyrcTByioT pédpa
vivy, vovy, ..., vpvy; aHATIOTWYHO, [T M30JMPOBAHHOIO pebpa uv JaHHOrO ckelleta B G ects pébpa w'v” u v'u”. fcmo,
9TO BCe Takue pédpa obpa3yioT mosHoe napocoueranue. OOpaTHO, ec/u JIAHO TOIHOE mapocodetanue rpada G’ To mo memy
HeTpPYy/IHO TOCTPOouTh 1-2-ckester B . Hanpumep, péopam u'v”, v'w”, w'z”, 2z'u” mapocoueranust coorBeTcTByeT MUK UvW2
B rpadpe G, a pébpam u'v” u v'u” — uzosuposanHOEe PEOPO UV B CKeJeTe.

Tenepb pacCMOTPHUM YCJIOBAE O TOM, UTO JIJIsl KaxKJI0T0 TIOJMHOXKeCTBa S MHOXKecTBa BepuinH rpada G rpad G\ S umeer
He Gosee |S| uzosmposanubix Bepimi. Chopmysnupyem ero i rpada G'. BosbméM r060ii nabop S Bepuinn rpada G. Uro
3HAYMAT, 9TO IPU UX BHIKUBIBAHAN BEPIIUHA U OCTAJIACH H30JUPOBAHHON? DTO 3Ha4HUT, 9TO B rpade G’ Bce coceaym BepIIMHBL
u’ mexar B MEOXKecTBe S”. Econ mocse BeIkumbiBanmst HabGopa S obpazosasnock k > |\S| nzommposanHbIX BepmuH, TO B rpade
G’ Hapymaercs ycaosue seMMbl XoJuta: y k BepuinH He Goutee | S| cocenieit, uto MenbIe, yeM k. SIcHO, 4TO BEpHO U 0GpATHOE.
Takum 0o6pa3oM, Hallle yCJI0BUe PAaBHOCUIIBHO BBINOIHEHUIO B rpade G jiemmMbl XoJuIa, TO €CTh, CHOBa, PABHOCUILHO HAJIMIUIO
B G’ OJIHOTO TApOCOYETAHUS.

3 Maeuueckue epagot

3.1. (1) Drum cBoHCTBOM 06JIAIAIOT BCE NOIyMArnIecKue rpadml.

(2) Hoxaxem 6osiee obmmuii hakT: ecau B HOJIyMArndecKoM rpade ecTb Takoil mosyMarndeckuil HaGOp BECOB DEGeD,
B KOTOPOM BeCa KaKUX-TO JIBYX PEOED €] U ey He PABHBI, TO PEOPA €] U ey PA3IEIAIOTCA 1-2-CKeJIeTOM.

DTO yCTAHABIMBAETCS AHAJOIUIHO pelneHuto 3aa4du 2.4. BeibepeM MuHUMAIBbHBIN rpad; PUKCHPYyEM Ty PACCTAHOBKY,
rJle Beca He pPaBHBbI; OTHUMEM IIOJXOJANIUM 00pa30M Beca y pebep, MPUHAJIEXKAIINX CKeJIeTy; MOJIYyIUTCsI MEHbIHA rpad.
Tak Kak MCXOHBIN Irpad Mbl BHIOpAJI MUHUMAJIBHBIM, OJHO U3 PEGEpP €1, €3 JOJIKHO OBLJIO IMOJIyYUTh IIPU 9TOM HYJIEBOU BeC
u 66110 cTépro. Torma B ocrasiemcs: rpade 1Mo yTBepKIEHUIO 3a/a9u 2.4 BTOPoe U3 3TUX PEOEP NMPUHAJIEXKUT HEKOTOPOMY
1-2-ckestery, KOTOPBIH OyIET TaK)Ke U CKEJIETOM B MCXOTHOM Tpade u OyJeT pasiensaTs pédbpa e; u es.

3.2. Ilpouymepyen Bce 1-2-cKeneTsl U 1jIs k-TO CKeJIeTa MOJIOXKHUM Bec pébep IMUK/IMUecKol JacTu paBHbIM 3F, a Bec pédep
ymreitrol wactn — 2 - 3%, Temeps /it Kaxka0ro pebpa HAHIEM CYMMY €ro BECOB IO BCEM COJEPIKAIINM €ro 1-2-CKeeTam.
Tlostyuures mosrymarnyeckasi pacCTaHOBKA BECOB, KOTOpasl sIBJISIETCsI MArnIeCKOl B CHJIY €MHCTBEHHOCTH TPOMYHOI 3aIlucu
HaTypPaJIbHOI'O YUCJIA.

3.3. Cuenyer u3 3.2.

3.4. Orser: ner, rpad G MoxKeT oKazarbcs He Marundeckum. Mbl nodepunysiu sror upumep B [5]. Ha pucynke 8 nmokazanbt
JaBa Marndeckux rpada. st 1060l Marnyeckoil pacCTaHOBKYU BeCOB pebpa, HapUCOBaHHBIE IIYHKTUPOM, JIOJI2KHBI UMETH BEC

r/2, rae r — cyMMapHBIA Bec pébep, CXOJAIINXCS B OJTHON BEpIIUHE.

Puc. 8. O6benunenne marudeckux rpadoB — He BCerja Marmdeckuii rpad

3.5. a) Yasoenue G2 cocrout u3 JByx sKk3eMiiapos rpacda G u G rpada G u MHOKecTBa pébep E MKy COOTBETCTBEH-
vbiMu BepinHamu. CooTBeTcTBeHHBIE pEOpPa B KOMIIOHEHTaX (G1 u G2 OyieM Ha3bIBATH NAPGALEALHbLMU. PEOPa 13 MHOXKECTBa
E 6ynem HazbIBATE 6epmukasvhoimu. 1loarpad B G2, cocTosmuit U3 IBYyX COOTBETCTBEHHEIX KOMIOHEHT B G u Go, HA30BEM
AYoAUPOBAHHBIM.

CrauaJia ONMIIEM KOHCTPYKIIHIO N060poma napatiesvhuir pébep B yasoennom rpade. Ilycrs moxrpad H rpada G2
[IpeJICTABIIsIET co0oit o0bemuuenne moArpadoB, Jexkamux B KoMmmoHeHTax (G u (G2, TakuxX 49TO 3TH mOATrpadbl COmepxKaT



napaJuieiabable pedpa Ay By u A Bs. Yo6épewm B noarpade H pédpa A1 Bi1, Ay By u nobasum pédpa A1 As u By Bs. Tlonyuen-
HeIi noarpad wazosém H'. Bymem rosoputs, uto noarpad H' nomayden n3 H ¢ OMOIIBIO TOBOPOTa NAPAJIETLHBIX PEGED.
Ouesmmno, uto noarpadsr H n H' 0OTHOBpEMEHHO ABAAIOTCSA (MM He SBJSIOTCs) 1-2-cKeeramu.

Teneps moxazkeM, 4To rpad G2 U3 yCIoBHUs 33,Ja4H ABJISETCA MAMHIeCKUM. J1JIsl TOr0 IPUMEHNM KPUTEPUil MAIMIHOCTH —
yTBepxK/ieHne 3a1a4 3.1-3.2.

(1) JTio6oe pebpo npunajexur 1-2-ckesery. s pébep uz G (1 u3 G2) 910 0YEBHIHO: B KadecTBe cKesera GepéMm
1-2-ckeser B (1, comepxkarmmit 310 pebpo, B obbemunenun ¢ ero ayosem B Go. st BepTuKaIbHBIX PEOEp CIeayeT B3ATHb
[IOBOPOT MAPAJIIEIbHBIX PEOED MOIXOISINEro AyOanpoBaHHOroO 1-2-cKesera.

(2) JTrobGast mapa pébep pasmenstorcst 1-2-ckeseroM. B ciyuae, Korja oba pebpa e; u ex n3 Gy (nmam 06a u3 Ga), BO3b-
MéM JybsimpoBaHHbBI 1-2-cKejier, cojepxKariuii pebpo e;. Ecim sTror cresier He pasjessier pebpa e; U ez, 06a 3Tux pedpa
NpUHaJIeXKaT ckejeTy. Toraa BBITIOJHIM ITOBOPOT pedpa es U MapaslIeJIbHOIO eMy, IIOJIyIUTCs CKeJIET, Pa3IesIsiioliuii péopa.

B ciayuae, korga pebpo e; u3z Gi, a pebpo es uz Ga, BozbMéM B (1 1-2-ckesier, cojepzkamuii €1 (OH CyIIECTBYET B CHILY
yrBepxKiaenus 3agaqdu 2.4), a B Go — 1-2-ckesier, He cojepxKamuil ey (cymiecTByer 1o ycjoBuio). VX obbejuHeHHe ecTh
UCKOMBI pazjiesstiomuii 1-2-ckeJer.

Eciin 1 u3 G1, a ea — BepTUKaIbHOE, OIOWIET JIyOJIMPOBAHHBIN CKeJleT, cojepKaluil pedbpo e .

Hakower, eciin 0ba pebpa — Ay As u B; Bs — BepTUKaJIbHBIE, TO IIOCKOJIBKY B rpade G He ObLIO W30 IMPOBAHHBIX PEGED,
B G naiinércs pebpo A1 X5 (rme X7 # Bp) wimu B1Y; (rne Y1 # A;). Boibepem ay6iaupoBanHblil CKejleT, cojepKaiuii 310
pebpo, u TOBEPHEM 3TO PeOPO U MAPAJIIETIHBHOE €My.

b) Joka3bBaeTcst AHAJIOTUYHO II. ).

3.6. YrBepxKaeHne 331291 Mbl B3siH B [6]. JlokasaTesbeTBO, IPUBEIEHHOE TaM, OIIUPAETCs Ha KPUTEPUH MArnIHOCTH Ipada,
KOTOPBIII He BCTPEYAJICS B JIAHHON Cepuu 3ajad. 3ajada COIEPXKUT JIBa YTBEPXKJIEHHE, CJIOXKHBIM SIBJISIETCS yTBEPXKJIEHUE
«rorgay — ecau G’ — mazuneckuti epag, mo 2pagp G umeem 1-2-crxesem u He UMEEM USOAUPOSAGHHHIL PEOED U USONUPOEAHHBLT
sepuwiun. Vbl IPUBOIUM OKA3ATEILCTBA ITOTO yTBEPXK/IEHUsI, HANIEHHbIE YIACTHIKAMI KOHMEPEHIHIH.

JHokaszarenbcTBo 1. Ecom 661 B G 6b1a m30MMpoOBaHHAash BepmmHa, TO B rpade G’ oHa okasasach Obl BHCSYEl
u rpad G’ He Mor 6Bl ObITH Marmueckum. Ecim 661 B G 6610 M30aMpOBaHHOE PeGpO, TO KOHIBI 9TOro pebpa B rpade G’
OKa3aJ1Ch ObI CMEXKHBIME BepmuHamu crenenn 2 u rpad G’ He Mor 6bl OBITH MATHIECKAM.

Homycrum, uro B G He cymecTByer 1-2-ckejera.

O6o3naunm HOBYIO BepmuHy rpada G’ yepes S. BozbméMm kakoil-nubyan 1-2-ckester K rpada G, MOXKHO CUNTATh, YTO BCE
[UKJINYECKUE KOMIIOHEHTHI B HEM CyThb HEYETHBIE IUKJIbI. PACCMOTPUM KOMIIOHEHTY 9TOI'O CKeJIeTa, COJIEPKAIILY 0 BEPIIUHY S.
DTa KOMIOHEHTa He MOXKET OBITh HEYETHBIM IUKJIOM, TAK KaK WHAYE MPU YJIAJEHUH W3 HEro BEepITUHBI S Mbl MOIJIA Obl
pasdUTh OCTAJIBHBIE BEPIIUHBI 3TOTO UKJIA HA TAPBI U BMECTE € OCTAJIBHBIMU YACTSIMHU PACCMATPUBAEMOTO CKEJIETa TIOJTY TN
Ob1 ckejier (G. 3HAUYUT, 3TAa KOMIIOHEHTA SIBJISIETCS M30JupoBaHHBIM pebpom SA;. Ceitdyac Mbl moctpoum B rpade G 1Ba
muo)kecTBa BeprmHa — A = {Ay,..., Ay} u B = {B1, Ba,..., By}, YIOBIETBOPSIIOMAX CJIEIYIOMAM YCJIOBUAM: BCe pebpa
A;B; (1 <i < n) upunajgexar ckenery K, u Bce pébpa u3 BepinmuH A;, BejyT B MHOXKeCTBO 1.

s nagasa konerpykiuu BosbMéM A = {41}, u nonoxkum By = S. omycrum, 910 y2Ke HOCTpOEHbI MHOXkKecTBa A =
{A1,..., Ax} u B={B,..., By}, Jouycrum, aro u3z Maoxkecrsa A BbxoauT Kakoe-smubo pebpo, uiaymiee sue AU B, ckaxeM,
A By41. Bepmuna By 1 npuHaIJIeKUT HEKOTOPOH KoMitoHeHTe ckeseta K. Eciu 970 HeU€THBIH 1UKJI, TO MBI JIETKO MOYKEM
[1epecTpouTh cKejier K, 9TOObI IMOJIy IUJICs TIOJIHOIeHHBIN 1-2-ckesier rpada GG, YTO HEBO3MOXKHO.

Jlyist sTOrO paccMoTpuM KpaTdadimmii myTk oT By 10 Bii1, uaymmii mo sepmuHaMm AU B 1 B KOTOPOM BEPIIHHBI
muO)KecTB A 1 B uepenytorcs. OH nMeer 9€THYIO JuinHy. BeibepeM B HEM Bee PEGPa ¢ 4ETHBIM HOMEPOM (IIOCTIe HEe
U3 HUX OKAHUIMBAETCs BEPIIUHON Bj11) 1 pa3sobbhéM Ha maphl BCe OCTAJIbHBIE BEPIINHBI HEIETHOTO [UKJIA.

SHAYUT, MOXKHO CUUTATH, UTO BEPIUHA B 1 IPUHAJIEKUT U30JUPOBAHHOMY PeOpy Bji1Akt1 ckesera K. [Tomectim Torma
BepiuHy By1 B MHOXKecTBO BB, a BepimuHy Ag11 — B MHOXKeCTBO A.

Bynem nposiomkaTh yBemnauBaTh MHOXKeCTBa A 1 B ontncaHHbIM 00pa30M, ITOKa 3TO BO3MOKHO. B KOHIIE KOHIIOB OKAYXKETCH,
410 U3 MHOkecTBa A Bce pébpa BemyT Tosibko B A U B. Ilpeamnosnoxum, uro nse Bepuunbl A; nu A; coequHeHbl peOpOM.
PaccmoTpuM KpaTdaiinmii myTh MeXKJly STUMU BEPIIMHAME, B KOTOPOM BepmuHbl u3 A u B uepemyiorcsa (cymecrBoBanue
TAKOI'O IIyTHU JIEFKO YCMOTPETHb U3 IIPOLECCaA IOCTPOEHHUs Iapbl MHOXKeCTB). Bmecre ¢ pebpom A;A; oH obpasyer HedéTHBILI
[UKJI, 1 Torja cKejer K miepecrpauBaercs B ckesier rpada G criocoboM, aHAJIOTMIHBIM OIMMCAHHOMY BBIIIIE.

Urak, Tpedbyembie MHOXKecTBa A 1 B mocTpoeHbl. 3aMeTHM Terepb, YTO CyMMbI BECOB BCEX BEPIIUH B 3TUX MHOYXKECTBAX
pasubl (160 B Hux 1moposHy Bepinut). C Apyroit CTOPOHBI, CyMMa BECOB BCeX BepiiuH u3 A CKJaJbIBaeTCsd U3 BECOB BCEX
pébep Buna A;Bj;, B cymMa Becos BepuuH B — u3 Tex ke pébep, a Tak xe u3 pébep Buna By B; (HAIOMHUM, YTO BEPIIMHA
B; = S coemunena co scemu Bepriunamu rpada G)! Ilporusopedue.

HoxaszareabcrBo 2 (A.Ipi6bimes). PaccMOTprM Marmdeckyro pacCTaHOBKY BecoB Ha pébpax rpada G'. MbiciaeHHO
3a0yeM Ipo peédbpa, BeIxosme u3 S, 1 OyJIeM BpeMEeHHO PACCMATPUBATH TOJIBKO pédpa rpada G. [Ipumennm K HIM aaropurm
«n30aByIeHnsi» OT YETHBIX ITUKJIOB M TaHTeJeil, ONMMCAHHBIN B perrennn 3a7a4 2.1 u 2.2. B pesysnbrare ocranercs rpad F ¢
BecaMu Ha PEOpax, B KOTOPOM HET YETHBIX IUKJIOB M MaHTeJell, a CyMMa BECOB B KaXXJIOW BEpIIMHE TaKas »Ke KaK B HadaJe.
Bepném obparHo pébpa U3 BepmIMHbLL S — MOJIyYnTCS MoJyMarndeckuii rpadp F.

Ecnn B rpacde F naiinérca nsonuposannas Bepimuna A, To B rpade F/ epmmuna A Gyner Bucsdeil, 9TO NPOTHBOPEYUT
€ro MOJIyMaruIHOCTH.

ITycrs B F' ecThb BuCsvas Bepmmmaa A, n mycth B — cocemuss ¢ meil Bepmmnaa. Haiiném B rpade F’ 1-2-ckener, comepkammuii
pebpo SB. OdeBumHO, OH JIOJIZKEH COCTOITH 3 nukiaa SABS, a Takke Jpyrux MUKJIOB U U30JUPOBAHHBIX pébep. Ho Torma
9TH [UKJIbI, H30JIMPOBaHHbIE pEOpa u pebpo AB obpasytor 1-2-ckejier rpada G, 4To u TPebOBAJIOCH.



Ocrasioch pazobpaTh ciydail, Korja B F HET HU U30JUPOBAHHBIX, HU BUCAYNX BepinuH. [[OCKOIbKY B HEM HET TakKe
9ETHBIX IUKJIOB U FAHTEJIEl, BCE €10 KOMIIOHEHTHI — HeIEéTHBIE IUKJIbl. Ho Torma onn o6pa3ytor uckomsiii 1-2-ckeser rpada G.

Teneps j10KazkeM BTOPYIO 4aCTh yTBEpXKJeHUsi 3aja4u. [Iposepum, uro eciau B rpade G ectb 1-2-ckejleT U HET U30JIH-
poBaHHBIX pEGep, To rpad G’ ymosaersopsier croficTBaM 3amaqun 3.1 (u caenoBarenbHO, Marnueckuii). OGO3HAYNM HOBYIO
geprmHy rpada G’ depes A, a 1-2-ckesier B rpade G (10601, ecim UX HECKOJIBKO) — depes S.

1) IIposepum, uro Kaxkgoe pebpo G’ upunajyexur 1-2-ckesery.

Cuyuait a). Unrepecyormee nac pebpo BC' nexur B rpade G.

al) Ecau pebpo BC npunajiexuT JuHEeHHONH vactu ckesera S, 3amennMm B S pe6po BC Ha Tpeyronbauk ABC —
noJryunrcst ckesret rpacda G, conepxamuii BC'.

a2) Ecau pebpo BC' npuHa UIesKUT IUKINIECKO qacTu ckesera S, ckaxeM, mukiy BCD ... B, 3amenuM B S pebpo C'D
Ha jBa pebpa AC, AD — nosnyunrcsa ckesier rpada G, conepxamuit BC' (B ciierka yBeIMYeHHOM IHUKJIE).

a3) Ecsin pebpo BC' ne upunagiekur S u upu roM Bepriuibl B u C' npuHaIeKaT OJHON KOMIOHEHTE CKeJleTa — IUKJLY
BD,...D,CE, ... E;B, cKOHCTpyHpyeM H3 3TOro Hukia asa HoBbix: BD;...D,CB u AE;...E;A (upu ¢ = 1 Bropoit
[IUKJI — 3TO IIPOCTO U30JMPOBAHHOE Pebpo), nosyunres ckeser rpada G, conepxamuit BC'.

ad) Ecim pebpo BC' He npunajyiexxur S u 1npu 31oM BepuuHbl B n C' npuHA/IERKAT PA3HBIM KOMIIOHEHTAM CKeJIeTa —
BB, ...B,BuCC...C,C, 3amernm ux Ha onus 6ossimoit mukn BBy ... B,AC, ...C,CB.

Cuyuait 6). Unrepecyoree nac pedbpo AB BbIXOAUT U3 BepIIUHbLL A.

Ecmu Bepmuna B cojiep:kurcs B uzoaupoBaHiHoM pedbpe BC' 1-2-ckesrera, To 3aMeHuM 310 pebpo Ha mukia ABCA. Ecin
’Ke BepInHa B conepkures B ke BD; ... DyB, To 3amernmM ero Ha ki1 ABD; ... DyA.

2) IIposepum, uro Job6bie nBa pebpa e u f pasziensiorcs 1-2-cKesieTamu.

Cuyuait a) Uurepecyromue nac pebpa npunamiexar rpady G.

al) OziHO u3 pebep, CKaXKeM, e, IPUHAJIEIKUT [MKINIecKoii yacTu ckesera. Ecim pebpo f npuHaJIeXKuT CKeJeTy, 3aMeHIM
I[IUKJI, B KOTOPOM JIEXKHUT PeOPO e, Ha yBeJMIeHHBIH [UKJI, He cojepxkanumii pebpa e (npoxomsmuiil uepes BepimuHy A, Mbl Tak
nesianu B cirydae a2). Ecau pebpo f He npuHAJIEKAT CKEJIETY, 3aMEHUM IIUKJI, B KOTOPOM JIEXKUT PEOPO e, HA yBeJInIeHHbII
[UKJI, COZIep2KaImii pedbpo e.

a2) OzHO u3 pébep — e — JIeXKUT B JIMHEHHON YacTu CKeJieTa, a APyroe — TOKe B JIMHEHHON 1iiu BOOOIIE HE IIPUHAIJIEIKUAT
ckejiery. JlobaBuM K ckejieTy pébpa, COeMHSIIONIe KOHIIBI pedpa e ¢ BepuInHoil A.

a3) Oba pebpa He IPUHAJTIEKAT CKeJleTy. B KavuecTBe pas/IelIsioNniero BO3bMEM CKeJIeT, CoflepKaliuii peGpo e, HOCTPOEHHBIH
B [I€PBOIl YacTU PeIleHusl; IIPU ero MOCTPOeHUH J100aBIsinch pEbpa He npuHaiexkaime rpady G.

Cuyuait 6) Ouuo u3z pébep aexkur B G, gpyroe — B G'. Mbl ocraBisieM 4uTaTel 0 JOBECTU JI0 KOHIA STOT HECJIOXKHBIIH
nepebop. Crenyer moMHUTE, 9T0 rpad G uMmeer He MeHee 4 BEPIIUH W HE UMEET U30JUPOBAHHBIX PEGEP.

3.7. Meb1 B35 3T0 yTBEpXKeHNE B [3].

a) BosbMéM Jro6ble pEGPa € u f U JOKazKeM, 9TO OHU PA3JIEJIsIIOTCsl HEKOTOPhIM 1-2-ckesieroM. BeikuneM u3 rpada ase
BEpIIHBI — KOHIBI pebpa f — u Bce pEbpa, BBIXO/AIINE U3 HUX. B ocraBinemcs rpade n — 2 BEPIIMHBI U CTEIIEHb KaXKJI0i 13
HIX HEe MEHbINe, 9eM 5 — 1 = "T_Q Torya, Kak U3BECTHO, B 9TOM Tpade HARAETCS MUKJI, TPOXOISIINI IO BCEM €r0 BepIITIHAM
(raMHJIBTOHOB [UKJI). DTOT HUKJ, BMecTe ¢ pebpom f, obpasyer 1-2-ckeser B ucxoguoMm rpade. On paszzesser pédbpa e u f,

TaK KaK f JIE2KUT B €ro JIMHEHHO JaCTHu, a € — HeT.

b) ITocrpoum rpad G Ha n = 2k Bepmmaax X1, ..., Xi, Y1, ..., Y%, B koTopoM mposenens! Bee pébpa suma X;Y; u pebpo
Y1Y5. Crenens kaxkoit w3 sepmmn X; ne Menbime k = 5. Jokaxem, 9o G' He aABIATCS HOTyMarnaecKuM rpadom.

Paccmorpum sir060it 1-2-ckester B G. Kaxxjast u3 Bepmiua X; uMeeT B 9TOM CKejiere JIMOO OJHY, JIMOO JIBE CMEXKHbIE
BepiuHbI cpeu Y;. [lockosibKy BepIIMH 00erx TUIIOB IIOPOBHY, TO 1-2-CKeJieT JOJIXKEH sIBJIATHCS IIapocovyeTanneM us k pebep
Buza X;Y;. D10 3HaUUT, 4TO pebpo Y1Ys He ColepKUTCA HU B ONHOM 1-2-ckesiere, T. . G — He HOJIy Mard4ecKuii.

3.8. B marmueckom rpade HeT BepinuH creneru 1, u 60jee TOro, HUKAKWE JIBe BEPINUHBI CTEIIEHN 2 HE COEIUHEHBI PeOPOM.
ITycrs V' — MHOXKeCTBO BepIIUH CcTeleHn 2 (BO3MOXKHO, mycroe), a W — MHOXKecTBO BepiuH crenedn 3 uin 6osbire. O6o-
3HAYNM CyMMY BecoB pébep B KaxkJoii Bepriute uepe3 s. Cymma Becos Beex pébep, Beixogsimux u3 V', pasra s|V|. C npyroit
CTODPOHBI, BCE 3TU PEOpa MMEIT OJMH U3 KOHIOB B W, 1m03TOMYy CyMMa ux Becos He mpesocxomut s|W|. Takum obpasom,
|[V| < |W| (upuuém crporo menblie, eciu BayTpu W ectb xorst 661 0nHO pebpo). Jajee, cymMma crerneHeil Bcex BepIIMH HE
menbiie, qem 2|V| 4 3|W/|, mosromy B rpade ectb ne menbine, uem |V| + 2|W| pé6ep. Ho [V|+ 2|W| = 2(|V|+ |W]) = 2n,
T k. |[W]| > |V].

JL7151 TOro 9TO6bI KOJIMIECTBO PEGep JeficTBATEILHO PABHSIOCH 21, HEOOXOMMO, YTOObI He GbiyI0 pé6ep ¢ 06oMMM KOHIIAMH
B W, T.e. uT065I rpad 611 AByH0bHLIM. B sroM ciyuae s|V| = s|W|, r.e. |[V| = |W|. Ho kosmuectso pébep mexxny V u W, ¢
o/1HOIi cTopownbl, pasho 2|V|, a ¢ apyroii cropousl, He Menbiie yeMm 3|W|, T.e. |V| > %|W|, 9T0 HeBO3MOXKHO. Takum obpazom,
HEPABEHCTBO 7' > 21 J10Ka3aHo.

3.9. Ilycts n = 5, 6, 7 miu 8. Ha pucynke m306parkeHsbl Marndeckue rpadbl ¢ MUHIMAJJIBHBIM IUCJIOM DPEGEP.

3.10. Ha puc. 10 a, b, ¢, e, ) n306pakeHbl NpuMepbl MArnIeckux rpadoB ¢ MUHUMAJIBHBIM BO3BMOXKHBIM KOJIMIECTBOM PEGep.
Bu rpada 3aBucut ot ocrarka ot fesenusi n Ha 4. [Ipu n = 4k npusesens! 1Ba Bujia rpadoB: ABYI0JbHBIN U HEJIBYI0JIbHBIH,
upu n = 4k + 2 — TOJIBKO ABYIOJBHBIN, B OCTAJIBHBIX JBYX CJIy4asX IMPUBEIEH IIPUMED HEIBYAO0JbHOrO rpada.
JlokazaTeibcTBO MATUIHOCTH IIPEJICTABIEHHBIX I'PadOB COCTOUT B PYTUHHON HPOBEPKE KPUTEpPHUs MAIMYHOCTU (3aja4a
3.2). Mb1 e GyzeM 31ech JIeJIaTh Ty IPOBEPKY, HO 3aMETUM, U4TO €CTh OOXOJHON MaHEBDP, KOTODLIH I103BOJISIET HE JIEJIAThH
TaKOTO Iepedopa, W JIUIIL HEMHOT'O HE JIOTATHBAET JIO CTPOTOrO JIOKA3aTe/JbCTBA, & UMEHHO, Mbl IPUBEIEM MATrMIECKYIO
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9 10

6 4
3 S 6

4 7
a) b BepmuH, 7 pébep b) 6 Bepuiun, 8 pébep ¢) 7 Bepuus, 9 pébep d) 8 Bepuun, 11 pébep
Puc. 9. MunnMaspHble Marndeckue rpadsl
a) n = 4k, r = 5k + 1, nBymonbHBIL rpad b) n = 4k, r = 5k + 1, menBynosnbHELI rpad
c) n =4k + 2, r = 5k + 3, aBy0uBHBIL rpad d) n =4k + 2, r = 5k + 4, HeaByAONBHBIA rpad
e) n =4k + 1, r = 5k + 2, HexBymONBHBIA Tpad f) n = 4k + 3, » = 5k + 4, HenBYONBHBIA rpad

Puc. 10. [Ipumeps! Mmarndeckux rpadoB ¢ MEHUMAJIbHBIM YHUCJIOM DEOEp

pacCTaHOBKY BECOB PEOEP, B «IOCTATOYHO TUNUIHOM» ciydae. Mbr orpanmanmMces caydaem n = 4k + 3, r = 5k + 4, k = 2;
paccTaHOBKa BeCOB IoKa3aHa Ha puc 11.

3.11. Mur upusogum penterre no Mmorusam [4]. Ilycrs yzke nocrpoen cBas3ublii Marnveckuii rpad ¢ n BepumHamMu u r péépamu,
He SIBJISIOIIUIICS MOTHBIM. EC/IM OH HeJ[BYI0JBHBIH, TO IPU JI0OABIEHNA K HEeMY erné ogHoro (siroboro!) pebpa oH He yTpadnsaer
Maru9gHOCTH.

IeiicTBUTEIBHO, HOBOE PEOPO € 00sI3aTeIbHO BXOJIUT B HEKOTOPLIA mukiI. Ecim sror ruki uéren, To npunwmieM pedbpy e
3HAYEHUE €, & K OCTAJIBHBIM PEOPAM IUKJIa MPUOABUM IIONEPEMEHHO ££, TPUIEM OIDEPEM £ TaK, ITOOBI BCE BECA OCTAIUCH
[TOJIOYKUTEJILHBIMU U Pa3andHbIMu. [loydennas paccTaHOBKa BECOB HA HOBOM rpade Oy/IeT MarmdecKoil.

[TycTh Terepb pebpo e BXOAUT B HEUETHBIN UKJI. B CHIy HEJIBY/I0JBHOCTH UCXOHOTO Ipada, CyIecTByeT HeYETHBII ITUKJI,
He coziepxamuii e. Toryma e jexkuT B HEKOTOPO#i ranTesm (cM. seMMy B perternu 3agauu 4.1.). VI onsTe MOXKHO IIPHUIIECATH
pebpy e Bec €, a K pébpaM ranTem IpudbABUTH MONPABKU t&, +2¢, YTOOBI PACCTAHOBKA, OCTAJIACH MArUIECKOM.

Takum 06pa3oM, JOCTATOTHO JIJIs KAXKJIOT0 7 2> § MOCTPOUTDH « MUHUMAJIBHBINY HEJBY/IOJIBHBINA Tpad. ITO OBLIO CIeIaH0
B upezaptyineii 3agade mis n # 4k + 2 (em. puc. 10 b, e, f). Koncrpykuuu rpados mbl B3sim B crarbe [4]. K coxasnenuro,
KOHCTDYKIMSI MUHIMAJIBHOTO HeJIBY10IbHOrO rpada st n = 4k + 2 B a1oit crarhe HeBepHa. Kpome Toro, rpad Ha puc. 10b)
npu n = 8 He Marmveckuil (B HEM He pa3leNsioTcs 1-2-cKejeTaMy HAKJIOHHOE U HUXKHee peGpo), NPUMEP MATUIECKOrO
rpada npu n = 8 nokazan Ha puc. 9d), ero uzobpén yuacrauk koudepennuu A. Ilpi6bines. Mbl He 3HAEM, CyIIECTBYET JId
HEJBYIOJIbHBINA Marudeckuii rpad ¢ 4k + 2 Bepmunavu u 5k + 3 pébpamu (upu k > 3), mosromy Jyis ciaydasa 5k + 3 pébep
OCTABHUM [IBYIOJILHBIN IPUMED, & KOHCTPYKIUIO JA00aBjeHus pebep HAYHEM C HEABYIOJIbLHOrO rpada, comepxkarmero bk + 4
pebpa. dror HeAByH0abHbL rpad ¢ 4k + 2 Bepmunavu u 5k + 4 pébpamu nokasan ua puc. 10d). IIpumep paccranoBku BecoB
Ha 3ToM rpade npu k = 3 cMm. Ha puc. 12.

27 3 19 11 18 22 18 19 21 13
2 8 16 17
24 6 16 14 12 2 3 ! 5 10
24 23
4 14 26 11 28 7

Puc. 11. n=4k+3,r=5k+4, k=2 Puc. 12. n=4k+2,r=5k+4, k=3



4 Odnopodnwvie epagot

4.1. Pemenue 1 (BOKPYT ABYIOJBHOCTH).
Jemma. Ilycts B cBssHOM Tpade JAHBI JBa HEIETHBIX UK/, OJUH U3 KOTOPBIX CONEPKUT pebpo €, a Jpyroi — Her.
Torga e comep:KUTCA B Y6THOM [UKJIE MU TAHTEJIE.

HokazarenbcTBO. Eciu IMUKIBI HE EPECEKAIOTCS WM IIEPECEKAIOTCS 110 OJHON BepInuHe, TO pebpo e, OUYEeBHJIHO,
COJIEPXKUTCSI B TaHTe ie. PaccMOTpUM Citydaii, KOrJIa IIUKJIbI [IEPECEKAI0TCsI He MeHee YeM 110 jiByM BepruuHaM. [Iycte X u Y —
KOHIIEBbIE BEPIIUHBI pebpa e. Yaagnm pedpo e u3 IepBOro MUKJIA, HA OCTABIIYIOCH YaCTh ITOTO IIUKJIA OYAEeM CChLIATHCS KaK
Ha myth XY. Ilycte A u B — mepBas u nocjieiasst BepiuHa myTn X Y, TpuHaJjIeskaliie BTOPOMY ITUKILY, TOT/Ia OTPE3KU
nytu X A u BY wne nepecekatorcst ¢ mukyiom. Beprmuasl A u B jiesiiT BTOPOit IUKJT Ha JiBa Iy Ty pa3uoit yérHoctu. Opaun u3
Hux gonosaser nytu X A u BY ;0 meuérnoro nmytu X ABY | koTopslii, BMecTe ¢ pedbpom XY, obpasyeT Y€THBINA UK.

Tenepsr obparmmcst K yTBepKIeHno 3a7a4qu. He ymassss oOIMHOCTH MOXKHO CYATaTh, 9TO rpad casmbiii. Pacemorpum
npou3BoJibHOE pebpo e ¢ kounamu A u B. Beikunem ero us rpada. Jomyerum cHavasa, aro rpad G \ e pacnascst Ha jBe
KOMIIOHEHTBI CBsi3HOCTH. [TO0CKOJIbKY CcTerieHn Beex BepIinH ObLn 60JIbIne 1, KOMIIOHEHTBI COJepKAT 00Jiee OHONW BEPIITUHEI.
Hu ojiHa 13 KOMIIOHEHT He MOXKeT ObITh JIBYI0JbHBIM I'padoM. B camoM Jejie, B ABYI0IbHOM I'pade CyMMa CTelleHeil BepITuH
B 00enx JI0JIIX OJMHAKOBLI; B HAIEH yKe KOMIIOHEHTe CyMMa CTeleHell B OJHOI KOMIIOHeHTe OyaeT KparTHa d, a B APYTroil
(B Toll, Kyna monaaér KoHer pebpa e) cymma creneHeidl Oyuer cpaBHuma 110 Mojayiao d ¢ —1. Takum obpasom, B KaxKoii
KOMITOHEHTE €CTh HEUYETHBIN UK. 3HAYUT, peOPO € CONEPXKUTCSI B TaHTEIE.

Tenepsb npemosoxkuM, 910 rpad G \ e cesasen. Pacemorpum npoussosbHblil myTh n3 A B B B aroM rpade. Ecan on
HEYETEH, TO € COJEPXKUTCS B Y6THOM IUKJIe. IIycTh 5TOT IyTh 4éTeH (M, 3HAYNT, € COJEePKUTCs B HeUETHOM IukJe). Torma,
eci 661 rpad G \ e ObUL ABYIOJBHBIM, TO 9TH BEPUIMHBL [OIAJM Obl B OJHY M TY K€ JOJIO, YTO HEBO3MOXKHO, U0 CyMMa
cTereHel BEPIIUH B 9TOI JIoJie Oblyta ObI CPABHUMA 10 MOJLYJIIO d ¢ —2, a B IPOTUBOIOJIOXKHOI J10J1e — KpaTHa d. 3Ha4duT, rpad
G \ e He ABYJIOJbHBIH, & TOrJa HARAETCH HEYETHBIH UK, He cozgepzKamuii e. OCTanoch BOCIOIb30BATHCS yTBEPKICHUEM,
[IPUBEIEHHBIM B HAJYaJIe PEIeHMUsI.

Pemenue 2. 910 perienne npeioxui yaacTHUK KoHdpepeniun Ajiekceil [IbiObImmes.

Paccrasum Ha Bcex pé6pax UCXOJHOIO OAHOPOAHOrO rpada yucia 1/d, cymma B Kaxk10ii Bepiune Oyer pasaa 1. Hauném
[IPOBOJIATH IIPOIIECC, ONMCAHHBINA B PEIIEHUN 3312491 2.3, — U30aBJISATHCA OT YETHBIX [IUKJIOB U TAHTEJeH, MEHsIs COOTBETCTBY-
oM 00pa3oM Beca pédep W OTKUIbIBast HyJsieBble péOpa. B mrore ocranercs 1-2-ckesier ¢ MOJyMarnaeckoil pacCTaHOBKOMA.
OueBnHO, UTO Ha ero pébpax crosar uncia 1 u 1/2. Ho nmockosnbky 1/d we pasro Hu 0, Hu 1, Hu 1/2, m060e pebpo XoTh pas
M3MEHUJIO CBOI BEC. DTO 3HAYUT, UTO JIFOOOE pedPO COMEPKUTCSI B KAKOM-HUOY/Ib [ICEBIIOIUKIIE.

4.2. BymeMm Ha3bIBaTh PACCTAHOBKY + 1 Ha Y6THBIX IUKJIaX 1 +1, £2 Ha raHTe/IAX, OMMCAHAYIO B TEKCTE YCJIOBHIl, CTAHIAPTHON
PacCTaHOBKOI Ha IICEBJOIUKIIE.

Jlemma. Ilyctsb B rpade 3ajana paccraHoBKa duces Ha pébpax, IPUIEM Beca Bcex pEdep HeHyJeBble, a CyMMa B KayKJION
BepIrHe paBHA HysI0. Torma jioboe pedpo COMEPKUTCH B YETHOM IIUKJIE WU TAHTEJIE.

Jloka3are/IbCTBO JIEMMbI TIOYTHU JIOCJOBHO IIOBTOPsieT pernenue 3ajaun 4.1. Bmecro kosimuecTBa pédbep Hy»KHO I'OBOPUTH
0 CyMME X BECOB U ITOJIb30BATHCS TEM, UTO B ABYI0IHHOM Irpade CyMMa BeCOB PEDED, BHIXOAAINX U3 00€nX J0JIell, OJMHAKOBHI.

1. IIpeamosoxkum, 9To ogHOpOAHBIH rpad G — MArHIeCKuil ¢ CyMMOil s B KaK10# BepmmHe. Berarem m3 Beca KaxKI0ro
pebpa uuciio s/d, noLyduTesl pacCTaHOBKA HA PEOPaX PA3JIMYHBIX YUCEJ C HYJIEBOH CyMMOIl B KarKJOil BepIIuHe.

Bribepem B rpacde G npousBosibHOE peOPO HEHYJIEBOIO Beca U COIVIACHO JIeMMe HAaMIEM COMEpIKAIlUil ero ICeBIOIUKII.
Borurem u3 BecoB pébep 9TOTO ICEBIONUKIIA €r0 CTAHJIAPTHYIO PACCTAHOBKY, YMHOXKEHHYIO Ha TaKON KO3 duimenT, 9To0bl
Bec JaHHOTO pebpa obmysmics. Temnephb BeikuHeM n3 (G Bece «HysIeBble» pédpa. [lomydennas pasmerka pébep yMEHBIIIEHHOTO
rpada 110 IpekHeMy 00J1aaeT HyJIeBOl cyMMoil B Kazk 1o Bepinute. CHOBa BbIGepeM B HEM PeOPO U CHOBA IIPUMEHUM JIEMMY,
u T. I

KosmmuectBo pébep B rpade Ha KaxKJOM IIary yMEHBIIAETCsl M PAHO WJIM I[TO3HO BCe PEOpa CTaHyT «HYJIEBBIMHU». DTO
OyJleT 03HAYATh, YTO UCXO/IHAS pa3MerKa pébep rpada G siBISeTCs «CyMMOR» CTAHJIAPTHBIX PACCTAHOBOK HA IICEBJIOIUKIAX
¢ nogxomsAnmMu Kodddunmenramu. [lockosbKy Jsirobbie JiBa pebpa G UMEIT Pa3HbBIN BEC, TO JJIsi HUX HANRJIETCS MICEBIOIIKII,
BHOCSIIWI B 3TH PEOPa pas3HbIil BKJIaJ. DTO U O3HAYAET, YTO OH cJ1abo pasjesisieT 3T 18a pebpa.

2. IlpemmosokuM Temepnb, ITO J0ObIe ABa pedpa caabo pa3de/dioTcs ICeBAONNKIIAMU. BBIIUIIeM BCe IICEBIOIUKIbI, U
npoHyMepyeM ux dncaamu ot 1 0 N (rme N — ux kosmuectso). st k-ro 1ceBaonuKia Ha3HAUNM Beca ero pébep, yMHO-
JKUB €r0 CTaHIAPTHYIO PAacCcTaHOBKY Ha 5F. Temeph uisi KaskI0ro pebpa CIIOXKHM BCe HA3HAUEHHBIE €My BECA U IPHOABUM
6oJibiyt0 KoHCTaHTy C', 9TOOBI BCE BECa CTAJIM IOJIOXKHUTEIbHBIMUA. ByjleM cuuTarh 3TOT pe3y/IbTraT OKOHYATEBHBIM BECOM
mamuoro pebpa. [lomydennas pasmerka pédep rpada — MarmdecKast: KayKIbIi [ICEBIOIUKI JAET HYJIEBON CyMMAaPHBIH BKJIAT
BECOB B KaXK/IyI0 BepimuHy; nobasienne C' K KaxKaoMy pedpy m3amensier cymmy B Beprmuae Ha dC. IIpu sTom Beca Bcex pébep
pasnuaHbl. JlefcTBUTENBHO, TAK KAK IEJI0€ IICJIO OJHO3HAYHO IPECTABIISETCA B BUAe KOMOMHAIINN CTENEHeH IATEPKU C KO-
s durmentamu —2, —1,0, 1, 2, a y J1100bIX ABYX pédEp XOTsI ObI B OJJHOM IICEBJOIUKIIE KOI(DDUITMEHTHI [P COOTBETCTBY O
CTeIeH! ISITEPKU PA3JIUIHBI.

4.3. Dra Teopema sIBJISIETCS HENOCPEJCTBEHHBIM CJIEICTBHEM KPUTEPHUsI MATHIHOCTH OJTHOPOJHBIX IpadOB, M3JI0KEHHOTO
B IIpeJbLIyIeil 3ama4e.

Hoxarkem, uTo0 J00bIe /1Ba pebpa (G c1abo pas3iessiorcs nceBnonukiaamMu. Ecin onn jexkar B 0JIHOM KOMIIOHEHTE, TO 9TO
cJieryer eé MarndHoCTU. K 2Ke B pa3HbIX, TO B OJIHON M3 HUX MOYKHO BBIOPATH IICEBJIOINKII, COJEPXKAIIHI COOTBETCTBYIOIIEe
pebpo (3amaua 4.1.), oH u GyJer pasuesasaTb ITu jBa pebpa.



4.4. 1. ITposepum cuauasa, uro {(G) # 1. Ecom £(G) = 1, 1o upu ynanenun oguoro pebpa e rpad pacnagaercs Ha JiBe
KOMIIOHEHTHI CBaA3HOCTH. Paccmorpum so0yio m3 mnx. Kak u cam rpad G, oHa sBIgeTCsS ABYIOJbHBIM TrpadoM, TPUIEM
cTeneHb OJHOM e€ BepiuHbl paBHa d — 1, a ocranbHbIx — poBHO d. Kak yxxe ob6cyxanocs (cM. perienue 3agaqu 4.1.), aroro
HE MOYXKET OBITh.

2. TokaxkeM, aro ecau £(G) > 3, o G — marmueckuii. BosbméM siro0ble JiBa pefpa e u f u JjoKaXKeM, 9To OHH ¢1abo pas-
JIJISTIOTCS TiceBIonuKaaMu. [Ipu BRIKUIbIBAHUN STUX PEGED rpad 0CTAGTCs CBSI3HBIM, TO9TOMY HAWJIETCS TUKJII, COEPIKAITII
e, HO He comepxkarmuit f. B cuty aBymospHOCTH 9TOT UKJ 9€TEH, U OH pasesisieT e u f.

3. Hokaxewm, uro ecsm £(G) = 2, to G — e maruveckuii. [Iycts npu BoikugpiBanuu pédep e u f rpad repsier CBI3HOCTb;
TOr/a 00pa3yercst POBHO JIBE KOMIIOHEHTHI CBSI3HOCTH, 0603HaunM ux V u W. Kaxiast u3 HUX SBJISIETCS JIBYI0JIbHBIM IPadoM.
Ecyin pébpa e u f umeror ob1uii KOHEIl, TO B OJIHO 13 KOMIIOHEHT OKaXKETCsI BEPIITUHA CTEIeHU d—2, B TO BpEMsl KAK OCTaJIbHbIE
€8 BepIIMHBbI UMEIOT CTelleHb d — Takoil rpad He MOxkKeT ObITh JBYH0JbHBIM. Crienoaresbho, € = AB u f = C'D He umeror
obrmux pébep, U B OJHOI KOMITOHEHTe cojiepkarcs Bepuuabl A, C; a B apyroit — Bepmuabl C' u D, cTeneHn KOTOPBIX PABHBI
d — 1. Buauur, A u C (a rakxke B u D) nonajaior B pasHble J0JM U BCE [IyTH MEXKJ[y HUMHU HEYETHBIL.

JlokaxkeM, 4ro pEbpa e u f He MOryT CJ1ab0 PA3JessiThCs NCEBIOIMKIOM. HedéTHBIX IMKIOB (& 3HAYUT, M TaHTeJel)
B rpade G BOODIIE HET B CUJIy €r0 JBYJOJbHOCTU. Eciu yKe Y6THBIN IUKJI COJEPXKUT, HAIIPUMED, PEOPO €, TO OH COIEPXKUT
u pebpo [, NpuuéM U3 BBIBOJIOB MPEIBIIYIIEro ad3ala Caedyer, YTO MeXKy HUMU B IUKJIE ¢ KaXKJI0i CTOPOHBI PACIIOJIOKEHO
HEYETHOE YUCJI0 pebep. SHAUUT, ITOT IUKJI HEe MOXKeT cJiabo pasjessTh pébpa e u f.
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Magic graphs

K. Kokhas, D. Rostovskiy

Definitions and notations

All the graphs under consideration are supposed to be without isolated vertices, multiple edges and loops.

The words “cycle” and “path” mean simple cycle and simple path in a graph.

For every edge of a graph we assign a positive number that we call a weight of this edge. A graph is called semimagic if it is possible
to choose weights of its edges and a positive number s such that for each vertex the sum of weights of its edges equals to s. A graph is
called magic if it possible to choose these weights to be pairwise different. Observe that a vertex of degree 1 in the semimagic graph is
necessarily the endpoint of the isolated edge. A magic graph can contain at most 1 isolated edge.

A subgraph F of a given graph G is called a skeleton, if it contains all the vertices of G and none of them is isolated vertex in F'.
1-2-skeleton is a skeleton such that all its vertices have degree 1 or 2 and for each component the degrees of its vertices are the same.
In other words 1-2-skeleton consists of isolated edges and simple cycles only. For each 1-2-skeleton we can split all the edges of the
graph onto 3 groups: edges that belong to the cyclic part of F' (we will denote it by F.); edges that belong to the linear part of F, i.e.
isolated edges in F' (we will denote it by F;); and edges that do not belong to F. We say that 1-2-skeleton separates edges e and es
if these two edges belong to different groups. In other words at least one of them belongs to F' but at most one belongs to F. and at
most one belongs to Fy.

We will use the following notations: Cy, is the cycle with n edges (n > 3); P, is the path with n edges; K, is the complete graph
with n vertices; Km,n is the complete bipartite graphs with parts of m and n vertices.

<& W

A cycle Cs A path Ps A complete graph K A complete bipartite graph K2 3

Figure 1: Some standard graphs

A direct product F x G of two graphs is the following graph. Its vertex set is the set of all pairs (v, w), where v is a vertex of F, w
is a vertex of G. The vertices (v1,w1) and (v, w2) are joined by an edge, if either v1 = v2 and G contains the edge wiwa, or w1 = wa
and F' contains the edge viv2. The graph G x P; is called the double of graph G. Dum-bell is a graph consisting of either two odd
cycles which share exactly one common vertex, or two odd cycles joined by a path of an arbitrary length.

L) A

Figure 2: Graph C5 x Py Figure 3: Graph and its double Figure 4: Dum-bells

1  Examples

1.1. Show that magic graphs with less than 5 vertices do not exist, except the graph P, (one edge).
1.2. Prove that a bipartite graph with odd number of vertices is non magic. Could it be semimagic?

1.3. Determine wether these graphs are semimigic or magic (the answers may depend on n and m)
a) Kp; b) Kun.n; c) P, x Pp; d) P, x Py, upu n, m > 1; e) Cp x Py ) Cp, X Ppymn >3, m>1;
g) cycle of 2n vertices, where every two opposite vertices are joined by edge.

2 Semimagic graphs

2.1. Prove that if a semimagic graph G contains an even cycle then G contains also a semimagic skeleton (i. e. the skeleton
which is a semimagic graph itself) such that not all the edges of the cycle belong to this skeleton.



2.2. Prove that if a semimagic graph G contains a dum-bell then G contains also a semimagic skeleton such that not all the
edges of the dum-bell belong to this skeleton.
2.3. Prove that each semimagic graph has 1-2-skeleton.
2.4. The main theorem about semimagic graphs. Prove that a graph is semimagic if and only if each of its edges belongs to
some 1-2-sceleton.

In the following problems we find out when a graph contains 1-2-skeleton. We call a graph soft if it does not have 1-skeleton, and
solid if it contains 1-skeleton. A soft graph is called saturated if it turns solid when an arbitrary edge has been added.

Let G be an arbitrary graph, S is an arbitrary set of its vertices. Denote by G\ S the graph obtained by deletion of all the vertices
of the set S and its edges.

2.5. Let G be a saturated soft graph, S be the set of all its vertices such that each of them is joined with all other vertices.
Prove that all components of the graph G \ S are complete graphs.
2.6. The main theorem about saturated soft graphs. A graph G is saturated and soft if and only if either

a) G is a complete graph with odd number of vertices, or

b) the number of vertices of G is even and we can split it onto complete graphs So, G1, Ga, ..., Gk, where k = |So| + 2,
such that for all 7 the number of vertices in G; is odd and every vertex of G; is joined with all the vertices of .S.
2.7. Prove that a graph G is solid if and only if for each set S of vertices of G the graph G'\ S has at most |S| odd components.

2.8. Prove that graph G contains 1-2-skeleton if and only if for each set S of vertices of G the graph G\ S has at most |5
isolated vertices.

3 Magic graphs

3.1. Prove that each magic graph has the following two properties:
(1) Every edge of the graph belongs to some 1-2-skeleton.
(2) Every two edges are separated by some 1-2-skeleton.
3.2. Prove the converse statement: if a graph has these two properties then it is magic.

3.3. Graph G’ is obtained from magic graph G by adding a new edge and this new edge belongs to some 1-2-skeleton of
graph G’. Prove that G’ is magic.
3.4. Graph G consists of two (non isomorphic) components, each component has at least 3 vertices. Both components are
magic graphs. Is it true that G is necessarily magic?
3.5. a) For each edge e in a semimagic graph G (without isolated edges) there exists a 1-2-skeleton, whose cyclic part does
not contain e. Prove that the double of G is magic.

b) G is a semimagic graph without isolated edges, H is an arbitrary connected graph without isolated edges. Prove that
G x H is a magic graph.
3.6. G is an arbitrary graph with at least 4 vertices. Graph G’ is obtained by adding one more vertex to GG, and this vertex
is joined with all the “old” vertices of G. Prove that the graph G’ is magic if and only if the graph G is without isolated edges
and it has 1-2-skeleton.
3.7. a) Graph G has n > 5 vertices. The degrees of vertices of G are at least § + 1. Prove that g is a magic graph.

b) Prove that for any large n there exist non semimagic graph such that the minimal degree of its vertices equals to
[n/2].
3.8. G is a connected magic graph with n > 5 vertices and r edges. Prove that r > %n.

3.9. For n =5, 6, 7, 8 construct a connected magic graph with n vertices and r edges, where r is the minimal integer that
satisfies the inequality r > %n.

3.10. Construct an analogous graph for each n > 5.

3.11. Prove that there exists a connected magic graph with n vertices and r edges, if the pair (n,r) satisfies the inequality
5 < n(n+1)
n<r<—5—.



Semifinal
4 Regular graphs

We will not discuss when regular graphs of degree 1 and 2 are magic. Below we will consider regular graphs of degree at least 3.

A pseudocycle is an even cycle or dum-bell (remind that both cycles in dum-bell are even).

Consider an even cycle. Put alternatively on its edges weights 1 and —1, let all other edges have weight 0. We say that two edges
are weakly separated by the cycle if they have had different weights. Analogously, for each dum-bell, put the weights +1 and +2 on its
edges as in fig. 5 (where a = 1), and let all other edges have weight 0. We say that two edges are weakly separated by the dum-bell if
they have had different weights. Finally, we say that two edges are weakly separated by a pseudocycle if there exists an even cycle or a
dum-bell that weakly separates these edges.

Figure 5: Alternative weights of dum-bell edges

4.1. Prove that every edge of the regular graph of degree d > 3 belongs to some pseudocycle.

4.2. Prove that the regular graph of degree d > 3 is magic if and only if any two of its edges are separated by pseudocycle.
4.3. Prove the following theorem. Let G be a regular graph of degree d > 3 and G, ..., Gj be its components. Then G is
magic if and only if all G; are magic.

Index of edge connectivity £(G) is the minimal number of edges of G that should be erased in order to obtain disconnected graph.

4.4. Let G be connected regular bipartite graph. Prove that the property “to be magic” or “to be non-magic” depends on
¢(G) only and completely investigate this dependance.

5 Addendum

5.1. To the problem 1.3.a. Graph is called supermagic if its magic weights are consecutive positive integers.
For which n graph K, is supermagic?

5.2. To the problem 3.7. A graph has 2009 vertices of degree at least 1006. At most 500 edges were deleted. Prove that the
rest graph is still magic.



Solutions

1 Examples

1.1. If a graph with 4 vertices has 1 or 2 edges then it has isolated vertex. If it has 3 or 4 edges then it contains two adjacent
vertices of degree 2 and hence it is non-magic. The graph with 6 edges is necessarily K4, see problem 1.3a).

Finally, if it has 5 edges then it is isomorphic to the cycle ABC'D with the diagonal AC. Then the sum of weights of
edges adjacent to vertices A and C equals 2s. Geometrically, it is the sum of weights of all edges, where the weight of AC
has multiplicity 2. The other way to obtain the sum 2s is to sum up the weights of edges adjacent to vertices B and D. This
is a sum of all edges of the graph except AC. Therefore AC' has zero weight, which is forbidden.

1.2. Answer: the graph is not semimagic. Let one part of the graph contains k vertices, the second part contains £ vertices,
and let s be the sum of weights of all edges adjacent to the same vertex. If the graph is semimagic, then the sum of weights
of edges adjacent to vertices of the first part equals ks, the sum of weights of edges adjacent to vertices of the second part
equals /s, and both sums equals the sum of weights of all edges of the graph. Therefore ¢ = k. This is impossible because
the total number of vertices is odd.

1.3. a) Answer: the graph is always semimagic, it is magic for n = 2 and n > 5 only.

To show that the graph is semimagic take all weights equal to 1.

If n = 3 the graph is not magic, it is evident.

If n = 4 we have 4 vertices A, B, C, D. Assume that it is magic, let s be the sum of weights of all edges adjacent to the
same vertex. Then 2s is the sum of all edges adjacent to vertices A and C, i.e. the sum of all edges of the graph except C' D
but with weight of AC' counted twice. By the analogous consideration for vertices B and D we will obtain that the weights
of AC and BD coincide.

If n > 5 the graph is magic. We will prove this by the following construction. Since the graph is regular, we may consider
arbitrary weights (not necessarily positive), because in the regular graph we can make all the weights to be positive by adding
a large positive constant. Let us describe the main construction of magic weights for the regular graphs by means of even
cycles.

Write out all even cycles that are contained in our graph and enumerate them by numbers from 1 to N (where
N is the total number of these cycles). For any k put the weights £3* alternatively on the edges of k-th cycle.
After that for each edge sum up all the weights on it.

Let us check that this set of weights is magic. Indeed, the sum of weights of edges adjacent to every vertex equals 0,
because the contribution of each cycle to this sum is 0. Now let us check that all weights are distinct. For each edge of the
graph write out the list cycles which contain this edge. It is clear that for any two edges there exists an even cycle that
contains one of these edges only. Therefore for any two edges their lists of cycles do not coincide. But then the sums of
weights determined by the cycles are not equal. This is because the weights obtained by our construction may be regarded
as N-digital ternary numbers in system (with base 3) with digits 0 and £1. Since all lists are distinct then all these ternary
numbers are distinct also.

b) Answer: the graph is semimagic for m = n only. For m = n > 2 it is magic.

The equality m = n is necessary for the graph to be semimagic (see problem 1.2).

If m = n the graph is regular and hence semimagic. If m = n = 2 it is evidently non-magic (see problem 1.1). And if
m =n > 2, the graph is magic, due to construction from the previous solution.

¢) Answer: the graph is semimagic but non-magic.
To show that it is semimagic it is sufficient to assign weights of all edges to be 1, except leftmost and rightmost edges of
weight 2. The graph is non-magic because it contains adjacent vertices of degree 2.

d) Answer: the graph is magic if either m or n is odd. If both m and n are even, then the graph is not semimagic.

If both m and n are even, then the graph is bipartite with (n + 1)(m + 1) vertices (odd number). This graph is not
semimagic due to problem 1.2.

Now prove that the graph is magic for odd n and m > 1.

At first consider case m = 2. Consider the initial placement of nonnegative semimagic weights depicted on fig. 6: bold
edges have weight 2m, dashed edges have weight 0, all other edges have weight M, where M is a big number, that we will
choose later. This set of weights is almost semimagic, but some weights here are zero and the graph is not regular.

Figure 6: Almost semimagic weights on graph P, x Py

Now we will perform the main construction of magic weights for the regular graphs by means of even cycles, but with
3 corrections (because our graph is not regular):



1) In the main construction we will consider 4-cycles only (i.e. the sides of cells).

2) The final weight of an edge will be equal to the sum of its initial weight and the weight obtained by the main
construction.

3) When we assign positive and negative weights of edges in cycles, we choose plus sign for edges whose initial weight has
been equal to zero.

Finally, choose M so big that all the final weights turn out to be positive and distinct. Then this set of weights will be
magic.

Now consider a case n is odd, m > 2. We perform analogous actions. The initial weights are depicted on fig. 7 (odd
number n corresponds to the vertical side of the picture).

Figure 7: Almost semimagic weights on graph P,, x P,

e) Answer: the graph is always semimagic. It is magic for even n only.

We may realize this graph as edges of n-gonal prism.

Let n = 2k. The graph contains evident cycles of length 4 (sides of facets) and two 2k-cycles (sides of bases). The property
“for any two edges there is a cycle that contains one of them only” is satisfied. Therefore we can perform the main construction
for regular graphs.

Let us prove that the graph is non-magic for n = 2k + 1. As usual let s be the sum of weights of edges adjacent to the
same vertex. It is easy to see that the sum of weights of all edges equals nd. Denote our prism by A1 As ... Agk+1B1 ... Bag41.
The sum of weights of edges adjacent to vertices Ay, As, ..., Aogt1, B2, By, ..., Bag, equals nd and can be interpreted as
the sum of weights of all edges of the graph except B Ba,+1 and with edge A; As, 11 counted twice. Hence, the weights of
AjAsgny1 and Bi Bsg, 41 are equal.

f) Answer: the graph is magic.

Solution is analogous to solution 1.3d). Let A;, ..., A;,41 be vertices of graph P,,. Initial placement of nonnegative
weights on the graph looks as follows: all edges of subgraphs of the form C;, x A; have weight 2, all other weights are 0. We
apply the main construction for 4-cycles only.

g) Answer: the graph is always semimagic; it is magic for odd n.

It is semimagic because it is reguar. For n = 2 this graph is Ky, we discuss it in problem 1.3a). For odd n it is magic
because the main construction works (we have a good store of even cycles here: 4-cycles that contains subsequent diameters
and (n + 1)-cycles of the form “semicircle”).

For even n the graph is non-magic. Let A1 As ... A, B, ... BoB; be vertices of the given cycle. The set of edges adjacent
to all vertices A;, B;, where ¢ runs over odd numbers, is the set of all edges of the graph except A,, B, and with A; By counted
twice. It follows that in any semimagic set of weights the opposite edges of the cycle have the same weight.

2 Semimagic graph

2.1. Let a be the minimal weight of the edges in the given cycle. We will move along the cycle and decrease and increase
by a alternatively the weights of the edges of the cycle. After that erase all the edges with zero weight. The remaining graph
together with the weights of its edges will be desired semimagic skeleton.

2.2. Let A be the vertex of degree 3 (or 4) of one of odd cycles of the dum-bell. We will bypass the dum-bell starting from
the vertex A. First of all we will move along the odd cycle and assign the weights to its edges to be *a alternatively. After
return to the vertex A, we have two edges of weight a adjacent to A. Then we move along the handle of dum-bell and assign
the weights of its edges to be F2a alternatively. After that we move along the second cycle assigning its edges weights +a
alternatively. We obtain semimagic weights with s = 0 (see fig. 5).

Now we are going to add new weights to old ones. For this choose the value of parameter a so that all the weights of
the graph would be nonnegative and the weight of at least one of the edges would be equal to 0. We will obtain semimagic
weights. After erasing all the edges with zero weight we obtain the desired skeleton.

2.3. The constructions of solutions 2.1, 2.2 allow us to decrease consequently the number of edges in the graph by destroying
its even cycles and dum-bells. The graph will be semimagic during all these operations and therefore there will be no pendant



vertices in it (except the endpoints of isolated edges). Observe that if a component of the graph contains two even cycles
then it contains also an odd cycle or a dum-bell. And if a component contains exactly one (odd) cycle and does not contain
pendant vertices then this component is exactly this odd cycle.

So, after destroying all even cycles and dum-bells we will obtain a graph consisting of several isolated edges and several
(odd) cycles.

2.4. Let us check that every edge of a semimagic graph belongs to some 1-2-skeleton. Let G be a graph with minimal number
of edges such that one of its edges, say, e does not belong to any 1-2-skeleton. Fix a set of semimagic weights YV on graph G.
Fix an arbitrary 1-2-skeleton and construct one more semimagic set of weights S as follows. Let each edge of the linear part
of the skeleton has weight a, each edge of the cyclic part has weight a/2 and all other edges (including e) have weight 0.
Choose the value of a so that all the weights of the set S do not exceed the corresponding weights in the set W and for
at least one edge we have an equality. Now subtract from weights of W the weights of S. We obtain a semimagic set of
weights, where not all the weights are equal to 0, because the weight of edge e has not changed. Now remove all edges of zero
weight. We obtain semimagic graph G’ which is a skeleton of G. G’ contains less edges than G and edge e does not belong
to any 1-2skeleton of G’, because “the skeleton of my skeleton is my skeleton”. This is a contradiction with the definition of
G. Therefore the graph G does not exist.

Now let us check that if every edge of the graph belongs to some 1-2-skeleton, then the graph is semimagic. For each
1-2-skeleton assign the weight of its cyclic edges be 1 and the weight of its isolated edges be 2. We obtain semimagic set
of weights (but with zero weights). Let us sum up all these set of weights over all 1-2-skeletons. The result is the desired
semimagic set of weights.

2.5. We take this problem and the following solution from [1, §3.1.2]. Let A, B, C be vertices of G \ S and B is joined with
both A and C. It is sufficient to prove that graph G contains edge AC. Assume that this is not true. By the definition of the
set S graph G contains the vertex D such that the edge BD does not belong to the graph. If we add edge AC' to graph G,
then the new graph has 1-skeleton (since graph G is saturated). It is clear that edge AC must belong to this skeleton. Color
this skeleton in red. Analogously, if we add edge BD to graph G, we can find blue 1-skeleton containing edge BD. Now from
these two skeletons we will construct a 1-skeleton of graph GG and get a contradiction.

Consider the union of these skeletons; the edges which are red and blue simultaneously we will consider as usual (non-
multiple) edges. Then this union is a 1-2-skeleton of graph G U AC U BD, and all its cycles are even because red and blue
edges alternate.

It is clear that edges AC' and BD are both in the cyclic part. If these edges belong to different cycles, then the desired
1-skeleton can be constructed as follows. Take the red skeleton and replace all red edges of the cycle that contains AC by
blue edges of the same cycle. Now consider the second case, let edges AC' and BD belong to cycle 7. Let us bypass cycle ~
starting from vertex B and edge BD till we reach vertex A or C. Let it be A for definiteness. Since the red edge of vertex A
is AC', we finish our movement by blue edge. Hence the path from B to A starts and finishes with blue edges. Take the blue
skeleton, replace all blue edges of the path by red edges of the same path and add edge AB. We obtain 1-skelton of graph
G.

2.6. We take this problem and the following solution from [1, §3.1.2]. It is evident that a soft saturated graph with odd
number of vertices is necessarily complete. Let the number of vertices in G be even; let .S be the set of all vertices of G that
are joined with all other vertices and s be the number of these vertices; let G1, Ga, ..., G be components of connectivity
of graph G \ S. Due to the statement of the previous problem we know that they are all complete graphs.

If G\ S has at most s odd components, construction of the 1-skeleton is trivial. Assume that G\ S has at least s+ 1 odd
components; taking into account parity of number of vertices of G, we conclude that G'\ S has at least s+ 2 odd components.
If the number of odd components is greater than s + 2, join any two of them by an edge. We obtain graph G7 such that
graph G1 \ S has more than s odd components of connectivity. There are no 1-skeletons in this graph (it is evident, it follows
also from the easy part of the statement of problem 2.7), but this is impossible because graph G is saturated.

Thus, graph G has exactly s + 2 odd components. It can not have even components due to analogous reasons.

2.7. This statement is classical Tutte theorem. The following proof is from [1, §3.1.2].

If we can find the set of vertices S in graph G, such that graph G\ S has more than |S| odd components of connectivity,
then graph G is soft. It is clear.

Check the converse statement. Assume that for any subset S of the set of vertices of G graph G \ S has at most |S]
components of connectvity but at the same time graph G is soft.

The number of vertices of graph G is even because otherwise S = @& leads to the contradiction. Add several edges to
graph G to obtain soft saturated graph G’. Let S’ be set of vertices joined with every vertex of G’, s be number of its
elements. Since G’ and G have equal (even) number of vertices due to main theorem about soft saturated graphs we have
that graph G’ \ S’ contains s + 2 odd components, each of them is a complete graph. Now remove those edges we have add
making graph saturated. It is possible that some components of graph G’ \ S” will fall to parts but at least one part of odd
component will be odd and the total number of odd components will be grater than s. Thus, the set S’ disproves the property
of G under consideration.

2.8. Let n be the number of vertices of graph G. Construct a new graph G’ with 2n vertices. For every vertex v in G take
two vertices v' and v” in G’; for every edge uv define two edges in G': v/v” and uv”v' Then G’ is a bipartite graph, that has
twice as many edges as G.

Remark that the existence of 1-2-skeleton in G is equivalent to the existence of perfect matching in G’. Indeed, for each
cycle vivy ... vy of the skeleton graph G’ has edges v] vy, vyvy, ..., vjv{; analogously for any isolated edge graph G’ contains



edges u/v” and v'u”. It is clear that all these edges form a perfect matching. Conversely, for any perfect matching of graph G’
it is not difficult to construct a 1-2-skeleton. For example, the edges v/v”, v'w”, w'z", z'u” of the perfect matching determine
a cycle uvwz of the graph G, and edges v'v” and v'u” determine an isolated edge uv of the skeleton.

As we know, for each set S of vertices of G the graph G \ S has at most |S| isolated vertices. Let us reformulate this
property in terms of graph G’. Consider an arbitrary set S of vertices of graph G. What does it mean that after deletion of
this set the vertex u becomes isolated? This means that in the graph G’ all neighbours of u’ belong to S”. If after removing
set S we have k > |S] isolated vertices then the conditions of Hall theorem is not satisfied in graph G because we found
a set of k vertices that has at most |S| neighbours (the last number is less then k). The converse is also true (i.e. if the
conditions of Hall theorem is not satisfied, then the property under discussion holds). Therefore this property is equivalent
to the conditions of Hall theorem in graph G’ that is equivalent to existence of perfect matching in G’.

3 Magic graphs

3.1. (1) All the semimafic graphs have this property.

(2) We will prove more general fact: if a semimagic graph has a semimagic set of weights such that two edges, say e; and
e2, have distinct weights, then the edges e; and e, are separated by a 1-2-skeleton.

It can be done analogously to the solution of problem 2.4. Choose a minimal graph; fix a set of weights, where not all
weights are equal; subtract by a suitable way the weights belonging to a skeleton; we will obtain smaller graph. Since the
initial graph was minimal, one of edges e, es must receive zero weight and should be removed. In the remaining graph the
second edge due to statement of problem 2.4 belongs to some 1-2-skeleton, that sepapates these edges in the initial graph.

3.2. Let us enumerate all the 1-2-skeletons. Let the edges of cyclic part of k-th skeleton have weights 3%, and edges of linear
parts have weight 2-3*. For each edge sum up all its weights over all 1-2-skeletons. The set of weights obtained is semimagic
due to uniqueness of ternary notation of numbers.

3.3. It follows from 3.2.

3.4. Answer: no, graph G is not necessarily magic. Two magic graphs are depicted on the fig. 8 For any set of magic weights

the edges denoted by dashed lines must have weight s/2.

Figure 8: Union of magic graphs can be non-magic

3.5. a) The double G? consists of two copies G; and G5 of the graph G and of the set of edges E between the corresponding
vertices. The corresponding edges in parts (G; and G, are called parallel. The edges from the set E are called wertical.
A subgraph of G? consisting of two copies of some subgraph of G is called duplicated.

First of all describe a construction of rotation of parallel edges in G?. Let subgraph H of graph G2 be the union of
two subgraphs in parts G; and Gy (without vertical edges) such that these subgraphs contain parallel edges A;B; and
As Bs. Let us replace edges Ay By, A2 By in subgraph H by edges Aj A; and By Bs. Denote the new subgraph by H'. We say
that subgraph H’ is obtained from H by the rotation of parallel edges. It is clear that both of H and H' are (or are not)
1-2-skeletons.

To prove that graph G? is magic let us apply criterion from problems 3.1-3.2.

(1) Every edge belongs to 1-2-skeleton. It is clear for edges from G (and from Gs): duplicate the 1-2-skeleton containing
this edge in G1. For vertical edges choose suitable rotation of edges of appropriate duplicated 1-2-skeleton.

(2) Every two edges are separated by 1-2-skeleton.

e If both of edges e; and ey belong to G consider a duplicated 1-2-skeleton containing e;. If it does not separate e; and
ea, then both edges belong to the skeleton. By rotating edge es and its parallel copy we obtain a separating skeleton.

e If e; belongs to Gy, and ez belongs to Ga, consider the union of 1-2-skeleton in G; containing e; (it exists due to the
statement of problem 2.4), and 1-2-skeleton in G5 that does not contain ey (it exists by the condition of the problem).

e If 7 belongs to G and es is vertical consider a duplicated skeleton containing e .

e Finally, if both of edges A1 A3 and B; B, are vertical choose in G7 an edge A1 X7 (where Xy # Bi) or B1Y; (where
Y1 # Ay), this edge exists since G has no isolated edges. Consider a duplicated skeleton containing this edge and rotate
this edge together with parallel edge.

b) Analogously to a).

3.6. We take the statement of the problem from [5]. The following solution was found by participants of the conference.



1. Check that if graph G’ is magic then graph G has 1-2-skeleton and has no isolated vertices and edges. Isolated vertex
in G corresponds to a pendant vertex in G’. Isolated edge in G corresponds to two adjacent vertices of degree 2. Both
constructions are impossible in a magic graph.

Assume that G does not contain 1-2-skeleton.

Denote by S the new vertex of graph G’. Fix an arbitrary 1-2-skeleton in graph G’, w.l.o.g. we may assume that all its
cycles are odd. Consider the component of the skeleton that contains vertex S. If this component is an odd cycle, remove
vertex S and split other vertices of the cycle on pairs. Together with other components of the skeleton they form a skeleton of
graph G. Therefore we may assume that this component is an isolated edge SA;. Now we will construct two sets of vertices
A={Ay,...,A,} and B={By, Ba, ..., B,} such that the edges A;B; (1 < i < n) belong to skeleton K and all the vertices
adjacent to vertices of the set A belong to B.

Let A = {41}, By = S. Assume that the sets A = {A;,..., A;} and B = {By,..., Bx} have constructed already and
there is an edge that joins some vertex of the set A with some vertex outside A U B, say ApByy1. Vertex Byy1 belongs to
some component of the skeleton K. If this component is an odd cycle we can easily reconstruct the skeleton K to obtain
a 1-2-skeleton of graph G.

To do this consider the shortest path in AU B from B; to By such that the vertices of A and B alternate. The
path has even length, choose all its even edges (the last of them has endpoint Bj41) and split onto pairs all other
vertices of the odd cycle.

Therefore we may assume that vertex Bj41 belongs to the isolated edge By41Ak+1 of skeleton K. Then place vertex B
to the set B and vertex Ag41 to the set A.

We will increase sets A and B by this algorithm until it is possible. As a result we obtain that the set A is joined by
edges with LA U B only. Assume there exists an edge A;A; consider the shortest path between these two vertices such that
the vertices of A and B alternate in it (the existence of this path can be easily seen from the process of construction of sets
A and B). This path together with edge A;A; form an odd cycle. Then the skeleton K can be reconstructed to the skeleton
of graph G as described above.

So we have sets A and B. Since these sets have equal number of elements, the sums of weights of their vertices are equal.
But the sum of weights of A equals the sum of weights of all edges A;B; while the sum of weights of B equals the sum of
weights of all edges A; B; and edges of the form B;B; (remind that By = S is adjacent to all other vertices of graph G). We
obtain a contradiction.

2. The proof of the converse statement — if graph G has 1-2-skeleton and does not contain isolated edges, then G’ satisfies
conditions of the problem 3.1 (and therefore it is magic) — is not difficult technical exercise. The skeletons that we need for
edge separating can be constructed by a suitable transformation of skeleton in G.

3.7. a) Prove that an arbitrary two edges e and f can be separated by some 1-2-skeleton. Remove the endpoints of edge ¢
(and all their edges) from the graph G. The remaining part of the graph has n — 2 vertices of degree at least § — 1 = ﬁ.
Then it is known that there is a Hamiltonian cycle in this graph (the cycle that passes trough all the vertices of the graph)
This cycle together with edge f forms 1-2-skeleton that separates edges e and f.

b) Consider the graph G with n = 2k vertices X1, ..., X, Y1, ..., Y) such that its set of edges consists of all edges X;Y;
and edge Y1Y>. The degree of each vertex X; is at least k = &. Let us prove that G is non semimagic.

Consider an arbitrary 1-2-skeleton of G. In this skeleton each vertex X; has one or two adjacent vertices among the
vertices Y;. Since we have equal number of vertices of both types, the 1-2-skeleton must be perfect matching. Therefore edge
Y1Y> does not belong to any 1-2-skeleton. Hence graph G is non-magic.

3.8. A magic graph has no vertex of degree 1 and any two vertices of degree 2 are not adjacent in it. Let V be the set of
vertices of degree 2 (possibly, V = &), W be the set of vertices of degree at least 3. Let s be the sum of weights in each
vertex. The sum of weights of edges that have an endpoint in V' equals s|V|. The second endpoints of these edges belong to
W, therefore this sum does not exceed s|W|. So, |V| < |W|. The sum of degrees of all the vertices is at least 2|V| + 3|W|
hence the number of edges is not less than [V|+ 3|W|. But [V| + 3|W| > 3(|V| + |[W|) = 5n, because |W| > |V]|.

The equality would be possible if there are no edges with both endpomts in W, i.e. in a bipartite graph. But in this case
s|V| = s|W|, so |V]| = |W]|. Then the number of edges between V and W equals 2|V| (from the point of view of the set V)
and in the same time it is at least 3|W|. Hence |V/| > 2|W/| that is impossible. The inequality r > 3n is proven.

3.9. See fig.9.

1 5
9 11 10
6 4
3 S 6
4 7
a) b vertices, 7 edges b) 6 vertices, 8 edges ¢) 7 vertices, 9 edges d) 8 vertices, 11 edges

Figure 9: Minimal magic graphs

3.10. Magic graphs with minimal number of edges are depicted on fig. 10 a, b, ¢, e, f). For n = 4k we have bipartite and
non bipartite examples, for n = 4k + 2 we have bipartite example only, in other cases the graphs are non bipartite.
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a) n = 4k, r = 5k + 1, bipartite graph b) n = 4k, r = 5k + 1, non bipartite graph
¢) n =4k + 2, r = 5k + 3, bipartite graph d) n =4k 4+ 2, r = 5k + 4, non bipartite graph
e) n =4k + 1, r = 5k + 2, non bipartite graph f) n = 4k + 3, » = 5k + 4, non bipartite graph

Figure 10: Magic graphs with minimal number of vertices

The proof that the depicted graphs are magic consists of the routine verification that criterion from problems 3.2 holds.
Instead of this this verification we show magic sets of weights for “typical case”. Of course, this is not the proof but it follows
that in concrete cases we really have magic graphs whose edges are separated in the spirit of the criterion. In general case the
graphs will be magic too because the separation of its edges takes place “by the same reasons” as in this concrete examples.
We restrict ourselves with case n = 4k + 3, r = 5k + 4, k = 2; see fig. 11.

3.11. This solution is a variation of [3]. Observe that if we add an arbitrary edge to non bipartite, connected (and non
complete) magic graph then it remains be magic.

Indeed, the new edge e belongs to some cycle. If this cycle is even, assign the weight ¢ to this edge and the weight +¢
alternatively to all other edges of the cycle. Choose the value of € so that all the weights remain positive and distinct. We
obtain a magic set of weights.

If the cycle is odd choose another cycle that does not contain e (it exists because the graph is non bipartite). Then e
belongs to some dum-bell (see lemma from solution 4.1) Once again, we can assign the weight € to edge e and weights +e,
+2¢ to other edges of dum-bell and obtain a magic set of weights.

Thus, to complete the solution it is sufficient for each n > 5 to construct “minimal” non-bipartite graph. It was done in
the solution of the previous problem for n # 4k + 2 (see fig. 10 b, e, f). We found these examples in [3]. Unfortunately, the
construction of minimal non-bipartite graph for n = 4k + 2 in this article is wrong. In addition, the graph on fig. 10b) is not
magic for n = 8 (it is impossible to separate by 1-2-skeletons the slanted and the lowest edges). Magic non bipartite graph
for n = 8 is depicted on fig. 9d), it was invented by A.Tsybyshev. We do not know wether non bipartite magic graph with
4k + 2 vertices and 5k + 3 edges (k > 3) exists, so for the case of 5k + 3 edges we leave bipartite example, and begin our
construction from non bipartite graph with 5k + 4 edges. This non bipartite graph with 4k + 2 vertices and 5k + 4 edges is
depicted on fig. 10d). Magic weights on this graph for k = 3 see on fig. 12.

1

27 3 19 11 18 22 18 19 21 13
2 8 16 17
24 6 16 14 12 2 3 1 5 10
24 23
4 14 26 11 28 7
Figure 11: n=4k+ 3, r=5k+4, k=2 Figure 12: n=4k+2, r=5k+4, k=3

4 Regular graphs

4.1. Solution 1.
Lemma. If a connected graph contains two odd cycles, and an edge e belongs to only one of them, than there exists an
even cycle or a dum-bell that containms edge e.



Proof. The statement is trivial if cycles do not intersect or intersect by one vertex.

Assume that intersection of the cycles contains at least two vertices. Let X and Y be the endpoints of edge e. Remove
edge e from the first cycle, the remaining part of this cycle we will call the path XY. Let A and B be the first and the last
vertex in the path XY that belong to the second cycle. Then the parts XA and BY of the path XY do not intersect the
second cycle. Vertices A and B split the second cycle onto two paths whose number of vertices have different parity. Adding
one of them to paths XA and BY we can obtain an odd path X ABY. Together with edge XY it forms an even cycle.

Let us return to the statement of the problem. W.l.o.g. we may assume that the graph is connected. Remove an arbitrary
edge e = AB from the graph. Assume that graph G \ e falls to two components of connectivity. Since the degrees of all
vertices were greater than 1 these components contain more than one vertex. Either of components can not be a bipartite
graph. This is because in the bipartite graph the sums of degrees of all vertices in parts are equal, but in our components
one of sums is divisible by d and another (which contains vertex A or B) is not divisible by d. Therefore each component
contains an odd cycle. Hence edge e belongs to some dum-bell.

Now assume that the graph G \ e is connected. Consider an arbitrary path from A to B. If this path has odd number of
edges then e is contained in an even cycle. Assume that this path is even (then e is contained in odd cycle). If graph G \ e is
bipartite then both vertices A and B are in the same part. But this is impossible because the sums of degrees in the parts
are not equal: first sum is equivalent —2 (mod d) and the second sum is divisible by d. Hence graph G \ e is non bipartite
and there exists an odd cycle that does not contain e. It remains to use lemma.

Solution 2 (by A. Tsybyshev). Assign weights 1/d to all edges of our regular graph. Then sum of weights in each vertex
is equal to 1. Now start the process of destroying even cycles and dum-bells by changing weights and removing zero-weight
edges that is described in the solution 2.3. As a result of this process we obtain a 1-2-skeleton with magic set of weights.
Since we do not change the sum of weights in each vertex the sum of weights in each vertex is still equal to 1. Therefore
the weights of edges are 1 and 1/2. Since d # 1, 1/2, 0 we change the weight of every edge at least once. Hence each edge
belongs to some pseudocycle.

4.2. The placement of numbers +1 on even cycles and £1, 2 on dum-bells that was described in section 4 (problems) we
will call standard weights on pseudocycle.

Lemma. Let every edge of the graph has non zero (not necessarily positive) weight and sum of weights in each vertex
is equal to 0. Then every edge is contained in even cycle or dum-bell.

The proof is analogous to the solution of the problem 4.1.

1. Assume that the regular graph G is magic and sum of weights in each vertex is equal to s. Subtract the number s/d
from every weight. We obtain a placement of pairwise distinct numbers on edges of the graph with zero sum in each vertex.

Choose in the graph G an arbitrary edge of non zero weight and a pseudocycle that contains this edge (it exists due to
lemma). Subtract from the weights of this pseudocycle the standard weights of the pseudocysle multiplyed by the appropriate
coefficient in order to make the weight of chosen edge to be zero. Then remove all zero-weight edges. We obtain a placement
with zero sum in each vertex. Then repeat this operation and so on.

In each step we decrease the number of edges therefore sooner or later all edges become zero-weight It means that the
initial placement of numbers is a “sum” with appropriate coefficient of standard placements for pseudocycles. Since any two
edges have distinct weights in the initial placement, there exists a pseudocycle such that its standard weights for this edges
are distinct. By definition this pseudocycle weakly separates these edges.

2. Assume that every two edges are weakly separated by pseudocycles. Let us enumerate all pseudocycles. For k-th
pseudocycle assign weights of its edges to be the standard placement multiplyed by 5*. For each edge sum up its weights
over all pseudocycles and after that add a large positive constant in order to make all weights positive. The obtained set of
weights is magic.

4.3. It follows from the previuous problem.

4.4. 1. Let us check first that ¢(G) # 1. If ¢(G) = 1 then we can remove an edge e and obtain the graph with two components
of connectivity. Each component itself is a magic graph, one of its vertices has degree d — 1 and all others have degree d.
This is impossible (see solution 4.1).

2. Prove that if £(G) > 3, then graph G is magic. Choose any two edges e and f and check that they are weakly separated
by pseudocycles. After removing these edges the graph remains connected. Therefore there exists a cycle that contains e and
does not contains f. Since the graph is bipartite this cycle is even and it separates edges e and f.

3. Prove that for /(G) = 2 graph G is non magic. If after removing edges e and f from graph G we obtain a disconnected
graph then it has two components, say V and W, each of them is a bipartite graph. If the edges e and f have common
endpoint then one of components has unique vertex of degree d — 2 and other vertices of degree d. Such graph can not be
bipartite. Therefore e = AB and f = C'D have no common vertices, one component contains vertices A and C, another
component contains vertices B and D of degree d — 1. Hence B and D are in different parts of the component and all the
paths that join these points have odd number of edges.

Now prove that edges e and f are not weakly separated by a pseudocycle. Since G is bipartite there are no even cycles
(and dum-bells) in it. And all even cycles that contain both e and f do not separate these edges due to previous paragraph.
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Kak cuurarpb cjioBa?

Hyurpuit [Tuontrosckuit, Makcum [Ipacosios, I'puropuit Pribnukos

1 TI'nmaBHag 3aga4da

Bamava 1. B caosape naemenu Bunnu—ITyros 100 cros. B ¢pasar ux A3vika 603MOHCHBL A00DIE COMEMAHUS ITUL
cnos. Cywecmsyrom 086 MA2UMECKUT 3aKAUHAHUSA, “3emas cmoum wa sesukom xkporxoduae” u “Kaowcovtl eeuep
KPOKOOUA 2A0MAEM, COAHUE”, KOMOPBIE BbI3BIBAIOM YPa2at, U NOIMOMY BCAYL MONHCHO NPOUSHOCUMD MOABKO AKUE
Ppasvi, 6 KOMOPHIT IMU NOCACIOEAMEALHOCTIU CA06 He ecmpedaromesl. Croavko ecezo pas usz deaduamu caos
MOIHCHO NPOUSHOCUMD BCAYL?

Bagaua 2. V xomnvromepa ecmov 256 pasauunvir komand. Cyuiecmeyem o00Ha NOCACIOBAMEALHOCTVD U3 YEMBLPET
KoMand, nocae Komopot xomnwvlomep somaemcs. IIpozpammucmo, HANUCAAU BCE BOZMONCHBIE NPOZPAMMDL U3 CEMU
Komand. CKOADKO NPOUEHMOE U3 HUT HE CAOMAIOM KoMNbIomep 72

Bapaua 3 (Imamas 3amaua). Aagasum wexomopozo asvika L cocmoum us N 6yxe. 3adano HECKOADKO €A08
Viy. .., Uk, KOMOPHIE HA3LIGAIOMCA 3AUPETHBIME U 6 A3bike He ynompebasromes. Cnoso (mo ecmov o2panudennas
n0cAed06aMEALHOCTIL BYKE) HAZBIGAEMCA JOIYCTUMBIM, €CAU HUKAKAA YACTNG IM020 CA0BA He ABAAECMCH 3aNPEM-
Howm caosom. Croavko 6 asvike L 603mooicho donycmumoix caos u3 n 6yxe?

Banmava 4. Jloxascume, umo 3adavwu 1 u 2 ceodamcsa x 3adave 3.

2 Kak 3anuceiBaTh oTBeT?

Badukcupyem kakoi-uubyap andasur A uz N 6yks (maupumep, ecsiu A = (a,b,¢,...,z), o N = 26). Caogom
MBI OyJIeM Ha3bIBATH JIIOOYIO0 KOHEUHYIO MTOCIE0BATEIHHOCTE OYKB andasuta A. ITodcaosom Mbl OyjieM HA3BIBATH
YaCTh CJIOBA, COCTOSIINYIO U3 MJIYIIUX MOJIPSJT B 9TOM CJIOBE OYKB.

Mgt 6y7ieM cunuTaTh, UYTO B KaXKJIOM aA3biKe L eCTh POBHO OJIHO CJIOBO M3 HYJIsT OYKB — MYycmoe CJI0BO.

Msr OyjieM cunMTaTh, YTO 3alpeTHbIE CJI0Ba HE COIEPKATCs JIPYT B JIpyre, T.e. HUKAKOE IIOJICJIOBO 3aIlPETHOIO
CJIOBa, KPOME HEr0 CaMoro, He sIBJIsIeTCsS CHOBa, 3arpeTHbiM. Kpome Toro, Mbl Oy/1IeM CUATATH, YTO 3AlPETHBIE CJIOBA
COCTOSIT KAK MUHUMYM U3 JIBYX OYKB, T.€. 9TO IIYCTOE CJIOBO U OTJEIbHbIE OYKBBI SIBJISIIOTCS JOIMYCTUMBIMU CJIOBAMU.
HamomMauM, 9T0 MHOKECTBO 3aIPETHBIX CJIOB KOHEYHO.

Bagaua 5. CBoOOIHBIM A3BIKOM asdasuma A nasveaemcea asvik Fa, 6 xomopom 600bwe nem 3anpemmuoix caos.
Hoxaorcume, wmo xoauvwecmso caos us n 6yxke 8 amom asvike pasHo N™.

Bamada 6. B asvike B 3anpemuvmu A6AAOMCS 6CE CA08A U3 I8YT padsudHuir byke. Jokaxrcume, wmo 048 1100020
HAMYPEALHOZO N KOAUYECTNGO JONYCMUMDBLE CA08 U3 N OYKSE 6 Imom A3bike pasHo N.

IIycre M — kakoe-HUOY b MHOXKECTBO cJIoB. OG0O3HAYMM Yepe3 M, KOJIUIECTBO CJIOB B 3TOM MHOXKECTBE, COCTO-
amux u3 n 6yks. Padom pasmepos mHoxkecTBa M Ha3bIBaeTCst OECKOHETHAs] CYMMa,

M (x) =mo 4+ mix + moz?® +maz + ...

Takoro Bu/ja 6eCKOHEYHBbIe CyMMBI (C TPOM3BOJIBHBIMI YUCIAMA B KadecTBe KoM MOUIMEHTOB My, ) MBI Oy1eM KPATKO
HA3BIBATH IPOCTO padamy (MX MOJHOE HA3BAHHE, KOTOPOE MBI HE OY/IEM HCIOIb30BATD — BOPMAALHBIE CIENEHHbLE
pAdoL).

Jnst Kaxkoro si3bika L ero psiziom pasmepos L(x) Has3bIBaeTCsl psAJ| PA3MEPOB MHOXKECTBA JIOIMYCTUMBIX CJIOB.
Hanpumep, jiiisi ¢cBOGOIHOIO si3bika Fy psiji pasMepoB — 9T0 CyMMa IeoMeTpudecKoit nporpeccun Fa(z) = 1+ Nz +
N222 4+ N323 + ..., a nis aswika B sto B(x) =1+ Nz + No? + N23 + ...

Bagaua 7. Bunuwume pad pasmepos oas asvika nad aadasumom {a,b}, 6 Komopom 3anpemmbimu AGAAIOMNCHA
caosa aa u bb.

I Tazke ecou cI0Ba B APYTHX CJIOBAPHBIX (POPMax.
2Tlono6rast ucropus B 1990-e I'T mpous3oIIIa C MEPBO Bepcheil MUKpOIpoleccopa Pentium.



3 ApundmMeruka SI3bIKOB

Ecmu muo)kecTBO M COMEPYKUAT TOJBKO OrPAHUYIEHHOE KOJMYECTBO CJIOB, TO €r0 PsJl pa3MePOB — 3TO MHOTOUJIEH OT
nepeMeHHOM . J[y1sT 6ECKOHEUHBIX MHOXKECTB U PSIIbI TOXKE OECKOHEUHBIE, HO C HUMHU MOXKHO ITPOU3BOANTH PA3HBIE
apudMeTHIECKNe OMepaIini, MOX0XKUe Ha OTEPAIMH ¢ MHOTOYJIEHAMN, TO €CTh CKJIAbIBATh, BHIIUTATH, YMHOKATD
ApYyr Ha Jpyra U Ha 4UCIa U JazKe UHOIIA JEJIUTD.

B onpenenennsx n 3agadax sroro pasjena S = Sg+ S1x + 52x2 +...uR=rqg+rx+ r2x2 +... — IBa pdla, a
L1 u Ly — Kakue-TO JBa A3bIKa ¢ pasHbiMu ajiaputamu A; u As. /s onpeneiéHHOCTH, MBI OY/I€M CUUTATH, 9TO
asipaBuT Ay COCTOUT U3 3araBHBIX OyKB, a ajdasur As — u3 crpounbix. Andasur A — 310 00bEAUHEHUE JIBYX
anpasuToB A1 1 As, TO €CTb B HETO BXOAAT U 3arjIaBHBbIE, U CTPOYHbLIE OYKBHI.

Ounpenesnienne 1. a) Cymmot pados R u S HasbiBaercs cymMma
R4S = (sg+70)+ (81 +71)x+ (52 +70)a? + ...

6) Cymmoti asvikos Ly u Lo naspiBaerca a3bik Ly + Lo nag andasurom A, y KOTOPOro MHOXKECTBO JOIIYCTUMBIX
CJTIOB — OObENMHEHNE MHOXKECTB JOMYCTUMBIX CJIOB A3BIKOB L1 1 Lo.

Bama4da 8. 3adatime asvik L1 + Lo KoHeuHbM MHONHCECTNBOM 3ANPEMHBIT CAOB.

Bama4va 9. Jloxasicume, umo ecau L = L1 + Lo, mo
L(z) = L1(z) + La(z) — 1.
IIponsseienne ps1oB pa3MePOB OIPEEIIAeTCs TaK 2Ke, KaK IPON3BeJIeHIe MHOIOYJIEHOB.

Ompenenenne 2. I[Ipoussedenuem pada R wa odnousen ax™ Ha3BIBACTCS PsIT
R-azx™ = argx™ + arz™ Tt 4 arqx?a™ T 4 .
Ipoussedenuem psdos R u S Ha3bIBaeTCsl CyMMa,
R-S=R-so+R-siz+ R-sox®+...

SameTnm, 9T0 3Ta GECKOHETHAS CYMMa, PSIJIOB IMEET CMBIC — CKJIAJIBIBAsT PSIJIbI IOYJICHHO, MBI ITOJIYIaeM B KA4eCTBe
K03 duImeHTa Ipu KaxkJa0i CTENeHN T KOHEYHYIO0 CYMMY YHCeJI.

3amaya 10. Jloxaostcume pasencmeo
A—2)-QI+z+22+...)=1

Omnpenenenune 3. [Ipoussedenuem deyxr muoocecms caos M, N HazbiBaeTcs MHOKecTBO M N Bcex CJIOB BUa M1,
rae m — caoBo u3 M, a n — ciaoBo u3 N.

IIpoussedenuem dsyr sasvikos Ly u Lo HazbiBaercst sa3bK Ly - Lo Hau ajipaBuTOM A, y KOTOPOIO MHOYKECTBO
JIOIIYCTUMBIX CJIOB SIBJISIETCSI IIPOU3BEIEHNEM MHOYXKECTB JIOIYCTUMBIX CJIOB sI3bIKOB L1 U L.

Bamaua 11. 3adatime asvix L1 - Ly KOHEUHBIM MHONCECNBOM 34NPEMHBIT CAOB.

Samauva 12. Jlokascume pagencmeo
L(z) = Li(z) - La(z).

Jenenue psjoB HE MMEET AHAJIOTA JJIsl SI3BIKOB, HO TO3BOJISET COKPAIIEHHO 3AINCHIBATH MX PSJIbI PA3MEPOB.
Ono onpepensiercs 1o HopMmyIie, MTOXoXKe Ha GOPMYJTy CYMMbI T€OMETPUIECKON ITPOIPECCHH.

Omnpenenenne 4. Ilpemnooxum, 4To psj S HAYMHACTCS C €IMHUILL, TO ecTh 5o = 1, u S = 1+ S, rne S =
s12 + sex® + ... Torma obpammvim padom HA3HIBACTCS P

1 — =2 =3
—=1-545 -5 +...
5 + +

Yacmuowm OT jiesieHust psijioB R u S HasbIBaeTCs psijl

ng—R-§+R-SQ—R-§3+...

YacrHoe ABYX PAJ0B Pa3MEPOB fA3bIKOB MO2KET HE COOTBETCTBOBATH HUKAKOMY A3bIKY, XOT OBl IIoTOMY, 9TO B
TIOJIYIUBINEMCA PAJIC MOT'YT ITOABUTHCA OTPUIATE/IHLHBIC KO3(1)(1)I/II_H/I€HTI)I.

Banaua 13. a) Joxaosrcume, wmo

b) Hoxaorcume, wmo ecau S -T = R, 2de pad S navwunaemcs ¢ edurnuyv, mo T = %



ITonnza or orepanun JeJICHUdA pPAJT0B COCTOUT B TOM, YTO MHOI'HUE OeCKOHEUYHDBIe pAABI MO2KHO 3allucaTb C eé
IIOMOINBIO B BHAE KOHCYHOI'O BBIPAXKECHUA — YaCTHOI'O ABYX MHOI'OYJICHOB.

Bagaua 14. a) Joxaosrcume, wmo
1
1- Nz’

6) Sanuwume padv. pazmepos A3vk06 u3 3adaw 6 u 7 6 gude 4acmHo20 08YT MHOZOUALHOS.

FA(.’L')

Bagaua 15. Joxasicume, wmo pad pasmepos a106020 A3bika moxcem Obmyd 3anucar 8 6ude 4acmmozo 08Yr MHo-
204N€EHO8.

Takum obpasom, orser K [UraBHoit 3aiade 10J2KeH OBITH IIPEJICTABUM B BUJE YaCTHOI'O JIBYX MHOI'OYJIEHOB.

4 (CBoboaHoe CJI0BO

Bamaga 16. Ilycmo L — A36Kk 10 AGMUNCKUM AAPAGUINOM, 6 KOMOPOM 3ANPEMHOLM AGAACTNCA TOAVKO CAOGO
“mouse”. Hatidume L(z).

Omnpegesienne 5. Ilycrob a,b — aBa c10Ba, U3 KOTOPBIX HU OJHO HE SBJISIETCA YaCThio apyroro. Hemycroe ¢jioBo ¢
HA3BIBACTCH 3AUENACHUEM CJIOB ¢ U b, €CJIU OHO SIBJIFETCS OKOHYAHUEM CJIOBA ¢ U B TO YK€ BPEMsl HAYAJIOM CJIOBa b
(nanpumep, cj10Bo “k0” — 3ameIvieHne CJIoB “MOJIOKO” U “KopoBa’’).

Cyt0BO HasbIBaeTcst ¢60600HbIM, €CITM Yy HEro0 HeT HUKAKUX 3aleIUIEHW ¢ caMuM CODOif, KPOME CaMOro 3TOrO
CJIOBA.

Bamava 17. IIycmo 6 asvike L nad asgasumom A us N 6yxe umeemcs moavko 00HO 3anpemmoe CA080 — HEKO-
mopoe ce0b0dHoe €060 u3 m 6yke. Jokasxcume, 4¥mo

1

Lz)= ——m———.
() 1— Nz +ax™m

Bagaua 18. Pewume 3adauy 2 6 npednosodcenu, 4mo nociedo8amesbHOCNb, AOMAIOULAA KOMNLIOMED, ABAACTNCA
C80000HDBIM CAOBOM.

5 IIpeobpa3oBaHusd CJI0B

Omnpenenenne 6. IIycrs M u M’ — nBa MHOXKecTBa cioB. Pazo6bém MHOXKecTBO M Ha Kakue-HUGYIb Be dacTu K
u L. ®yuknus f nz MHOXKecTBa L B Kakoe-HUOyIb moaMHoxkecTBo I MHOKecTBa M’ HasbiBaercs npeobpazosanuem
MHOKecTBa M B MHOKecTBO M, econ f coxpaHsIeT JyIMHY CJIOBA M SBJISETCHA B3AaNMHO OJIHOZHAMHBIM OTOOParKEHIEM

n3 L BI.

B sroMm ciayuae maOXKecTBO K HasbiBaercs sdpom orobpaxkeHus f, a MHOXKeCcTBO I — ero obpasom.
IIpeoGpaszoBanme MbI OymeM 0603HAYATL cTpeakoit: M = M'.

Omnpenenenne 7. llenouka nmpeodbpazoBanmit
M — My, — ... — M,

Ha3bIBa€TCA mo«mo&, €CJIn AP0 KazKJI0T'0 CJIEAYIOIIEero Hp€O6pa3OBaHI/IH COBIIa/la€T C O6p330M OpeabLAyInero.

Bamava 19. Ilycmv L — aswx wad aagasumom A ¢ muootcecmeom donycmumnz ciroé G u MHOHCECTNEOM GCET
ne donycmumoix caos N. Ilocmpotime mounyro nocaedogamesbHoCmd npeodpasosaHul

= N=F4=G=0,

20e Fq — mmooicecmeo cao6 c606001020 A3bIKa, MO ecmb 6cex cao6 nad aagacumom A, a O obosnavwaem nycmoe
MHOHCECTNEO.

Bagaua 20. B pad cudam no ouepedu masvuury u degouru, no 10 mex u dpyeux; nociednetds cudum yuumesvbhua.
Y demeti ecmv Koudemol, NOPOBHY 8 CYMME Y MAABHUKOS U Y desouek. Tlepsril marvuwuk omdaém ece ceou Kongemot
cudawet 3a Hum desouke. Jlegouka csedaem UL, coedaem U3 CEOUT KOHPEM CMOALKO HCE, a4 0CAMOK 0omdaém
caedyrowemy maavuky. Tom mooice nocmynaem mouwno mak gice, 36 HuM — caedyrowas 0e6ovwka, u mak danee.
Hocaednasn desouxa omdaém ocmamox ceoux koudem ywumeavhuye. Ckoavko el docmanemcea?



Bamava 21. Ilycmo
®:>M1:>M2:>...:>Mn:>®

— MOYHAA YENOUKa NPeodbpasosaHull.
a) Joxastcume, wmo ecau 6 kasicdom muooicecmae M; moavko KoHewHOE HUCAO My; CAOS, MO

mi +m3+m5+~~:m2+m4+...
6) oxasicume dopmyay 0as pados pazmepos
Mi(x) + Ms(z) + Ms(z) + - - - = Ma(x) + My(x) + ...

Omnpepenenne 8. MuoxkecTso cjioB M HazbIBaeTCS €60600HbLM, €CJIT HUKAKOE CJIOBO U3 M He SBJISETCS MTOJICTIOBOM
JIDYTOTO CJIOBA U3 3TOI0 MHOXKECTBA, BCE CJIOBA B HEM CBODOJHBIE U HE MMEIOT 3AIEIIEHUN MEXKy CODOiA.

Bamauya 22. ITycmv L — sasvk wad aagasumom A, y Komopozo mHodHcecmeo sanpemuwvix caos B ceobodnoe.
Obosnavum weped G mHootcecmao €20 JonYcmumslr cros, yeped G — MHOMHCECTNBO BCEX JONYCTUMBLIE CAO8, KPOME
nycmoezo. Ilocmpotime mowny1o nocaedosamesbHocmsb NPeodpa3osanul

)= B-G=A-G=G=0.
Bamaua 23. IIycmv L — sasvk nad aagasumom A us N O6yYke, y KOMOP020 MHOHCECMEO 3ANPEMHBIT CA06 B

ce0b00noe. Jokaxrcume dopmyay
1

Lz)=——————.
1— Nz + B(x)
Samaua 24. Jokxastcume, 4mo MHOHCECME0 3akiuHarull 6 3adave 1 c60600H0€e, U pewume eé.

Bagaua 25. Hatdume L(x), ecau aagasum azvwa L — aamunckud, a 3anpemmuvie cao6a — 2mo caosa vend, vidi,
vich.

Omnpenenenne 9. Ilycts L — a3bik. I[Ipocmoti cuenkotli Ha3bIBAETCsI CJIOBO v = Str, Te S, t, r — HeImyCcThie CJIOBa,
npuiuém g = st u f = tr — 3anperHble CJIOBa, U OOJIbIIIE HUKAKUX 3AIPETHBIX MOJICIOB B v HeT. Kowery r mpocToit
CIEINKHU, OCTAIOIINUNCS TOCJIe TIEPBOIO 3alPETHOTO CJIOBA ¢, HA3BIBAETCS €6 XBOCTOM.

Ba;[aqa 26. ,Hmmwcume, YUMo MHOHCECTBO 3aNPEMHBIT CAO0E6 A3BIKA ABAAETNCA €80000HBIM 8 TOM U MOABKO TOM
CAYHAE, ECAU 8 IMOM A3BIKE HETN NPOCINBIT CUENOK.

Bagaua 27. ITyemo L — asvik Had nexomopovim aidasumom A ¢ MHOAHCECMBOM 3aNPEMHBIL cA08 B u mmoorce-
cmseom mpocmuz cuenok S. Obosnawum wepesd G mmooicecmso e2o donycmumnr caos, weped G — mHoorcecmso
8CexT JoNYCMuUMBLT €08, Kpome nycmozo. ITocmpotime mounyro nocaedosamesbHocms npeobpadosarut

S-G=B-G=A-G=G=0.

Sagaua 28. Kaxum ycro6uam 00AAHCHO YOOBAEMEOPAND MHONHCECTNEO 3ANPEMHBLT CA08 A3biKa L, 4mobb, mounyto
n0cAedosameAbHoCMb U3 3adayu 27 M0AHCHO 6bLA0 NPOJoANCUMD DO NOCACIOBATNEALYHOCTN

=8 G=B-G=A-G=G=1

(makue A3vKU 1HA306EM Hezanymanmbimu)? Buieedume gopmyay, komopas evipasicanra 6w, pad pasmepos L(z) nesa-
nYMan1o20 A3vika weped wucao N 6yxe 6 aagasume u pado. pazmepos muooicecms B u S.

Samada 29. Buuucaume psad padmepos 0as A3vika Had ardasumom u3 mpéx 6yxe a,b, c ¢ 3anpemHuMU CA08AMU
abb, bbe, bac.

Sapaua 30. Buuucaume psad pasmepos oan azvika Had asgasumom A = {x1,...,Zn, Y1y, Yns 215+, 2n}, 6
KOTOPOM 3ANPEMHOLMU ABAAOMCA 6CE CA06A 8UDA L;Y; U Y;2k, 2de 1 < 4,5,k < n.

33}13‘{8 31. ﬂo%‘awcume, ECAU MHOIHCECTNBO 3ANPEMHBIT CA0E HE3ANYTNAHHO020 A3bKA COCTMOUIM TMOABKO U3 001020
CA06a, MO 3M0 MHOMHCECTNBO €600600H0.

6 Eimé o cBOOOIHBIX MHOXKECTBAX

Bagaua 32. I[locmpotme beckoneuroe c80600H0e MHONCECTNBO 6 aspasume u3 08Yyr Oyks.

Bamava 33. Ilpednoaootcum, 4mo mHoscecmso 3anpemmvix caosé B aswvka L ceobodno, a aadasum codeporcum
boaee 00nol bykev. Jlokascume, 4mMo MHOHCECTNEO JOMYCTNUMBLT CA08 IMO020 A3bIKA DECKOHEUHO.



Onpegenenne 10. Ilycts S = 5o + 512 + 5022 +... w R=1r¢ + 72 + 7% + ... — 1Ba pana. Ecau s o6sx
KO3 MUIMEHTOB Si, U 7'}, C OJMHAKOBBIMI HOMEPAMH BBIIOJIHSAETCS HEPABEHCTBO S > Tk, TO OyIeM I'OBOPHUTD, 4TO
MEIKJLy PSJAMI BBIOTHAETCH HEPABCHCTBO

S>R.
Bagaua 34. Jlokascume, wmo ecau dasn pados P,Q u R 6uinoanaomces nepagencmaea

P>QuR=0,

PR > QR.

Bagaua 35. IIpednoaooicum, wmo muoscecmea sanpemunvix croeé B u B' deyx aswxos L u L' nad odnum anrgasu-
mom A codeporcam 00no U MO dice KOAUMECTNBO CA08 Kaocdol daunv, makx wmo B(z) = B'(z). Hoxasicume, wmo
ecau mmooicecmeo B c6060010, Mo 6bNOAHACCA HEPABEHCMEO

L'(z) = L(z),

npuywém pasencmeo L'(z) = L(z) docmuzaemces 6 mom u moavko mom cayuae, ko2da mmoscecrneo B’ maxorce
ABAACMNCA CE0000HVLM.

Bamaya 36. Hzsecmmo, wmo aspasum cocmoum us deyxr 6yks, a muoscecmeo B codeporcum ne menee deyx caos,
0010 U3 KOMOPLT, CAOBO W, UMEETM, OAUHY 2.

a) Jokaosicume, wmo mnoocecmseo B ne ssasemces c60600nviMm.

b) Mooicem au ono 6vimo c60600HbIM, ecau dauna cro8a w pasra 37

Bamaua 37. Uzsecmno, wmo aagasum cocmoum u3d n O6yxs, a muodxcecmseo B cocmoum u3 g caos daunv, 2.
Joxascume, wmo ecau g < n?/4, mo mmosicecmeo B mootcem 6oimv 6vi6pano c60600HbiM.

agaua 38. /lokaostcume, wmo ecau n = kd u m < kd(d — l)d_l, 2de wucaa d, k, m,n wamypasoHvie, Mo Haod
angasumom u3 n byke MONHCHO 8b6PATL C80600H0E MHOHCECTNBO, COCTNOAULEE U3 T, CA08 OAUHbL d.

Banaua 39. a) Joxasrcume, wmo ecau B — ¢80600n0€e MHodtcecmao Had ardasumom u3 n 6yKe, mo 6binoOAHALNCA

HEPABEHCMEO
1

—_——>1
1—nx+ B(z) —

6) Bepho au o6pammoe ymeepicoenue: ecit 0t HeKOMopo20 HAMYPAAbHo20 N U HEKOMOPo2o MHo20uAena P(x)
€ HEOMPUUATNEALHBIMU UEABLMYU KOIPHUUUEHTAMU U HYAEEBM CE0O00HBIM UAEHOM GUINOAHAETNCA HEPABEHCTIEO

1

—>1
1 —nz+ p(z)

- b

mo nad asgasumom us n 6yke cywecmeyem ceobodnoe muootcecmso B maxoe, wmo B(x) = p(x)?

Bamaua 40. ITycmos n — namypaavroe wucao, p(T) — MHOZOUAEH C HEOMPUUAMEADHVMU YEAAMU KOIPHULUEH-
MAMU U HYALEbIM C80600HbIM Haerom. Jlokasicume, wmo c6obodnoe mroocecmeo B ¢ padom pasmepos B(x) = p(x)
CYULECTNBYEM 6 MOM U MOABKO MOM CAYYAE, K0200 CYUWLECMBYIOM MAKUE MHO20UAEHbL [ U § ¢ HEOMPUYUAMEALHBLMU
Yeavmu Koapduyuenmamu, maxue 6e3 c80600HVT 4AEHOB, YUIMO

(1-f)1—-g)>1—nz+p(x).

Banmaua 41. 3 [Ipudymatime ycaosue, ONUCHEAOUEE GO3MONCHBLE PAJLL PASMEPOE MHOICECTNG SANPEUENHBIT CAOG
HE3ANYMAHNYIT A3VKOS (N0006Ho momy, Kax 6 3adave 40 0rapaxmepusosarv, padv pasmepos c6o60ONBT MHO-
orcecms).

7 CuoBa u 11e1num

Onpenenenne 11. Ilycrs L — s3pik. lensivu juimabl 1 HA3BIBAIOTCsT BCE 3aIIPETHBIE CJIOBA, IEISIMU JIJIMHBL 2 —
BCE MPOCTHIE CIENKU. Uepe3 9TU MEnu ONpPeIesIAIOTCs eI e JUIHHLL 3, 4 1 Tak jajsee. A UMEHHO, CJIOBO v = St
(rze Bce cioBa s, t, T — HEIyCTble) HA3BIBACTCS UENbl0 OAUHDL T, €CJH ero HAYajI0 ¢ = St SBJISETCs 1ENbIO JIMHDL
n — 1, kouer f = tr — 3alpPETHBIM CJIOBOM, IIPUYIEM ¢ SIBJISIETCS [TOJICJIOBOM XBOCTA, P TIEIHN ¢, M HUKAKUX 3AIPETHBIX
IOJICJIOB, KpOMe f, B KOHETHOM ydacTKe pr HeT. X60CmoM STOi Nenu Ha3bIBAETCs CJIOBO T.

3>KIOpI/I HE€ M3BECTHBI HU pEelleHne, HU JazKe OTBET K 3TON 3aJa4ve



Hennb BBIDIAAUT TPUMEPHO Tak (KaxKJas Jiyra — 3TO 3alPETHOE CJIOBO B Hell):

AW W AW A WA WAN

JumHa 1nenu — 3T0 KOJMYeCTBO JyTr. SallelJISIOTC TOJBKO CoceHue JAyru (T. e. UX [epecedeHre — 3alellIeHue
HEHYJIEBOH JUINHBI), U BbIJEJIEHHbIE J[BA MOCIEIHIUX XBOCTa HE COJEPIKAT 3alPETHBIX CJIOB, KPOME IMOCJIeTHEH Iy .

Hanpumep, eciu 3amperHoe ciioBo — aba, TO €IMHCTBEHHAS IEMb JJIUHLI 1 — 9T0 aba, 1B 2 — ababa, TJITHBI
3 — abababa, n Tak majee.

Bamaya 42. Iycmov 6 aswvke L sanpemuvmu cuumaromes caosa “tournament”, “of”, “towns”. Bwnuwume 6ce
Uenu OAUMHDL N.

Bagaua 43. AuTunens daunb n onpedessemea mak sHce, Kak u uenv OAuHbL N, HO 6Ce CA08a A3vka L 6 onpedene-
Huu 11 npouumvisaemcs “cnpasa Haae60”, m. e. TEOCMbL aHMUYENET HATOOAMCA CAEBA, 0 HAYAAGHAL UEND OAUHDL
n — 1 — cnpasa. Jokascume, wmo mHooicecmaa yenet dAuns 1 U aHMuyenet 0AUHYL N CO8NAAIOM.

Samaua 44. /Jlokasicume, 4mo HUKAKGA UeNd OAUHDL T HE COOEPIICUM 6 KAUECTEe NOJCA06A HUKAKYI OpY2Yy10 uens
OAunDL 1.

Sagaua 45. Jokaosicume, 4mo ecau cao6o umeem 6ud w = gc, 20e g — JONYCmumoe CA080, a4 ¢ — UEND, MO 8
cAYuae, ecal OAUHG Uenu ¢ bosvwe 1, car080 W NPeICasuMo 8 Mmakom 6ude POSHO J6YMA CTOCODAMU, NPUHEM
daunsl yenet 8 dMux NPeIcmasACHUAL PAAUNGIOMCA HA COUHULY.

Crenyromas 3ama49a gaét crocob pemntenns [apHoit Sagaqn.

Bamgaua 46. Ifyeme L — sasvk wad asgasumom A. O6osnauum wepes G mHodcecmso e20 Jonycmumbir cAos,
uepes G — MHOICECTNE0 6Cex JONYCIMUMBLE CA06, Kpome nycmozo. ITyems C, — mmoocecmeo yeneti dauno, 1, Co
— uened daurvt 2, u max danee.

Loxaosrcume dopmyay
B 1

1—Nz+ Ci(x) — Co(x) + Cs(x) — ...

L(x)

Bagaua 47. Hatdume pad pasmepos 0ia A3vika u3 3a0ayu 42.

Bagaua 48. Hatidume 6ce 803MOMCHDBIE BAPUAHMBL OMBEMOE OAA 3a0a4U 2 8 3A6UCUMOCTIU OM MO020, KAKUE
UMEHHO KOMAHIDL AOMAIOM, KOMNBIOMED.

Bagaua 49. Ha306ém n00ci060 ¢ cA06a W MaAKCUMAIBHOM MOMIENBIO, eCAl W npedcmasumo 6 sude w = gcu, 2de g
— donycmumoe 060, a C — UeNnb, NPUUEM s 1106020 dpy2020 npedcmaesaenus w = gc'u' ¢ dpyaoti uenwio ¢’ eceada
€n060 ¢ — nodcaoso caosa c. Jokascume, 4mo a1060e HEAONYCIMUMOE CAOB0 UMEET, POBHO 00HY MAKCUMAALHYIO
noduensv Heuémmol dAUMDL.

Bagaua 50. I[Iycmv L — asvix nad aagasumom A, u A — noewiti aadasum, nosyuennwiti us A dobasaernuem
00noti 6yxevt. Iyemv L' — asvix nad asdasumom A’ 6 K0mopom 3anpemmvimu, AGAAOMCA 6CE 3ANPEMHBLE CAOEA
asvra L. Jloxaocume dopmyay
1
L'(z) =
(2) = —
L(xz)

Sama4da 51. fAzviw W nasvisaemces cBOOOIHBIM NpOU3BeIeHneM A3biko6 L u L' nad nenepecexarowumucs arpacu-
mamu A u A’, ecau angasum asvka W ecmov obsedunenue argasumos A u A, a mmoscecmeo sanpemmnu cao6
— obsedunenue MHOIICECTNE 3anPEMMHBLT CA06 A3vko6 L u L'. Bupasume pad pasmepos c606001020 npoussedenus
W uepes padv, paszmepos aswros L u L.

Bagaua 52. [Ipednoiostcum, 4mo MHOHCECTMBO 3aNPEMHBLT CA08 A3bika L codepotcum moavko caosa us deyx 6yxs.
Pacemompum dpyeoti aswx M nad mem oice ardasumom, 6 KOMOPOM 3aNPEMHBMU ABAAOMCA MeE U MOALKO Me
08YTOYKBEHHBIE CAOBA, KOMOPBIE HE ABAAOMCA 3anpemuumu 6 azvike L. Jloxaosrcume pasencmeo

L(z)M(—z) = 1.

8 ,Z[OHO.TIHI/ITGJII)HI)IG 3aa11

Bama4da 53. Joxaosicume, wmo c60600H0e MHOMHCECTNBO U3 M CA06 daurb, d 6 asgasume ud n = kd byxe cyuie-
cmeyem 6 mom u moavko mom cayae, koeda m < k%(d — 1)1 (cp. sadawy 38), ecau
a)d=2; 6) d=3; 6)d> 3.



Omnpepenenne 12. f3bk Ha3bIBaCTCH d-0npedesérbim, €CIM HAMOOIbINAs U3 JJINH €r0 3allPETHBIX CJI0B paBHA d.
2-0OTIpeIESIEHHBIH sA3bIK HA3BIBAETCS K6AJPATMUYHBLM.

Sagaua 54. Keadpamuunwie asoiwu L uw M us 3adawu 52 naswviearomes IBORCTBEHHBIMU Opy2 % Opyey (0603naue-
nue: M = L').

a) Jdoxastcume, wmo (L')' = L.

6) Hatioume (L1 + Lo)".

6) Onuwume (L - Ly)'.

Bamaua 55. [Tycms L — d-onpedeaénmnoni azvik. Onpedesum noswidi azvik L | 6 komopom ardasumom asasomes
6ce donycmumsie ca06a A3vika L daunve n, a donycmumovie caosa — gce donycmumovie cao6a a3vika L, dauna
KOMOopuix deaumces na n (swuipasicernvie uepes Hosoie 6yKest).

a) doxaocume, wmo asvw L 3adaémea xonewnvim nabopom 3anpemmvi croe.

6) Bcezda au sazvs L™ aeasemca d-onpedenérmoim?

6) Ipu kaxom naumenvwem n azvx L™ eapanmuposanno acasemcs x6adpamusnvim uat c60600mvim (6ne
sasucumocmu om 6vbopa d-onpedeaérnozo asvikam L)?

Bamaga 56. Jas 4106020 keadpamuurnozo asvika L wad aagdasumom 1, . .., T, onpedesum opueHmuposartbsili epagd
I'1 caedyrowum obpasom: e2o sepuiunvl — N MOYEK, NOMEUEHHE OYKSAMU L1, . . ., Tn, 4 PeOPO (cmpeska) T; — T;
NPOBOOUMCA 8 TOM U MOALKO TOM CAYUGE, K020 T;T; — paspewénnoe cr060. O003HAMUM wepes aj KOAULECMEO
donycmumoir cao6 u3 k 6yxe. Jokxascume, wmo

a) asoe L konewnvid 6 mom u moavko mom cayuae, xozda 6 epage L'y, nem yuxaos;

b) asvk L umeem noaunomuasvioil pocm (m. e. cyuecmeyiom 064 HENYAEBUT MHO20UAEHA D, q 00HOT U MOl
orce emenenu d ¢ noaostcumesvhom cmapuwum kospduyuenmom maxue, wmo p(k) > ap > q(k) das ecex k >0) 6
MOM U TOABLKO MOM CAydae, Ko2da 6 2page I'p ecmb yuka, HO HEM NEPECEKAOUWUTCA YUKNOE;

¢) aswk L umeem axcnonenyuasvrod pocm (m. e. 0aa HeKOMOPHT ¢1 > ¢a > 1 u das ecex k swvinoansromes
nepasencmea c¥ > ap > ¢k ) moada u moavko moeda, xoeda 6 epage I'r, ecmv xomasa 6vi d6a NEPECERAOULUTCA UUKAG.

1 o
Bamaya 57. I[Iycmv L u L' — napa 060licmeerHbir K8a0pamuuHbLT A301K068. BO3ZMOHCHO AU, %Mo 004 OHU UMENOT
aKCNOHENUUANLHBIT pocm ?

Bamava 58. Jlas arw06020 d-onpedesérrozo asvka L Had ardasumom xi,...,T, ONPEIEAUM OPUEHTUDOBULHHBIL
epap T'p caedyrouum obpasom: e2o 6EPUUHBL NOMEUEHBL BCEMU JONYCTMUMBMY cA08aMmU OAuMb, d — 1, a pebpo
(cmpeara) v — W NPOBOOUMCHA 6 MOM U MOALKO MOM CAYHGE, K020a NPU YMHONCEHUL CAOBA V HA HEKOMODPYIO
byxey x; noayuaemca donycmumoe cr060, nocacdnue d — 1 6yxe womopozo cocmasasiom caoso w. Joxascume ece
mpu ceoticmea a), b), ¢) us 3adawu 56 das nocmpoennozo epaga I'y,.

Ounpenenienne 13. Ilycre M — nekoropoe muoxKecTBO cj10B HaJ aidasurom A. Ciosa v u v (Ham TeMm e
asaBUTOM) Ha3bIBAIOTCH M -9K6UBAAEHMNBLMU, €CIIU JIJIs JIIOOOTO CJIOBA W CJIOBA UW U VW JUO0 008 IPUHAIJIEIKAT
M, mbo oba me mpuuasaexkar M. MuoxectBo M Ha3bIBaeTCI Pe2yAAPHbIM, €CITU HANRIETCA TaKOoe HATYpaIbHOe
YUCJIO M, 9TO B JIFOOOM MHOXKECTBE U3 7, CJIOB HaiayTcsi qBa M-3KBUBAJIEHTHBIX JAPYT JAPYTY CJIOBA.

Bagaua 59. Jloxaocume, wmo mMH0HCECMBO JONYCNUMBLE CA08 100020 A3BIKG PE2YAADHO.

Onpenenenne 14. Koneurvim asmomamom Hagx ajadgasuroM A HasbiBaercs opueHTHpoBaHHbIA rpad I' ¢ Koneu-
HBIM MHOXKECTBOM BepInuH V', npuaém

a) CTpesiKu noMedeHbl Oykpamu asipasura A, npuaéMm jyist 060 GyKBBI @ € A U3 KayKJION BEPIIUHBI BBIXOIUT
POBHO OJIH& CTPEJIKA, IIOMEYEHHAs a;

b) BbLIEIEHBI Hauaabhas epuuna vy € V U MHOKECTBO npurumarowur eepwun W C V.

Bynem BocmpmHMMAaTh KaxKioe CJIOBO HaJl ajdaBuTOM A KaK MHCTPYKIMIO JIJIsi ITyTEIIeCTBUS MO CTPEJIKAM
koneunoro asromatra (I, v, W): naunnaeM ¢ HaYaJ bHOW BEpIIUHBI, UAEM U3 HEé 110 CTPEJIKe, IIOMEYEHHON I1epBOii
OYKBOIi CJIOBa, JIaJIbIIe UIEM 110 CTPeJIKe, IOMEYEHHOH BTOPOi OYKBOIi, 1 T.;1. Mbl rOBOPpUM, YTO aBTOMAT NPUHUMAET
CJIOBO, €CJI COOTBETCTBYIOIIUII CJIOBY IIyTh 3aKAHUUBAETCS B IPUHUMAIOIIEH BepIIUHE.

Bapaua 60. a) Hoxaoscume, wmo 0asn a106020 pezyaaprozo muodxcecmsa M cywecmeyem konewHvil agmomanm,
npUHUMaOWul croea u3 M u nuxaxur bosvue.
b) doxasrcume, 4mo 0as 4106020 KOHEUHOLO ABTMOMAMG MHONCECTNEO NPUHUMAEMBIT UM CAOE DELYAIPHO.

Bamaya 61. Jloxaocume, wmo s 4100020 pe2ysspHozo mroxcecmea M ez0 pad paszmepos moocem 6vimsd 3aNUCAH
6 ude YacmHoz0 d8YT MHO20UAEHOS.

Bamava 62. Ilycmo M,, — MHO#CECTNEBO BCEXT JONYCTMUMBLT CA08 A3BKG L, OKGHUUBAOUUTCA HA PUKCUPOSAHHOE
nodcaoso w. Joxastcume, wmo pad pazmepos muooicecmsa M, npedcmagum 6 sude 4acmHoz0 08YT MHO20UAEHOG.

(o mpomeskyTouHoro (pbuHHUINA GLIIA MPEJJIOXKEeHBl 9acTh 1—5, MocJje ITPOMerKyTOYHOro (DUHHIIA 106ABJICHDI
gacru 6-8.)



Kak cuurarpb cjioBa?

Hyurpuit [Tuontrosckuit, Makcum [Ipacosios, I'puropuit Pribnukos

Pemenuga

1 I'nmaBHag 3amada

1. Cm. 3aj129y 24.
2. Cm. 3amaun 18 u 48.
3. OmuH U3 BAPMAHTOB peIleHnst JaH B 3a7ade 46, a IpyTroil MOYKeT OBITH ITOJIyYeH C MOMOIIbI0 3am1a4d 59 u 61.

4. B zajage 1 andasur A cocroutr n3 N = 100 cj10B si3bIKa IJIEMEHH, POJIb CJIOB sI3bIKa L urpaior (ppasbl SA3bIKa
mwiemenu Bunau-IlyxoB, a 3amperHble cioBa si3bika L — 3TO 1Ba Marnveckux 3akjnHaHus. B 3amade 2 andasur A
cocrout u3 N = 256 KOMaH]I KOMIIBIOTEPA, & POJIb CJIOB S3bIKa L UI'DAIOT IPOrpaMMbl. EJIMHCTBEHHOE 3aIllPETHOE
CJIOBO — IIPOTrpaMMa, JIOMAOIIAs KOMITBIOTED.

2 Kak 3anuceiBath oTBeT?

5. CnoBo u3 m OyKB mOJIy9aeTcs BBIOOPOM Ha KaxKJIOM m3 m MecT Jjoboit m3 N Oyks. IlepemHOX)ast KOJIMIeCcTBO
BO3MOXKHOCTEH Ha KaxKJOM Mecre, moydaem N cjoB.

6. Eciin B iomrycTuMoOM cItoBe miepBast OyKBa T, TO BTOpasi ToXKe. AHAJIOTMIHO OCTaJIbHBIE. 3HAUUT, JIOITyCTUMOE CJIOBO
UMeeT BUJL TT ...T, TJae * — ofHa n3 N Oyks asdasura. Ciie0BaTeIbHO JIOIMYCTUMBIX CJIOB U3 (DUKCHPOBAHHOI'O
KoJmdecTBa OyKB N IHITYK.

7. Ilycte B momycTtuMmoMm ciioBe mepBas OyKBa a. Tak KaK aa — 3alpenéHHoe CJI0BO, TO BTOpast OYKBa JIaHHOTO
gonycrumoro csiosa b. IlpomosmKkaem paccyKieHus: W I0Jy4aeM, 9TO Ha HEYETHOM MecTe CTOUT OyKBa a, a Ha
qérHOM — OykBa b. Kcju nmepBas 6ykBa b, To Ha 4éTHOM MecTe CTOMT OYKBa a, a Ha HEYETHOM — b. 3HAUUT, Psijl
pPa3MepoB JAHHOIO fA3bIKa TakoB: 1 + 2z + 2x2 + 223 + . ..

3 ApundmMeruka SI3bIKOB

8. Habop 3ampeTHbIX CJIOB TAKOB: BCEBO3MOXKHBIE CJIOBA U3 IBYX OYKB, B KOTOPBIX OJ/IHa OYKBa U3 II€PBOro ayihaBuTa,
a JIpyras — U3 BTOPOI'O, U 3alpeTHbIe CJI0Ba 000uX s3bIKOB. OUeBUIHO, 9TO JOIyCTUMOE CJIOBO KAaXKIOTO fA3bIKA He
COJIEPKUT 3AIPETHBIX CJIOB B CyMMe sI3bIKOB. FC/im B He COZepzKaIleM 3aIpPeTHOe MOJCI0BO CJIOBE CYMMbI S3bIKOB
repBast OyKBa IIPUHA/JIEKUT IIEPBOMY aJIDABUTY, TO BTOpasl TOXKE,  aHAJIOIMYHO OcTajbHble. /pyrumMu cioBaMu
TaKOe CJIOBO COCTOUT U3 OYKB OfHOrO ajidpasuTa. Ho TOra OHO sIBJISIeTCs JIOIYCTUMbBIM B sI3bIKE C 9TUM aJI(PaBATOM,
a 3HAYUT, JOIYCTUMBIM B CyMMe SI3bIKOB.

9. Ceobogubie wiensl psiyioB L(x) u Li(x) + Lo(z) — 1 pasubl eguaune. [Ipu n > 0 koaddunuent upu ™ psjga
Li(z) + La(x) — 1 paBen cymMMe KOJIMYECTB CJIOB JJIMHBI 1 B A3bIKaX L1 1 Lo, TO €CTh KOJIMYECTBY CJIOB JUIMHBL 1L B
si3bike L, To ectb Koadduimenty npu " B psage L(x).

10. meem

A-2)1+z+22+23+. . )=1-2z+(1-2)-2+Q-2)-22+(1—-2) 2>+ =

=l-ao+tor—a?+22 -3 +2°—2*+... =1,



9TO U TPeOOBAJIOCH.

11. Habop 3amperHbIX CJIOB TAKOB: BCE CJIOBA U3 ABYX OYKB, B KOTOPBIX IepBas OyKBa M3 BTOPOro ayidaBuTa, a BTO-
pasi — U3 epBOTO, U BCE 3alPETHBIE CJIOBA S3BIKOB IMPOU3BEJICHNs. PaCcCMOTPUM JIOMYCTHUMOE CJIOBO ITPOU3BE/ICHMUSI.
B mém 6ykBBI BTOpOro ayidaBuTa CIAyIOT MOCae OYKB MepBOTO ajadaBuTa, W 9TO CJIOBO HE COJEPIKUAT 3AITPETHHIX
CJIOB SI3BIKOB-MHOXKHUTE . SHAYUT, JIOIyCTUMOE CJIOBO IIPOU3BEJ/IEHUs] HE COJEPXKUT yKa3aAHHBIX 3alIPETHBIX CJIOB.
Teneps BO3bMEM CJIOBO, He COJAEpKAaIllee yKa3aHHBIX 3aIllPETHBIX CJI0B. B HEM OyKBBI BTOPOro ajihaBuTa CJIELyIOT
mmocsie 6YKB 1IepBOro ayihaBuUTa, TOITOMY TAKOE CJIOBO UMEET BHJ W1Ws, [/E w1 — CJIOBO U3 OyKB II€PBOro ajadaBuTa,
a wg — u3 6ykB BTOporo. CJI0BO wiwsy HE COJAEPYKUT 3AIPETHBIX CJIOB S3bIKOB-MHOXKUTEJIEH, TIO9TOMY CJI0BA w1 U
Ws JIOIMYCTUMBI B CBOMX $I3bIKAX, TO €CTh CJIOBO wWiWsg JOIMYCTAMO B IIPOU3BEIEHUN SI3BIKOB.

12. Kospdpunment npu ¥ B page Li(x) - Lo(z) = Li(x) - no + Li(z) - nyz + -+ = (ng - mg + ngmiz +...) +
(nlmoz + nlmle +... ) + ... paBeH ngmy +nimg_1 + - - - + npmg. Kommaecrso cjioB IIMHBI k& B MHOYKECTBE CJIOB
Ly - Ly paBHO YuciIy CrocobOB BBIOPATH mMapy CJI0B m u3 sA3bIka L1 u n u3 g3bika Ly, cyMMapHOe KOJTMIeCTBO OYKB
KOTOpPBIX paBHO k. Eciu B ciioBe m ¢ 6yKB, TO B cioBe n k—i OYKB, a KOJUIECTBO TAKUX AP PABHO M; « Nk ;.
CyMMupyst Tak¥e BBIPArXKE€HUSI JJIs BCEX 4, MOJIyIaeM nomy + nimyg—1 + - - - + ngmg. Ilosromy xoaddurmenTsr mpu
o B panax Ly(x) - La(z) u Ly - Ly(z) coBIajiatoT, cjie/IOBATEILHO CAMHI DS/l COBIIATAIOT.

13.
a) B pemennu sroii 3amaun HaM norpebyiorcs ToT (akT, 4TO CTaHJAPTHbIE CBONCTBA YMHOXKEHUS M CJIOXKEHUS
MHOTOWJIEHOB (aCCONMATHBHOCTD, KOMMYTATHBHOCTD, TUCTPUOY TABHOCTD ) BBITIOJHAIOTCS U JJTsT PATIOB. PaccMoTpuM,
HAIIPEMED, aCCOIMATUBHOCTL yMHOXKeHust — (P - Q) - R = P - (Q - R). YTo6bl BEMHUCIUTH KOIDDUIMEHT npU xk
B JIEBOIl W TPABON 9acTH, JIOCTATOYHO €r0 BBIYUCUTD JJIsl PSJIOB, ¥ KOTOPBIX OTOPOINEHBI WIEHBI 0OJIee BBICOKOIM
CTEIeHU, TO e€CTh JiJIsi MHOrOwWIeHOB. [losToMy yKa3aHHOE TOXKIECTBO [IJIsi PSJOB CJEIYET M3 TOTO YKe TOXKJIECTBA
JIJIsT MHOTOYJIEHOB. AHAJIOTHMYIHO JIOKA3BIBAIOTCS OCTAJLHBIE CBOWCTBA.

3aMeTHM Tenepb, YTO MOCKOJILKY P S HAUMHACTCA C HepBOil CTeleHu T, B pam R - 5™ He BxOmAT CTeneHH T
oT mynesoit 10 m — l-it. Vimenno mosroMmy GeckoHmednbie cyMMbl Buga R — R-S + R - ?2 - R- gg + ... "UMeroT
CMBICJT — JIJIsi BBIYUCJIEHUA k-TO KO3(MDUIMenTa MOXKHO 3aMEHUTH 3Ty CyMMy KOoHedHOit. Ilo Toit ke mpuunme s
OECKOHEUYHBIX CyMM TAKOT'O BHUJ@ BBIIIOJIHSIETCS CBOWCTBO JUCTPUOYTHBHOCTH

R(S’1+SQ+S3+):RSl+RSQ+RSS+
HMeﬁ 9TO B BU/LY, MbI JIETKO IIOJIyd9aeM TO2KJIECTBO

—=3

1+85)(1-8+5 -5 +..)=1
s B S R-RS+RF-RF+. )-SR (1-5+5-F+. )=
=R-(149(1-5+5 -5 +...)=R

6) CoriacHO yTBEPXKIEHUIO a),

R R
S-(IT'-=5)=8-T-S-—=R-R=0
( S ) S
Ipemnonoxum, aro psx (T — %) nHerysieBoil. Tak Kak psig S HAYUMHAETCS C €IUHUIBI, TO IEPBLIA HEHYJIEBOI
koabdunument psia (T — %) paBeH 1epBoMy HeHysieBoMy Koaddunuenty psga S - (T — %) Buaunr, pax (T — %)

HysteBoit u 1" = %.

14.
a) Paccyxmas anamornaso 3amaqde 10, momydaem
1
F =14+ Nz +N%*22+...= ——.
(@) =1+ No+ Na” + 1— Nz
6) Ioayuaem
N 1 N -1
1—|—Nx—|—Na:2—|—N173—|—~--:—N—|—1—|—N~(1—|—x—|—x2+x3+...):—N—|—1—|—1 = +§ i
— T — T
" 2 1+
1420422423+ =142 - (1+z+a2+ad+...)=1+ -2 ’

-z 1-=z

15. Cuenyer u3 3ama4 59 u 61.



4 CsBoboaHoe CJIOBO

1
16. Kak cueayer u3 3amaun 17 numke, noinydaem L(x) T—260725 - MOXKHO U HENOCPEICTBEHHO IOJIYIUTh ITY

dopMyity, TPOBEIA PACCYKIEHNS, AHAJOTUYHbIE PEIIeHUI0 3a1a49u 17.

17. Ilyctb ay — 9HUCIO JAOMYyCTUMBIX CJIOB JjuHbl k. flcHo, aTo a9 = 1. Hokaxkem, aro npu k > 0 BBIITOJTHEHO
PEKYPPEHTHOE COOTHOIIEHUE G = Nag_1—ak—m (Mbl cauraeM, 9to ap = 0 upu k < 0, Tak Kak CJIOB OTPUIATEIbHO
JUIMHBL HE CYIIECTBYeT).

HeitcTBUTEILHO, TPUITUCHIBAs K HATATY KayKJIOT0 JIOMYCTUMOrO cjioBa n3 k— 1 OYKBbBI KaxKIyio OYKBY aJsihaBuTa,
MBI TToJty4aeM Najp_1 CJIOB, CPeJii KOTOPBIX BCe JIOIYCTHMbIe cjioBa jtuHbl k. IlocMoTpuM, Kakue HeJIoIyCTHMBbIE
CJIOBa JJIMHBI Kk TIOJIyYalOTCS TAKUM 00pasoM, TO €CTh UMEIT BHJ Cg, Tje ¢ — OYKBa, & g — JOILyCTHMOE CJIOBO
mmabl k — 1. flcHO, 9TO 3ampeTHOE TOJCIOBO JOJIXKHO CTOSITh B HadYaJje, TO eCTh ¢ = wjf, IJe w — 3alpeTHoe
cioBo, a f — momycrumoe. VI3 Toro, 4To w — CBOOOHOE CJIOBO, CJIEMYET, 9TO IS JIIOOOTO IOIyCTUMOrO CJIoBa, f
CJIOBO, TIOJIyYaloleecs 0TOPAChIBAHIEM IIEPBOil OYKBBI B CJIOBE W f, AOIyCTUMO (B IPOTHBHOM CJIydae W MMeJIo Obl
zareruienne ¢ caMuM cob6oii). [osromy MHOXKeCTBO Bcex €JI0B BHua g, The ¢ — OyKBa, & ¢ — JIOIYCTHMOE CJIOBO
JUHBL k — 1, siBjisieTcst 00'beIMHEHNEM JIBYX HEITEPECEKAIOIIMXCs MHOXKECTB: MHOYKECTBA JIOIYCTUMBIX CJIOB JJIUHBI k
¥ MHOXKECTBa ¢JIoB Bufa w f, rie f — momycrumoe ¢ioBo Jiuabl k—m. OTciona cieayer HyKHOe HaM PEKYPPEHTHOe
COOTHOIIIEHUE.

PaccMOTpEM CyMMY COOTHOIIEHHS Gy = 1 1 Bcex cooTHomennii apz® = Naj_ix
TTomyaurcs

k_ gk g k=1,2,3,....

L(z) =1+ NzL(xz) — 2™ L(x).

Pemas s1o ypaBaenue orHocuTesibno L(x), nmoaydaeM HyzKHYIO HAM (DOPMYJLY.

18 . CornacHo 3azaqe 17,

1

=~ T oner il 1+ (2562 — 2*) + (2562 — 2*)? + (2562 — x4)® 4. ..

L(z)

3
Kosddunuent npu x7 pasen 2567 — 4 -2563. I105ToMy BEpOSTHOCTD MOJIOMKI KOMIIBIOTEPA PABHA, 4'2556(75 =4-2567%,
910 mpuMepHO pasHo 10710,

5 IIpeobGpazoBaHus cJiOB

19. IlepBas crpesika ompejiesieHa OJHOZHAYHO; BTOPAs COIIOCTABJIAET KaXKIOMy 0By m3 N TO 2Ke caMoe CJIOBO,
paccMaTpuBaeMoe KakK dJIEMEHT F'4; TPeThsI COIOCTABIIAET KayK/IOMY M3 OCTABIIUXCs CJIOB F4 ero ke, Kak 3JIEMEHT
G; mocJie iHsIsl CTPeJIKa TPUBUAJIBHA, KAK U IIepBasi.

20. Kaxx/plit 3 IMKOJBHUKOB CheJaeT MOPOBHY KOH(MET, OBIBIINX Yy MajbdUKOB, U KOH(MET, OBIBIIUX y JIEBOYEK.
Tlocnenusss meBouka moecT Bce KOH(MpETHI, OBIBIIME y MAJBINKOB. I[loaTOMYy m KOHQETDHI, OBIBINIE ¥ JE€BOYEK, OHA
TOXKE JIOECT, ¥ yIUTEJILHUIE HIIEro He JIOCTAHETCs.

21.

a) IIycte Mygq = M1 UMsUMsU. .. 1 Meven = Mo UM, UM, U. ... Kaxnoe npeoGpasoBaiue yCTaHABIIBACT
B3aMMHO-OJJHO3HAYHOE COOTBETCTBHE MEXKIy HEKOTOPBIM IOAMHOXKECTBOM M qq # Meven, IPUIEM, TOCKONBKY TIO
KpasiM CTOAT IyCTbIe MHOYXKECTBA, KaXKIbIif JIEMEHT yJacTBYeT POBHO B OJHOM M3 9TUX B3aNMHO-OHO3HATHBIX
cootsercrsuil. Ilosromy Bo MuOXKecTBax Myqq U Meven HOPOBHY 3JI€MEHTOB.

k k
6) [na xaxkmoro k MHOXKeCTBO Mi( cyioB 3 M; AauHbl k KOHEYTHO; IPUMEHsIsT K KOHETHBIM MHOYKECTBAM Mi( ) ¢
JTAHHBIM k yTBEpIKJIeHIe TTYHKTA a), TIOJIydaeM, 9To Ko huiueHTs Ipy £ B J1eBoil 1 TpaBoii 9acTsX TOKa3bIBaeMOit
dopmyisr coBuagaor. [lockosnbky k& — soboe, 910 03Ha4daeT, 4To hOpMysIa BepHA.

22. IIposepum, uT0 MHOKECTBO A - G gBJIsETCA 00bEIMHEHIEM JABYX HEllePeceKaIOMIXCs MHOYKECTB: MHOXKeCTBa G
u MHOXKecTBa B - G. JloKa3aTebCcTBO 9TOr0 OMMPAETCs HA TO, 9TO MHOYKECTBO B — cBOOO/IHOE, U TIOYTH OYKBAJIBHO
ITOBTOPSIET COOTBETCTBYIOIIEE PACCYKJIEHUE B perteHnn 3a1aqu 17.

Ternepb TOYHAsST TOCJIEIOBATEIBHOCTh CTPOUTCS OYEBUJIHBIM O0Pa30M: I€pBas M IMOCJE/IHssS CTPEJIKH TPUBU-
AJIbHBI, BTOpas IE€PEBOJAUT KaxKJblii djeMenT B - G B ceba (Mbl mosb3yemcs tem, aro B - G C A - G), a Tperbs
TIepeBoUT B cebs KaxKapli m3 ocTapmmxcst dgementos A - G (Mb1 monbsyemcs tem, ato A- G\ B-G = G). B
YACTHOCTH, J[POM BTODPOIO [IPe0OpA30BaHUs SABJISIETCS ILyCTOEe MHOXKECTBO, a siJIPOM TPEThEro IpeobpazoBanus (1
0bpaszom BTOporo) — MHOXkecTBo D - G; 06pa3oM TpeThero mpeobpazopanus spisercs (.



23. Tlo 3amaue 216), U3 TOYHOM OCIEIOBATEILHOCTH 330891 22 MOJIyIaeM
(B-G)(z)+G(z) = (A-G)(x).

Bamernm, 4To KaxkAplii o1emenT A-G 3anucsiBaercs B BUjE ag, tae a € A, g € G, onnosnauno. [Tosromy (A-G)(z) =
A(2)G(x). Hanee, kaxpiit ssemenT B - G 3amuceiBaercs B Buze bg, rie b € B, g € G, 0/jHO3HAUHO (IIOCKOJIBKY
3alpeIEHHOe CJI0BO HE MOXKET OBbIThH II0ZICIIOBOM JIPYTOro 3anpen@HHoro ciosa). Illosromy (B - G)(z) = B(x)G(x).

Mebt umeem A(x) = Nz, G(z) = L(x), G(x) = G(z) — 1 = L(z) — 1. Orcrona
B(z)L(z) + L(z) — 1 = NaL(x).
Pemast 310 ypaHenue orHOcuTenbHO L(x), momydaem Tpebyemyto dhopmydry.

24. Obo3HaunM BCTpedaronuecs: B (ppasax cjioBa OykBamu: “3emiisi’ — A, “crosits” — B, “wa” — C, “Beyukuit’ —
D, “kporkommir” — E, “kaxnpiii” — F, “Beuep” — G, “rmorars” — H, “cosame” — 1. Torma 3akinHaHUSM OTBEYAKOT
zanpersbie cioBa “ABCDE” u “FGEHI”. Dr1u ciosa ¢Bo60ogHbI (II0TOMY YTO B KaxKJOM BCe OYyKBbI PA3JIMYHbBI) U
He MMeIOT 3allellJIeHuil JIPYT ¢ ApyroM (IIOTOMY 9TO IIepBasi U MOCJIe/IHssd OYKBBI BTOPOIO CJI0BA HE BCTPEYAIOTCS B
nepsoM). CileoBaTeIbHO, MHOXKECTBO 3aK/IMHAHUN CBODOIHO, U Pl PA3MEPOB sI3bIKa UMeeT BUJL

1

L) —
@) = T T00s 1227

U3 s70it hopmyust jterko BoiBecTu (00pallas paccyKIeHUs B pellennn 3aa4u 17), 4ro ancia ai, (Kojmdectso ¢pas
u3 k CJI0B) MOXKHO BBIUUCJIUTH U3 HAYAIBHOIO YCJIOBH G = 1 U PeKyppeHTHOro cooTHoIenust ar = 100ag_1 —2ak_5.
BrIuncieHns: IpUBOJAT K OTBETY g = 1040 — 32 - 1030 4- 264 - 1020 — 448 - 10'° + 16.

25. B kaxjom 3ampeTHOM cjioBe OYKBa ¥ BCTPEYAECTCS TOJBKO HA TEPBOM MeECT€ U BCE CJIOBA UMEIOT JJINHY 4,
ITO9TOMY MHOXKECTBO 3allPETHBIX CJI0B cBoOOmHO. [lo 3amade 23, Mbl umeem

1

L#)= ——
(@) = T 562 1 343

26. Ecau MHOXKECTBO 3alPEeTHBIX CJIOB CBOOOJHO, TO, B YACTHOCTH, HeT IPOCTLIX clenok. JJokarkeMm obGparHoe:
ecJIM HeT IPOCTBIX CHEIIOK, TO MHOYKECTBO 3allPETHLIX cJIOB cBo0oHO. IIpe/nonoKuM IpoTUBHOE: IIyCTh MHOXKECTBO
3alPeTHBLIX CJIOB CBODOJIHBLIM He abjsercs. Torma Haiiaércs 3alellieHue IByX 3alPeTHBLIX CJIOB, TO eCTh HaifljyTcs
TaKWe TPH HEIYCTBIX CJIOBa S, {, T, 9TO CJIOBa st W tr — 3anpeTHble. BoibepeM Takywo Tpoiiky (s,t,T) Tak, 4To0bI
OHa, MMeJIa MUHAMAJIBHO BO3MOXKHYIO CyMMAapHYIO JIJIMHY. FC/Im 3T0 He mpocTasl CIelKa, TO Str COIepPXKUT 3apeTHOe
HOJICIOBO W, OTJMYHOE OT St U tr. 3aMeTuM, 4TO KOHeI[ w He COBHAJAeT ¢ KOHIOM ir, IIOCKOJbKY HHade JU6o w
ABJISIeTCSI TOJICA0BOM tr, ubO0 7 aBjisgercs HOACA0OBOM W, YTO HEBO3MOXKHO, TAK KaK HUKAKOe 3alpeTHOoe CIOBO He
COZIEPXKUT JIpyroe 3allpeTHoe B KadecTBe II0JC/I0oBa. AHaJIorn4YHo, HadyaJlo w He COoBIajaeT ¢ HaudajoMm st. 13 Tex
’Ke coobpazKeHuil, OoACA0BO W UMeeT OOIIyI0 4acTh Kak C HOJCJIOBOM S, Tak M ¢ IojacaosoM 7. O6ozHaunM uepes
' 0bIIyI0 YacTh MOACTOB St U w, Yepe3 s — OCTATOK IMOJCIOBA st, a depe3 7' — OCTATOK IOJCIOBA W. DTH CJIOBA
HEeITyCThl, X CyMMapHas JJInHa MEHbIIe CyMMapHOH JJIMHBI CJIOB S, T, T, a cioBa §'t’ = st u t'r’ = w — 3anpernbie.
IMosyueno nporusopedne. TakuMm o6pa3oM, U3 OTCYTCTBHUS HPOCTBIX CHEIOK CJIeLyeT, YTO MHOYKECTBO 3aIPEeTHLIX
CJIOB — CBOOOIHOE.

27. Byuem crpouTh npeobpasoBaHus IIOCJIEI0BATENbHO, HaUUHAsL ¢ KOHIA (C caMoil mpaBoil crpesku). Tak kak
[IOCJIe/THEe MHOXKECTBO IIyCTO, TO U ODJIACTH OIPEJIeTIEHUsI TIOCJIEIHETO IPpeodPa30BaHns — IIycToe MHOXKecTBO. 1lo-
5TOMY IIpeJIoce Hee IpeobpasoBanie uMeeT o6pa3oM Beé MHOKecTBO G. Tak kak G C A -G, MBI MOXKeM B3ATh G
B KadecTBe 06JIACTH ONMPeIeJIeHIs MPEIOCIeIHero IpeodpasoBanus I CIUTATh, YTO KayK bl 31eMenT g € G mepe-
BOIUTCS 9TUM IIpeodpa3zoBanueM B cebs. Zapo 3Toro mpeobpas3oBaHusi COCTOUT U3 HE SIBJIAIONINXCS JOIMYCTUMBIMA
CJIOB BHUJIA ag, TJie @ — OYKBa M CJOBO ¢ SIBJISIETCS JIOIYCTUMbBIM. ZICHO, 9TO JjIst JIF0OOr0 TAKOTO CJIOBa HAMTYTCs
3alpeTHOe CJI0BO W U JIOMYCTUMOE CJIOBO [ Takue, 910 ag = wf (MBI yKe UCIOJB30BAIN 3TO COOOPasKeHNe TIPH pe-
meHnn 3314 17 u 22). D10 I03BOJISIET ITIOCTPOUTH TPETHIO € KOHIA CTPEJIKY (9TO IIpeofpa3soBaHie TaK¥Ke IEePEBOIUT
KaxKJIbIil 3JieMeHT cBoeii obsiactu onpenesenns B cebs). Pacemorpum g1po sroro npeobpasoanus. OHO COCTOUT U3
TeX CJIOB BUJa wf, TJe w — 3amperHoe, a f — JIOIycTUMOe, KOTOPbIe MMEIOT BUJ v, Tje a — OyKBa, a CJIOBO v
JIOIYCTUMBIM He sBJIseTcs. Bribepem B v caMoe 1epBoe (HaYMHAIOIIeecs JIeBee BCeX) 3allPeTHOe IIOJCJI0BO U. JIerko
BHJIETH, 9TO TOJCJIOBO U CJIOBa av = wf mMeeT OOIILYyI0 YaCTh ¢ IMOACJOBOM w U 06pa3yer BMeCTe C HUM IIPOCTYIO
crenky. Takum 06pa3oM, sIpo TPETheli ¢ KOHIA CTPEJIKH IEJIUKOM COIEP:KUTCs B .S + G, 9TO HO3BOJISIET TIOCTPOUTH
upeobpazoBanue S - G = B - G (Tak:ke nepeBojsiee KaxK bl 9JIeMEHT CBoeli objiacTu onpeeienus B cebs).

28. U3 pemenus mpebIayeil 3aa49n MOJIyIaeM, UTO I3bIK ABJISI€TCS He3aIlyTAHHBIM TOTJIa U TOJIBKO TOT/a, KOT/IA
JIOIIyCTUMBI BCE CJIOBA BUJA T¢, TJI€ I — XBOCT IPOCTOH CIIENKH, & § — JOIYCTHMOE CJIOBO. DKBUBAJCHTHOE YCIOBHE
Ha MHOXKECTBO 3allPETHBIX CJIOB 3BYyYUT TaK: He CYIIECTBYeT TaKuX CJIOB p,q,T,Ss,t, IJe cjloBa p,q,S,t HEIyCTHI,
CJIOBa pq, qrs, st — 3alpeTHBIE, IPUIEM PGrs — IPOCTasl CIEIKA.



Samernm, 9TO JIEOOOI 3/1eMeHT MHOXKecTBa S - G OMHO3HAYHO MPECTABJISeTCS B BUJE TPOU3BEIEHUS TPOCTOMN
CIIEIIKHU HA JIOIYCTUMOE CJIOBO (9TO JIEMKO CJIEyeT U3 OUPEIeeHNs IPOCTOMH CIHEIKH U TOr0, YTO HUKAKOE 3alPETHOe
CJIOBO HE SIBJISIETCH HOJCIOBOM JIPYTOT0 3AIPETHOrO CJI0BA). AHAJIOIUYHO PELIeHUIO 3a1a4u 23, JIJIs HE3aIly TAHHOTO
s3bIKa, [ M3 TOYIHOM MOCTEI0BATEIHLHOCTU MBI TIOJIYIaeM ypaBHEHUE

S(z)L(z) + NzL(z) = B(z)L(x) + L(z) — 1,
OTKyZa U HOJLIy<IaeTcs HCKoMast (popMyIIa

1
T 1-Nz+B(z)-S(z)

L(x)

29. Ilpoctore cruenku nmeroT Bug, abbe, abbac, nX XBOCTHI — ¢, ac. BumHo, 970 HI OOWH M3 3THUX XBOCTOB HE OKAH-
YUBAETCs HA HEIYCTOE HAYAJIO 3aIPETHOTO CJI0Ba. [109TOMY SA3BIK sIBJIsieTCsT He3arryTaHHbIM. COOTBETCTBEHHO, PsiT
pasMepoB UMeeT BH/I

1

L = .
() 1—3z+ 323 —at — 2P

30. IIpocTble cuenku UMeT BUJ Y, 2k, Tae 1 < 4, g, k < n, ux XBoCcTHI 2. Tak Kak HU OJIHO 3alIPETHOE CJIOBO HE
HAYMHAETCH HA Zk, S3bIK siBjisieTcs He3armyTaHHbiM. COOTBETCTBEHHO, PsiJi PA3MEPOB MMeeT BHU]

1
T 1= 3nz+ 2n222 — ndz3’

L(x)

31. IlycTts w — eIMHCTBEHHOE 3aIPETHOE CJIOBO, U IycTh L — ero jmumua. [IpemmosnokuM, 4T0 OHO He HABJISETCH
CBOOOIHBIM, U pqr, pq = qr = w, — npocrtas cruenka. Mbl nmeem wr = pgr = pw. ClenoBarenbHO, KOHEIHBII
YYaCTOK JJIUHBI L y KaxKJIOro U3 CJIOB WT = PW, WTT = PWT = ppw, WrTT = PpWr = pppw, ... paseH w. Bo3pMéM
13 3TUX CJIOB IIePBOE, UMeolee JUINHY He MeHbine 2L. Mbl mosryduM, 9TO CJIOBO BHJA 777 ...7T HMEET KOHEUHBII
y9acTOK, paBHblif w. Ho Torma y c0Ba r eCTh HEyCcTOe OKOHYIAHWE, SABJISIONEeCs HAIAI0OM ciioBa w. Cre[0BaTeIbHo
HAIIl SI3BIK HE sIBJISIETCS HE3AIYTAHHBIM (CM. peleHue 3amaun 28).

6 Eimmé o cBOOOIHBIX MHOXKECTBAX

32. Hampumep, ecim ajiaBuT cocTOUT u3 OYKB a U b, TO CBOOOIHBIM OyJeT MHOXKEeCTBO CJIOB BHuia a”bab, rme
n > 2. Hokaxem 310. OUeBUIHO, YTO HUKAKHE JIBA PA3HBIX CJIOBA TAKOI'O BUJA HE SBJISIOTCS IOJCTOBAME JPYT
apyra. Ocraioch J0Ka3aTh, 9TO MEXKJy HUMU HET HEeTPUBUAJIbHBIX 3alelieHui (T.e. 9To Jioboe 3alelIeHue eCTh
IPOCTO 3alleIUICHUE CJIOBA € caMUM coboii 110 Beeil mimne). efictBurensHo, ecian w — 3anensienne cjiosB ab"ab u
a™b™ab, TO JETKO BUIETH, ITO W COAEPKUT He MeHee Tpéx Oyks. Kak xowmer cioBa a”b"ab, oHo nmeer Bu 10O
bFab, 6o a*b™ab, tae 1 < k < n. IToCKOIBKY OHO TaKKe JIOJIKHO OBITH HAYAJIOM CJoBa a™b™ab, mosydaeM, 4To
k=m=nmunw=a"b"ab=a"b"ab — TpuBMaJIbHOE 3allCILIICHHE.

33. JIemma. Ecaum p(z) = 1+ p1x + p,a™ — MHOrOWIEH € €IUHUIHBIM CBOOOJHBIM WIEHOM CTereHd n > 1, 1o
pagn f(z) = 1/p(x) He MoxKer GBITH MHOIOYIEHOM (T.€. STOT PsAJl COAEPKUT GECKOHEYHOE MHOYKECTBO HEHYJIEBBIX
YJIEHOB).

Jokasamesvemeo aemmoi. TIpesnonokum, oT TpoTuBHOro, uto psf f(z) — muorousew, re. f(z) = fo + fix +
.. fmax™, vae crapruit koaddunuent f,, nenysnesoit. Cornacuo 3amade 13 a), nomyuaem 1 = f(x)p(x) = 1+ (fop1 +
f1po)x + -+ + fpnz™T™ — nporusopedne.

Tlepeiigém k pemenuto 3agaquu. CorsacHo 3aga4e 23, uMeeM

1
Lx)= —————.
( 1—- Nz + B(z)
Ecsu 661 2361k L 6611 KOHEIHBIM, TO s L(2) 6bLI Gbl MHOIOWIEHOM, YTO HEBO3MOXKHO COIVIACHO JIOKA3AHHOM
siemMe. CrieloBaTeIbHO, MHOYKECTBO JIOIYCTUMBIX CJIOB sI3bIKA OECKOHETHO.

34. OueBuiHO, JIsl JIIOOBIX PsiJIoB HepaBeHCTBO A > B paBHOCWJIBHO HepaBeHCTBY A — B > 0, T.e. yCJIOBUIO, 9TO
Ko bummenTs! psiga A — B meorpunarensubl . O6o3HaunM psag P — Q depes A = ag + a1x + axx?. .., a pan
R xax R = rg + rix + mz? ... Torma mpom3BoibHEBIl n-it KoaddunuenT pana AR, BEMucageMbIil 0 (OopMyITe
agTn +a17p—1+ - -+ anro, IPEICTABAM B BHJIE CyMMBI HEOTPUIATEILHBIX YUCJIE, M TIOTOMY CAM HEOTPUIIATEIbHBIH.
910 03HAYAET, YTO BBIMTOJHsIETCsT HepaBeHCTBO AR > 0, paBHOcuIbHOE HepaBeHcTBY PR — QR > 0, wn PR > QR.



35. Ilo dopmyse u3 3amaan 23,
1

T 1-A(2) + B(z)

Cormacuo 3a1a4e 27, CyIIeCTBYET TOYHad MOC/I€I0BATC/IbHOCTD

L(z)

) —K—DB -G —A-G — G — 0,

rae K — aapo orobpazkenus B -G = A - G’, a G’ — MHOXKeCTBO JIOIyCTUMBIX CJI0B fa3blKa, L'. I3 3ol nmocuemo-
BaTEIBLHOCTHU NOJTydaeM (3a1. 21) paBeHcTBO

B'(2)G'(z) — A(2)G'(z) + G'(z) — 1 = K(z),
orkyga (T.x. B'(x) = B(x), L'(x) = G'(z) u K(z) > 0)
L'(z)(B(x) — A(x) +1) > 1.

YMHOXKas 9T0 HepaBeHCTBO Ha psj L(x) > 0, nosydaem (BBuiy 3az. 33)

1
=40+ B = H@)

L'(x)(B(x) — A(z) + 1) -

L'(z) > L(x).

36. Ilycrs andasur A = {a,b}. O6o3nauum BrOpoe ci0BO Yepe3 v. OueBUIHO, YTOOLI CJI0BA ¥ U W He ObLIU CBO-
OOMHBIMH, HEOOXOIMMO, YTOOBI UX HAYaJIbHbIE U KOHEYHbIe OyKBbI ObLIM pa3iuduble. Ecin npu sToM w HaYnHaETCS
Ha OJIHy OYKBY, a ¥ — Ha JIpYI'YI0, TO IOCJeIHss OyKBa CJIOBa U COBIAJIAET C II€PBOil OYKBOIi CJI0Ba w, U ITH CJIOBA
3aIEIJIAIOTCS, TaK 9TO MHOXKeCTBO B He Gymer cBoOoaHbIM. Tak, 0CcTaoch pacCMOTPETh CIydaii, KOrma oba cJioBa
¥ ¥ W HAYMHAIOTCS Ha oJHy OyKBY (CKaxKeM, a), & 3aKaHIUBAIOTCA Ha APYryio (b).

a) meem w = ab u v = a...b. OueBugHO, ecam nepsas GykKBa b B CJIOBe ¥ HAXOIUTCA HA k-M MecTe, TO €ro
nozcsioBo u3 6yks Ha (k — 1)-M u k-M MecTax paBHO w, TAK YTO MHOXKeCTBO B He CBOGOIHO.

b) Otser: ner. Ilycts w = aab (cayvait w = abb aHAJOrMYEH, ¢ TOYHOCTHIO JI0 JIEBOH-IPABON CUMMETPUH U
3aMeHbl GyKB). [IOCKOJIbKY CJIOBO W He SIBJISIETCS TIOJICJIOBOM B U, TO B CJIOBE U 3a Hapoil GYKB aa BCErJa CJIejlyeT
emé ofHa a. Tak Kak CjI0Ba v M W He 3alEIUISIOTCs, TO ¥ He MOYKET HaYMHATHCs Ha ab, T. €. OHO HAUMHAETCS HA ad.
CrieroBaTeibHO, TPEThsl OYKBa B U CHOBA @, 3aTeM YeTBEPTast U T. J., OTKY/a U = ad . . .4 — OPOTUBOPEYNE.

37. docTraTovHo mokasaTh, ITO CYIIECTBYET CBOOOIHOE MHOXKECTBO B n3 g = [nz / 4} JIBYXOYKBEHHDBIX CJIOB. IlycTh
k=[n/2], v. e. n =2k wm n = 2k + 1. Iomozknum B = {z,;z;|1 <i < k,k+1 < j <n}. OueBuano, oHO CBOGOIHO.
Torya B citydae uetHoro n = 2k MHOzKecTBO B HacuutbiBaer k2 = n? /4 sjneMenTos, a B ciyuae HeudéTHOTO N = 2k+1
oo comepxut k(k+ 1) = (n—1)(n+1)/4 =n?/4 — 1/4 = [n?/4] snemenTos, uTo 1 TPGOBAIOCE.

38. JlocTaTouHO MOKA3aTh, YTO CYIIECTBYeT cBoboaHoe MuOKecTBo B w3 m < k%(d—1)4"1 cios aymmer d. Pazobném
ocuoBuoit andasur A = {z1,...,x,} na ga nogmuoxecrsa P = {x1,..., 2} u Q = {zk41,...,2zn}. Torma aerko
BHJETbH, 410 MHOXKecTBO B = {pq|p € P,q € Fy — cioso gymusl d — 1} — uCKOMOe.

w

9.

a) Coruyacno 3agade 23 5 = L(z) > 1.

1
) '’ 1—-nz+B(z
6) Orser: nesepuo. Hampumep, B ciiydae aByxOykBennoro ajadgasura A Takoro MHOXKeCTBa B He CylIecTBYeT Ipu

p(x) = 2% + 219 (310 nokazamo B 3amade 36 b). Ocranoch y6euThCs, 9TO P

1
12z + a3+ 210

f(x)

uMeeT HeoTpuraTeabHbe Koddhdunuentor (OCKOIbKY CBOGOMHBIN WIeH ITOrO PAJA €IUHAIHBINA, 9TO yCJIOBUE PaB-
HOCWIBHO Tpebyemomy HepasercTBy f(z) > 1). OkasbiBaercd, 1yist 3Tux K03GbMUIMEHTOB CIIPABEJIUBO JaxKe boJee
CHJIbHOE HEPABEHCTBO a, > (3/2)™. oka3arejbCTBO MOCJEIHEr0 HEPABEHCTBA MOYKHO HPOBECTH 1O MHIYKIIUM,
BOCIIOJIb30BABIINACH PEKYPPEHTHBIM COOTHOMIEHUEM @y 110 = 2Gn4+9 — Apt7 — Gn, KOTOPOE CJIEIyeT U3 PABEHCTBA
(1 -2z + 23+ 219) f(x) = 1.

Jpyroit no1o6ublit puMmep — city4dait p(z) = 42°, cnosa naz andasutom U3 1BYX GYKB.

40. Pemmenue cozpepzxurca B Teopeme 5.1 (sxBuBasenTHocTh A<=B) u npezoxenun 5.6 B crarbe: David Anick,
Generic algebras and CW-complexes, Proceedings of 1983 Conference on algebra, topology and K-theory in honor

of John Moore. Princeton University, 1988, p. 247-331.

41. Bompoc ocTaéTcsi OTKPBITHIM.



7 CuioBa u 1emnum

42. CrnoBo “of” He ygacTByeT B MOCTPOEHUU IEIeil JUIMHBI OOJIbIle 1, TOTOMY 9TO JaHHBIE CJIOBAa HE HAYMHAIOTCS
Ha 6ykBy f 1 He 3akaHIMBalOTC Ha OYKBY 0. ByKBBI $ HET B cJioBe tournament, OTOMY IIEIIb MOXKET COJIEPIKATH
CJTOBO towns ToJIbKO B KOHIE. BykBa t B c/ioBe tournament cTOUT JIMIIL HA TEPBOM U TTOCTETHAX MECTaX, IIOITOMY
9TO CJIOBO MOYKET 3alleILISIThCA C CODOI TOJIBKO 10 OfHOU OykBe. VICXOms u3 CKa3aHHOIO, Mbl HAXO/MM BCE IIEIIN:
tournament, of, towns; tournamentournament, tournamentowns;... Iemneit nymasr 60sbie 1 OyaeT poBHO jBE.

43. Paccmorpum tiens ¢ Juabl n. OT €ro mpaBoro KOHIA MOYKHO CTPOUTH AHTHUIEIh MO HAIPABJIEHUIO K JIEBOMY
KOHILYy €JMHCTBEHHBIM 00pa3oM. ByieMm npucoe uHsTh 3BeHbs CjeBa 10 odepeiu. JlokaykeMm IO WHJLYKIUH, 9TO
HAYAJIO -TO 3BEHA AHTHUIEIH JIE)KUT MEXKJy HA4YaAJOM §-TO CIIpaBa 3BEHA €U W KOHIOM i+1-ro cripaBa 3BeHA
nenu. st ¢ = 1 yTBepKJieHNe BEpHO, MOTOMY YTO B 9TOM CJIy4Yae COOTBETCTBYIOIINE 3BEHbs IEMHM W AHTUIENN
coBraatoT. [IpoBepum 6a3y Takxke st ¢ = 2. Bropoe 3BeHO aHTHIENHN JIEXKUT IIpaBee BTOPOTO CIIpaBa 3BEHA IIEIH,
MIOTOMY YTO MEKJY IEPBBIM U BTOPLIM 3B€HOM HET 3aIPETHHIX CI0B. Hawao BTOpOro 3BeHa aHTHUIIEIH JIEXKUT JIEBEe
KOHI[a TPETHETO CIIPABA 3BEHA [EIHU, [IOTOMY UTO IIPaBee TPEThEero CIpaBa KOHIA 3BEHA, [N HET 3allPETHBIX CJIOB T10
onpenenenuio renu. Takum obpazom st ¢ = 2 yTBepxkaenne Bepuo. Jlokazkem mar. [1o mpeamnomokennio HH Iy K
i-e cIIpaBa 3BEHO el IepecekaeT i— 1-e 3BeHO aHTHIEnH, HO (i41)-e 3BeHO aHTHIeNN He lepecekaer (i—1)-ro 3BeHa
apTunenu, modromy (i+1)-e 3BeHO aHTHIENH JieBee (-I0 clipaBa 3BeHa nenu. Mexmy konmnoM (i42)-ro u HagajaoMm
i-rO CIpaBa 3BeHa IEeNU He HAYMHAETCS HUKAKOE 3alPETHOE CJIOBO, II09TOMY Hadaslo (i+1)-ro 3BeHa aHTHUIENHN JieBee
KoHIa (i+2)-ro 3ena nenu. Tak kak (i—1)-e 3BeHo anTunenu =He Jiesee {—1-ro 3sena enu, 1o (i+1)-e 3BeHo nenu He
nepecekaer (i—1)-e 3BEHO aHTHUIIEIH, HO [IEPECEKaeT i-e 3BeHO, 109ToMy (i+1)-e 3BeHO anTHICnHU He JieBee (i+1)-ro
3BEHA TEMN.

44. Ilycts mens ¢ — mogcnoso menu c. JIoKaXkeM IO MHIYyKIMH, 9TO i-€ 3BEHO IIeNN ¢ He IpaBee i-TO 3BeHA IEIn
c. Baza i = 1 oueBuzana. Eciiu nepsble 3BeHbs Iiemell COBIAJAIOT, U OJIHA fABJIseTcs IOJACIOBOM JApPYTOii, TO Bce
OCTAJIbHBIE 3BEHDbSI TaKKe COBITQJIAIOT, U, B YACTHOCTH, €CJIM TaKhe IEeId UMEIOT OJWHAKOBYIO JJIUHY, TO OHU COB-
nagaioT. [losroMmy nenb ¢ HaumHaeTcss He ¢ HadaJja, a II0O3TOMY IepBOe 3BEHO Ieln ¢ IpaBee WU COBHAJAeT CO
BTOPBIM 3BEHOM Iienu ¢. Eciim 661 BTOpoe 3BeHO Ieln ¢ ObLIO IIpaBee IIepBOro 3BeHa Ienu ¢, To Torjga Obl IepBoe
3BEHO Ienu ¢ MOXKHO OBLIO OBl BEIOpATh B KA4eCcTBE BTOPOTO 3BEHA IENH C. JHAYHUT, BTOPOE 3BEHO LEIH C JeBee
BTOpOro 3BeHa nenu ¢, u 6aza uaaykuuu Bepua g ¢ = 2. Ilepeiiném x mary umapykiuu. Eciu (i41)-e 3Beno
nenw ¢ He TIEPECceKaeTest ¢ i-bIM 3BEHOM Iienn ¢, To (i+1)-e 3BeHo memm ¢’ mpasee (i+1)-ro 3Bena nerm c. Takxe
JobaBIeHHOE 3BeHO Tienun ¢ He mepecekaeTcs ¢ (i—1)-M 3BEHOM Ienu ¢/, a 3HAYWT, [0 [PEINOIOKEHUIO NHIYKIUN C
(¢—1)-m 3BeroM 1ieniu c. ITosromy, ecsn i+1-e 3BeHO Tenm ¢’ mepecekaeT i-e 3BeHO LENH ¢, TO i-+1-e 3BeHO Ien ¢
BCE paBHO He 1pasee (i+1)-ro 3BeHa nemu ¢’; IOTOMY 9TO MHAYE TO 3BEHO MOXKHO ObLIO Gbl BHIOPATH BMECTO TOIO.
IITar mokaszam. 3HaYNT, MOCTEIHNE 3BEHbSA TEIeil COBIIAIAIOT, HO 10 MPOILION 3a1a1e JaHHas mapa mereil sBIsaeTcs
Tak>Ke Tapoit aHTUIIENel OMMHAKOBON JINHDBI C COBIAIAIONINME MIEPBLIMI 3BEHbAME, OTKY/Ia OHU COBIIAIAIOT.

45. IlycTb cJI0BO IIPEJICTABIIEHO B BUJIE ¢C, T/Ie g — JOIIYCTUMOE CJIOBO, & ¢ — IIelb JIUHbI He MeHee nByX. 1lo 3a1aqe
43 1enb ¢ TakKe SABJISeTCd aHTUIeNbo. Kem npu youpaHun nepBoro 3BeHa IENN ¢ MOSABJISETCs 3AlPETHOE CJI0BO, He
3allellJIEeHHOe C YKOPOYEHHOI! IIeNbIO ¢, TO aHTHIIEIb ¢ MOXKHO IIPOJOJ/I?KATH BJIEBO U IIOJIYYUTh HOBOE IIPEJICTABJICHUE
g'c, rie JnmHa Ienn yBeJImIrIach. EC/In TAKOTo 3allpeTHOrO CI0Ba, He MOABUJIOCH, TO AHTHIEHH ¢ MOYKHO YKOPOTHTD
HA CaMOe JIEBOE 3BEHO M MOy 9UTh HOBOE IIpeJCTaBIeHue ¢'c’, B KOTOPOM JIJIMHA el yMEHBIIUIACh. FCam ecThb eme
oaHOo npecTasiaenue g’ ¢, To 3amMeTum, 4TO JyTH aHTHIENEH ¢, ¢/, ¢ coBnagaloT, a 3HAYUT, JIMHA KAKHX-TO JBYX
neneil oTJIndYaeTcss MUHUMYM Ha JiBa, HO TOTJIa JIOIYCTHUMOE CJIOBO IEPe]] KOPOTKON aHTHIIEIBIO COIAEPIKUT CAMOE
JIeBOe 3BeHO 0oJiee [JIMHHON aHTUIIENN, TPOTUBOPETNE.

46. s pertennst 9TO 334291 MbI TPUMEHUM 3a1a9y 21 /1T TOYHOM TTOC/Ie10BaATETLHOCTH
. =Ch1  G=C, G=0C, 1 G=...C;, - G=A-G=GC

ITocrpoum 3Ty mocienoBaTebHOCTh. BosbMém ciopo cg u3 C), - G. XBoCT Henu ¢ IpunuineM B HAYaJI0 CJIOBa
g u noayunm ¢ g'. Ecom ¢’ momycrumoe cioso, To cioso ¢ g’ npunammexnr C,_1 - G. Ecim cioso g’ comepxkur
3aIPeTHOE CJI0BO, TO IIENb ¢ MOXKHO MPOJOJIZKATEL BIpaBo Jjio mnenu ¢, ocrarok obosmaunm g”. Torma cmoso ¢”’g”
npuaagexkuT Cp o1 - G. Lenb MOXKHO €JMHCTBEHHBIM 06GPa30M MPOJIOJIKATH BHYTPH CJIOBA, TIO3TOMY ITOCTPOCHHDIE
0TOOpasKeHNsl B3AMMHO-OJHO3HAYHBI Ha 9acTAX A3bIKoB C), - G.

Crpenku C - G = A -G = G = () mb1 Gepém u3 3agaun 27. ITo 3amade 21

1—L(x)(1—Nz+ Ci(x) — Ca(x) + C5(z) —...) =0.

Orkyna mosryaaem Tpedyemoe.



47. Tlo zamame 42 Cy(x) = 22 + 2° + 219, C,,(z) = 2%~V (25 + 2'9). To dbopmyne u3 3amaun 46

1 1

T 1260 t+22+ (@ +a0) (12 fa®—...) 1_26x+x2+73?ii£;° -

L(x)

_ 1+2°
01— 9261+ 22+ 25 + 29 — 25210 4 11

48. PaccMOTpUM 4YeTBIpe BApHAHTA, 3aIIPETHOTO CJIOBA U3 YETHIPEX OYKB ¢ TOYHOCTHIO O 3aMEHBI OYKB.
1) 3amperHoe cJI0BO UMeeT BUJ aaaa. B arom ciayuae Co, = 24"+ Oy, | = 2. Tlo dbopmymne 3anaun 46

B 1 B 1 B 11—zt B

S 1256 ot —ad ... 12560 + 2% 1256z + 25505
= (1 —2*)(1 + (2562 — 2552°) + (2562 — 2552°)% +...).

Kosddunument npu x7 pasen 2567 — 3 - 2562 - 255 — 2563 = 2567 — 4 - 2563 + 3 - 2562.

2) 3anperHoe ¢ja0BO uMmeeT Buj abca u xors Obl JBe paziumunble 6yKBbl. B arom cayuae Cp, = x

1
T 1—-256z 42t —27 + ...

Kosddunuent npu x7 pasen 2567 — 4 - 2563 + 1
3) Bampernoe c0Bo mMeer Bz abab. B stom ciaygae C), = 22"+,

1
L =
(z) 1—256x + % — 28 +28(...)

Koacdpdpunuent npu x’ pasen 2567 — 4 - 2563 4 2 - 256
4) amperHoe ¢JI0BO cBOGOIHO. A ciryuail cBOGOIHOIO 3alPETHOrO CJI0Ba pa3o0paH B 3a1ade 18.

L(z)

3n+1

L(z) =1+ (2562 —a* + 27 — .. )+ (2562 — 2t + 2T — . )2+

49. 3 3amaqan 46 ciemyer, 910

1 1 1 1
W—L(z) =L(x)-Cl(1:)-m—L(x)-C’g(x)-m—FL(x)-C’g(:c)-m — ...

(BeckoHeuHast CyMMa UMEET CMBICJI, TIOCKOJILKY CTEIICHH HAYAILHBIX YICHOB CJIaraeMbIX pacTyT.) B jeBoit wacTu
PaBEHCTBa CTOUT Pl pa3MEePOB MHOXKECTBA, HEJIONYCTUMBIX CJIOB. B IpaBoil 4acTu paBeHCTBa CTOUT 3HAKOIIEPEMEH-
Hasg CymMMa psaoB pasmepoB muoxkecTB L - C), - F4. Omnpenenerno orobparkenne i KaxK/IOTO M3 ITUX A3BIKOB B
MHO2KECTBO HEJIOIYCTUMBIX CJIOB, 1 HA0OOPOT, KaXK/I0€ HEOILyCTUMOE CJIOBO MOXKHO IIPEJICTABUTH B BUIE (C1U, TIE
g — JOIyCTUMOE, ¢] — 3alpeTHoe cj10BO. Ho HeomycTuMoe CjI0BO MOXKET OBITH IIPEJICTABIEHO B BHUJIE CpU, TJE § —
JIOITYCTUMOE, a, C,, — IEIb JIJTUHBI 1, HECKOJbKUMHE criocobamu. IIycThb st ¢jtoBa w YUCJIO TAKUX CIIOCOOOB PABHO W, -
Torya cymma nces (wy — wy + ws — wy -+ ... ) TO BCEM CJIOBaM JUIAHEI k paBHa Kodddumuenty npu ¥ B mpasoit
JaCTU PABEHCTBA BBIMIE, & 3HAYNT, X B JIEBOH, YTO PABHO KOJIMIECTBO HEJOIYCTUMBIX CJIOB JJIMHBI K.

3aMeTnM, 9TO U3 TPEJICTABJIEHUSI CJIOBA W B BUJIE §Cp U MOYKHO MOJYIUTH JPYTO€e TPEJICTaBICHNE C JJIMHOM Men
Ha eJUHUILY MEHbIIe, OTOPOCUB XBOCT IIENN C, B OCTATOK u. Il03TOMYy nBa TAKHX BapHAHTa COKPATATCH B CyMMe
(wy — wg + w3 — wg +...). JpyruMu cioBaMu paccMaTpUBaeMasi CyMMa PaBHa IHCJy TIPEJCTABIEHNN CIoBa w B
BHUJIE §CU, TJIe TIOJICJIOBO C — 3TO MAaKCUMaJIbHAas IOIEIb CJI0BA W, IIPUYEM IIElb ¢ IMeeT HEUYETHYIO JJINHY.

PaccvoTpum npesncraBienue cioBa w B BUJE gCu, TJe ¢ — MAKCUMaJbHAs TEMb C CAMBIM MIPABBIM MTOCTIETHIM
seenoM. Ilo 3amaqge 45 mbo B CJIOBE g¢ €CTh MAaKCHMAaJbHAs IENb JJIMHBI 1, ub0 OHO MPEJACTABMMO B Buje g'c,
riae ¢ — JOIyCTUMO, a ¢ — IIelb, KOTOpas Jubo JJIMHHEEE, OO0 KOpode IENyu ¢ Ha OJHO 3BEHO. 3aMEeTHM, 9TO ¢ —
TaKyKe MaKCUMaJIbHas IoaIens cioBa w. OaHa us nemneil ¢ u ¢ uMeeT HEYETHYIO JJIUHY. TeM CaMbIM MbI TOKA3aJIH,
910 cymma (wp — we + w3 — Wq + ... ) He MeHbIIe eJUHUNBL. HO CyMMa TAKUX BEJUYUH MO BCEM HEJIOIYCTUMBIM
cJIOBaM JJIMHBI k paBHA WX KOJMYECTBY. SHAUWT, KaxK/as BEJUYNHA DPABHA €IUHUIE, U B KAXKJIOM HEIOIyCTHMOM
CJIOBE MAaKCHUMAaJIbHBIX Ileleil HeYETHON JAJIMHBI POBHO OJTHA.

50. I[Ipumennm bopmysny 3amaqn 46.

1 1
L'(z) = _
(x) L= (N+ Dz +Ci(w) = Co@) +... =
51. IIpumennm dopmyity 3aa4unm 46.
W(x) = 1 = ;
1— (N + Nz + (Ci(z) + Ci(z)) — (Ca(x) + Cy(x)) + ... L(lx) + L,%w) -1

52. Jlomyctumble cyioBa a3bika M — 310 menu a3bika L. Ienm JIuHBI 1 9THX S3BIKOB COCTOAT W3 N+ 1-if OYKBBI,

nostomy Cp(—z) = (—=1)"T1Cp(x). Unmeem M(—z) =1 — Nz + Ci(z) — Ca(z) + ..., 10 ectb L(z)M(—x) = 1.



8 JlomoJsiHuTeAbHBIE 33JIa9N

53. CymiecTBoBaHre CBOOOIHOIO MHOXKECTBA, IIPU yCJIOBUU M < kd(d— 1)‘1’1 nokazaHo B 3aga4dax 37 u 38. OcTanoch
J0Ka3aTh, uto mpu m > k%(d — 1)9~1 uckomoro cBo60IHOTO MHOYKECTBa He CYITeCTBYeT.

a) Ecim 3amano m > n?/4 cios u3 aByx GyKB, TO OHH MOTYT COCTABJISITH CBOOOJHOE MHOXKECTBO S JIUIIL HPH
YCJIOBUH, 4TO IepBasi OyKBa HUKAKOI'O CJIOBA HE COBIIAJIAET CO BTOPOH OYKBOI HHKAKOI'O JIPYTOro CJIOBA, T.€. €CThb
JIBa HEIIEPECEKAIOINXCsl MHOXKECTBA OYKB, P u (), 3JIeMEHTBI KOTOPBIX MOTYT CJIY?KHUTh, COOTBETCTBEHHO, TOJHKO
HaJYaJ bHBIME WJIM TOJBKO BTOpBIME OykBamu cioBa u3 S. O6osmatumm r = |P| 4+ |Q| < nu s = |P|-|Q| >
|S| = m > n?/4. Ilo Teopeme Buera, narypasibuble uncia |P| u |Q| aBIgroTcs KOPHAME KBaIPATHOTO yPABHEHHS
22 — rz + s = 0, IUCKpUMHUHAHT KoToporo D = r? — 45 oTpHUIATE I TIPY BBIIOJIHEHNH YKA3aHHBIX OIPaHHYCHHIT
Ha 7' U § — IPOTUBOPEYHE.

6) Ilycrb B — cBOGOMHOE MHOXKECTBO M cJIOB JyuHbl 3. [ToCKOABKY B CBOGOIHOM MHOXKECTBE HUKAKAs II€PBas
OyKBa CJI0Ba He MOYKET ObITh TakKe U Moc/aeaHell OyKBO Kakoro-jmbo ciioBa, B ajidasure A ecTh JIBa HellepeceKa-
TOIIUXCsT TOAMHOXKeCTBa X U Y, 9JIEMEHTHI KOTOPBIX BCTPEYAIOTCS, COOTBETCTBEHHO, TOJIHLKO B HAYAJe U TOJBKO B
koHIe cjioB u3 B. Eciu ectb GyKBbI, KOTOPbIE HE BCTPEYAIOTCS HU B KOHIIE, HU B HAYAJE CJIOBA, IIPUCOETUHIM UX
IIPOM3BOJIBHBIM 00pa3oM K ojHOMY u3 MHOXKecTB X u Y. IlycTb, jist onpeieIEHHOCTH, YUCIIO S 9JIEMEHTOB MHOYKe-
crBa X = {Z1,...,Zs} HE OPEBOCXOJUT KOJHMIECTBO 3JIeMEHTOB ¢t MHOXKecTBa Y = {y1,...,y:}. Kax/plil ssement
MHOKECTBa, B uMeer BUI i, Ti,Yj, WIA T4, Y4, Yj,, IPHUEM HUKaKOe (DUHAJIBHOE IIOCIOBO BHIA LY JIEMEHTa IIep-
BOI'O THUIIA HE MOXKET OBITH HAYAJOM 3jIeMeHTa BTOporo tuma. IIpoBeaém mpeobpazoBanue MHOXKECTBa BB, 3aMeHUB
JUTST KasKJI0r0 (DUHAJIBHOTO TIOJCJIOBA TY BCE CJIOBA IIEPBOTO THIIA, OKAHIMBAIONIMECS Ha HEro, Ha CJIOBa BTOPOTO
THIA, 0 TpaBuwiy z;xy — xyy;, rae 1 < i < s < t. Jlerko BujeTh, 9TO IPU TAKOM IPEOOPA30OBAHUN HUKAKNE
9JIEMEHTHI HE TIEPEXOST B JIPYyTrHe JIeMeHThl MHOXKECTBa B 1 HUKaKue pa3/IndHble 3JIEMEHTHI He TePEeXOJIsT B OJUH
U TOT 7K€, MPUIEM MOJIyduBIIeecss MHOXKeCTBO B’ ocramercs csobomubiM. [Ipn sToMm B B’ BCe 3/1eMEeHTBI IMEIOT BH/T
Zi,Yj, Y, CrenoBaTeIbHO, KOIMIECTBO 9IEMEHTOB MHOXKeCTBa B’ (paBHOE MO-TIPEXKHEMY SIHCILY M) He IPEBOCXOIUT

stz, OTKyJa

2
2n 2n

- — ) = — =43,

<s?P<(n=tt<
m< st < (n- )t < 3 )\ 3 27

9TO U TPeOOBAJIOCH.

B) st mokasaTenbeTBa NOTPEGYeTCst CIIeIyomas aHATNTHIECKAsT

Jlemma. Ilycrs R(7) = 14+ajx+asx®+. .. — paj ¢ HaTypaabHbIMI Kodbduimentamu Takoit, uto R(z) = 1/p(z)
JIJISI HEKOTOPOI'O MHOI'O4JICHA p(x) C €IMHUYHBIM CBOOOIHELIM wieHoM. O0o3HauuM Rn(x) = 1+a1x+a2x2+~ tanx”.
Ecmu ngyia Beex © € [0, 2], tae xg > 0, Boimosngercs yeaosue p(z) > m > 0, To mia Becex n > 0 cupaBejiuBbl
HepaBeHcTBa R, (x0) < 1/m.

He jioxasbIBas JieMMy, Iepeiiném K pemennio 3agaqn. O6oznaumm s = mk™ % — (d — 1)(d*1); TpebyeTcs J0Ka3aTh,
970 11pH $ > 0 cBOBGOHOTO MHOXKECTBa He cytiecTByeT. [Ipesmosnoxum, uro 3To He Tak. Torma, corsacHo 3amaue 39 a),
pan 1/p(z), tme p(x) = 1 — dkx + ma?, nveer maTypambuble Ko3bbuIIeHTH (Hy/IeBbIX KO3GbMOUIMEHTOB GLITH
HE MOXKET, IIOCKOJIbKY 3TOT Dsiji OeckoHedeH coryacHo 3amade 33). Ormerum, uro npu s > 0 muorowien p(x)
nostoxkuTeseH Ha orpeske [0, 1] (10Ka3aTe bCTBO: MEHIMYM TOIO MHOTOWIeHa Ha orpeske [0, 1] mocruraercs au6o

B KOHIIAX OTpe3Ka, Tje p(r) mosoKuTeNeH, b0 B TAKOH TOYKE Tg, B KOTOpoi p'(zg) = 0, T. e. pu xg = ﬁ;

pu 3ToM p(20) = szd > 0). D10 03HAHaeT, UTO CymecTBYeT Takoe wmcio m > 0, uro p(z) > m npu x € [0, 1].
CoracHo JieMMe, 9TO 03HAUAET, UTO JUIs BCEX N KOJIMYECTBO CJIOB JUIMHBI He Bbile n, pasHoe L, (1), orpanudeno
KOHCTaHTOH 1/m.

54. a) Ilo ompese/ennio, 3aIpPeTHHIMI CIOBAMH S3bIKa L' SBISAIOTCS BCe ABYXOYKBEHHBIC CJIOBA, HE 3aIPETHLHIC B
L. Crenosare IbHO, 3aIpeTHBIMI cIoBaMu a3bika (L)' 6yayT Bee nByx6yKBeHmHbIe CI0Ba, He 3amnperHsie B L', T. e. B
TOYHOCTH 3alpeTHbIe cioBa a3bika L. TakuM o6pasom, u ajidaBuThl, 1 HAGOPHI 3AIPETHLIX 0B aA3bikoB L u (L')'
COBIIQJIAIOT, & IIOTOMY ¥ CAMH sI3bIKU PaBHBI.

6) TToCKOIBKY MHOXKECTBO 3aIpeTHbIX ca0B s3bika M = (Ly + Lo)' ecth 06beIuHeHIe MHOKECTB 3aIIPETHBIX CJIOB
aspikoB LY u Lb, a andasur a3pika M npeacrasiser coboit obbeuHenne nx (HelepeceKalonuxcs) aahaBaTos, T
a3pk M ecTh cBOGOIHOE TTpom3BeIeHe (CM. ompesertenye B 3a1. 51) aspikos Ly u L.

B) 3anpernbivMu ciioBamMu s3b1Ka (L1 - L)' GyayT paspeménuble qByXOyKBeHHbBIE CJIOBa A3BIKOB L1 1 Lo, a Taxwxke
ciioBa Bujia aB, rioe a — 6ykBa u3 ajsdapura si3bika L, a B — Oyksa u3 ajidaBura sa3bika Lo. DTO 03HAYAET, ITO

(Ly-Ly)' =Ly - Lj.

55. Ilycts w — cooBo et nk (rue k > 1) nan andasuroM asbika L, w(™ — cooTBETCTBYIOMEE €My CITOBO
sapika L), PazobbéM w Ha TIOCIO0BA W = W) . . . W), KAZK0€ U3 KOTOPBIX COOTBETCTBYeT OyKBe s3bika L™ . Jlerko
BUJIETH, YTO CJIOBO W COJIEPKHUT KAKOEe-TO 3allPETHOE IIOJCJIOBO U (COCTOsIIee, IO OIpPe/IesIeHHI0, U3 He Gojiee deM
d GyKB) B TOM M TOJBKO TOM Cllydae, KOIZa B KAKOM-TO IIOACJIOBE W = Wy ...Wptm—1 KaXKI0E U3 IOACIIOB W;



JI0OO COMNEPYKUTCS B TIOJCJIOBE U, JTHOO TePeceKaeTcst C HUM, TaK UTO KOJUYIECTBO N-OyKBEHHBIX (DPArMEHTOB 1711 B
nozc/IoBe w' yIOBIETBOPSIET HEPABEHCTBY m < S, TJe

52+{d2}
n

Taxum 06pazoM, moboe HeomycTnMoe cioso w'™ s3pika L conep:KuT HeIOmycTHMOe MOJICIOBO U3 He Goee
geM s OykB, T. €. 136K L") 3a1a6TCsT KOHETHBIM MHOKECTBOM 3AlIPETHBIX CJIOB, IPUUEM [JIAHBI 3AIIPETHBIX CJIOB
9TOTO SI3bIKA HE MPEBOCXOIAT S. DTO JIOKA3BIBAET YTBEPXKICHUE a).

6) OTser: He Beerya.

JlokazkeM, 9to npu d > 3 uwn > 2 JUIAHBL 3apeTHBIX cI0B a3bika L) Bcerga Membine d; B 9ACTHOCTH, STOT
SI3BIK HE MOKET OBbITh d-OIpENesIEHHBIM, T. €. OTBET Ha BOUPOC u3 II. 6) orpunaresbHbiii. JocTtarouno poka3arhb
HEPABEHCTBO § < d, win

d—2
24+ —— <d.
n

ITocsenpee HepaBeHCTBO paBHOCHIILHO HepaseHCTBY (d —2)(1—1/n) > 0, KOTOpOe, 0YeBUHO, BEPHO LIPU 3aIaHHBIX
OrpaHUYeHUsX Ha d U M.

B) OtBer: n = d — 1. Tlo moxazanHOMYy BbImie, 536K L") gBiIsgeTcs KBaJpATHIHBIM HIH CBOGOIHBIM (T. €. JTHHBL
3AIPETHBIX CJIOB He MPEBOCXOAAT 2) HpH yeaoBuu § < 2, KOTOPOE PABHOCUJIBHO HEPABEHCTBY 2 + dn;z < 3, wm
n>d—2,1.en>d—1. Ecmuxen < d—2, T0 cyIIecTByIOT Takue d-OIpPeIes€HHbIE SI3bIKN L, JJIsT KOTOPBIX S3BIK
L™ umeer 3ampernble ciioBa u3 Gosee 4eM TPEX GYKB: HPUMEPOM CIIyKHUT #3bIK L ¢ TPEXOYKBEHHBIM aJihaBHTOM

{a,b,c} W eMHCTBEHHBIM 3aITPETHBIM cJI0BOM abc? 2.
56. CwM. perrenne 3aa9m 58.

57. Otrser: ma. Hampumep, myctb A — andasur u3z n > 2 6yks. Paccmorpum sa3bik L = Fy - FA. TTockombKy
sI3bIK F4 MMeeT SKCIOHEHIUAJbHBIH pocT (st Hero B 3ajade 55¢) MOXKHO BeIOpaTh ¢ = n+ 1 u ¢3 = n),
upuaém 2F 4 (z) > L(xz) > Fa(x), To 536K L Tak»Ke nMeer SKCHOHEHIaIbHbIH poct. CoracHo 3amaue 53 B), nMeeM
L'= (FA)! . F}L‘ = L, Tax uT0 06a aA3bika L n L' MMEIOT SKCIOHEHIMAIBHbIH POCT.

58. [okaxkeM cHauaJa cieyloniee yTBepxKaenue (Ipy perneHuy 3aga49u 56 6e3 Hero MoxKHO 0GONUTHUCH).

JIemma. Ilycts a = {ag,a1,as, ...} — MOCIEOBATENHLHOCTh HATYPAIBHBIX UHCEN, B KOTOPOH ag = 1 u mis
HEKOTOPOro HarypajbHoro N umMeeM a1 > 2,...,ay > 2. Torjga mocjie10BaTeIbHOCTb ¢ UMEEeT IIOJIMHOMUAJIbHBIIM
(COOTBETCTBEHHO, FKCIIOHEHIIUAIBHDBIN) POCT B TOM U TOJIBKO TOM CJIy4ae, KOTJa COOTBETCTBYIOIINE HEPABEHCTBA U3
yTBepKJIeHuit b) u ¢) BBINOJHAIOTCA i Beex ap upu k > N.

Loxazameavcmeo aemmoi. Ilycte M = riri%({ai}. OueBUIHO, €CIU JJIsi HEKOTOPBIX MHOTOYJIEHOB P, ¢ CTEIeHu d

BBINIOJIHAIOTCS HepaBeHeTBa p(k) > ay > q(k) nmpu k > N, To BRINONHAIOTCS TakKe n Hepasencrsa p(k)+ M > aj >
q(k) — M mipu Bcex k, 9TO JIOKAa3bIBAET JIEMMY B CIydae TIOJMHOMHUATLHOTO pocTa. AHamorm4Ho, ecn ck > ap > ck
mpu k > N, 1o (M + ¢1)* > ap, > g* npu Beex k, 4TO HOTHOCTBIO JOKA3BIBACT JIEMMY.

Iepeiiném k pemenuto 3aga4un. OUeBUIHO, BCE JOMYCTUMBIE CJIOBA JJIUHBI > d — 1 MOIyYIatoTCs, €CJId, HaunHAS
€O cJIOBa B BepluHe Trpada, MPUMHCHIBATL K HEMY CIpaBa OYKBbI, KOTOPbIE MPOYUTHIBAIOTCS TIPU IPOXOXK JICHUN
KaKOT0-JIO0 MapIIpyTa, HAYHHAIOIIETOCA B 9TOI BEPIIMHE, TPUIEM pPa3Hble CJI0BA COOTBETCTBYIOT PA3HBIM MapIil-
pyTam. O4YeBHIHO, A3bIK KOHEUEH TOTIA ¥ TOJIBKO TOr/A, KOIjia HUKAKOW MapHIPyT He BOZBPAIIAETCA B HAYAJIBHYIO
BepIMHy, T.e. B rpade HeT MUKJIOB (4TO JOKa3biBaeT yTBepkKieHue a)). Ocrajoch paccMOTpeTh Ciydaii, Korjua
A3bIK OeCKOHEYEH U B rpade ecTb IUKJL. B 9ToM cilydae KOIUYIeCTBO ¢ CIOB JIJINHBI j > d PABHO YHCIIy MapIIPyTOB
aauHel § —d + 1.

IIpeamono:xuM, ITO €CTh JABa MEPECEKAIONNXCA UKJIA; IYCTh UX JJIUHBI CyTh di 1 dy, U v — 00Ias BEpInHA,
UCXOJISAIINE U3 KOTOPOi pebpa pasyimiaHbl st 000UX IUKJIOB (CKaxkeM, orsevatonye Gyksam x u ). Ciiosa, KoTopble
[IPOYUTHIBAIOTC Ha pebpax k-3BeHHBIX MAPIIPYTOB, HAUMHAIONIUXCSA B U U IPOXOIANIAM 10 KaXKIOMY W3 IUKJIOB,
PAa3JIMYHbL, I09TOMY a) > 2 npu Beex k > 0. Kpome Toro, s mmoboro j = (d — 1)+ q(dy +do) +r, toe r < dy + ds
— OCTATOK OT fejieHus ducia j —d+ 1 ua dy + dg, cymecrByer 1o KpaiiHeit Mmepe 29 pa3JImaIHBIX MAPIIPYTOB JJIHHBI

j—d+1 (Ha KaxkJ0M U3 ¢ MIAroB IPOXOAUM 00a IHUKJA B IIPOM3BOJILHOM IOPsJKE, a 3aTeM JeJaeM I IIaroB B
j—dt1

IIPOU3BOJILHOM IIUKJIE), TaK ITO Impu j > 2d uMeeM a; > 29 = 2[ d1+$2] > 7, rae ¢ = 21/2(di+d2) TlockombKy Beera
a; <n’, u3 nokasanHoil JeMMbl (mpu N = 2¢) CJIeJlyeT, 9TO POCT SKCIOHEHIMATBHBII.

Ocrastoch pazobparhb ciydail, Korja B rpade ', IUKIBI €cTh, HO OHE HE MEpeceKaroTcst Mexk ity coboit. JTocra-
TOYHO HPOBEPUTH YCJIOBUST OJINHOMHUAIBLHOCTH JIJIsl KOJIMIECTB MAPIIPYTOB by, = ap44—1 Jymabl k B rpade I'p (T.X.
€CJI COOTBETCTBYIOIINE HEPABEHCTBA BBIIOJIHSIIOTCS JJIsl IUCEJI by, TO OHU BBINOJIHAIOTCS U JJst ap upu k > d — 1
[pY 3aMeHe MHOTO4YIeHOB p(x) u ¢(x) Ha MHOrOUYJIeHbI TOH ke crenenn pi(x) = p(x+d—1) u g1 (x) = q(z+d—1)).
Mbl jroKaxKkeM, 9TO KarKJblil WIEH OCJIEeI0BATEIbHOCTH by, paBeH 3HaYeHuIo HekoToporo muorowiena b(k) c¢ moso-
JKUTEJIBHBIM cTapiuM Kodhdunuentom (GyeM HA3BIBATH TAKUE OCIEI0BATEILHOCTH IOJIUHOMUAIBHBIMHT).

Pacemorpum apyroit rpad I'; , Bepmmnamu koroporo ciyzkar mukisl rpada ', u sepumust rpada I'y, ne Bxo-
JSAIINe B IUKJIbL (HA30BEM X 060COBJIEHHBIME ), & pefpa COOTBETCTBYIOT pebpaM, COeUHSIONIIM COOTBETCTBYIOIIHE
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KOMIIOHEHTE!I (BepIuuubl min nukisl) rpada I'r. Ouesngno, B rpade I, MUKIOB HET, T.¢. MHOXKECTBO MAapIIPYTOB
B HéM KoHeuHo. [Iycts Q¥ — mMuoOXKecTBO MapmpyToB B rpade I, nexonamux u3 ZaHHOH BEPINNHEL U, U MyCTH ¢j
— KOJIMYECTBO MapIIPYTOB JIIMHBI k, KOTOpoe uM coorsercTByeT B rpade I'r. ITockonbky by = ) ¢}, locTaTouHo
JIOKA3aTh, YTO IIOC/IEI0BATEILHOCTD { ¢} } J1/Ist KaXK/0il BEPIINHBI ¥ HOJMHOMUAIbHA. Bocob3yemcest HH Ly KIueil o
e D = D(v) MakCHMAJIBbHOIO MapIIpyTa, ucxofsmero u3 v. Ecim D = 0, To mubo ¢f = 0 npu k > 0 (ecsu
v — obocobaennas BepmuHa), 6o gp = 1 gys Beex k (ecanm v — LUKI), T. €. COOTBETCTBYIOMIAS IIOCJICIOBATEIIb
HOCTb BCerna MoIuHOMuaibHa. IIycTh Temeph v — Kakas-TO HadaibHas Bepumma rpada I, 3 KoTopoil Hexomar
" CTPEJIOK @1, . .., 4y K BEPIIHHAM V1, ..., U, (BO3MOXKHO, nosTopsionmmcs). Ilo nuayknum, canraem ¢ = b;(k) —
MHOTOWIEH C MOJIOKATEIbHBIM cTapmuM Kodddurimentom. Ecim v — o6ocobrennas BepmmHa, T0 qp = > :_, By
T.€. 9T MOCJEI0BATEIBHOCTD OJMHOMUAJIBHA KaK CyMMa IOJHHOMHUAJBHBIX MOCIefoBaTebHOCTel. Kean xe v —
IIUKJI, TO MepeJ] IepexooM K BEPIIMHAM 10 pedpaM aq, . . ., 4, BO3MOXKHO CJIOBO JIFOOOM JIJIMHBI B IUKJIE, TO3TOMY

@ => (25:1 a j) =3, (E?zl bi(k — j)) — CyMMa MHOT'OYJICHOB C IOJIOXKUTEIbHBIME CTAPIIAMEI KO-
durmentamu. YTBeprKIeHUE JTOKA3AHO.

Ipumenanue. Anarozuumvim 06pazom MOAHCHO ONPEJEAUMD TMUN POCTA A106020 PERYAAPHO20 MHOHCECTEA. JTAA
2MO20 UCTLONLIYEMNCA OMBEMAIOULUT, IMOMY MHONCECTEY KOHEUHDIT A6MOMAM.

59. O603HAYNM MHOXKECTBO JOIMyCTUMBIX cJioB uepe3 M. IlycTb s3bIk siBiisiercst d-onpeenéHabiM. Jlokaxkem, 910
KaxKsi0e cjioBo M -5KBUBAJIEHTHO CJIOBY He 6ojiee ueMm u3 d OYKB.

JleiicTBUTEIBHO, €CJIA CJIOBO ¥ HE SBJISIETCS JOIyCTUMBIM, TO KAKO€ CJIOBO K HEMY HE IPHUIIUIIHN, PE3YIbTAT He
Oymer mormycTuMbIM. [109TOMY BCe HEJIOMyCTUMBIE CJIOBA SKBUBAJIEHTHBI. B 9acTHOCTH, JII000E M3 HUX KBUBAJIEHTHO
KaKOMY-HUOY/Ib 3aIlIPETHOMY CJIOBY, TO €CTh CJIOBY JIJIMHBI HE OOJIbIIEH d.

IIycte citoBO w gomycTumMo m mMmeeT JuHY, 60sbinyio d. O6o3HauuM depe3 v IOJCI0BO CJIOBA U, COCTOSAIIEE
n3 ero nocienuunx d Oyks. Ilycrs w — mpousBosbnoe ciioBo. Ecium cI0BO uw CONEPKUT 3alpeTHOE IOCJIOBO,
TO 3TO IOJICJTOBO COIEPAKUTCA B VW, TaK KAaK JJIMHA 3AlIPETHOrO MojcsaoBa He Oosibmre d. IlosTtomy cioBa u u v
SKBUBAJIEHTHBI.

[yctb B andasure k 6yks. Toryma wucio cios aymubl He Gosbmeit d we npesocxomut (k + 1) TTooxkmm
n = (k+1)?+ 1. B mo6om Habope u3 n CJI0OB HAMIyTCs Ba, M-3KBUBAGHTHbIE OHOMY U TOMY K€ CJIOBY JIJTHHbI
He OoJibIleil d W, TeM CaMbIM, SKBUBAJIEHTHBIE APYT APYTY. [109TOMY MHOXKECTBO JIOIYCTUMBIX CJIOB PErYJISIPHO.

60. a) ITyctb S — MakcHMAaJIbHOE MHOXKECTBO CJIOB, U3 KOTODBIX HUKakue jBa He M-sxeusaseHTHBI. Torma so6oe
JIpPyroe CJIOBO 3KBUBAJIEHTHO KakKOMy-TO cjioBy u3 S. Ilocrpoum koneuHnblit aBromar. BozbMméMm S B KayecTBe MHO-
xecTBa BeprmuH rpada. g Becex s € S, a € A, npoBeIéM U3 BEPIIUHBI S CTPEJIKY, TOMEYEHHYIO @, B BEPIIUHY,
M-sxBuBajieHTHYIO Sa. B mosydennom rpade HA30BEM HAYAJIBLHON BEPIMUHON Ty, KOTOpas M -3KBUBAJIEHTHA IIy-
CTOMY CJIOBY, a IMPUHUMAIONIMME BEPITHHAMU — BCe CJIoBa u3 S, KoTopble npuHaiexkat M. Jlerko BujeTsb, 910
[TOCTPOEHHBI KOHEYHBIN aBTOMAT IIPUHUMAET T€ M TOJIBKO Te CJIOBA, KOTOpbIe mpuHajexar M.

6) JIroboMy €JIOBY OTBEYAET MyTh MO CTPEJIKaM KOHEYHOro aBroMara. SICHO, 9TO ecim JUlsl ABYX CJIOB TaKue IyTH
3aKaHYMBAIOTCS B OIHON BepINWHE, TO CJIoBa M -3KBUBAJIEHTHBI, Tje M — MHOXKECTBO MPUHUMAEMBIX aBTOMATOM
cioB. [losToMy B KaduecTBe m M3 ONPEIETEHUS PErYIsIPHOTO MHOXKECTBA MOYKHO B3ATh UHCJIO, HA €IUHUILY OOJIbIee
YUCJIa BEPIIUH B ABTOMATE.

61. Paccmorpum koneunbtit asromar (I', vg, W), npunumatomuiit muoxectso M. Jljis KaxKi0l BEPUIMHBL ¥ 9TOTO
KOHEYHOTO aBTOMaTa 00O3HAYMM uepe3 1, MHOXKECTBO CJIOB, JjId KOTOPBIX COOTBETCTByMomue myTu 1mo rpady I
3aKAHIMBAIOTCH B V.

Hamnee, mist KaxKIoi BEpIIUHBL ¥ U KaXK0il OyKBbI a 0603Ha1nM depe3 U(v,a) MHOXKECTBO TAKUX BEPIIVH U
rpada ', uro U3 u B v UIET CTpeJIKa, IOMeYeHHasl ¢. 1Or/1a BBIIOJHEHBI CJIEIYIOIINe PABEHCTBA:

To(z) =14+ >  aT(x) (1)

a€A ueU(vg,a)

u
T@=5 3 i@ 2)
a€A uel(v,a)
JUTST U £ .
Iepenymepyem Bepruunbl rpada I, nadunas ¢ vo: V = {vg,v1,va ..., v} 3aMeruM, 4ro KaxKioe U3 PABEHCTB
(1), (2) MOxKHO BOCHpUHUMATH KaK ypaBHEHHE BUIA
(1+@Pi(2) Ty (z) = Y 2Qyj ()T, (x) + Ri(x), (3)
i
rae Pi(z), Qij(x), Rj(v) — HEKOTOpBIE N3BECTHBIE MHOTOWIEHBI, OTHOCHTEJIFHO HEU3BECTHBIX PAloB Ty (), .. ., Ty, ().

TTonpo6yem pemurh ypasHerus (3). Berpasum us mocsensero ypasaenust Ty, () depes ocraibHble HEU3BECTHBIE
pAAbI,

Ty () —;cxa Toby@) o TR )
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HOJICTABIM 5TO BbIpaxkeHue BMecTo Ty, () B OCTaJIbHbIE ypABHEHUsI, U JOMHOXKUM uX Bce Ha (1 + 2Py (z)). MbI 10-
JIy4UM YPaBHEHHsI TOIO K€ BHJIA, HO YUCJIO0 UX (KAK U YUCI0 HEU3BECTHBIX) CTAHET HA eAuHuily MeHbiie. [Ipojesas
To ke camoe s Ty, (x), Ty,_,(x), 1 T. ., MBI TIOJIyIMM B KOHIIE KOHIIOB BbhIpaskenue it Ty, () B BHIE OTHO-
MIEHUs] IBYX MHOrOWIeHOB. Iloncrasus ero B Beipazkenue s Ty, (), Todydaem, 9TO U 3TOT s €CTh OTHOIICHUE
JIBYX MHOTOWIEHOB. IIposioskasi 9TOT MpoIlece, ToJyvdaeM BBIPAsKEeHUsST TOTrO Ke BHja st Beex Ty, (). Ocramoch
sameruthb, uto M(x) = > .y T ().

62. /s kaxkaoro cjioBa v 0b6o3uaduM depe3 v°FP cjIoBo, COCTOsINEe U3 TeX 2Ke OYKB B IPOTUBOIIOIOKHOM TIOPSIJIKE.
st kaxxgoro MuoKecTBa c1oB M monoxkum MOPP = {v°PP | v € M }. fcno, uro M°PP(x) = M (x) st mo6oro M.
Eciau L — a3bIk ¢ MHOXKECTBOM 3AIIPETHBIX CJIOB I, To 1epe3 L°PP Mbl 0003HAYMAEM SI3BIK C MHOYKECTBOM 3AITPETHBIX
cyioB BOPP.

Bepnémca x 3amage. OueBunno, uro MIPP — 3TO MHOXKECTBO JOIyCTUMBIX CJIOB f3bIKa L°PP maymHaiomuxcs C
HOJICIIOBA, PABHOIO w°PP. DTO MHOKECTBO PEryJISIPHO (JI0KA3aTEIHCTBO AHAJOIUIHO pernenuio 3a1adu 59). ITosromy
psan My, (x) = MSPP(z) paBeH OTHOIIEHUIO JBYX MHOI'OYJIEHOB.

Ha camom mese, muoxkectBOo M, TOXKe peryisapHO, HO JOKA3aTETHCTBO ITOTO 3aHsI0 ObI OOJIbIIE MecTa.
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How to count words?

Dmitri Piontkovski, Maxim Prasolov, Grigory Rybnikov

1 Main problem

Problem 1. The language of Winnie-Pooh tribe has 100 words. All possible combinations of these words, in any
order, are used as sentences of the language. The are two magic spells, “Farth stands on Great Crocodile” and
“Every evening Crocodile swallows Sun”, that cause tornado. That is why it is not allowed to pronounce sentences
that contain the above sequences of words'. How many sentences of 20 words in this language are allowed?

Problem 2. A computer uses 256 commands. There is a sequence of four commands that breaks the computer.
The programmers made all possible programs of 7 commands. Find the percentage of the programs that do not
break the computer.?

Problem 3 (Main Problem). The alphabet of a language L consists of N letters. Several words vi,...,v, are
called forbidden and are not used in the language. A word (that is, a finite sequence of letters) is called admissible
if no part of it is a forbidden word. Find the number of admissible words of n letters in L.

Problem 4. Show that the Problems 1 and 2 are special cases of Problem 3.

2 How to write down the answer?

Choose an alphabet A of N letters (for example, if A = (a,b,c,...,z), then N = 26). By a word we will mean an
arbitrary finite sequence of letters of the alphabet A. A part of a word is called its subword.

We assume that every language L has exactly one word of zero length, that is, an empty word.

We assume that distinct forbidden words are not subwords of each other. We also assume that each forbidden
word has at least two letters, that is, the empty word and one-letter words are admissible. Recall that the set of
forbidden words is finite.

Problem 5. The free language F4 over the alphabet A is the language with no forbidden words. Prove that the
number of the words of n letters in this language is equal to N™.

Problem 6. Let B be the language whose forbidden words are all two-letter words with different letters. Prove
that the number of admissible words of n letters in the language B is equal to N for any positive integer n.

Let M be an arbitrary set of words. Let us denote by m,, the number of n-letter words in this set. The infinite
sum
M(z) = mg +miz + mox? + maa® 4 ...

is called the dimension series of the set M. The infinite sums of such type (with arbitrary numbers as coefficients
my,) will be briefly referred to as series (their complete name, which will not be used here, is formal power series).

For any language L, by its dimension series L(z) we will mean the dimension series of the set of admissible words.
For example, for the free language F4 its dimension series is the geometric series Fia(z) = 1+Na+N2x24+ N33+ . .|
and for the language B above we have B(x) = 1+ N2z + Na? + N23 + ...

Problem 7. Write down the dimension series for the language over the alphabet {a,b} with forbidden words aa
and bb.

3 The arithmetics of languages

If a set M contains finitely many words, then its dimension series is a polynomial in the variable z. For infinite sets,
their dimension series are infinite as well, but they allow various arithmetic operations similar to the operations over
the polynomials, that is, addition, subtraction, multiplication by each other and by numbers, and even sometimes
division.

In the definitions and problems of this section, S = so +s12 + s92>+... and R = ro+ 7z +rez2+... are two
series, and L1 and Ly are two languages over alphabets A; and Ay without common letters. We will assume that
the alphabet A; consists of upper-case letters while the alphabet A5 consists of lower-case ones. Let the alphabet
A be the union of the alphabets A; and As, that is, A contains both upper-case and lower-case letters.

IEven if the words are in other forms
2Similar story happened in 1990s with the first version of Pentium microprocessor.



Definition 1. a) The sum of two series R and S is the series
R+ S =(so+70)+ (s1+71)z+ (s24+7r2)a” +...

b) The sum of two languages L; and Ly is the language L1 + Lo over A whose set of admissible words is the
union of the sets of admissible words of the languages L1 and Ls.

Problem 8. Define the language L1 + Lo by a finite set of forbidden words.
Problem 9. Prove that if L = Ly + Lo, then

L(z) = Ly (z) + La(x) — 1.
The product of two series is defined by the same way as the product of two polynomials.

Definition 2. The product of a series R by a monomial az™ is the series

n+1 n+2+”.

R-az" = argz™ + arx + arex’x

The product of two series R and S is the sum
R-S=R-so+R-sijz+ R-sox®+...

Note that this infinite sum of series is well-defined because the coefficient of every power of x is a finite sum of
numbers.

Problem 10. Prove that
l—2)-I+z+2?+...)=1.

Definition 3. The product of two sets of words M and N is the set M N of all words of the form mn, where m is
a word in M and n is a word in N.

The product of two languages Ly and Lo is the language Ly - Lo over A whose set of admissible words is the
product of the sets of admissible words of the languages L; and Ls.

Problem 11. Define the language Ly - Ly by a finite set of forbidden words.

Problem 12. Prove that
L(z) = Li(z) - La(x).

The division of series has no version for languages, but it helps to write down their dimension series in a compact
form. It is defined by a formula similar to the formula for the sum of an infinite geometric progression.

Definition 4. Suppose that a series S begins with the unit, that is, so = 1, and S = 1+5, where S = s;x+s222+. ..

Then its inverse is the series 1
§:1—§+§2—§3+...

The quotient of two series R and S is the series
R - =3

§:R—R-§+R-SQ—R-S +...

In general, the quotient of two dimension series can not be obtained as the dimension series for a language. For
example, some of the coefficients of the quotient can be negative.

Problem 13. a) Prove that
R

S-—==R.
S
b) Prove that if ST = R, where the series S begins with the unit, then T = %

The use of the division of two series is that it helps to represent many infinite series by a finite formula, that
is, a quotient of two polynomials.

Problem 14. a) Prove that
1
~ 1- Nz’

b) Represent the dimension series from Problems 6 and 7 as a quotient of two polynomials.

FA(:c)

Problem 15. Prove that the dimension series of any language can be represented as a quotient of two polynomials.

Thus, the answer to our Main Problem should be represented as a quotient of two polynomials.



4 Free word

Problem 16. Let L be a language over the Latin alphabet with only one forbidden word “mouse”. Find L(x).

Definition 5. Let a and b be words such that no one is a subword of each other. A nonempty word c is called an
overlap of a and b if it is a beginning subword of a and, in the same time, the final subword of b (for example, the
word “all” is an overlap of the words “ball” and “allow”).

A word w is called free if it has no overlaps with itself except for the whole word w (e.g., the word “free” is free
but the word “underground” is not).

Problem 17. Suppose that in a language L over an alphabet A of N letters there is a single forbidden word, which
is free and consists of m letters. Prove that

1
Lz)= ——m———.
(@) 1— Nz +a™m

Problem 18. Solve Problem 2 under the addition assumption that the sequence of commands breaking the computer
18 a free word.

5 Transformations of words

Definition 6. Let M and M’ be two sets of words. Let us divide the set M in two parts K and L. A function
f mapping L to a subset I of M’ is called a transformation of the set M to the set M’ if f preserves lengths of
words and is a one-to-one map of L onto I.

In this case, the set K is called the kernel of the transformation f and the set I is called the image of f.

A transformation will be denoted by an arrow: M — M’.

Definition 7. A sequence of transformations
M =M= ...= M,

is called ezact if the kernel of each subsequent transformation coincides with the image of the previous one.

Problem 19. Let L be a language over an alphabet A, let G be the set of admissible words, and let N be the set
of all non-admissible words. Construct an exact sequence of transformations

)= N= Fy — G =10,

where Fy4 is the set of admissible words of the free language, that is, the set of all words over the alphabet A, and
0 denotes the empty set.

Problem 20. 10 boys and 10 girls are sitting in a line so that boys’ neighbors are girls and vice versa; their teacher
is sitting next to them. FEach of the children has some bonbons, and the total number of the boys’ bonbons is equal
to the total number of the girls’ ones. The first boy gives all his bonbons to the girl sitting next to him. The girl eats
all these bonbons, then she eats the same number of her own bonbons, and then she gives the rest of her bonbons
to the next boy. He does the same (eats and gives the rest of bonbons to the next girl), then the next girl does the
same, and so on. The last girl gives the rest of her bonbons to the teacher. How many bonbons does the teacher
get?

Problem 21. Let
®:>M1:>M2:>:>Mn:>®

be an exact sequence of transformations.
) Prove that if each set M; consists of a finite number m; of words, then

mi+ms+ms+---=mo+my+...
b) Prove the following formula for the dimension series:
My(z) + Ms(z) + Ms(x) + - - = Ma(x) + Ma(x) + . ..

Definition 8. A set M of words is called free if no word in M is a subword of another word in M, all words in M
are free, and the words in M have no overlaps with each other.

Problem 22. Let L be a language over an alphabet A, and let the set B of forbidden words of L be free. Denote the
set of all admissible words by G and the set of all nonempty admissible words by G. Construct an exact sequence
of transformations

)= B-G=A-G=G=.



Problem 23. Let L be a language over an alphabet A of N letters, and let the set B of forbidden words of L be
free. Prove the formula

1
Lz)= —————.
(z) 1— Nz + B(x)
Problem 24. Prove that the set of magic spells in Problem 1 is free, and solve the problem.
Problem 25. Find L(x) provided that the alphabet of the language L is Latin and the forbidden words are veni,
vidi, vici.

Definition 9. Let L be a language. A simple linkage is a word v = str, where s, t, r are nonempty words such
that the words g = st and f = tr are forbidden and there are no other forbidden subwords in v. The end r of the
simple linkage (which is produced by cutting off the first forbidden subword g) is called the tail of v.

Problem 26. Prove that the set of forbidden words of a language is free if and only if there are no simple linkages
i it.

Problem 27. Let L be a language over an alphabet A, let B be its set of forbidden words, and let S be the set of
all simple linkages. Denote the set of all admissible words by G and the set of all nonempty admissible words by G.
Construct an exact sequence of transformations

S -G=B-G=A4-G=G=1.

Problem 28. Find the conditions on the set of forbidden words of a language L under which the exact sequence
from Problem 27 could be extended to an exact sequence

=8 G=B-G=A-G=G=1

(such languages are called non-tangled). Give a formula to express the dimension series L(z) of a non-tangled
language in terms of the number N of letters and the dimension series of the sets B and S.

Problem 29. Find the dimension series of the language over the alphabet {a,b, c} with forbidden words abb, bbc, bac.

Problem 30. Find the dimension series of the language over the alphabet A = {1, ..., Tn, Y1, Yns 21, -5 20}
if the forbidden words are the words of the form x;y; and y;z, where 1 <1i,j,k <n.

Problem 31. Prove that if the set of forbidden words of a non-tangled language consists of a single word, then
this set is free.

6 Free sets revisited

Problem 32. Construct an infinite free set over an alphabet of two letters.

Problem 33. Suppose that the set of forbidden words B of a language L is free and the alphabet has more than
one letter. Prove that the set of admissible words of the language is infinite.

Definition 10. Let S = sg+s12+s222+... and R = rg+riz+7m22 +... be two series. If the inequality s > 7y
holds for any k, then we say that the following inequality for the series holds:

S > R.
Problem 34. Prove that if series P, Q, and R satisfy the inequalities
P>Q and R >0,
then
PR > QR.

Problem 35. Suppose that for every d > 0 the sets B and B’ of forbidden words of the languages L and L' over
the same alphabet A contain the same number of words of length d, so that B(z) = B’(z). Prove that if the set B
is free, then the inequality

L'(z) > L(z)
holds; in addition, we have L'(z) = L(z) if and only if the set B’ is also free.
Problem 36. Suppose that the alphabet consists of two letters and the set B contains at least two words, including
a word w of length 2.

a) Prove that the set B is not free.
b) Is it possible that B is free if w is of length 37



Problem 37. Suppose that an alphabet consists of n letters and B consists of g two-letter words. Prove that if
g < n?/4, then the set B may be chosen to be free.

Problem 38. Prove that if n = kd and m < kd(d— 1)d_1, where the numbers d, k, m,n are positive integers, then,
over an alphabet of n letters, one can choose a free set consisting of m words of length d.

Problem 39. ) Prove that, if B is a free set over an alphabet of n letters, then there is the following inequality
Y
1—nz+ B(x) —
b) Is the converse true, that is, is it true that if the inequality
oy
1 —nx+p(x) ~

holds for a positive integer n and a polynomial p(x) whose coefficients are positive integers and whose constant
term is zero, then there exists a free set B over an alphabet of n letters, with B(x) = p(x)?

Problem 40. Let n be a positive integer and let p(x) be a polynomial with positive integer coefficients and zero
constant term. Prove that there exists a free set B with dimension series B(x) = p(x) if and only if there exist two
polynomials f and g with nonnegative integer coefficients with f(0) = g(0) = 0 such that

(1-£)(1—-g)>1—nx+p().

Problem 41. 2 Find a condition describing possible dimension series of the sets of forbidden words for non-tangled
languages (like we described dimension series of free sets in problem 40).

7 Words and chains

Definition 11. Let L be a language. Chains of length one are the forbidden words, and chains of length 2 are
the simple linkages. Next, one can define the chains of length 3, 4 etc. Namely, a word v = str (where all the
words s, t, r are nonempty) is called a chain of length n if its initial subword g = st is a chain of length n — 1, the
final subword f = tr is a forbidden word, where ¢ is a subword of the tail p of the chain g, and there are no other
forbidden subwords but f in the final subword pr. The tail of the chain v is the word r.

A chain looks as follows (each arc denotes a forbidden subword in the chain):

AW AWA WA WA WA

The length of the chain is the number of arcs. The only overlaps are of neighboring arcs (and the overlaps of
neighboring arcs are non-empty). The emphasized two final tails do not contain any forbidden subword but the
last arc.

For example, if the only forbidden word is aba, then the only chain of length one is aba, the only chain of length
two is ababa, the only one of length 3 is abababa, etc.

Problem 42. Suppose that the forbidden words in a language L are the words “tournament”, “of”, “towns”. Write
up all chains of length n.

Problem 43. Antichains of length n are defined in the same way as chains of length n, with the only difference
that we read words of L in Definition 11 “from right to left”, i.e., the tail of an antichain is to the left, and the
initial antichain of length n — 1 is to the right. Prove that the sets of length n chains and length n antichains
coincide.

Problem 44. Prove that a chain of length n contains no other chain of length n as a subword.

Problem 45. Prove that if a word is decomposed as w = gc, where g is an admissible word and c is a chain, then,
if in addition the length of ¢ is greater than 1, w has exactly two decompositions of this form, and the lengths of
the chains in these decompositions differ by 1.

The next problem gives a way to solve the Main Problem.

Problem 46. Let L be a language over an alphabet A. Let G be the set of its admissible words and G the set of
all nonempty admissible words. Let Cy be the set of chains of length one, Cy the set of chains of length 2, and so
on.

Prove that 1

T 1-Nz+Ci(z) — Ca(z) + Cs(z) — . ..

L(x)

3Neither a solution nor even an answer to this problem are known to the Jury



Problem 47. Find the dimension series for the language in Problem 42.
Problem 48. Find all possible answers to Problem 2 depending on the form of the breaking sequence.

Problem 49. We say that a subword ¢ of a word w is its maximal subchain if w can be decomposed as w = gcu,
where g is an admissible word and ¢ is a chain, and for any other decomposition w = gc'u’ with another chain ¢
the word ¢’ is always a subword of c. Prove that any non-admissible word has a single mazimal subchain of odd
length.

Problem 50. Let L be a language over an alphabet A, and let A’ be a new alphabet which extends A by one
additional letter. Let L' be a language over A’ with the same list of forbidden words as L. Prove that

Lix)

Problem 51. A language W is called the free product of languages L and L' over disjoint alphabets A and A’ if
the alphabet of W is the union of the alphabets A and A’ and the set of forbidden words is the union of the sets of
forbidden words of L and L'. Express the dimension series of the free product W in terms of the dimension series
of L and L'.

Problem 52. Suppose that all forbidden words of a language L are of two letters. Over the same alphabet, consider
another language M whose forbidden words are all two-letter admissible words of L. Prove that

L(zx)M(—z) = 1.



8 Additional problems

Problem 53. Prove that there exists a free set of m words of length d over an alphabet of n = kd letters if and
only if m < k%(d —1)?=t (cf. Problem 38)
a) ford=2; b) for d =3; ¢) ford > 3.

Definition 12. A language is said to be d-defined if the maximal length of its forbidden words is d. A 2-defined
language is said to be quadratic.

Problem 54. Quadratic languages L and M in Problem 52 are said to be dual to each other (notation: M = L').
a) Prove that (L')' = L.
b) Find (L1 + LQ)!.
¢) Describe (Ly - La)".

Problem 55. Let L be a d-defined language. Let us define a new language L™ over the alphabet consisting of all
length n admissible words of L as the language whose admissible words are all admissible words of L whose length
is a multiple of n (rewritten in the new alphabet).

a) Prove that L™ is defined by finitely many forbidden words.

b) Is L™ always d-defined?

¢) For what minimal n, the language L™ is necessarily either quadratic or free (for all d-defined languages L)?

Problem 56. For any quadratic language L over the alphabet x1,...,x,, let us define an oriented graph I'y, as
follows: it has n vertices labelled with x1,...,2,, and there is an edge (an arrow) x; — x; if and only if the word
x;x; is admissible. Denote the number of admissible words of length k by ay. Prove that

a) the language L is finite if and only if T, has no cycles;

b) the language L has polynomial growth (i. e., there exist two nonzero polynomials p,q of the same degree d
with positive leading coefficient such that p(k) > ap > q(k) for each k > 0) if and only if 'y, has a cycle but has no
intersecting cycles;

c) the language L has exponential growth (i. e., for some ¢; > ca > 1 and for all k, we have c¥ > aj, > c&) if
and only if T, has at least two intersecting cycles.

Problem 57. Let L and L' be a pair of dual quadratic languages. Is it possible that both have exponential growth?

Problem 58. For any d-defined language L over the alphabet xz1,...,x,, we define the oriented graph I'y as
follows: its vertices are labelled with all admissible words of length d — 1, and there is an edge (arrow) v — w if
and only if there is a letter x; such that the word vzr; is admissible and the last d — 1 letters of it constitute the
word w. Prove all properties a), b), ¢) in Problem 56 for T'p.

Definition 13. Let M be a set over an alphabet A. Words u and v (over the same alphabet) are said to be
M -equivalent if, for any word w, the words uw and vw either both belong to M or neither of them belongs to M.
The set M is said to be regular if there is a natural number n such that any set of n contains two M-equivalent
words.

Problem 59. Prove that the set of admissible words of any language is regular.

Definition 14. A finite automaton over an alphabet A is an oriented graph I' with a finite set of vertices V' such
that

a) the arrows are marked by the letters of the alphabet A, and for every vertex v € V and each letter a € A, there
is a unique arrow marked by a whose tail is v;

b) an initial vertex vy € V and a set of approving vertices W C V are given.

Let us consider each word over the alphabet A as an instruction for a trip by arrows over the finite automaton
(T',v9, W), that is, we begin with the initial vertex, then go by the arrow marked by the first letter of the word,
then follow the arrow marked by the second letter of the word, and so on. We say that the automaton approves a
word if the path corresponding to the word ends with an approving vertex.

Problem 60. a) Prove that for every regqular set M there exists a finite automaton approving the words of M and
no other words.
b) Prove that for every finite automaton the set of approving words is regular.

Problem 61. Prove that for every regular set M its dimension series can we represented as a quotient of two
polynomials.

Problem 62. Let L be a language and M., the set of all admissible words of L which have a final subword equal to
a given word w. Prove that the dimension series of the set M, can we represented as a quotient of two polynomials.

Note. Parts 1-5 were suggested before the intermediate consideration of the problems. Parts 6-8 were added
after the intermediate consideration of the problems.



How to count words?

Dmitri Piontkovski, Maxim Prasolov, Grigory Rybnikov

Solutions

1 Main problem

1. Cf. Problem 24.
2. Cf. Problems 18 and 48.
3. One version of the solution is given in problem 46; another version can be obtained using Problems 59 and 61.

4. In Problem 1, the alphabet A consists of N = 100 words of the tribe language. The phrases of the tribe language
play the role of words of L, and the forbidden words of L are the two magic spells. In Problem 2, the alphabet A
consists of NV = 256 commands of the computer, and the programs play the role of words of L.The only forbidden
word is the program of 4 commands that breaks the computer.

2 How to write down the answer?

5. To get an arbitrary word of m letters, one choose any of N letters in any of m places. Multiplying the numbers
of possibilities in each place, we get N™ words.

6. If the first letter of an admissible word is x, then the second one is x as well. It follows that each admissible
word has the form xzx ...z, where x is one of the N letters. Therefore, the number of admissible words of any given
number of letters is V.

7. Assume that the first letter of an admissible word is a. Since aa is a forbidden word, then the second letter
is b. Proceeding by the same way, we get a on the odd places and b on the even places. Similarly, if the first
letter is b, then we get a on even places and b one odd ones. Thus, the dimension series of this language is
14204222 + 223 + ...

3 The arithmetics of languages

8. The collection of forbidden words is the following: all forbidden words of the both languages and all words of 2
letters such that the first letter is of the first alphabet and the second one is of the the second alphabet. Obviously,
the admissible word of each language do not contain a subword which is forbidden in the sum of languages. Let w
be a word of sum which does not contain subwords equal to the words described above. If its first letter is, say, in
the first alphabet, then the subsequent letters are in the first alphabet as well, that is, each such a word consists
of the letters of the same alphabet. It follows that w is admissible in the language of this alphabet, thus, it is
admissible in the sum.

9. The initial terms of the series L(x) and L;(x) 4+ L2(x) — 1 are equal to 1. For n > 0, the coefficient of ™ in the
series L1 (z) + Lo(z) — 1 is equal to the sum of the numbers of words of n letters in the languages L; and Lo, that
is, the number of words of n letters in the language L, which is equal to the coefficient of =™ in the series L(z).

10. We have

A-—2)l+z+22+2°+. . )=1—-2+(1-2)-2+(1—2)-22+(1-2)-2°+--- =

=l-as+r—a?4+22 -3 +a23 -2t +... =1,



as required.

11. The collection of forbidden words is the following: all forbidden words of two given languages and words of two
letters such that their first letter is in the second alphabet and the second one is in the first alphabet. Consider
an admissible word w of the product. In w, the letters of the second alphabet follow to the letters of the first one,
therefore, w has the from wywsy, where w; is a word of the first language and ws is a word of the second one. The
word wijws do not contain subwords which are forbidden in the languages-multipliers, therefore, w; and wsy are
admissible in their languages, that is, the word wiws is admissible in the product of the languages.

12. The coefficient of 2 in the series Ly () - La(z) = Li(z) - ng + L1 (x) - myz + -+ = (ng - mo +nomaz +...) +
(nimox +nimiz?+...)+... is ngmy +n1mg_1 +- - +ngmo. The number of words of length & in the set of words
L1 - Ly is equal to the number of possibilities to get a pair of words, m in Ly and n in Ly, such that the total number
of letters in these words is k. If the word m is of ¢ letters, then the word n is of k— letters, so that the number of
such pairs is equal to m; - ng_;. Taking a sum of all such products for all 7, one gets nomy +nimg_1+ - - +ngmg.
Thus, the coefficients of z* in two series Li(z) - Lo(x) and Ly - Lo(x) coincide, therefore, the series itself coincide.

13. a) First let us show that the standard properties of addition and multiplication of polynomials (associativity,
commutativity, distributivity) hold for series as well. For example, consider associativity relation for multiplication
(P-Q)-R=P-(Q-R). To compute the coefficient of ¥ in the both sides of this relation, it is enough to make
computations for the same series without terms of degree higher than k, i.e., for polynomials. Therefore, the
relation for series follows from the same relation for polynomials. The other relations are proved in the same way.

Now note that, since the series S starts with z', the series R - 5™ has no terms of degree less than m. That is
why infinite sums of the fom R— R-S+ R- $-R.S + ... make sense: to find the kth coefficient, the sum can
be replaced by a finite one. For the same reason, the sums of this type satisfy the distributivity relation

R'(51+SQ+S3+...):R'Sl+R'SQ+R‘53+....
Having this in mind, we easily get

1+85)(1-8+5 -5 +..)=1

b) By ‘he abo\/e, we ha\/e
S = S = =

Assume that the series (T'— £) is nonzero. Since S starts with 1, the first nonzero coefficient of (7' —
equal to the first nonzero coefficient of S+ (T' — %) Therefore T' — % =0and T = %.

) is

14. a) Similarly to Problem 10, we obtain

1
Fa(x)=1+Nz+ N*2?+... = :
4(x) =14 Nz + N°2* + T
b) We have
N 1 N -1
1+Nx+Na:2+Nx3+---:—N+1+N~(1+x+x2+x3+...):—N+1+1 = +§ )
— X — X
and 5 -
1420 +222 4228+ =142 (I+z+22+2%+.. ) =14 — =%

1l—2z 1-—2z

15. The solution follows from Problems 59 and 61.



4 Free word

16. It follows from Problem 17 below that

1

Lx)= — —
@) =155

Also, one can directly obtain the above formula in a similar way as in the solution of Problem 17.

17. Let a; be the number of admissible words of length k. Clearly, ag = 1. Let us prove the recurrent relation
ar = Nag_1 — ag—m for k > 0 (we have a; = 0 for i < 0, since there are no words of negative length).

Indeed, by adding each letter of the alphabet to the beginning of each admissible word of length k£ — 1, we
obtain Nag_1 words, among which are all admissible words of length k. Let us find which non-admissible words
of length k& can be obtained in this way, i.e., can be written as cg, where ¢ is a letter and ¢ is an admissible
word of length £ — 1. Clearly, the forbidden subword must stand at the beginning, so cg = wf, where w is the
forbidden word and f is admissible. Since w is free, we conclude that, for any admissible word f, the word obtained
from wf by cutting its first letter is admissible (otherwise w would have an overlap with itself). Therefore, the
set of all words of the form cg, where ¢ is a letter and ¢ is an admissible word of length & — 1, is the union of two
non-intersecting sets: the set of all admissible words of length k and the set of all words of the form wf, where f
is an admissible word of length & — m. Hence we get the recurrent relation.

Consider the sum of relation ag = 1 and all relations arz* = Nag_12* — ap_,a”* for k =1,2,3,.... We obtain

L(z) =1+ NzL(z) — 2™ L(z).
Solving this equation with respect to L(x), we get the required formula.

18. According to Problem 17,

1

L) ——
(@) = T 5560 7 24

=1+ (256x — zt) + (256x — 21)? + (2562 — )3 + ...

Here the coefficient of x7 is 2567 — 4 - 2563. Thus, the probability of computer break is 4é§56§3 = 425674, or,
approximately, 10710,

5 Transformations of words

19. The first arrow is determined uniquely; the second one maps each word in N to the same word regarded as an
element of F4; the third one maps each of the remaining words in F4 to the same word as an element of G; the
last arrow is as trivial as the first one.

20. Each of the children eats as many bonbons that belonged to boys as bonbons that belonged to girls. The last
girl eats the last bonbons that belonged to boys. Thus she also eats the last bonbons that belonged to girls, and
the teacher gets nothing at all.

21. a) Let Myqq = M1 UMs UM U ... and Meyen = Mz UMy UMy U.... Each transformation establishes
a one-to-one correspondence between a subset of Mj3q and a subset of Meven, besides, since both the rightmost
and the leftmost sets are empty, each element participates in exactly one of these correspondences. Hence the sets
Myqq and Meven have the same number of elements.

b) For each k, the set Mi(k) of words in M; of length k is finite; by applying assertion a) to the finite sets Mi(k)
with the same k, we conclude that the coefficient of z* in the left-hand side of the formula is the same as in its
right-hand side. Since k is arbitrary, it means that the formula is correct.

22. Let us verify that the set A - G is the union of two non-intersecting sets: the set G and the set B - G. The
proof, which is based on the fact that the set B is free, is almost literally the same as the corresponding reasoning
in the solution of Problem 17.

Now it is easy to construct the required exact sequence: the first and the last arrows are trivial, the second
one maps each element of B - G to itself (here we use that B-G C A - @), and the third one maps each of the
remaining elements of A - G to itself (here we use that A- G\ B -G = G). In particular, the kernel of the second
transformation is empty, and the kernel of the third transformation, which is the same as the image of the second
one, is D - G; the image of the third transformation is G.



23. By Problem 21b), the exact sequence in Problem 22 implies
(B-G)(z) +G(z) = (A-G)(x).

Note that each element of A -G can be uniquely written as ag, where a € A, g € G. Hence (A- G)(x) = A(x)G(x).
Further, each element of B - G can be uniquely written as bg, where b € B,g € G, (since no forbidden word
is a subword of another forbidden word). Hence (B - G)(z) = B(x)G(z). We have A(x) = Nz, G(z) = L(z),
G(x) = G(xz) — 1 = L(x) — 1. Therefore,

B(z)L(xz) + L(z) — 1 = Nz L(x).
Solving this equation with respect to L(x), we get the required formula.

24. Denote the words that occur in the spells by letters: “earth” — A, “stand” — B, “on” — C, “great” —
D, “crocodile” — E, “every” — F, “evening” — G, “swallow” — H, “sun” — I. Then the spells correspond to
forbidden words “ABCDE” and “FGEHI”. These words are free (since all letters in each of them are distinct) and
have no overlaps with each other (since both the first and the last letters of the second word do not occur in the
first one). Therefore, the set of spells is free, and and the dimension series for the language is

1

Liz)= — .
(@) 1 — 100z + 22°

Using this formula, it is not hard to show (see the solution of Problem 17), that aj (the number of sentences of k
words) can be computed from the initial condition ap = 1 and the recurrent relation ay = 100ax_1 — 2ai—5. The
computations provide us with the answer asy = 100 — 321030 + 264 - 10%° — 448 - 10'° + 16.

25. Letter v occurs only as the first letter of each forbidden word and all forbidden words are of length 4. Hence
the set of forbidden words is free. By Problem 23, we have

1

La)= —— .
() 1 — 262 + 324

26. If the set of forbidden words is free, then, in particular, there are no simple linkages. Let us prove that if there
are no simple linkages, then the set of forbidden words is free. Assume the contrary, i.e., that the set of forbidden
words is not free. Then there is an overlap of two forbidden words, that is, there exist three nonempty words s, t,
r such that the words st and tr are forbidden. Choose such a triple (s, ¢,r) so that the length of str be minimal. If
it is not a simple linkage, then str has a forbidden subword w other than st and tr. Note that the end of w is not
he end of ¢r since otherwise either w would be a subword of ¢r or ¢r would be a subword of w, which is impossible
as no forbidden word is a subword of another forbidden word. Similarly, the beginning of w is not the beginning
of st. For the same reason, the subword w overlaps with both s and r. Denote the common part of st and w by t/,
the remaining part of st by s’, and the remaining part of w by r’. These words are nonempty, the length of s't'r’
is less than the length of str, the words s't’ = st and t'r’ = w are forbidden. We obtain a contradiction. Thus, if
there are no simple linkages, the set of forbidden words is free.

27. We construct the transformations starting from the end (from the rightmost arrow). Since the last set is
empty, the domain of definition of the last transformation is also empty. Hence the image of the last but one
transformation is the whole set G. Since G C A - G, we can take G to be the domain of definition of the last but
one transformation, and define the corresponding function to map each element g € G to itself. The kernel of this
transformation consists of all non-admissible words of the form ag, where a is a letter and ¢ is an admissible word.
It is readily seen that, for any word of this type, there exist a forbidden word w and an admissible word f such
that ag = wf (we already used similar reasoning in the solutions of Problems 17 and 22). So we can construct
the third arrow from the right (this transformation also maps each element of its domain to itself). Consider the
kernel of this transformation. It consists of those words of the form wf, where w is forbidden and f is admissible,
which also have the form av, where a is a letter and v is a non-admissible word. Choose the leftmost forbidden
subword w in v. Clearly, the subword u of the word av = wf overlaps with the subword w and forms a simple
linkage with it. Thus the kernel of the third arrow from the right is contained in S - G. Hence it is possible to
construct transformation S - G = B - G (which also maps each element of its domain to itself).

28. By the solution of the previous problem, we see that a language is non-tangled if and only if all words of
the form rg, where r is the tail of a simple linkage and ¢ is an admissible word, are admissible. An equivalent
condition for the set of forbidden words writes as follows: there exist no such words p, q,r, s,t, where the p,q,s,t
are nonempty, the words pq, grs, st are forbidden, and pgrs is a simple linkage.

Note that any element of the set S - G can be uniquely represented as the product of a simple linkage by an
admissible word (it follows easily from the definition of simple linkage and the fact that no forbidden word is a



subword of another forbidden word). In the same way as in the solution of Problem 23, for a non-tangled language
L, we use the exact sequence to obtain the following equation:

S(x)L(x) + NzL(z) = B(z)L(x) + L(z) — 1,

whence follows the required formula
1

T 1-Nz+B(z)-S(z)

L(z)

29. Simple linkages are abbc and abbac, and their tails are ¢ and ac. It is clear that none of these tails ends with
the beginning of a forbidden word. Thus the language is non-tangled. Therefore, the dimension series is

1
T 1-—3z 4323 — gt —ad

L(z)

30. Simple linkages are x;y;zk, where 1 < 4,5,k < n, their tails are z;. Since no forbidden word starts with zy,
the language is non-tangled. Therefore, the dimension series is

1
1 —3nz+ 2n222 — n3z3’

L(z)

31. Let w be the unique forbidden word and let L be its length. Suppose that w is not free; let pgr, where
pq = qr = w, is a simple linkage. We have wr = pgr = pw. Therefore, the last subword of length L in each
of the words wr = pw,wrr = pwr = ppw,wrrr = ppwr = pppw, ... is equal to w. Take the first word in this
sequence which has length at least 2L. Then a word of the from rrr...r has the final subword equal to w. But
this means that the word r has a nonempty ending which is an initial subword of w. Therefore, the language under
consideration is tangled (Cf. the solution of Problem 28).

6 Free sets revisited

32. For example, if the alphabet consists of the letters a and b, then the set of words a™b™ab, where n > 2, is
free. Let us prove this. Obviously, no two words are subwords of each other. It remains to prove that there is no
nontrivial overlap (i. e., each overlap is the letter-by-letter application of a word on itself). Let w is an overlap
of the words a™b"ab and a™b™ab. Then it is easy to see that w has at least three letters. Since w is an end of
the word a™b™ab, it has the form either b*ab or a¥b"ab, where 1 < k < n. Because w is also a begin of the word
a™b™ab, we get k =m =n and w = a™b"ab = a™b™ab is a trivial overlap.

33. Lemma. Let p(z) =1+ p1z + p,az™ be a polynomial of degree n > 1. Then the series f(x) = 1/p(x) cannot
be a polynomial (i. e., this series has an infinite set of nonzero terms).

Proof of Lemma. Suppose (ad absurdum) that the series f(z) is a polynomial, that is, f(z) = fo+fiz+... fmaz™,
where the leading coefficient f,,, is nonzero. According to Problem 13a), we have 1 = f(z)p(x) = 1 + (fop1 +
f1po)x + -+ + fupnx™ ™, a contradiction.

Return to Problem 33. According to Problem 23, we have

1

L&) =i Nev B0y

If the language L was finite, the series L(z) would be a polynomial, in contradiction with the above Lemma. It
follows that the set of admissible words is infinite.

34. Obviously, for series A and B the inequality A > B is equivalent to an inequality A — B > 0, which is
equivalent to the condition that the coefficients of the series A — B are nonnegative. Denote the series P — Q by
A=ag+ a1z + axx?. .., and the series R by R = 1o + 72 + r922... Then an n-th coefficient of the series AR is
given by the formula agr, + a17n—1 + -+ + anr9. So, a, is a sum of nonnegative numbers, so that a,, > 0. This
means that it holds an inequality AR > 0. Equivalently, we have PR — QR > 0, or PR > QR.

35. According to Problem 23,

By Problem 27, there is an exact sequence

)—K—DB -G —A-G' — G — 0,



where K is a kernel of the transformation B-G = A - G’ and G’ is the set of admissible words of the language
L' Tt follows from this exact sequence (Problem 21) that

B'(2)G'(z) — A(x)G'(z) + G'(x) — 1 = K(x),
therefore (since B'(z) = B(z), L'(z) = G'(x) and K(z) > 0),
L'(z)(B(z) — A(z) + 1) > 1.

Multiplying this by the series L(x) > 0, we get (using Problem 33)

1 > Lix),

L'(z)(B(x) — A(z) + 1) - =A@+ B) ©

L'(z) > L(x).

36. Let A = {a,b} be the alphabet. Denote the second word by v. Obviously, if the words v and w are free, then
their initial and last letters differ. If, in addition, w the initial letters of the two words differ, then the last letter
of v coincides with the first one of w, and , so that the set B is not free. So, it remains to consider the case when
v and w begin with the same letter (say, a) and end with another one (b).

a) We have w = ab and v = a...b. Obviously, if the first appearing of b in the word v is in k-th place, then the
subword of v which consists of the (k — 1)-th and k-th letters is w. It follows that B is not free.

b) Answer: no. Let w = aab (the case w = abb is analogous, up to the right-left symmetry and the interchanging
the letters). Since the word w is not a subword of v, in v the letters that follows the pair of letters aa is again a.
Since the words v and w have overlaps, v cannot begin with ab, i. e., v begins with aa. Therefore, the 3rd letter of
v is a, as well as the 4th etc. It follows that v = aa...a, a contradiction.

37. It is sufficient to show that there exist a free set B of g = [n?/4] two-letter words. Let k = [n/2], i. e.,
n=2korn=2k+1 Put B = {z;z;|]1 <i<kk+1<j<n} Obviously, the set B is free. Then for
an even n = 2k, the set B consists of k* = n?/4 elements, and in the case of odd n = 2k + 1 the set B is of
k(k+1)=(n—1)(n+1)/4=n?/4—1/4 = [n?/4] elements, as required.

38. It is sufficient to show that there exist a free set B of m < k:d(d — 1)"1_1 words of length d. Let us divide the
alphabet A = {z1,...,2,} by two subsets P = {x1,...,2} and Q = {®g41,...,2,}. Then is es easy to see that
the set B = {pqlp € P,q € Fg — d— 1} is as needed.

39.
a) According to Problem 23, #-S-B(x) = L(z) > 1.

b) Answer: no. For example, over a 2-letters alphabet A there is no such a set B with p(z) = 2® + 20 (it is shown
in Problem 36 b). It remains to see that the series

1

fla) = 1—2x+ 23+ 210

has nonnegative coefficients (since the initial term of the above series is 1, the above condition is equivalent to
the required inequality f(x) > 1). We will show that the coefficients of the series satisfy the stronger inequality
an > (3/2)™. One can provide the proof of the last inequality by induction, using the reccurent relation a, 10 =
20,19 — Qni7 — Gy, which follows from the condition (1 — 2z + 2% + 210) f(z) = 1.

Another similar example is the case p(z) = 425, again over the two-letter alphabet.

40. The proof is given in Theorem 5.1 (equivalence A<—=-B) and Proposition 5.6 in the paper: David Anick,
Generic algebras and CW-complexes, Proceedings of 1983 Conference on algebra, topology and K—theory in honor
of John Moore. Princeton University, 1988, p. 247-331.

41. The question is still open.

7 Words and chains

42. The word “of” has not any overlaps with the other words because no words begin with the letter f and do not
end with the letter o. There is no letter s in the word “tournament” so a chain can consist the word “towns” only
as the last arc. A letter t is only on the first and the last position in the word “tournament”. So overlaps of the
word “tournament” with itself are only “tournamentournament”.



Now we find all chains: tournament, of, towns; tournamentournament, tournamentowns;... There are two chains
of the length n for n > 1.

43. From the arc on the right of a chain construct an antichain leftward arc by arc. We obtain a unique antichain
of the length i if it exists. We prove by induction that the beginning of the ith arc of the antichain lies between
the beginning of the ith from the right (numeration of arcs is from the right) and the end of the (i+1)th chain
arcs. The first arcs of chain and antichain coincide, therefore the base of induction holds for ¢ = 1. Now check the
induction statement for ¢ = 2. The second antichain arc is on the right from the second chain arc because there
are not forbidden words between the first and the second antichain arcs. The beginning of the second antichain
arc is on the left from the end of the third (from the right) chain arc because there is no forbidden words after the
end of the third chain arc by the definition of a chain. So the base holds for ¢ = 2. Then we prove the induction
step. Suppose the induction statement is true for 1,2,...,i. By the induction assumption the i¢th chain arc intersects
the (i—1)th antichain arc, but the (i+1)th antichain arc does not intersect the (¢—1)th antichain arc, therefore the
(i+1)th antichain arc is on the left from the ith chain arc. Between the end of the (i4+2)th and the beginning of
the ith chain arcs no forbidden words begin, therefore the beginning of the (i+1)th antichain arc is on the left from
the end of the (i+2)th chain arc. The (i—1)th antichain is not on the left from the (i—1)th chain arc, so the (i+1)
chain arc does not intersect the (i—1)th antichain arc, but intersects the ith arc. Therefore the (i+1)th antichain
arc is not on the left from the (i+1)th chain arc. This finishes the proof.

44. Assume that a chain ¢’ is a subword of a chain ¢. Let us prove by induction that the ith c-arc is not on the
right from the ith ¢-arc. The statement is obvious for 7 = 1. If the first arcs of considered chains coincide and the
chains have the same length then their arcs coincide and so the whole chains are equal. Hence the chain ¢’ does
not start from the beginning of the word c¢. Between the first and the second c-arcs there is no forbidden words.
Therefore the first ¢’-arc is not on the left from the second c-arc and then the second ¢’-arc is on the right from
the second c-arc. So we proved the base for i = 2. Now we prove an induction step. We consider two cases.

The first case. The (i+1)th ¢’-arc does not intersect the ith c-arc. Then the (i+1)th ¢’-arc is on the right from
the (i+1)th c-arc.

The second case. The (i+1)th ¢’-arc intersects the ith c-arc. The (i+1)th ¢-arc does not intersect the (i—1)th ¢’
arc, therefore by induction hypothesis the (i+1)th does not intersect the (i—1)th c-arc. Summarizing observations
we obtain that by definition of chain the (i+1)th c-arc is not on the right from the (i+1)th ¢’-arc.

The induction statement is proved and we must only consider the case when the last c- and ¢’- arcs coincide.
In this case we note that these chains as antichains (by the previous problem) have the same arcs on the right and
the same length. Therefore they coincide.

45. Assume that a word is decomposed as gc where g is admissible word and c is a chain of the length at least two.
By the problem 43 the chain c is also an antichain. If you reduce the chain ¢ by the beginning of the first arc and
it will appear a forbidden word that is on the left from the reduced chain then the antichain ¢ can be continued to
the left and we obtain a new decomposition g’c¢’ where the chain length is increased by one. If a forbidden word
does not appear then the antichain ¢ can be reduced by the beginning of the arc on the left and we obtain a new
decomposition g”c¢” where the chain length is decreased. If the third decomposition g”¢” exists then note that the
arcs of the antichains c,c’,c” are the same so there are two chains among them which lengths differ at least by
two. But in this case the arc on the left of the longest antichain does not intersect the shortest antichain and we
have a contradiction.

46. We will apply the problem 21 for an exact sequence

. =>Ch1  G=C, G=0C, 1 - G=...C;, - G=A-G=GC

Let us construct this sequence. Choose a word cg from C), - G. Add a tail of the chain ¢ to the beginning of
the word g and obtain a decomposition ¢’¢’. If ¢’ is an admissible word then the word ¢’¢’ belongs to C,,_; - G. If
g’ contains a forbidden word then the chain ¢ can be continued to the right to the chain ¢”, the rest of the word
denote by ¢g”. Then the word ¢’g” belongs to C, 41 - G. A chain can be continued in unique way in the word, so
the constructed maps are biunique on the parts of C), - G.

The arrows C; - G = A -G = G = () are the same as in the problem 27. By the problem 21,

1-L(x)(1— Nz + Ci(x) — Ca(x) + C5(z) —...) =0.

So we obtain the formula.
47. By the problem 42 C)(z) = 22 + 2° + 29, C,,(z) = 27~V (2° 4 2'°). By the formula from the problem 46

1 1

=1 2 5 10y(1 — .9 8 _ = Sal0
1= 26z + a2+ (2% + 210)(1—a® + 21® — ) 19263 +22 + LHL

L(z)

_ 1+2°
T 1 — 260+ 22+ x5+ 29 — 25210 4 p11

48. Consider four cases of a forbidden word of four letters.



1) The forbidden word is of the form aaaa. In that case Cs, = 24+l Cy,_1 = 2. By the formula in the
problem 46

1 1 1—at

T 1-256r +at — 2%+ ... 1- 9256w+ L= 1 256x + 25525
= (1 —a*)(1 + (2562 — 2552°) + (2562 — 2552°)% +...).

L(z)

Then a coefficient of 27 equals to 2567 — 3 - 2562 - 255 — 256° = 2567 — 4 - 2563 + 3 - 2562.
2) The forbidden word has the form abca and at least two distinct letters. In that case C,, = z3"+1,

1
T 1—-256z 4+t —aT + ...

L(z) =14 (2662 —at +a27 — .. )+ (2562 —at 2" — . )2+

A coefficient of 27 equals to 2567 — 4 - 2563 + 1
3) The forbidden word is of the form abab. In that case C,, = x2("*+1),

1

L =
() 1—256x + % — 28 +28(...)

A coefficient of 27 equals to 2567 — 4 - 2563 + 2 - 256.
4) The forbidden word is free. This case was analyzed in the problem 18.
49. From the 46 it follows that

1 1 1 1
1_Nx—L(z):L(x)~C'1(:l:)- 1_N$—L(z)-C’2(x)-1_Nx—|—L(x)-C'3(Jc)~ TN

The left part of this equality is a dimension series of the set of inadmissible words. The right part of this equality
is an alternative sum of dimension series of langugages L - C,, - F)4. One can define a map from these labguages
to the set of inadmissible words and vice versa, every inadmissible word can be decomposed as gc,u, where g is
admissible, ¢; is a forbidden word. But one can decompose an inadmissible word as gc,u in several ways. Denote
the number of such decompositions of the word w as w,,. So then the sum of the numbers (w; —wy +ws —ws+...)
for all inadmissible words of the length k equals to a coefficient of z* in the right part of the equality behind — and
therefore in the left part, that is equal to the amount of inadmissible words of the length k.

Note that from the decomposition of the word w as gc,u one can obtain another decomposition, in which the
chain length is decreased by one, by moving a tail of ¢, to u. So two these decompositions will be cancel in the
sum (w; — wg + w3 — wq + ...). In other words the sum (w; — wy + wg — wg4 + ... ) equals to the quantity of
decompositions of the word w as gcu where subword c¢ is a maximal chain of odd length.

Consider a decomposition of the word w as gcu where ¢ is a maximal chain with the most right 'arc. By the
problem 45 in the word gc there is a maximal chain of the length one or it can be decomposed as g'c’ where ¢’ is
admissible and ¢’ is a chain which length differs by one from the length of the chain c¢. In both cases there is a
maximal chain of odd length in the word w. So we showed that (w; — we + ws — w4 + ...) is at least one. But
the sum of such quantities for all inadmissible words equals to their number. So then every such quantity equals
to one and in every inadmssible word there is only one maximal chain of odd length.

50. Apply the formula from the problem 46.

1 1
L(z) = =
() 1—(N+1)z+Ci(z) —Co(x)) +... L(lz) -z
51. Apply the formula from the problem 46.
W(a) 1 1
r) = 7 7 =
L — (N + Nz + (Ci(z) + C1(2)) — (Co(a) + Co(@) + ... I + 1y — L

52. Admissible words of the language M are the chains of the language L. Chains of the length n consist of
n+1 letters. Therefore C,(—z) = (—1)"T1C,(z). Thus we obtain M(—z) = 1 — Nz + Cy(z) — Ca(x) + ..., ie.
L(z)M(—z) = 1.

8 Additional problems

53. The existence of a free subset under the assumption m < k?(d — 1)¢~! is established in Problems 37 and 38.
It remains to show that no such set exists for m > k?(d — 1)4-1.

Lthis means that any arc of any maximal chain is not on the right from the last arc of the chain ¢



a) If we are given m > n?/4 words of length two, which form a free set S, then the first letter of any of these words
cannot coincide with the last letter of another word, i.e., there are two disjoint subsets of letters, P and @), whose
elements may only serve as the first letter or the last letter, respectively, for a word in S. Let r = |P| 4+ |Q| < n,
and let s = |P|-|Q| > |S| = m > n?/4. By the Viet theorem, the numbers |P| |Q| are the roots of quadratic
equation 22 — raz 4+ s = 0, whose discriminant D = r? — 4s is negative under the above constrains on r and s; hence
we get a contradiction.

b) Let B be a free set consisting of m words of length 3. Since no letter can be both the first and the last letter for
words of the same free set, the alphabet A contains two disjoint subsets X and Y, whose element can serve as the
first letter or the last letter, respectively, for a word in B. If there are letters that does not occur as the first or the
last letter of a word in B, we add each of them to one of X and Y. Without loss of generality, we assume that the
number s of elements of the set X = {z1,...,z} is no greater than the number ¢ of elements of Y = {y1,...,y:}.
Each element B has the form x;, x;,;, or =i, ¥;,Y;,, and no final subword zy of an element of the first type can be
the beginning of an element of the second type. Let us change the set B by replacing each word of the first type
with a word of the second type according to the rule z;xy — zyy;, where 1 < i < s < t. It is readily seen that
such transformation maps no element of B to another element of B, no distinct elements are mapped to the same
one, and the resulting set B’ remains free. All elements of B’ are of the form z;,y;, y;,. Therefore, the number of
the elements of B’ (which is still m) does not exceed st?, whence

2 3
2 2 4
m < st < (n— t)t2 < (n — ;) <3n> _ 4k3,

as required.

¢) The proof uses the following analytical

Lemma. Let R(x) = 1+ajx+asx?+... be a series with positive integer coefficients. Suppose that R(z) =
for a polynomial p(z) with constant term 1. Let R,(z) = 1 + a1z + agz? + - -+ + a,a™. If we have p(z) >
for all x € [0, x|, where xo > 0, then inequality R, (xo) < 1/m holds for each n > 0.

Omitting the proof of the Lemma, we pass to the solution of the Problem. Let s = mk~% — (d — 1)4~1; we
need to show that no free set exists if s > 0. Assume the contrary. Then, by Problem 39a), the series 1/p(z),
where p(z) = 1 — dkx + ma?, has positive integer coefficients (there can be no zero coefficients, since the series is
infinite by Problem 33). Note that the polynomial p(x) is positive on the segment [0, 1] whenever s > 0 (proof: the
minimum of this polynomial on [0, 1] is achieved either at an end of this segment, where p(z) is positive, or at a

point zo such that p’(zg) = 0, i.e., at £g = ——=—; then p(x¢) = szg > 0). It means that there is a number m > 0
E(d—1) 0

1/p(x)
m >0

such that p(z) > m for z € [0,1]. By Lemma, it follows that, for all n, the number of words of length at most n,
which is L, (1), is bounded by the constant 1/m.

54. a) By definition, the forbidden words of L' are all two-letter words that are not forbidden in L. Hence the
forbidden words of (L')' are all two-letter words that are not forbidden in L', i.e. exactly all forbidden words of L.
Thus the alphabets and the sets of forbidden words for languages L and (L')' are the same, hence the languages
are equal.

b) Since the set of forbidden words for the language M = (L; + L)' is the union of the sets of forbidden words
for the languages L} and L}, and the alphabet of M is the union of their (disjoined) alphabets, the language M is
the free product of L} and L} (see definition in Problem 51).

¢) The forbidden words for (L ~L2)! are the admissible two-letter words of the languages L1 and Ly and all words
of the form aB, where a is a letter of the alphabet of L; and B is a letter of the alphabet of L. Hence

(Ly-Lo)' =LY LY.

55. Let w be a word of length nk (where k > 1) over the alphabet of L, and let w™ be the corresponding
word of L. Let us break w into subwords w = wy ...wy, each of which corresponds to a letter of the language
L™ Tt is readily seen that w has a forbidden subword u (which consists, by definition, of at most d letters) if and
only if there is a subword w’ = Wp ... Wprm—1 such that each w; either is contained in the word u or overlaps with
it, so that the number m of n-letter pieces in w’ satisfies the inequality m < s, where

s:2+[d_2]
n

Thus any non-admissible word w(™ of L(™ contains a non-admissible word of length at most s, hence the
language L(™) can be defined by a finite set of forbidden words, and the length of each forbidden word is no greater
than s. This proves part a) of the problem.

b) Answer: not always.

Let us prove that the lengths of forbidden words of L(™) are less than d if d > 3 and n > 2; in particular, this

language is not d-defined, which gives a negative answer to b). It suffices to prove the inequality s < d, or

d—2
2+ —— <d.
n



The last inequality is clearly equivalent to inequality (d — 2)(1 — 1/n) > 0, which is obvious under the given
constrictions on d and n.
¢) Answer: n =d — 1.

By the above, the language L™ is either quadratic or free (i. e, the lengths of forbidden words do not exceed 2)
under assumption s < 2, which is equivalent to inequality 2 + dn;Q <3,orn>d—2,i.e., n>d—1. On the other
hand, if n < d — 2, then there exists a d-defined language L such that the language L(™ has forbidden words of
more than three letters: for example, we can take the language L over the three-letter alphabet {a,b,c} with one
forbidden word abc?—2.

56. See the solution of Problem 58.

57. Answer: yes.

For example, let A be an alphabet of n > 2 letters. Consider the language L = F4-FY. Since F4 has exponential
growth (in the statement of Problem 55c¢) we can take ¢; =n+1 and ¢o = n), and since 2F4(z) > L(x) > Fa(z),
the language L also has exponential growth. By Problem 53c), we have L' = (FA)! . F}4 = L, thus both L and L'
have exponential growth.

58. First we prove the following assertion (it is not necessary for solving Problem 56 only).

Lemma. Let a = {ag,a1,a2,...} be a sequence such that ayp = 1 and the inequalities a1 > 2,...,ay > 2 for
some positive integer N. Then the sequence a has polynomial (respectively, exponential) growth if and only if the
corresponding inequalities in assertions b) and ) hold for all a with k > N.

Proof of the Lemma. Let M = Hiaz\)/{{ai}' It is clear that if, for some polynomials p, g of degree d, the inequalities
K3

p(k) > ax > q(k) hold for k > N, the inequalities p(k) + M > aj > q(k) — M hold for all k. The Lemma for the
case of polynomial growth follows. Similarly, if ¢f > ay > c§ for k > N, then (M + ¢1)* > aj, > ¢* for all k, which
completes the proof of the Lemma.

Let us pass to the solution of the problem. Clearly, to get all admissible words of length > d — 1, we can do the
following. We start with the word at a vertex of the graph. Then we go along a path that starts at this vertex, and
each time we read a letter on an edge that we pass, we add this letter to the right of our word. Clearly, different
words are obtain from different paths. It is readily seen that the language is finite if and only if no path returns to
the initial vertex, that is, the graph has no cycles (it proves assertion a)). It remains to consider the case when the
language is finite and there is a cycle in the graph. In this case the number a; of words of length j > d is equal to
the number of paths of length j — d + 1.

Assume that there are two intersecting cycles; let their lengths be d; and do, and let v be their common vertex
such that the edges issuing from it when we go along the two cycles are distinct (and correspond, say, to letters x
and y). The words that we read on edges when we walk by paths of length k that start at v and go along each of
the cycles are distinct, hence aj, > 2 for all k£ > 0. Moreover, for each j = (d—1) +¢(dy +d2) +7, where r < d; +d»
is the remainder of division of j — d + 1 by dy + da, there exist at least 2¢ distinct paths of length j —d + 1 (on

each of ¢ steps we go along both cycles in an arbitrary order, and then make r steps in an arbitrary cycle), thus
j—d+1 . .
for j > 2d we have a; > 29 = 2“1”2} > ¢, where ¢ = 91/2(di+d2) - Qipce always a; < n’, the Lemma (for N = 2g)

implies that the growth is exponential.

It remains to consider the case when the graph I';, has cycles, but they do not intersect each other. It suffices
to verify the polynomiality condition for the number by = ar44—1 of paths of length & in the graph T'y, (since if the
corresponding inequalities hold for by, then they also hold for ay for £ > d — 1 after the polynomials p(x) and ¢(z)
are replaced with polynomials of the same degree p;(z) = p(x +d — 1) and ¢;(x) = g(z + d — 1)). We will prove
that each term of the sequence by is equal to the value of some polynomial b(k) with positive highest coefficient
(we say that such sequences are polynomial).

Let us consider another graph I'; | whose vertices are the cycles of I';, and those vertices of I', that belong to no
cycle (the latter will be referred to as isolated vertices), and whose edges correspond to the edges that connect the
corresponding components (cycles or isolated vertices) of I'y,. It is clear that the graph I} has no cycles, i.e., the
set of paths in it is finite. Let Q¥ be the set of paths in I} that start at a given vertex v, and let ¢p be the set of the
corresponding paths of length %k in I'r. Since by, = )" ¢}, it suffices to show that the sequence {g}} is polynomial
for each vertex v. We proceed by induction on the length D = D(v) of a maximal path that starts at v. If D =0,
then either ¢j = 0 for k > 0 (if v is an isolated vertex), or g} =1 for all k (if v is a cycle), thus the corresponding
sequence is always polynomial. Let now v be an initial vertex of I'}, from which r arrows as,...,a, issue to
vertices v1,...,v, (which are not necessarily distinct). By induction, we assume that ¢’ = b;(k) is a polynomial
with positive highest coefficient. If v is an isolated vertex, then gy = >~'_; ¢;* ;, hence this sequence is polynomial
as the sum of polynomial sequences. On the other way, if v is a cycle, then, before we pass along one of the edges

ai,...,a, a word of any length is possible in the cycle, hence ¢p = Y7_, (Z?Zl qZ'i_j) =3 (Z?Zl bi(k — j))
is the sum of polynomials with positive highest coefficients. This completes the proof.

Note. It is possible to define the growth of any regular set in a similar way. To this end, the corresponding
finite automaton is used.
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59. Let M be the set of admissible words. Assume that the language is d-defined. Let us prove that each word is
M-equivalent to a word of no more than d letters.

Indeed if a word v is non-admissible, then, for any word w, the word vw is also non-admissible. Hence all
non-admissible words are equivalent. in particular, any of them is equivalent to a forbidden word, which is of
length at most d.

Assume that v is an admissible word of length greater than d. By v denote the subword of u consisting of its
last d letters. Let w be an arbitrary word. If the word uw has a forbidden subword, then this subword is contained
in vw, since the length of any forbidden word is at most d. Hence the words u and v are equivalent.

Let the alphabet have k letters. Then the number of words of length at most d is no greater than (k +1)?. Let
n = (k+1)%+1. In any set of n words there exist two words that are M-equivalent to the same word of length at
most d and, thus, to each other. Therefore, the set of admissible words is regular.

60. a) Let S be a maximal set of words in which no two words are M-equivalent. Then any other word is equivalent
to one of S. Let us construct a finite automaton. Take S as the set of vertices of the graph. For all s € S, a € A,
we draw an arrow marked by a from s to the vertex that is M-equivalent to sa. We say that the vertex which is
M-equivalent to the empty word is the initial vertex of the automaton, and all elements of S which belong to M
are the approving vertices of the automaton. It is easy to see that the automaton approves a word if and only if it
belongs to M.

b) Any word determines a path along arrows of the finite automaton. Clearly, if to words determine paths ending
at the same vertex, then these words are M-equivalent, where M is the set of all words approved by the automaton.
Hence the number n in the definition of regular set can be taken to be one plus the number of the vertices of the
automaton.

61. Consider a finite automaton (I, vg, W) which approves the set M. For each vertex v of T', denote the set of
words for which the corresponding paths in I" end at v by T,.

Further, for each vertex v and each letter a denote by U (v, a) the set of all vertices u of I" such that there is an
arrow marked by a from u to v. Then the following relations hold:

T@)=1+Y Y aT() (1)

a€A ueU(vg,a)

and
TLw=Y Y L@ )
a€A uelU(v,a)
for v # vy.
Let us number the vertices of T, starting with vg: V' = {vg, v1,v2...,v,}. Note that each of relations (1), (2)

can be viewed as an equation of the form

(1+ 2P, (2))T,, (z) = Y 2Qi;(2)To, () + Ri(x), (3)
J#i
where P;(z), Q;;(z), R;j(z) are some given polynomials, with respect to unknown series Ty, (), ..., Ty, (2).

Let us try to solve equations (3). We use the last equation to express T,, (z) in terms of the rest series,

_ Qrj(z) Ry, (2)
T, (x) = ;xwavj (z) + ma

substitute this expression instead of T, (z) into the remaining equations, and multiply them by (1+zPy(z)). Thus
we obtain equations of the same form, but their number (which is also the number of unknowns) decreases by
one. By doing the same for Ty, _, (x), Ty, _,(x), etc., we obtain at last an expression of T, (z) as a quotient of two
polynomials. By substituting it into the expression for Ty, (x), we find that this series is also a quotient of two
polynomials. In this way we obtain the same for all T}, (x). It remains to note that M(z) = 3 . To(x).

62. For each word v, denote by v°PP the word consisting of the same letters in the opposite order. For any set of
words M, we write M°PP = {v°PP | v € M}. Clearly, M°PP(x) = M (x) for any M. If L is a language whose set of
forbidden words is B, then by L°PP we denote the language whose set of forbidden words is BPP.

Let us return to our problem. It is clear that the set MSPP consists of all admissible words of L°PP which start
with a subword equal to w°PP. This set is regular (the proof is similar to the solution of problem 59). Hence the
series M,,(z) = MZPP can be represented as a quotient of two polynomials.

The set M,, is also regular, but the proof of this fact would take more place.
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3amMoLWEeHNs, pacKpacku
N NJANTOYHLbIE rPpynnbl

A.4d.Benos-Kanean, .MBaunos-Iloromaes, A.MaJsmcToB,
N.Mwurpodanos, M.XapuToHoB

Saaun 3aMOIIEHNsT OYeHb YaCTO CTAHOBSITCS B IEHTPE Pa3jMIHBIX CIOXKeTOB B Maremaruke. OdeHb
9acTO TaKue 3aJaud PEIIaloTCs C IMOMOIILI0 packpacokK. OmHON U3 1eJiell HACTOSIIErO MPOEKTa, sIBISETCS
n3yvenue 60Jiee MOITHOIO METOJA, CBSI3aHHOI'O C MPUMEHeHneM MOoHsTuil Teopun rpyti. [lomyTHo MbI n3y-
9UM, YeM II0 CYTH, sIBJISETCSI paCKpacKa B HOBBIX TePMHUHAX, & TaKKe PACCMOTPUM BOIIPOCHI, KaK 3aMOIIeHU
MOTYT OBITDH ITOJIE3HBI B CAMOI TEOPHUHU TPYIIIL.

IlepBorit MUKJI gBIAETCS TPEIBAPUTEILHBIM, 3TO HECKOJIHKO 3aJa49 Ha 3aMollenne. Bropoit u TpeTnit
IUKJIBI SIBJISIIOTCS TIOATOTOBUTEILHBIMU, TYT MbI pa3padaTbiBacM HEOOXOJIUMYIO TEXHUKY HOBOTO MeToa. Bo
BTOPOM BBOJSITCS HEKOTOPBIE IMOJIE3HbIE TOHATHS U U3y9IaeTCs CBA3b CJIOB U IyTeil Ha rpadax. B Tperbem
MBI BBOJIMM OCHOBHBIE IIOHSITHSI TEOPUU T'PyIil. B deTBEepTOM NUKJE MBI IPUMEHsIEM HOBYIO TEXHUKY K
IIJTATOYHBIM 3aMOITEHUSIM.

Huka A. 3amouienust 1 pacKpackKu

Vroyku u3 3 KIeTOK L-terpamuno T-reTpaMuHo

¢ Al. Ilpu kagkux M u N mpsmoyrospauk M XN MOXKHO pa30uTh Ha YIrOJKH U3 TPEX KJIETOK?
¢ A2. IIpu kakux M, N u P npsmoyrojabauk M X N MOXKHO pa3OHuTh Ha IPSIMOYTrOJbHUKH Px17

¢ A3. Ilpu xkakux M, N u P npsmoyroiasauk M XN ¢ ogHoi 106aB/IeHHOH KJIeTKOH MOXKHO pa30UTh Ha
npsimoyroyibHuKH P x17

¢ Ad4. Ilpu kagkux M, N, A, B npsmoyroasauk M X N MOXXHO pa30uTh Ha IPSIMOyroJbHUKH AX B?
¢ AS5. Ilpu kagkux M u N mpsmoyrossauk M XN MoxkHO pas3burs Ha L-TerpamMuao?

Carenyrtoriasi 3a/1a1da He PEITaeTcs ¢ IIOMOIIBIO METOI0B PACKPACKH, JIJIsl €€ PEIeHns Hy2KHO pa3paboTaThb
OoJiee TIIyOOKME METOBI. ITUM MBI 3aiiMemMmcs B mukiiax B, C, D.

¢ A6**. Jokaxkmre, uTo eciam npamoyroabHuK M X N MOXKHO 3aMOCTHTH ¢ HOMOIIBIO T-TeTpaMuHo, TO
M u N gensrcs Ha 4 .

IHuka B. IloaroroBurejbHBIN MaTepuas: CJOBa, rpadbl U IMyTU

[TycTh ecTh HEKOTOPBIN KOHEUHBIH ajdasuT A: MHOXKeCTBO 6VKB a, b, ¢, . .. VI3 6ykB andaBura MOXKHO
COCTABJIATH CJIOBA — KOHEYHBIE TIOC/IEI0BATEIFHOCTH OYKB, HAapuMep, abbe, ¢, cabcabeebb u .. Bynem
Ha3bIBATH Npouseederuem cjioB A u B cJI0BO, oIy darolneecsl MPUMICHIBAHIEM CJI0OBa B cripaBa K CJIOBY A.
Takum obpazom, amdaBuT 3a1aeT MHOKECTBO CJIOB, C OIpEIeIeHHON Ha HEM Ollepalineil mpon3BeIeHns.

N-o01i cmenenvto coBa X Ha3bIBAeTCA CJIOBO, ITOJIyYAIONIeecs BLIMUChIBaHUeM cjioBa X N pa3 moapsi.

¢ B1. Jlokaxkure, uro ecsu npoussenerue cjioB U u'V coBunagaer ¢ npouszsenerHueM cioB V u U, o n U,
u V mpencTaBisiioTcsT B BUJIe CTelleHel KAKOro-TO CJIoBa A.



Hoayepynnoti GymeM Ha3bIBATH MHOXKECTBO 3JIEMEHTOB C 3aJlaHHOM Ha HEM Ollepallueil MPOu3BeIeHus *
(pe3yJIbTaToM MPUMEHEHUsI OTEPAIH JIJIst JIBYX JIEMEHTOB SIBJISIETCS JIEMEHT U3 TOrO YK€ MHOXKECTBa) U
BBITIOJTHEHHBIM J1JIs JIIOOBIX 9JIEMEHTOB @, b, ¢ coiicrBoMm @ * (b* ¢) = (a * b) * c. D10 cBOiCTBO HA3BIBAETCS
CBOMCTBOM aCCOIIMATUBHOCTH.

IIpumepbl. MHOXeECTBO HATYPAJBHBIX YHUCESI 00Pa3yeT MOJIYyTPYIILY, OTHOCUTEIBHO CJI0XKeHUs1. MHOXXEeCTBO PAI[MOHAIIb-
HBIX YHCEeJI 06pa,3yeT l'IOJ'IyI‘pyl'IHy OTHOCHUTEJIBHO yMHO)KeHI/IH, a OTHOCHUTEJIBHO JIEJIEHUYd — HET, TaK KaK Ha HOJIb JCJINTh HEJIb34d.

BamaBaemoe aJ1(PaBUTOM MHOYXKECTBO CJIOB ABJISETCS IIOJIyIPYIIIOi OTHOCUTEILHO OIIEPALIIHI IPUIIICHIBA-
HUsI OJTHOTO CJIOBA K JIpyromy. (AccolmaTuBHOCTD, 09€BUIHO, COBIII0IaeTcst.) Bosee TOUHO, TaKOE MHOYKECTBO
HAa3BbIBAETCSI c60000H0U IOy IPYIIIOI.

¢ B2. [lers u Bacst cocTaBisiior pas3jaudHbIe CJI0Ba HUCIOAB3YsT OYVKBBI a, b, ¢, d, e, f. B jr0bom cioe
MOXKHO BBIYEPKHYTH JIIOOYIO U3 TpeX Iap psiioM crosiux Oyks (B joboM mopsiike): a u b, c n d, e u f.
Tak>ke MOXKHO BCTABHTH JIFOOYIO U3 3THX map OYyKB B JIFOOOM MecTe cjoBa. Hampumep, cioso dacdbeaaf
MOKHO ITpeobpa3oBaTh caeayiomuM oopasom: dacdbeaaf — dabeaaf — deaaf — dfeeaaf. /lokakure,
9TO KazKJ[0€ CJI0BO MOXKHO TAKHMU OIIEPAI[HSIMU IPUBECTH K BUJLY, COJEPXKaIIeMy MUHUMAJIbHOE IUCJIO OYKB,
U 3TOT BHJT HE 3aBHCHT OT TOI0, KaKHe OllepaIid U B KAKOM IMOPS/IKE MPUMEHSIIUCH.

Paccmorpum mpousBosibHOE MOIUMUHO. PaccTaBuM CTPEJIKU 0 ero KOHTYPY, ITOOBI MOJIYIUJICT 00XOT
[0 YaCOBOIi CTPeJIKe WM IPOTHB 4acoBoil crpesiku. ComocTaBuM KarKJIOMY TIOJIMMUHO CJIOBO (TOC/IEI0BA-
TEJILHOCTH OYKB), TaK 9TOOBI CTPEJIKAM «BBEPX», «BHU3», «BIIPABO», «BJIeBO» orBevasu Oyksol U, D, R, L
coorBeTcTBeHHO. [IpU 3TOM 10CJIE/I0BATEILHOCTL OYKB B CJIOBE JIOJIZKHA COOTBETCTBOBATH IOCJIEI0BATEb-
HOCTH CTPeJIOK Ha KoHType. Takum oO6pa3oM, KazKI0My ITOJUMUHO Oy/IeT COOTBETCTBOBATEH HECKOJILKO CJIOB,
TIOJTYYAIONIMXCS APYT U3 JAPYyra ¢ TOYHOCTHIO IO MUK/JIUIECKOTO CIBUTA.

€2

€1
RRULULDD LULDDRRU

Pucynoxk 1.

¢ B3. Onwumwure MHoxkecTBa CJIOB, COOTBETCTBYIOIHE JOMUHO U3 JBYX KJETOK H TPUMHHO-YTOJIKY H3
Tpex KJETOK U Pa3JIMIHBIM IMOJIOKEHUSIM 3TUX IJIMTOK Ha KJIETOYHOH IJIOCKOCTH.

¢ B4. [Iyctb M — MHOXKECTBO CJIOB, COOTBETCTBYIOIEE PA3THIHBIM MOJIOXKCHUSIM JIOMHHO H3 JBYX KJIe-
ToK. IlycTb ¢ KaxkapiM ¢JioBoM u3 M MOXKHO HPOBOJUTH CJECHYIOIIHE OIIEPAI[HH:

1. BeraButp nim yb6parpb psyiom crosmue napbl R uw L wim U u D (kak B 3aja4e B2);

2. mpunucaTb B HadaJ0 cjaoBa 6ykBy R, a B komer; — 6ykBy L, wim Haobopor;

3. npunucarpe B HadaJjo ciaoBa 6ykBy U, a B konerr — 6ykBy D, win Haobopor;

4. npuIUChIBATH APYT K APYTY CJI0BAa, HOJIYYAIONHECS IPU TAKHX MTPe0OPa30BAHUSIX.
Jlokaxkure, 9TO0 TOr/a KOHTYD (bUTYDBI, pa3duBaeMOil HA JOMHHO, MOXKHO HOJIY9IHTH IIPH MOMOIINH ITHX
1Ipeobpa30BaHUI.

MoxkHO 3aMeTuTh, 4TO: omnepanus 1 COOTBETCTBYET JI00ABJICHUIO WJIU YIAJEHUIO Maphbl IMyTeill «Tya-
obpaTHO», omepanuu 2 U 3 COOTBETCTBYIOT BO3MOYXKHOCTU 3aMEHUTH CJIOBO HA €ro IMUKJIMIECKHUI CIBUT, &
onepalysi 4 COOTBETCTBYET IIPUKJIABIBAHUIO IOJUMUHO JAPYT K APYry (C y4eroM TOro, 9ro MOXKHO yOparTh
KYCKH IIyTeli «Tya-06paTHO» ). DTO M03B0JIseT chOPMYIMPOBATH HEOOXOMMOE YCJIOBHE 3aMOIIEHNs B Tep-
MUHaX IIPOU3BE/IEHUI CJIOB.

¢ B5. Ilycrs Bo3MOXKHO 3aMoIIleHHe 3aJaHHOH KOHeUHOI obyactu HabopoMm mnosmmvunao T'. Paccmorpum
HavaJIbHBIH Habop cJjoB, coorBercTByorux Habopy T'. JlokaxkurTe, 4TO TOIJIa CJIOBO, COOTBETCTBYIOIIIEE
KOHTYPY 00JIacTH, MPEACTABISIETCS KaK PE3yJIbTaT MPHMEHEHUS] K 3TOMY HAYaJIbHOMY HAOODY HECKOJIbKHX
omepaIuii MPOU3BeJeHUs H 3aMeHbI CJIOBa Ha €rO ITUKJIHIEeCKHE CABHT.

¢ B6. IIpuBenure npumep, Koraa CJ0BO KOHTYpa MOJIYIAETCS B PE3yJbTarTe MPOBEJEHHS ONeparidil u3
B5, HO 3aMmo1eHre HEBO3MOXKHO.



IIycTs Tenepp Ha IJIOCKOCTH €CTh MHOT'OYT'OJIbHUK, PA30UTHIN Ha [N MaJIeHbKUX MHOIOYTOJIbHUKOB TaK,
YTO HUKAKasl BEPIINHA MHOIOYTOJIbHUKA PA30MEeHNs He JIEKUT BHYTPU CTOPOHBI JIPYTOI'0 MHOT'OYTOJILHIKA.
PaccmoTrprM 3aMKHYTBIE ITyTH, TPOM3BOJILHON JJINHBI, IIPOXOAIIIE 110 CTOPOHAM MaJI€HbKUX MHOI'OYTOJ/Ib-
HUKOB. Byjem cuntarh, 9To OT J00aBiieHns pedpa «TyHaa-o0paTHO» IyTh HE MeHseTCs. BribepeM Kakyfo-
HUOY/(b BEPUINHY pa3bueHus (BepIINHY OJHOIO M3 MHOTOYTOJBHUKOB) — Touky A. IIpoussenenuem aByx
myTei OyJIeM CYUTATh HOBBIH Iy Th, TIOJIYYaIONNNCs, €CJIU CHAYAJIa ITPONTHU IIEPBbIN « COMHOXKUTEJIb», & TIOTOM
BTOPOI.

¢ B7. Paccmorpum 6eckOHEUHOE MHOXKECTBO 3aMKHYTHIX IIyTEH HATHHAOIHXCS U 3aKAHIHBAFOIUXCS B
rouke A. Jlokaxkure, 4T0 eCTh KOHEUHBII HAb0op P 3aMKHYTBIX Iy Teil, HAYHHAIONHXCS U 3aKAHIHBATOIIIXCST
B TOUke A W Takux, 4TO JI0OO0I 3aMKHYTBIH MY Th, IPOXOJSINHIT depe3 A IpeacTaBuM B BHJIE TPOH3BEICHHST
KOHEeYHOro ducJa mnyreit u3 P. Haiiiure MuanMaJpHOE 9uc/Io My Teii B TakoMm Habope P.

¢ BB8. Bsibepem apyryio BepiuHy B, paccMOTpHM 3aMKHYTBIE Iy TH, HAYHHAIOIIHECS H 3aKAHIHBATOIIHU-
ecss B B. Jlokazkure, 9TO MOXKHO YCTAHOBUTH COOTBETCTBHE, TAKOE UTO:

1. Kaxxnomy mytn depe3 A OygeT cOOTBETCTBOBATH CBOH MyTh depe3 B m maobopor;

2. Ilpoussenenuio qByX myTeit u3 A 6yJeT cOOTBETCTBOBATH IYTh, SIBJISIONIHHCS MPOU3BEIEHUEM COOT-
BETCTBYIOIHX ITUM COMHOXKHUTEJsIM myTel u3 B.

Huka C. I'pynmnsr

I'pynnoti 6yaeMm HA3BIBATH MHOXKECTBO JIEMEHTOB C 33JaHHON Ha HeM oleparneil MPOU3BEIeHUS *,
VIOBJIETBOPSIONIEN CJIETYIONTAM CBOUCTBAM:

1. AccommaruBHocts. /s Beex a, b, ¢ Bomouneno a * (b * ¢) = (a * b) * c.

2. CymectBoBanue eaumHuIibl. CyIecTByeT 3JIEMEHT € TaKOil, YTO @€ = ea = @ BBIIOJHEHO JJIsi
BCEX Q.

3. CymecTrBoBaHue o6paTHOro 3JjeMeHTa. /s J1060ro a CymiecTByeT 3JeMeHT a L
aa"l=a"la=ce

, TAKOI 49TO

IIpumepsbi. MHOXECTBO 1eJIBIX YUCeST 00pa3yer IPYyIny OTHOCUTEIbBHO CJIOXKEHUS, OOPATHBIM JIEMEHTOM SIBJISIETCS TIPO-
THBOTIOJIOKHBIA MO 3HAKY. MHOXECTBO pAITMOHAJBHBIX 9nces (HO 6e3 Hyss) o6pasyer TpyIily OTHOCHTEJNbHO YMHOXKEHUS.

I'pynmna nmoacraHoBOK. Tpu sjeMeHTa MOXXHO PACIOJIOXKHUTH JIPYT 33 APYrOM IMECTHIO PA3JUYHBIMHU criocobamu: 213,
321, 132, 312, 231, 123. ®akTUYECKHU, peUYb UMIET O NTPEOOPA3OBAHUAX TPEX HJIEMEHTOB: MOYXKHO MOMEHSATHh MECTAMH JBa U3 HUX
(mosyunrea 213, 321 mum 132), a MOXKHO CMECTHUTH BCE TpU NO HuUKJy (mosyunrca 312 mmm 231). MoxKHO Tak:kKe HUYETO HE
nenarsb, Torma ocranercsa 123. To ecTh, y HAC MOJIy4YaeTCs KaK Obl MIECTh PA3JUYHBIX <«JI€HCTBUil». EcCiau npuMeHuTH CHAaUaJa
OJHO TaKOe JelCTBHE, a MOTOM — JAPyroe, pe3yJabTaTOM ONATh 6y;LeT KaKoe-TO JIeHCTBUE U3 3TUX ITECTH. HaanMep, ecyu
CHa4YaJia IIOMEHATH ME€CTaMU IIEPBBIE ABa JJIEMEHTAa, a IIOTOM CMECTUTH BCE IO KPYTry BIIPAaBO Ha OAHY MO3UIHUIO, TO MOJIYyYUTCA
123 — 213 — 321. To ecTh, BCe PABHO, YTO MOMEHATH MECTAMH MEPBBIA W TPETUH JIEMEHTHI. DTH <«IEHCTBUS> HA3BIBAIOTCS
nodcmarosxamu. OHU 0OPA3YIOT TPYMIY OTHOCUTEJBHO OIMEPAIUU MOCJEJOBATEIBHOTO MPUMEHEHUs. B 3TOH rpyrmrme mecTh
3JIEMEHTOB, €JUHUIIEH SBJISIETCS TOXKIECTBEHHOE mpeobpasoBanue 123. DTO MUHMUMAJIbHAS TPYIINA, € €CTh 3JIEMEHTH @ U b,
Takue 4TO ab # ba. MOXKHO pacCMATPUBATEH TPYIIHI MOJACTAHOBOK Sy, ISl PA3HBIX HATYPAJIBHBIX 1.

¢ CO0. IIposepbre, uro myTn u3 3ama4 B8 u B9 obpasyror rpymiy.

I'pynma maspiBaeTcss abeaesoti WM KOMMYMaAmMueHot eCau Jjs JIIOObIX 3JEMEHTOB @, b BBIIOJIHEHO

ab = ba.
¢ C1. Ilocrpoiite HEKOMMYTATHBHYIO TPYIIIY U3 8 3JIEMEHTOB.

¢ C2. Jlokaxkure, 9T0 MHOYKECTBO JBHXKEHHI! B IPOCTPAHCTBE, IEPEBOISIINX KyO B cebs1, 0bpa3yer rpyil-
ny. Haiinure qucso ee syreMeHTOB.

¢ C3. Jlokaxknre, 4T0 MHOKECTBO CJIoB B ajndasure {ay, a1, az, az™ ', ..., ayn, a, '} Ob6paszyer
rpYHILYy OTHOCHTETLHO OIIePaIluH IIPUITUCHIBAHHS (C COKPAI[eHHeM DSJIOM CTOSIIHX 0OpATHBIX OYKB T H T~ 1).

IIycte G — rpynna. Ilodzpynnoti HasbiBaeTcs nmoaMuokecTBO H € G 3/71eMeHTOB I'PYyIIIbI, TAKOE, 9TO
ecn a, b texxar B H, To a™!, b—1, ba u ab roxe nexar B H. Iloarpymnma cama 1o cebe ToxKe ABIACTCA
I'PYIIION, C TOH 2Ke ollepalen.

¢ C4. Jlokaxkure, 9TO KaXKJbIH JIEMEHT B I'DYIIIE MOACTAHOBOK Sy, €CTh IIPOU3BEJEHHE HECKOJbKHX
HEe3aBUCHMBIX IHKJI0B. OIHIIIATE BCE IOATPYIIIbI TPYIIIBI MOJCTAHOBOK H3 IISITH 3JIEMEHTOB.



DleMeHTE @ 1 b Ha3BIBAIOTCS CONPANCEHHbLMU, €CITN CYIIeCTBYeT TaKoil 3JeMeHT &, 9To xaT + = b.
Ecmm H — moarpynmna HekoTopoit rpynnel G, To comnpszkennoe muoxkecTso & Hx 1 Takske obpasyer 1mo-
rpymny G, taxk kak xhix~lzhox™! = zhihyx 1.

¢ C5. Haiigure Bce conpsi>KeHHbIE MOATPYIIIBI B IPYIIIE MTOACTAHOBOK H3 IISITH JIEMEHTOB.

YacTo omma u Ta Ke I'PYIIa MOYXKET ObITh ONMUCAHA PAa3JIUIHbIMEU criocobamu. Hampumep, siremenTta-
MU T'PYIIILI MOTYT OBITH JTBUKEHUSI, IIEPEBOJIAIINE MHOTOTPAHHUK B C€0s WU ITOJICTAHOBKU U3 HECKOJBLKUX
3JIEMEHTOB, [P 3TOM CaMO yCTPOHCTBO IPYNIIbI OYIET OMMHAKOBBIM. JIJist OlTMCaHnst «OJMHAKOBOCTHY CYIIE-
CTBYET CIIeITNAIbHOE TTOHATHE.

I'pynnst G u H HA3BIBAIOTCS U30MOPPHHBLMU, €CTTU MEKIY UX JIEMEHTAMHU MOYXKHO IIPOBECTU COOTBET-
cTBUE, 00JIa/IAI0IIee CJIEYIONUMI CBORCTBAMU:

1. s kazkioro sjmeMenTa u3 G CyIecTByeT €JIMHCTBEHHbBIN COOTBETCTBYIONNM eMy jiemenT u3 H, u
Ha0OOPOT.

2. Eciin g1, g2 € G coorBercTByioT hy, he € H, T0 g1g2 coorBercTByeT hihso.
¢ C6. Haiiure rpynmny moacTaHOBOK, H30MOPHYIO TPYIIIE JBUXKEHUH, COXPAHSIIONIHX KyO.

IIycTh a/1eMeHTHI HEKOTOPO#l I'PYIIIGI PACKPAIIEHBI B HECKOJIBKO IIBETOB TaK, YTO I[BET IIPOU3BEICHUS
JBYX 3JIEMEHTOB 3aBHCHUT TOJIbKO OT I[BETOB COMHOXKHUTEJEH M He 3aBUCHUT OT BBHIOOpA 3JI€MEHTa BHYTPU
uBera. To ecTh IpoM3BeIEHNE FJIEMEHTOB C IIBeTaMU 1 U 2 BcerJa mMeeT OJIUH U TOT Ke IBET, He3aBUCUMO
OT TOr0, KAKME 3JIEMEHTHI ¢ mBeramu 1 u 2 bepyrcs.

¢ C7. Jlokaxkure, YTO MHOXKECTBO 3JIEMEHTOB C IIBETOM, KaK y €IHHHUIIBbI, 0bpa3yer moArpymiry. Takas
HOoArpyIna Ha3bIBAETCS HOPMAADHOU.

DkBuBajieHTHOoe onpejesienue. lloarpynnma H € G nazbiBaeTcss HOPMAAbHOU, €CIIUA JJisd JTI0O0Tr0
anementa g € G (He obazaTenbio npunaatexamero H) semosmeno gHg™! € H. To ecth, HopMaabHasa
IIOJITPYIINA COMPsi?KeHa caMma, cebe.

¢ C8. Jlokakure 3KBHBAJIEHTHOCTD OIIPEe/JICHUII.
¢ C9. Haiinqure Bce HOpMAaJIbHBIE IOATPYIIIBI B IPYIIIIE IIOJACTAHOBOK Sy.

¢ C10. Paccmorpum mexoropyito rpymry G. Ilycrs K mHoxecTBO 3iemenTos Buza aba=1b~1 (omn
Ha3bIBAIOTCS Kommymamopw,). [lycre H — 310 BceBo3dmoxkHbIe Tpou3Beaenst semenToB u3 K. /lokaxkure,
gyro H sBiseTcss HOpMaJIbHOH TOATPYIITOH.

Huka D. IlauTo4Hble rpyIIibl

MHo2kecTBO KJIETOK Ha KBaJIpaTHON pelrerke Oy1eM Ha3bIBATh C8A3HbIM, €CJIH U3 JIIO00W €ro KJIeTKH B
JIIOOYI0 JIPYTYI0O MOXKHO TIOTIACTH, IIePeXo/is U3 KJIETKNA B KJIETKY IO CTOPOHE.

IIycts T — MHOXKECTBO KJI€TOK HA KBaJIPATHOI pelleTKe, JIOMOJHEHInEe K KOTOPOMY CBsA3HO. Eciu mepu-
meTp T MoHO 000iiTH, HE TIPOXOJIs IO OJIHOMY Pebpy JBaxK/ibl, OyiaeM HazbiBaTh 1T’ naumkod. Tenepb Mbr
Oy/ileM paccMaTpPUBaTh 3aAMOIIEHUS C IOMOIIBIO TIJIUTOK.

PaccmorpuM MHOXKECTBO CJIOB, COOTBETCTBYIOMMX KOHETHOMY HAOOpy minToK. IlycTh ¢ aTuM MHOXKe-
CTBOM MOXKHO UTPaTh B UI'PY, KakK B 3aj71a4e B4, To ecTb OpaTh CJI0BO, IPUITUCHIBATH B JIIOOOM MECTE B3aUMO-
obpaTHbie OyKBbBI, 3aMEHSATH CJIOBO Ha €r0 CONPSKEHHOE, a TaKKe IPUIHICHIBATD PJIOM Y2Ke ITOJTy IUBIIHECS
csioBa (TO ecTh 6paTh HPOU3BE/IEHNUS CIIOB).

¢ D1. Jlokaxkure, 9T0 MOJIYIEHHBIE OITHCAHHBIM 00pa30M CJIOBa 00pPa3yroT I'PYIIILY.
Bynem HaswiBaTh 9Ty TpyIIy nAumouHot epynnotl JAaHHOTO Habopa.

¢ D2. [Iycts C — MHOXKECTBO 3aMKHYTBIX Iy TeH Ha KBAJApaTHOI perreTke. /[OKaxKuTe, ITO MHOKECTBO
COOTBETCTBYIOIHX ITUM ITyTsIM CJIOB obpasyer rpymiy. Takke jokaKuTe, 4TO JJIs JIOOOro Habopa IIHTOY-
Hasl TPYHNa sSIBISETCST HOpMaJabHOH moarpymnmoit B rpyiire C.

¢ D3. Jlokaxwure, uro ecau obacts O 3amorraercs aabopom T, To cioBo dO, cOOTBETCTBYyIOIEE MEPH-
merpy O, Jjexxkur B muro4dHo rpymme T



3amMoLEHNSA, paCKpacKu
N NANTOYHbIE rpynnbl

¢ E1. [IpamoyronbHuk mxn pasdout Ha gomuHo. [IpoBepbTe, 9TO KaKne-TO JIBe IJINTKU 0Opa3yioT KBaI-
pat 2x2.

a) KakoBo MuHEMAJIbHOE BO3MOXKHOE KOJIMIECTBO TAKIX KBa,ZLpaTI/IKOB?

b) Paccmorpum KBajpar 2X2 u3 Kakux-1o 2 gomuHO. C 5THM KBaJPaTHKOM CBSKEM IN1Pe00pa3oBa-
uue (Flip), nepesozsimnee BepTukaabHOe ero pasbueHne B rOpU30OHTaJbHOE U HaobopoT. Jlokaxkure, 9ro ¢
ITIOMOTIIHIO TIEMOYKHU TAaKUX IIpeobpa3oBaHuil jiroboe pa3bueHne MOXKHO IIEPEBECTH B JIIO0OE.

Pucynok 2.

c*) Ba Kakoe MUHHMAaJIbHO BO3MOYKHOE KOJIMYECTBO TAKHUX [IPe0oOpa3oBaHuii J06oe pasbreHne MOKHO
repeBecTu B Jodoe?

Onpepesnienne. B naibHeiineM MBI emié CTOJMKHEMCS ¢ TaKUM peobpasoBanusivu. Hazosém ux gau-
namu. Paun — 310 Takoe mpeobpaszoBaHME, IPU KOTOPOM BBIOMPAETCS KYCOK IJIOCKOCTH OIPEIEIEHHOTO
BUJ/Ia U MEHSETCS PACCTAHOBKA IJIUTOK HA HEM.

¢ E2. [Ipsmvoyrospauk m X n pa3dout #Ha mautku 1xk. [Iposepbre, uro Kakue-1o k n3 HUX 00pasyroT
KBagpar kXxk.

a) KaxkoBo MuHIMaIbHOE BO3MOXKHOE KOJIUYIECTBO TAKUX KBa,ZLpaTI/IKOB?

b) Ilycrs npsiMOyroIbHUK pa3bUT HA IINTKU 1 X k 1 mycTh Kakue-To k o6pasyor kBaapat kx k. Anaso-
IMYHO, C 9TUM KBaJIpaTHKOM cBsizkeM npeobpasosanue (Flip), mepesojisiiee BepTukasibHoe ero pasbueHue B
TOPU30HTAJILHOE U HA0DOPOT. JloKaKuTe, 9TO ¢ TOMOIIILIO IEIIOYKY TaKUX IIpeodpa30Banuii 110060e pa3bueHne
MOXKHO [I€PEBECTH B JIIOOOE.

c*) Ba Kakoe MUHMMAJILHO BO3MOYKHOE KOJIMYECTBO TAKUX MTpeodpa30oBaHuil Jr0boe pasbueHmne MOKHO
repeBecTu B J0doe?

Pucynox 3.

¢ E3. a) Jlokaxure, 9TO MEHTPAIBHO-CUMMETPUIHBIN BBIYKJIbIH MHOIOYTOJBHIK PA30MBAETCS HA I1a-
paJsutesiorpaMmbl. JJokakute oOpaTHOe, T.€. IYTO €CJIU BBIITYKJIbIII MHOIOYTOJIbHUK Pa30UBaeTCs Ha MapaJiie-
JIOTPAMMBI, TO OH I€HTPAJbHO-CUMMETPHUYEH.

b) Paccmorpum pasbueHue paBuiIbHOTO 2n-yroOJIbHUKA C €MHUYHBIMUA CTOPOHAME Ha POMOBI C €~
HUYHBIMU cTOpoHaMu. Ecin Kakne-To Tpu Takux poMmba 00pa3yioT MecTUyroJbHUK, TO OJHO ero pasbueHue
MOKHO 3aMEHHTH Ha JApyroe (cM. puc. 3), U Ha30BeM 3T0 mpeobpasoBanue gaunom. JJokaxkure, 9T0 ¢ TOMO-
b0 1enoYKn GJIUIOB JiToboe pa3bueHrne MOKHO IIEPEBECTU B JIO00E.

¢) 3a Kakoe MUHIMAJbHO BO3MOXKHOE KOJIMYIEeCTBO (BJIUIOB J1H000€ pa3breHre MOXKHO [IEePEBECTU B JII0-
ooe?

d) Kakoe MuHMMAIbHOE YHCIIO MIECTHYTOJBLHUKOB MOYXKET HAOJIOIATHCS IPU Pa3OUEHNH PAaBUJILHOIO
2n-yroJbHUKA C €IMHUIHBIMU CTOPOHAMU Ha MAPAJIIEIOTPAMMBI !



e) Paccmorpum pasbuenne npaBuiibHOrO 6-yroJibHUKa CO CTOPOHOl 1 HA POMOBI C €IMHUIHBIMU CTO-
ponamu. /lokaxkuTe, 94TO € MOMOIIBIO MENOYKHU (DJIUIOB JiIoboe pa3bueHne MOXKHO HEPEBECTH B Ji00oe U
HalluTe, 38 KAKOE MUHUMAJIBHO BO3MOXKHOE KOJUYIECTBO (DJIUIOB JII000E pasdueHne MOYKHO IEePEeBECTH B
Jioboe.

VYkazanme. Hapucyiite kyd nXnXn B BuAe KUPIUIHOHN KIAJAKU. UTO IPOUCXOAUT C KAPTUHKOM, €CJIH
yOupaTh KUPIIUIN 10 OTHOMY 7

Pucynoxk 4. Pucynok 5.

¢ E4. Jlana koHedHast IpsIMOYTOJIbHAs PEIIETKA HA KJIETYATON IIJIOCKOCTU. ¥ 9TO PEMETKH Y KarKJI0TO
pebpa ectb HanpasieHue (cM. puc. 4).

VYcioBue 1. B KaXXIyio BEpIIUHY BXOIUT TO K€ KOJMIECTBO PEOED, UTO U BHIXOIUT.

HazoseMm ¢hrunom ciemyroree npeobpa3oBaHue: €CJu BCE CTPEJIKHA BOKPYT KJIETKUA HAITPABJIEHDI 10 YaCO-
BOI1 CTpeJIKEe, ITOMEHSEM X HAIIPABJIEHNE, I HA00OPOT, €C/IU BCE CTPEJIKU BOKPYT KJIETKU HAITPABJIEHBI IIPOTUB
94acoBOil CTPEJIKU, IOMeHsIeM uX HarpasieHue. Jlokakure, 4TO ¢ HOMOIIBLIO MENoYKN HJnmoB (cM. puc. 5)
J1I000€ PACIIOJIOKEHNE CTPEJIOK, YIIOBJIETBOPSIOIIEE YCJIOBUIO 1, MOXKHO IIE€PEBECTH B JIIOOOE PACIIOJIOKEHUE
CTPEJIOK, YJIOBJIETBOPLIOIIEE YCJIOBHUIO 1.

VYkazanue. Paccmorpure dynkuuio h(z), 3a1aBaeMyro cie/yonmM o6pa3oM: Juist KaxKI0ii KIeTKH T,
y KOTODOIi ecTh HeHalpasyeHHoe pebpo, h(z) = 0. Byxem omnpeiessats h HHIYKTUBHO: €CIIH JUISL T OLIPe/ie-
neHa h(zx), a y — cocelHsist ¢ T KJeTKa 110 CTOpoHe, To h(y) paBHa 0, eciin y KJIETKH y €CTh HeHAIIPaBJIEHHOe
pebpo; 1, ecyn Ipu IBUKEHUU U3 T B Y MBI IIepeceKaeM HallpaBJIeHHOe pedpo, Uiylllee cJieBa HAIIPaBO OTHO-
CUTEJILHO HAIIPABJIEHUS ABUXKEHNS; — 1, €CJIi IpU IBUKEHUU U3 T B Y MbI II€PeceKaeM HalpaBIeHHOe pebpo,
HJIyIee CIpaBa HAJEBO OTHOCUTEJIBHO HAIPaBJIEHUs JBUKeHus. CunTaiiTe M3BECTHBIM, ITO 3Ta (DPYHKIHS
ompeJiesieHa KOPPEKTHO.

Pucynox 6.

¢ E5. PaccMoTpuM mpsiMOYTOTBHUK 110X 71, KOTOPBIH 3aMOCTHJIH IJINTKAME TETPaMUHO. PaccMoTpum ciie-
JIYIOIIYIO JTMArOHAJIBHYIO CeTKY MpsiMBIX (cM. puc. 6). JJokaxkure, 910 J11060€e pedpo, MPOXOIee 0 JHaro-
HaJIAM 2 KJIETOK, IEePeceKaeT POBHO OJHO TETPAMUHO, & YUCIa M U N JeJdarcd Ha 4.

¢ E6. Jloxaxkwure, 9ro ¢ moMoIpio (uaumnos (cM. puc. 7) jar0boe pa3dbueHre MOKHO [EPEBECTH B JTI000E.



Pucynok 7.

Pucynox 8.

¢ E7. Taxue cBsi3HbIe IJINTKHU, YTO JIEOOasi IMpsiMasl U3 MTOKA3aHHBIX HA PUCYHKe 8 mepecekaeT He DoJiee
OIHOM KJIETKW IJINTKU, Ha30BEM p-TumnTKaMu. [Iycts 1), — MHOXKeCTBO P-TIJIUTOK, COCTOSIINX U3 N KJIETOK,

a |T},| — xoamdaecTBO 371€MEeHTOB 9TOr0 MHOXKecTBa. Haitnure |1, |.
[ [ L[] | ||
n L
L HEE
Pucynok 9.
b | [ ] ||
||
[ 1| []
Pucynok 10.

¢ E8. Jlokaxwure, 9TO €C/id IPSIMOYTOJBHUK (X b MOXKHO HMOKPBITH P-IIJINTKAMU, TOKA3aHHBIME Ha

a) puc. 9, b) puc. 10, To 10 nesautr ab.

¢ E9. llycrs D, — ¢urypa, ykazannas wa puc. 11. Jlokaxkure, uro ecim durypa D, TOKpbIBAETCST
p-twumrkamu ¢ puc. 10, to n = 0,4,15,19 (mod 20).

¢ E10. CkoJsbKo criocob0B 3aMOCTUTD JJOMUHOIITKAMU &) TIPSMOYTOIBHUK 2Xm? 6) anTeKcKuii GpuLmanT
(Aztec diamond)? (cm. puc. 12)

Hac unrepecyer nokpsiTue durypsl F' B HECKOJIBKO CJI0EB INIMTKAMHU 13 HeKoToporo Habopa T'. Hazosém
UHBAPUAHMOM TAKYIO0 PACCTAHOBKY YHCEJ B KJETKAX, YTO CYMMAa YHCEJI, MOKPBITHIX JIFOOOH IJIUTKON u3
nabopa T, nenutcs Ha p. VIHBapuanT nempusuaner, €CJau CyMMa YUCeI, TOKPBITHIX durypoit F', He meuTcs
Ha P.

¢ E11. a) [Jokaxwure, 9T0 €CJiu HETPUBUAJIBbHBI NHBAPUAHT CYIIECTBYET, TO HEJIb3sl IIOKPBITH F' 1iuT-
kamu u3 T’ Tak, 9TO KPaTHOCTDb MOKPBITHS KaxKJ0il KJIeTKN cpaBHuMa ¢ 1 o moxayiro p. 6) Jokaxkure, 4ro
€CJI1 HeTPUBNAJIbHBIX THBAPUAHTOB HET, TO TaKOe ITIOKPBITHE CYIIECTBYET.
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Pucynoxk 11. Pucynox 12.

¢ E12. Jlna xkakux m U n OpsIMOYTOJIBHUK 17X 7, MOYKHO HOKPBITH YIOJKAMHU U3 3 KJIETOK TaK, YTOOBI
KaXK/[asi KJIeTKa ObLja IMOKPBITA OJUHAKOBOE UHCJIO pa3?

¢ E13. lHoayunsapuarmom HA30BEM TAKYI0 PACCTAHOBKY YUCE] B KJIETKAX, UTO CYyMMAa UHUCEJI, TOKPBITHIX
JI060# TIIUTKOM m3 Habopa ', oTpunareabHasd, a CyMMa 9HCes, MOKPBITHIX (pUrypoit F', moaoKuTebHasL.
Jokazkure, 9TO a) €C/Id MOJyHHBAPUAHT CYIIECTBYET, TO MOKPBITH (urypy F durypamn nz T tax, 9to
KayKJ1asi KJIETKA IIOKPBITA OINHAKOBOE IHCJIO Pa3, HeJIb3s1; 0)eCsIu MOy NHBAPHAHTOB HET, TO TAKOE ITOKPBITHE
CYIIECTBYET.

¢ E14. Jlano TabJso ¢ JaMIIOIKAMHI U MYJILT ¢ KHOTKAMU. KHOMKA MEHSIeT COCTOSTHUE COeTMHEHHBIX C HEM
JIAMITOYE€K Ha IIPOTUBOIIOJIO?KHOE. a) ZLOK&)KI/ITG, 9TO KOJHUYIECTBO BO3MO2KHBIX Yy30POB fABJIACTCA CTEIIECHbBIO
npoiiku. 6) HazoBéM unsapuarmom takoit HAGOP JaMIIOUEK, ITO JH0bast KHOIIKA MEHsIET COCTOSTHUE YETHOTO
9HCIIa JIAMITOYEK U3 3TOro Habopa. JJokaxkute, 9TO ec/ii MHBAPUAHTOB HET, BCE JIAMIIOYKU MOYKHO ITOTaCUTh
BHE 3aBHCHMOCTH OT HAYAJIBHOIO COCTOsiHUsA. B) JlOKaykuTe, 9TO ecjiu HUKAKOl MHBAPUAHT HE PAa3JIndacT
HaYaJILHOTO U KOHEYHOT'O COCTOSTHUS, TO MOYXKHO OCYIIECTBUTH [IEPEXO0J] 13 HAYAJIBHOI'O B KOHEYHOE COCTOSHHE.

¢ E15. Hazosém HaOOp DIUTIOB n0AHbLM, €CITH JTI000E 3aMOIIEHNE 00IACTH TEPEBOIUTCS JTIOO0E 3aMOTIIe-
HUEe 00JIACTHU C TOMOIIBIO MEMOYKU 13 3Toro Habopa diunos. CyiecTByer Jin HAOOP IJIUTOK, JJIsi KOTOPOTO
HeJIb3sI BBIOpAThH MTOJIHOTO Habopa GIunoB?

Pucynok 13.

¢ E16*. Ilnocknii rpad pa3but Ha 00JaCTH , IPEACTABJIAIONIAE COOO0i 6-yTOMBHUKT, BHY TPU KOTOPBIX HET
pédep (MOYKHO CUNTATH UX ILUIUTKAMU JTOMUHO 2X1). Y Kazk/10ro pebpa JiBe CTOPOHBI, CHAGYKEHHBIE CTPeJIKa-
MH. DTH J[BE CTPEJIKH UMEIOT IIPOTUBOIOJIOXKHY0 oprueHTaImo. IIpu 3ToMm KaxKgast 06/1acTh OPUEHTUPOBAHA,
10 9acoBOii cTpeJsike. Pasperaercs B34Th 00/1aCTh U3 JBYX CMEXKHBIX 6-yTOJIbHUKOB U IIPE0OPA30BaTh €€ KaK
ykazaHo Ha pucyHke 13. Bepno ju, uTo u3 1106010 Takoro pasdueHus MmIoCcKoro rpada MOXKHO MOJIYYUTD
JiI000€e JIpyroe ¢ MOMOIIBIO TEMTOYKHU 3aaH0r0 Habopa (OJInIoB?



3amouwieHnsn, packpacku
N NAUTOYHbIE rpynnbl

¢ F1. PaccMmorpuM opueHTHPOBAHHBIN rpad, pédbpa KOTOPOro MOKPAIIEHbI B JIBaA IIBETa, B KAXKJIYIO Bep-
IIAHY BXOJUT KPACHOE U CHHEee PeOPO, U BBIXOJIAT TaKkux ke 1BeToB. CamocoBMereHneM rpada Ha3bIBaeTCs
IIPaBUJIO, KOTOPOE COTIOCTABJIAET KAaXK 0! BepinnHe rpada KaKyoo-To JPyTryIO BEPIITUHY, [IPU 3TOM JIJIs JII000i
BEPIIUHBI €CTh €IUHCTBEHHBIN mpoobpas. IlycTs 11 JT00bIX ABYX BEPIIMH €CTh CaMOcCOBMelleHue rpada,
COXpaHSIOIee OPUEHTAINIO U IIBeTa PEOEp, MepeBOJIsINee IIEPBYIO BePIINHY BO BTOpyio. Kpome Toro, ecun
U3 BEPIIUHBI IPOUTH TPU Pa3a MO CUHEH CTPeJiKe, a MMOTOM — TPHU pa3a [0 KPACHOU, TO Mbl IPUAEM TY/Ia
2Ke, KyJia IIPUILIN Obl, TPOijsg TpU pa3a IO KPacHOM, a IMOTOM — TPH pasa 1o cuHeil. Jlokaxkurte, 9410 1ipu
3aMEHe YHC/Ia «TPU» Ha «JIBAJIATH YeThIpe» (PAKT OCTAHETCs] BEPHDBIM.

Beo

Pucynok 1. Tj Pucynox 2. T5 Pucynoxk 3. L3

Onpenenmnm 0061acTh 1), KaK «TPEyroJbHUK» CO CTOPOHOI 1, COCTABJIEHHBIH U3 ITECTHYTOJbHUKOB. Tak-
J)Ke ompeziesauM L, KaK n [eCTHyroJbHAKOB, PACIOIOKEHHBIX B Psifl. (cM. puc. 1-3)

¢ F2. YcranoBuTe cOOTBETCTBUE MEXKy (PUTYpAMU HA NMIECTUYTOJBHON peIlieTKe U IJINTKAMU Ha KBaJI-
parHoil pemerke. PaccraBbre crpesiku JIByX 1BeToB (@ u b) Ha KBaJpATHOI pelreTke Tak, 4To0ObI CJIOBA,
COOTBETCTBYIONINE IVIUTKaM L,,, JaBajn 3aMKHYTbIE ITyTH.

¢ F3. Ilpunymaiite packpacky (MHBapwaHT) HOBOIl KBaJpaTHOI pemreTku u3 F2, Takyio, 4To mMyTsM,
COOTBETCTBYIONUM L4, COOTBETCTBYIOT HYyJIEBbIE 3HAUYEHUS, a durypam 1, — HeT.

¢ F4. Joxaxwure, uro T, HEIb3sT 3aMOCTUTE hurypamu L.

¢ F5. Haiinure Bce 3HaYeHUs N, IPU KOTOPBIX 13, MOXKHO 3aMOCTUTHL burypamu 1s.



3amMoLEHNSA, paCKpacKu
N NANTOYHbIE rpynnbl

Pewenunsa yukna E

Pucynok 1.

VYkazanue K penteauio Elb. /lokazaTe/bcTBO TPOBOAUTCA 0 UHAYKINU. [IycTh BepTUKAIbHAST CTO-
POHA IPSAMOYTOJIbHUKA YETHON JIUHBI. JIoKaXkeM 110 MHIYKIINH, YTO MOYXKHO ITOCTaBUTDb BCE ILIUTKU JTJOMHHO
BEPTUKAJILHO i urypsl F' Ha puc. 1 ciaeBa. Ham HaI0 MOJYyYIUTH ¢ TOMOIILIO MEMOYKN (DJIUTIOB ILJIUTKY
z. IlycTb €€ HeT 1 HeJIb3sl MOJIYIUTh 1erouKoil (pymmos. Torna nmeem cTpyKTypy Ha puc. 1 cupasa. OTciona
MBI MO2KE€M MPUMEHUTH UHIYKIIMOHHOE Iperooxenne s F' 6e3 z.

Vkazanue Kk perreanio E2b. Ananoruyuno Elb.

VYkazanue k permienuio E3. Hapucyiite kyd nXnXxn B Buje KUPIUIHON KJIAJKU. UTO ITPOUCXOIUT
C KApTUHKOMN, ecjiu yOUpaTh KUPIUIH 110 OTHOMY !

VYkazanme kK pertennio E4. Paccmorpure dyuknuio h(z), 3a1aBaeMyo CJIeIYOMUM 00pa3oM: JJist
KaXKJI0i KJIETKU X, y KOTOPOii ecTh HeHampasjeHHOe pebpo, h(x) = 0. Bymem onpenenars h WHAYKTUBHO:
ecsin Jist © onpejesieHa h(x), a y — cocefHsisl ¢ X KJIeTKa 1Mo cTopoHe, 1o h(y) pasHa 0, ecin y KJI€TKH Y
eCcTh HeHAIPaBJIeHHOe Pebpo; 1, ec/in IpU JBUKEHUN U3 & B Y MbI IIEPECEKAEM HAIIPABJIEHHOE PEOPO, UIyIIee
CJIeBa HallpaBO OTHOCHUTEJIbHO HallpaBJICHUSA IABU2KCHU I, —1, €CJIM 1IPpU JIBU2KCHUU U3 T B Y MBbI II€epECECKaeM
HallpaBJieHHOe pebpo, Hiylee CIpaBa HaJeBO OTHOCUTEIHLHO HallpaBjieHus jaBuzkenus. Cunraiite m3BecT-
HBIM, 9TO 3Ta (DYHKIMs OlpeieieHa KOppeKTHO. IlycTh paccTaHOBKa cTpesiok A MaykopupyeT pacCTaHOBKY
crpesiok B, eciu myist moboro x ha(x) > hp(x). PacemorpuMm paccranoBky C' Takyro, 9TO €cjid OIuH (hJiui
repeBouT €€ B pacctanoBky D, To C mHe maxkopupyer D. T.K. paccraHOBOK KOHedHOe ducjo, Takasi C cy-
mecTByeT. HecstoxkHO JI0Ka3aTh, 9TO He CyIECTBYeT Takoi Toukn 2 Ha C, 9TO JJI BCeX TOYEK ¥, COCEIHUX C
Heit 1o cropore, h(x) > h(y). Torma C onpenesnsiercs: € IMHCTBEHHBIM 00pa30M. SHAYUT, JTIIOOYIO DACCTAHOBKY
C TOMOIIBIO TIEMOYKHU (BJIMIIOB MOZKHO IIEPEBECTH B JIIOOYIO JPYTYIO.

| | 1] 4 | 1]

Pucynok 2.



VYkazanue K pemeHuio E5. [Iponymepyem aumaronasn Kak Iokas3aHo Ha puc. 2 cupasa. [lycTs s
BCeX JInaroHaJseil ¢ Homepamu ot 1 110 n yTBepzKaeHue qoka3ano. Ilycrs qyst nuaronasu ¢ (n+1)-siM HOMEpOM
yTBepKIeHue He BepHO. [lepebopom Bcex BO3MOXKHBIX CJIyUaeB pacookeHus T-TeTpaMiHO, IepeceKaronmx
(n + 1)-yro nmaronasb, moaydaeM IpoTHBOpedne. Kak cieicTBue JT0KAa3aTeabCTBA MOIYIaeM, ITO M U 1
neJisites Ha 4.

M, Mlb

Mo

Pucynox 3.

VYkazanue kK perneauio E6. Paccmorpum quaronasibuyio cetky u3 E5. VI3 kaxkmoit fuaronay Hampa-
BUM PeOPO B CTOPOHY, T/E JIEKUT OOJIbINasd 9aCcTh TETPAMUHO, cofepkaliero 3ty cropony. Omaunst My, My
epPeBOJIAT JII0OYI0 paccTaHoBKY T-rerpamuno A B B, eciin A m B COOTBETCTBYIOT OIMHAKOBBIE PACCTAHOBKH
crpesiok. st morydeHHol ceTKM U3 HalpaBJIeHHBIX pédep npumenum 4. Ms u ectb dutun u3 3amadu F4.

OTtser Kk E7: 271,

Otser k E10a: (m + 1)-biit wien nociegoBarensnoctun Pubonayyn (1, 1,2, 3,5, 8, ...).

Pewenusa uukna F

Pentenue F1. PaccmoTrpuM mociieoBaTeIbHOCTD U3 ABAAIATH YeThIpeX pebep a U ABAIIATH YeThI-
pex b. 1o ycioBuio, Mbl MOXKEM TIE€PECTABUTH TPHU IOCJIETHUX ¢ U Tpu 1nepsBbixX b. IIpomomkas Takue mepe-
CTAHOBKH, MBI JTOOMBaeMcsT TpebyeMoro.

F2 u F'3 apasarorca noarorosurenbHbIME TyHKTaMu 1711 F4 u 5. Ml ipecTaBuM yKa3aHUs K PEMIEHNTIO
s F4 u Fb.

Pemenne F4 u F5. /g pemenus 3ama4d F4 u F5 caagasa npemcrtaBuM 9TH 381891 JIjI0 KBaIPATHON
pemerku. CoorBercTByomue GUryphl peicTaBieHbl Ha pucyake. O6actb T, Tpu 3TOM OYIET BBITVISIETD
KaK JIECTHHUIA (CM. DUCYHOK). 3alldIlieM CJI0Ba JJIsi HOJIY9IMBIIUXCs IUIMTOK. VTak, Hala 1esib BBISICHUTH

BOIIPOC, IIPUHAJJIEZKAT JIM CJIOBA, COOTBETCTBYOIINE 06IACTSIM, B COOTBETCTBYIOIIUM IINTOYHBIM IPYIIIAM
(st Ly n T).

| ]
. L]
L]

Pucynok 4.

JlJ1st 3TOrO MBI BOCITOJIb3yeMCsI HOBOH njieeit, mpeoxkennoit Kouseem. PaccMorpum 6ecKkoHeIHBIH Opr-
E€HTUPOBAHHBIHN rpad, B KaXKJIyI0 BEPIIHHY KOTOPOI'O BXOJIUT OJTHO Pebpo A 1 0j1HO B, 1 BBIXOIUT TAK¥Ke OTHO
pebpo A u onHo B (CM. pI/ICyHOK). HermocpeacTBeHHO MOXKHO TPOBEPUTH, UTO CJIOBAM JJIT BCEX BO3MOXKHBIX
ostokeHnit Ly u T COOTBETCTBYIOT 3aMKHYTHIE Ty TH.
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Boraucaum gy myTeit, COOTBETCTBYIONINX TOJOXKEHUIM L3 CIIeyIONuii HBAPUAHT: KOJUIECTBO TPe-
YTOJIBHBIX KJIETOK, IIPOMIEHHBIX II0 YaCOBOH CTPEJIKE MUHYC KOJINYECTBO TPEYTOJIbHBIX KJIETOK, ITPOAIeHHBIX

Pucynoxk 5.

IIPOTHB YaCOBON CTPEJIKU. 3aMEeTUM, UTO ITO UHCJIO CKJAIBIBAETCS JJIsl TPOM3BEIEHUN IBYX IMyTell, a Jis
Ls-mryTeit ono paBHO HyI0. KpoMe TOro, ”HBapUaHT He MEHSETCS IIPHU COMPSIZKEeHNN. SHATUT, JJIsT BCEX CJIOB
U3 TJIMTOYHON T'pynnbl Juid L3 3TOT MHBAPUAHT paBeH Hy/O. B mmTke T, KOJUIECTBO KJIETOK JIOJI2KHO
JIeJINTHCsT Ha TpH, B 9ToM ciaydae n = 0 wim 2 (mod 3). B stux ciayvasx myrsam Ha rpade mis T, GymayT
COOTBETCTBOBATH HEHYJIEBbIE 3HAYUEHUS] HHBAPUAHTA. SHAYUT, COOTBETCTBYIOIINE CJIOBA HE MOTYT JIEYXKATH B
IITUTOYHOM rpyte g Ly u pasbuenue, ykazaHHoe B 3a1a4e F'4 HeBO3MOXKHO.

Hna F5 Oymem mcroib30BaTh APYyroil MHBAPUAHT: KOJUIECTBO KOJUYIECTBO IMECTUYTOJHHBIX KJIETOK,
HPONJAEHHBIX 10 YaCOBOHU CTPEeJIKe MUHYC KOJIMYECTBO TPEYT'OJIbHBIX KJIETOK, IPONIEHHBIX IPOTUB 4aCOBOH
CTPEJIKH. DTOT MHBAPHUAHT JIJIsI PA3JIMYIHBIX [TOJIOXKEeHUI 1o (y}Ke Ha KBaJIpaTHON pemeTKH) OyIeT JaBaThb
suadenus 1 wian —1. Tak:Ke MOXKHO YCTAaHOBUTH, YTO JijIst CJIOBa 1, MHBapuaHT OyJeT paBeH [”T‘H] Homry-
n—i—l]

3

ctuM, uto T, pasbuBaeTcs Ha M ILIUTOK 15. TOrma [ =m (mod 2). Kpome roro, tak kak B 1,, pOBHO

n(n+1)/2 xnerox, nomyaaem, aro m =n(n+1)/2 (mod 2). Cneosaresno, [241] = @ (mod 2).
Jlerko BuzeTh, UTO TAHHOE COOTHOIIEHUE HE BBIMOJHEHO /st n = 3,5,6 wim 9  (mod 12). YuursiBasi, 9ro
n =0 wm 2 (mod 3), ocrasocy pacemorpers caydan n = 0,2,9 wm 11 (mod 12). st sTux cirydaes
T,, MmoxHO pa3buts Ha Th. [TocTpoenne sTux paszdbueHuit ocrapasieM YuTaTe 0. TakuMm obpa3om, pa3dbueHne,
yKasaHHOe B 3aja4e F5 Bo3MoxkHO TosIbKO st n = 0,2,9 niam 11 (mod 12).



Pavements, colorings
and tiling groups

A.Belov-Kanel, I.Ivanov-Pogodaev, A.Malistov,
I.Mitrofanov, M.Kharitonov

The problems of tiling often act as the centre of various mathematical matters. Very often such problems
are solved with the help of coloring. One of the aims of this project is to study a more powerful method
related to application of the notion of the group theory. Conjointly we will explore what, in essence, is the
coloring in the new terms, and will also see how the tilings could be used in the group theory.

The first cycle is preliminary, it contains a few tiling related problems. The second and the third cycles
are preparatory, during those we develop the necessary technique of the new method. During the second
cycle some useful terms are introduced, and the relations between the words and the paths on graphs are
studied. During the third cycle we introduce the basic terms of the group theory. In the fourth cycle we
employ the new technique to the tiling problems.

Section A. Tilings and colorings

3-cells corners L-tetromino T-tetromino

¢ Al. Find all integers M and N such that a rectangle M x N can be cut into 3-cells corners?
¢ A2. Find all integers M, N, P such that a rectangle M x N can be cut into rectangles Px1?

¢ A3. Find all integers M, N, P such that a rectangle M x N with one additional cell can be cut into
rectangles Px17

¢ Ad4. Find all integers M, N, A, B such that a rectangle M x N can be cut into rectangles Ax B?
¢ AS5. Find all integers M, N such that a rectangle M x N can be cut into L-tetromino?

The following problem cannot be solved by colorings. We should develop some more powerful ideas to
solve it. We shall do this in sections B, C, D.

¢ A6**. Suppose that M x N rectangle can be tiled by T-tetramino. Prove that M and N are divisible
by 4.

Section B. Spade-work: words, graphs and paths

Let an alphabet A be a set of letters a, b, ¢, .... We can use these letters to arrange words which are
finite sequences of these letters, for example, abbc, ¢, cabcabeebb ete. A word is called product of two words
A and B if it is congruent with the word AB (B attached to the right of A). Hence, an alphabet determines
the set of words with product operation.

A word written N times in a row (XX ... XX) is called N-power of X and is denoted by X*.

N times

¢ B1. Suppose that the product UV is congruent to the product VU. Prove that the words U and V
are powers of some word A.
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Consider a set of elements with some product operation * (the product of two elements of the set
also belongs to the set). This set is called a semigroup with respect to the * operation if a * (b % ¢) =
(a * b) * ¢ holds for all elements a, b, c. This is associative property.

Examples. The set of integers is a semigroup with respect to the sum operation. The set of rational numbers is a
semigroup with respect to the product operation. In this example we cannot change product by division because of that we
cannot divide by zero.

The set of words determined by an alphabet is a semigroup with respect to the operation of attaching of
one word to another. (It is clear that associative property holds.) More precisely, it is called free semigroup.

¢ B2. Peter and John assembly various words using the letters a, b, c,d, e, f. One can delete any of
the neighboring pairs (any order) a and b, ¢ and d, e and f from any word. Also, one can add any of
these pairs into any part of any word. For example, we can transform the word dacdbeaaf by the following
way: dacdbeaaf — dabeaaf — deaaf — dfeeaaf. Prove that any word can be transformed to the
form containing the minimal number of letters. Prove that this form doesn’t depend on a set of operations
applied.

Consider a polimino. Let us mark the edges on the boundary of this polimino with arrows placed
clockwise (together) or counter-clockwise. Let us associate any polimino with the sequence of the letters on
its boundary. For “up”, “down”, “right”, “left” arrows we shall accordingly write U, D, R, L letters. At the
same time, the sequence of the letters in the word must correspond to the sequence of boundary arrows.
Hence, there are several words correspond to each polimino. They can be transformed one to another by

the cyclic shift.
el
€1

RRULULDD LULDDRRU
Figure 1.

¢ B3. Describe the set of words corresponding to two-cells domino and three-cells corner trimino. (You
should take into account various placements of the poliminoes on the plane.)

¢ B4. Let M be the set of words corresponding to the various placements of the two-cells domino on
the plane. Suppose that we can apply the following operations to any word in M :

1. Add or delete neighboring pairs R and L wiu U and D (in any order, as in B2);

2. Add R letter to the beginning of the word and L letter to the end of the word (and vice versa);

3. Add U letter to the beginning of the word and D letter to the end of the word (and vice versa);
4. Attach obtained words to each other.

Let some region can be tiled by dominoes. Prove that the word corresponding to the boundary can be
obtained by complex of these operations.

It is easy to see that: operation 1 corresponds to adding or deleting of pair of «there and back again»
paths; operation 2 and 3 corresponds to the changing word by its cyclic shift; operation 4 corresponds to
the attaching words to each other (using the fact that we can delete «there and back again» paths). Thus,
we can formulate the necessary tiling condition using our language of word products.

¢ BS5. Suppose that we can tile the fixed finite region using the set of poliminoes T'. Consider the original
set of words corresponding to T'. Prove that the word corresponding to the boundary is presented by the
result of the several product and cyclic-shift operations.

4 B6. Construct an example of the region which boundary can be obtained by the operations of B5,
but tiling cannot be done.

Consider a polygon on the plane. Suppose that it is cut on /N small polygons such that none of vertices
of the small polygons belong to the inner part of other polygon edge. Consider closed paths of arbitrary
length passing through the small polygons edges. Suppose that adding (or delete) the “there and back”



edges doesn’t change any path. Let point A be some vertex of a small polygon. If the path can be presented
by pass through one path then do through the second one, then we say that our path is a product of two
passed paths.

¢ B7. Consider an infinite set of closed paths that start at point A. Prove that there exists a finite set
P of closed paths from A such that any closed path starting at A can be presented by the finite product
of the paths from P. Find the minimal number of paths in the set P.

¢ B8. Choose another vertex B. Consider closed paths starting at B. Prove that we can provide a
correspondence such that the following properties hold:
1. Every path starting at A corresponds to its own path staring at B.

2. If paths p; and p, starting at A correspond to the paths p} and p5, then product p1ps corresponds
to the path p’ p5.

Section C. Groups

A set with respect to the product operation * is called a group if the following conditions hold:

—

. Associative property. For any a, b, ¢ holds a * (b * c) = (a * b) * c.

2. The existence of the unit element. There exists an element e such that the equality ae = ea = a
holds for any a in the group.
3. The existence of the inverse element. For any a in the group there exists an element a~?! such that
aa ! =a"ta=ce
Examples. The set of integers is a group with respect to the sum operation. An opposite number is an inverse element.
The set of rational numbers (without zero) is a group with respect to the product operation.

Substitution groups. There are six ways to place three elements in the row: 213, 321, 132, 312, 231, 123. In fact, we
consider the transformations of the three elements: we can interchange two of them (so we obtain 213, 321 or 132), or we can
shift all three elements by the cycle (so we obtain 312 or 231). Also we can do nothing so we stay with 123 in this case. It
is easy to see that we have six different «actions». If we apply one of these actions and immediately another one, then we
obtain the action from the six ones again. For example, if we interchange the first two elements and shift all three elements
by the cycle to the right, then we obtain 123 — 213 — 321. Thus, we obtain the action of interchanging of the first and
third elements. These «actions» are called substitutions. The set of substitutions is a group with respect to the consecutive
applying operation. There are six elements in this group. The identical transformation 123 is the unit element. This group is
the smallest group such that there holds ab # ba for some a and b. We denote it by S3. We can consider substitution group
Sy, for any integer n.

¢ CO0. Check that paths in the B8 and B9 form a group.
A group is called abelian or commutative if ab = ba holds for any a and b.
¢ C1. Construct a nonabelian group consisting of 8 elements.

¢ C2. Prove that the set of motions in space that transfer the cube to itself is a group. Find the number
of elements in this group.

¢ C3. Prove that the set of words in the alphabet {ay, a1 ™!, az, a2, ..., ay,, a, '} is a group with
respect to the attaching operation. (Also we can use cancellation of neighboring inverse letters  and =1.)

Let G be a group. Suppose that H is a subset of G and if a,b € H, then a=1,b~!,ba,ab € H.
Then we say that H is a subgroup of G. H is a group too, with respect to the same operation.

4 C4. Prove that every element in the substitution group S,, is a product of several independent cycles.
Describe all subgroups in the substitution group Sk.

Elements a and b are called conjugate if there exists an element @, such that zaxz™ = b. If H is a

subgroup, then conjugate set e Hx~! is also a subgroup, because of xhix " lxhox™! = xhihox ™.

¢ C5. Find all conjugate subgroups in the Sy substitution group.

A group often can be described by different methods. For example, elements of a group can be presented
by the motions in space transferring polyhedron to itself, or by substitutions of several elements. The
structure of a group be the same. There is a special notion to describe the «sameness» idea.
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Groups G and H are called isomorphic if there exists a correspondence between G and H with the
following properties:

1. There is an unique element h € H corresponding to any element g € G, and vice versa;

2. If elements hy, hy € H correspond to the elements g1, g2 € G, then product hiho corresponds to
g192-
¢ C6. Suppose that G is a group of motions transferring the fixed cube to itself. Find a substitution

group which isomorphic to G.

Suppose that the elements of a group are colored in several colors such that the color of product depends
on colors of the elements only and not depends on the choose of elements of that color. Hence, the product
of elements colored in 1 and 2 colors always has the same color (we can take any elements with color 1
and 2).

¢ C7. Prove that the set of all elements having the same color as unit element is a subgroup. This
subgroup is called normal.

Equivalent definition. A subgroup H € G is called normal if for any g € G (g may be not in H)
the following holds: gHg~! € H. In other words, a normal subgroup is conjugate to itself.

¢ C8. Prove this equivalence of the definitions.
¢ C9. Find all normal subgroups in the substitution group Sy.

¢ C10. Consider a group G. Let K be a set of elements aba=1b~1. (they are called commutators).
Suppose that H is the set of all possible products of elements in K. Prove that H is a normal subgroup.

Section D. Tiling groups

A set of cells on the square lattice is called connected if we can walk from any cell to another by passing
thought cell edges.

Let T be a set of cells on the square lattice. Suppose that T have connected complement set. If we can
walk through the boundary of T passing all the edges one time only, then we say that T is a tile. Now we
shall consider the pavements with tiles.

Consider a set of words corresponding to the finite tile set. Let us play with this set the game as in
B4 problem: add or delete pairs of inverse letters, or change word by its conjugate, or attach words to each
other (take words products).

¢ D1. Prove that the set of all words that we obtain by such operations is a group with respect to the
product.

This group is called a tiling group of the given tile set.

¢ D2. Let C be a set of all closed paths on the square lattice. Prove that the set of words corresponding
to these paths is a group. Prove that for any tile set a tiling group is a normal subgroup in C group.

¢ D3. Suppose that region O can be tiled by tile set T'. Prove that the word dO corresponding to the
boundary of O is in the tiling group of T'.
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Pavements, colorings
and tiling groups

4 E1. Consider a rectangle mxn tiled by dominoes. Check that there exists a subsquare 2x2 consisting
of two dominoes.

a) Find the minimal number of these subsquares.

b) Consider a square 2x2 tiled by 2 dominoes. Let us define a flip: it is a transformation of a horizontal
tiling to a vertical one and vice versa. Prove that for any tiling of an mXxn rectangle there exists a sequence
of such flips such that we can obtain any other tiling.

Figure 2.
¢*) Find the minimal number of flips which is sufficient for transforming of any tiling to any other one.
Definition. Below we shall examine these flip transformations. To make a flip, we choose the region
in the plane of fixed form and change the tiling into it.
¢ E2. Consider a rectangle mxn tiled by 1xk tiles. Check that there exists a square kxk consisting of
k 1xk tiles.
a) Find the minimal number of these squares.

b) Consider a rectangle kxk tiled by 1xk tiles. Similarly, a flip is a transformation of a horizontal
tiling to a vertical one and vice versa. Prove that for any tiling of an mxn rectangle there exists a sequence
of such flips such that we can obtain any other tiling.

c*) Find the minimal number of flips which is sufficient for transforming of any tiling to any other one.

Figure 3.

¢ E3. a) Prove that a central-symmetric convex polygon can be tiled by parallelograms. Also prove the
converse fact that if a convex polygon can be tiled by parallelograms then it is central-symmetric.

b) Consider a tiling of the regular 2n-polygon (with unit edges) by rhombuses with unit edges. If there
exist three such rhombuses forming a hexagon then we can change this tiling to another one (see picture 3).
We shall call this transformation a flip. Prove that it’s possible to obtain any tiling by some sequence of
flips.

c¢) Find the minimal number of flips sufficient for transforming of any tiling to any other one.

d) Find the minimal number of hexagons used in tiling of a regular 2n-polygon (with unit edges) by
parallelograms.

e) Consider a tiling of the regular hexagon (with edges of length n) by rhombuses with unit edges.
Prove that it is possible to obtain any tiling by some sequence of flips. Find the minimal number of flips
sufficient for transforming of any tiling to any other one.

Note. Draw a cube nxnxn using the picture of brick arrangement. How does the picture change
when we remove the bricks one by one?



Figure 4. Figure 5.

4 E4. Consider a finite rectangle grid on the square lattice. Suppose that any edge of this grid is oriented
(see picture 4).

Condition 1. For any vertex, there are equal numbers of ingoing and outgoing edges.

Let us call by flip the following transformation. If all the arrows around the cell are oriented clockwise,
then we change the directions of all arrows, and vice versa, if all the arrows are oriented counterclockwise,
we do the same. Suppose that condition 1 holds for the placement of the arrows. Prove that this placement
can be transformed by flips into any other placement satisfied condition 1.

Note. Consider the function h(z), with the following condition hold: if cell x contains nondirected
edge, then h(x) = 0. Let us define h by induction: if h(z) is defined for some z, and y is a neighboring
cell (by edge), then h(y) is defined in the following way: h(y) = 0, if the cell y contains nondirected edge,
h(y) = 1, if we intersect oriented edge which goes from the left to the right, and h(y) = —1, if we intersect
directed edge which goes from the right to the left. You may assume that this function is well defined.

Figure 6.

¢ E5. Consider a rectangle mxn tiled by tetraminoes. Further consider the following diagonal net of
lines (see the figure 6). Prove that each edge containing diagonals of two cells meets just one tetramino,
and that m and n are divisible by 4.

Figure 7.
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¢ E6. Prove that by sequences of flips (see the figure 7) each dissection can be transferred into each
other.

Figure 8.

¢ E7. Connected tiles such that each line indicated in the figure 8 meets not more than one of its cells,
will be called p-tiles. Let T,, be the set of p-tiles consisting of n cells, and |T},| be the number of elements
in this set. Determine |T,,]|.

[

Figure 9.

[N

Figure 10.

¢ EB8. Prove that if a rectangle axb can be covered by p-tiles shown at a) fig. 9, b) fig. 10, then 10
divides ab.

-
3

Figure 11. Figure 12.
¢ E9. Let D, be the figure indicated at fig. 11. Prove that if the figure D,, can be covered by p-tiles
indicated at fig. 10 then n =0,4,15,19 (mod 20).

¢ E10. What is the number of possible tilings by dominoes for a) a rectangle 2xm? b) Aztec diamond?
(see fig. 12)7



Consider a tiling (possibly with several layers) of a figure F' by tiles from some set 7. A distribution
of numbers in cells will be called an invariant if the sum of numbers covered by any tile from the set T is
divisible by p. An invariant is nontrivial if the sum of numbers covered by F' is not divisible by p.

¢ E11. a) Prove that if a nontrivial invariant exists then F' cannot be covered by tiles from 7" so that
the multiplicity of covering of each cell equals 1 modulo p. b) Prove that if there are no nontrivial invariants
then such a covering exists.

¢ E12. For which m and n a rectangle mxn can be covered by corner triminoes so that each cell is
covered by equal number of triminoes?

¢ E13. A semiinvariant is a distribution of numbers in cells, such that the sum of numbers covered by
each tile from the set T is negative and the sum of numbers covered by F' is positive. Prove that a) if a
semiinvariant exists then F' cannot be covered by figures from 7" so that each cell is covered by equal number
of figures; b) if there are no semiinvariants then such a covering does exist.

4 E14. There are a board with lamps and a board with buttons. Pressing a button, we change the state
of lamps connected with it, to the opposite state. a) Prove that the number of distributions possible for
the states of lamps is a power of two. b) A set of lamps will be called an invariant if each button changes
the state of an even number of lamps in it. Prove that if there are no invariants then all the lamps can be
switched off independently of the initial state. ¢) Prove that if no invariant distinguishes the initial and the
final states then a transfer from the initial state to the final state is possible.

¢ E15. A set of flips will be called complete if any pavement of the domain can be transferred to each
one by some chain of flips from this set. Is it true that for some set of tiles there exists no complete set of
flips?

Figure 13.

¢ E16*. A plane graph is dissected into domains which are hexagons with no edges inside them (we may
consider them as domino tiles 2x1). Each edge has two sides equiped by arrows. These two arrows have
opposite directions and each hexagon has clockwise orientation. It is allowed to take a domain consisting of
two adjacent hexagons and change it as is indicated at the figure 13. Is it true that every such dissection of
a plane graph can be changed into each other by a chain of such flips?
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Pavements, colorings
and tiling groups

4 F1. Consider an oriented graph whose edges are colored in two colors, and each vertex is the end of
one red and one blue edge and the origin of similar edges. A self-coincidence of the graph is a rule which
maps each vertex of the graph into some vertex so that each vertex has a single inverse image. Suppose
that for each pair of vertices there exists a self-coincidence of the graph which saves orientation and colors
of edges and maps the first vertex to the second one. If we pass a path such that first three edges are red
and the remaining three edges are blue then we come to the same point as if first three edges were blue and
the remaining three edges were red. Prove that the result remains true if 3 is replaced by 24.

Boo

Figure 1. T5 Figure 2. T5 Figure 3. L3

Define the domain T}, as a “triangle” formed of hexagons. Furthermore define L,, as n hexagon placed
in a row (see fig. 1-3)

4 F2. Find a correspondence between figures on a hexagon lattice and tiles on a square lattice. Place
arrows of two colors (a and b) in the square lattice so that words corresponding to tiles L,, produce closed
paths.

¢ F3. Construct a coloring (invariant) of a new square lattice from F'2 such that paths L, correspond
to zero values and figures 7,, do not.

¢ F4. Prove that T,, cannot be tiled by figures L.
¢ F5. Find all values n such that T;, can be tiled by figures 5.
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Abstract
We prove that any two tilings of a rectangular region by T-tetrominoes are connected by moves involving
only 2 and 4 tiles. We also show that the number of such tilings is an evaluation of the Tutte polynomial.
The results are extended to a more general class of regions.

1 Introduction

The subject of tilings is a wonderful story that started as a collection of amateur problems (cf. [6]) and has
now become an area of study in its own right, with numerous connections and applications to other fields:
from group theory to topology, from enumerative combinatorics to probability. In the last decade various
advanced methods have been developed which allowed some hard questions to be answered. This resulted
in a structural approach to the study of tilings, which was presented in a recent survey [13] by the second
author. The current paper carries out this approach to the very end for a special set of tiles. An unexpected
combinatorial connection to the Tutte polynomial is a bonus and a delightful surprise.

In this paper we consider the set of T-tetrominoes, which has been studied earlier by Walkup in his curious
paper [21]. His main result states that only rectangles of the form 4m x 4n are tileable by T-tetrominoes.
The proof in [21] is interesting but rather ad hoc. We explore further the structure of these tilings, combining
Walkup’s approach with several new direct bijections.

Our main result is local move connectivity of T-tetromino tilings for rectangular regions, resolving a
conjecture in [13] in this case. This is done by introducing a new type of height function, and relating it
to the tiling by means of two bijections. The height function technique for domino tilings was discovered
by Thurston [19], and was used extensively in the recent literature to prove the local move connectivity for
various sets of tiles (see e.g. [2, 8, 12, 17]).

Along the way we show that our new height functions enable us to define a lattice structure on all T-
tetromino tilings of a rectangle. While this may seem a theoretical curiosity, in fact there are important
applications of this result. There is a natural definition of a Markov chain on tilings (perform “random local
moves”) which translates into a nice Markov chain on height functions. Using the “coupling from the past”
technique of Propp and Wilson and the fact that the height functions form a lattice (see [15, 14]) one can
sample random T-tetromino tilings from an ezactly uniform distribution (as opposed to a “nearly uniform”
distribution usually obtained by the Markov chain approach). We refer to [16] for a full discussion of this
approach and other examples of lattice structures on tilings.

Another classical problem for general tilings is their enumeration. Unfortunately, there seems to be little
hope for a closed formula for the number of T-tetromino tilings of rectangles'. We show, however, that the

LFor example, the 8 x 12 rectangle has an unpromising 1182 = 2 - 3 - 197 tilings by T-tetrominoes.



number is an evaluation T'(3,3) of the Tutte polynomial, well-studied in the literature. Let us mention here
that the Tutte polynomial is a fundamental invariant of graphs, and is related to a number of problems in
discrete mathematics, computer science and several models in statistical mechanics. It has been extensively
studied for various series of graphs as well as from a computational point of view (approximating its values
is one of the challenges in the field). We refer to [22] for a beautifully written survey and a starting point
for countless references.

Given the lack of a closed formula, one can ask whether the Markov chain approach can be used to
efficiently approximate the number of tilings. In the past decade this idea has been developed into an
important technique, first in the graph theoretic setting [7] and later in the tilings literature [9]. Without
going into the details, the technique is based on showing rapid mixing of a Markov chain, and establishing a
so-called self-reducibility property, the latter being usually much simpler. Roughly, one uses a Markov chain
to sample a number of uniform tilings, collect statistics for certain patterns among the sampled tilings, and
reduce the problem to a smaller similar problem. The self-reducibility allows such a reduction and keeps
the errors relatively small. Unfortunately, we are unable to carry out this approach in full. We show the
self-reducibility, but rapid mixing of our Markov chain goes beyond the scope of this work and is stated as
a conjecture.

Returning back to combinatorics of the T-tetromino tilings, we answer a question as to what extent our
results can be generalized from rectangular to other regions. We show that in fact all the bijective proofs go
through for quadruplicated simply connected regions. As a corollary, we have the local move connectivity
for such regions. We conclude by showing that if either condition on the regions is dropped, there is no local
move property.

After the results of this paper were obtained, we learned of an alternative approach to the problem
presented in a recent manuscript by Konstantin and Yuri Makarychev [10]. The authors showed that one
can prove local move connectivity of T-tetromino tilings for rectangular regions by means of the so-called
ice graphs and by using Eloranta’s theorem (see [4]). We discovered that this approach can be combined
with ours and one can define a height function, similar to ours. We present our findings in the appendix.
For completeness and clarity of the exposition we start by recalling Makarychev’s results (with independent
proofs), define a new height function, and then proceed to prove the local move connectivity by a height
function.

A few words about the structure of the paper. We start with definitions and basic results. In section 3 we
state Walkup’s result about the structure of T-tetromino tilings of a rectangle which will be an important
technical tool for the rest of the paper. Then, in section 4, we define a new notion of chain graphs and show
that they are in one-to-one correspondence with T-tetromino tilings. In section 5 we introduce the height
functions, which we use in section 6 to prove local connectivity. We introduce a lattice structure on height
functions in section 7. In section 8 we consider tilings of non-rectangular regions, proving local connectivity
for quadruplicated simply connected regions. In section 9 we define two planar graphs which correspond
to chain graphs, which enables us to obtain an enumerative formula for the number of T-tetromino tilings.
Section 10 contains the description of the Markov chain M on T-tetromino tilings and proves the self-
reducibility. We conclude with final remarks and the appendix outlining an alternative approach to local
connectivity.

2 Main results

A T-tetromino is the figure formed by four unit squares arranged as shown in Figure 1. We make no distinction
between the four possible orientations of the T-tetromino. A tiling of a region I' with T-tetrominoes is an
arrangement of T-tetrominoes which covers every square of I' exactly once. An individual T-tetromino in
such a tiling is called a tile. Let 71 denote the set of all possible tilings of I" by T-tetrominoes.

In this paper, we will work exclusively with tilings by T-tetrominoes. Every reference to tilings or tiles
refers to T-tetrominoes, even if this is not explicitly stated. We will chiefly be interested in tiling rectangular
regions, although in section 8 we will see that much of what we prove also holds for a somewhat more general



Figure 1: T-tetrominoes.

class of shapes.

Given a tiling of a region I', one can transform it into a new tiling by performing a “local move”. A local
move consists of picking up some (small) number of tiles, then re-filling that area with tiles in a different
way. Two natural local moves for T-tetrominoes are shown in Figure 2. We call them the 2-move and the

| T

= S i

Figure 2: Local 2-move and local 4-move.

Suppose we are given a region I' and a collection £ of allowable local moves, and suppose that 7 and
7o are two different tilings of I'. Let us say that 71 and 7o are local-move equivalent with respect to L if it
is possible to transform 7 into 7o by performing a sequence of local moves from £. This is an equivalence
relation on the set of all tilings of I'. A natural question to ask is whether all tilings of I' are local-move
equivalent. If so, we say that the region I" has local connectivity with respect to L. If R is a set of regions (the
set of all rectangles, or the set of all simply-connected regions, for example), we say that R has a local-move
property if there exists a finite set £ of local moves such that all regions I' € R have local connectivity with
respect to L.

One of our main results is the following.

Theorem 1 For tilings by T-tetrominoes, the set of all rectangles has a local-move property. Specifically,
every rectangle I' has local connectivity with respect to the 2-move and 4-move.

This result was conjectured in [13] to hold for all simply connected regions. Later on, in section 8, we
extend this theorem to a more general class of regions and show that the conjecture does not hold in full
generality.

3 Tiling rectangles with T-tetrominoes

Without loss of generality, let I' be a rectangle which is situated in the first quadrant of the Cartesian plane,
with one corner at (0,0). Let a type-A point be a point whose coordinates are congruent mod 4 to (0,0) or
(2,2), and let a type-B point be a point whose coordinates are congruent mod 4 to (0,2) or (2,0). A segment
of length 1 is called a cut if there is no valid tiling of I" in which a tile crosses that segment. A point is called
cornerless if there is no valid tiling of I' in which that point is one of the eight corners of a tile.

In [21], Walkup proves the following property of T-tetromino tilings of rectangles (see Figure 3).

Theorem 2 (Walkup) If an m x n rectangle can be tiled by T-tetrominoes, then both m and n must be
divisible by 4. Furthermore, all segments incident to type-A points are cuts, and all type-B points are
cornerless.
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Figure 3: The dark lines are cuts. Circles are cornerless points.

From now on, we will only be concerned with rectangles having sides divisible by 4, since all other rectangles
are untileable.

Define a block to be a 2 x 2 square whose corners have even coordinates. The following lemma is immediate
by inspection from the structure of cuts and cornerless points.

Lemma 3 In any tiling of a rectangle by T-tetrominoes, each tile contains three squares from one block and
one square from an adjacent block. Similarly, each block contains three squares from one tile and one square
from another tile.

4 Chain graphs

Define an antiblock to be a 2 x 2 square whose corners have odd coordinates. Color the antiblocks white and
gray in checkerboard fashion, so that antiblocks centered at type-A points are gray and those centered at
type-B points are white.

For a 4m x 4n rectangle I', let V- be the set of points in I' which have odd coordinates. Say that a directed
graph on the vertices Vr is a chain graph if it satisfies the following properties:

e cvery edge connects vertices that are two units apart (either vertically or horizontally),
e every vertex has indegree 1 and outdegree 1, and

e every white antiblock contained in I' borders exactly two edges of the graph, and these edges are
non-adjacent.

Let Cr denote the set of all chain graphs of a region I'.
Theorem 4 For any 4m x 4n rectangle T', we have |Cr| = |7r|.

The proof is based on an explicit bijection ¢ : 77 — Cr defined as follows.

Let 7 € 71 be a tiling. Notice that each vertex in Vr lies in the middle of some block. By Lemma 3, each
tile in 7 contains three squares from one block and one square from an adjacent block. Call these blocks the
primary and secondary blocks of the tile respectively. For each tile, draw a directed edge from its primary
block to its secondary block, and define ¢(7) to be the directed graph which results (see Figure 4).

Theorem 4 follows immediately from the following Lemma.
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Lemma 5 For any 4m x 4n rectangle I, the map ¢ defined above is a bijection between Tr and Cr.

Proof: First let us show that ¢(7) is a chain graph. It is clear from the definition, and from Lemma 3,
that every vertex will have indegree 1 and outdegree 1, and that edges will only connect vertices which are
two units apart. As for the third restriction, consider a type-B point not on the boundary. Up to rotations
and reflections, the tiles surrounding it must look like one of the two possibilities shown in Figure 5. Thus
there will be exactly two edges bordering the associated white antiblock, and they will be non-adjacent.
Hence ¢(7) is a chain graph for all 7.

Figure 5: The two possibilities for a type-B point.

Notice that each tile corresponds to an edge in this graph. For each edge, there is only one possible tile
placement which yields that edge and is consistent with the cuts and cornerless points. Hence the map ¢ is
injective.

What remains to be shown is that every chain graph is equal to ¢(7) for some tiling 7. As we just observed,
for each edge there is only one possible tile placement that can yield that edge. So any chain graph will yield
a collection of tile placements. It remains to be checked that these tiles cover all of I' and do not overlap.
Since each vertex has outdegree 1, the number of edges equals the number of blocks, so the total area of the
tiles will equal the area of I'. Thus it will be sufficient to verify that the tiles do not overlap.

Assume there are two tiles which overlap. Let us assume the overlap occurs in the block containing the
squares A, B, D, and E (see Figure 6). Without loss of generality, we may take one of the tiles to be the one
covering squares B, D, E, and F. Since each vertex has indegree 1 and outdegree 1, the tile which overlaps
this one must contain only one square from this block, hence the overlap must occur at E. There are two
possible tiles which cover E. First there is the tile which covers C, E; F, and G. If we have this, then the
graph must contain both an edge and its opposite. This violates the rule about what a white antiblock may
border. The other possibility is the tile which covers E, H, I, and J. In this case, the graph must contain



two adjacent edges both on the same white antiblock, which again violates the constraint. Thus there can

be no overlaps, which proves that every chain graph is ¢(7) for some tiling 7. [ |
AlB|C
DE|F|G
Hil
J

Figure 6: How an overlap may occur.

5 Height functions

Let us call a point having coordinates congruent mod 4 to (0,0) a type-A0 point. Similarly, a point congruent
to (2,2) will be called a type-A1 point. (Points congruent to either (0,2) or (2,0) will still be called type-B
points.)

For a 4m x 4n rectangle I', let W be the set of points in I which have even coordinates. Let OI' denote
the set of boundary point of I'. Say that a function f : W — Z is a height function if it satisfies the following
properties:

e f(x)=0forall x € IT,

e f(z) is an even integer for all type-A0 points x,

e f(z) is an odd integer for all type-A1l points z, and

e |f(xz) — f(y)] <1 whenever x and y are adjacent (at a distance of two units).

Let Hr denote the set of all height functions of a region I'.
Theorem 6 For any 4m x 4n rectangle T, we have |Hr| = |7r|.

We define a map ¥ : Cr — Hr as follows. Let C' € Cr be a chain graph. Define a function f° on the faces
of C by the following rules. Let f° have the value 0 on the unbounded face of C. As we pass an edge of the
graph, if the edge points to the right, let the value of f° increase by 1. (Similarly, if the edge points to the
left, let the value of f° decrease by 1.) Now define f : Wp — Z by letting f(x) equal the value of f° on the
face in which z lies (see Figure 7). Define ¢)(C) to be this function f.

Theorem 6 follows immediately from Theorem 4 and the following lemma.

Lemma 7 For any 4m X 4n rectangle T, the map ¢ defined above is a bijection between Cr and Hr.

Proof: Let C be a chain graph, and let f be ¢(C') as defined above. Let us first show that the function f is
well-defined. If it is not, then there must exist some closed path through the faces of the graph such that the
net change in the value of f° is non-zero. This means that upon going around this path counterclockwise, we
cross more right-pointing edges than left-pointing edges, say. Therefore more edges leave the area enclosed
by the path than enter that area. But this is impossible since every vertex has equal indegree and outdegree,
so the net flow out of any region must be zero. Hence f is a well-defined function on Wr.

Next, let us verify that f is a valid height function. Points = € 9T lie in the unbounded face of C, hence
f(x) = 0 for such points. And if x and y are adjacent points, then they lie either in the same face of C or in
adjacent faces of C, hence the difference between f(z) and f(y) is at most 1. Now let us verify the other two
statements. As one travels from a type-A0 point z to another type-A0 point y which is 4 units away, one
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Figure 7: A chain graph C, and the function f = (C).

passes through the middle of a white antiblock (see Figure 8). In doing so, one crosses either 0 or 2 edges of
C, hence the value of f° will have changed twice, or not at all, so f(x) and f(y) will have the same parity.
Since (0,0) is a type-AO point, and f((0,0)) = 0, it follows that f(z) will be even for all type-A0 points x.
By the same argument, all type-A1 points must have the same parity as each other. And (2,2) is a type-Al
point with f((2,2)) = £1, so f(z) will be odd for all type-A1l points x. Thus f is in fact a height function.

Figure 8: Two type-A0 points, and what might lie between them.

Given a height function f = ¢(C), one can uniquely reconstruct the chain graph C by inserting directed
edges in the places where the value of f increases or decreases. Hence 1 is an injective map. It remains to
be shown that every height function f is equal to (C) for some valid chain graph C.

Take a height function f, and insert directed edges along the boundaries where the value of f increases
or decreases. Call this graph C. Consider a vertex of C'. To one corner of it, there is a type-A0 point xg, on
the opposite corner is a type-Al point x1, and the remaining two corners are type-B points yy and y;. Since
f(xo) is even, and f(x1) is odd, these values must differ by exactly 1. Without loss of generality, assume
f(zo) = h and f(x1) = h+ 1. Then both f(yo) and f(y;) must be h or h + 1 as well. Up to rotations, the
situation must look like one of the possibilities in Figure 9. Thus the vertex in question will have indegree 1

and outdegree 1.
h h h h h [h+1 h [h+1
-<—

h |h+1 h+1 h+1 h |h+l h+1 h+1

Figure 9: The possibilities for a vertex of C.

Now consider a type-B point y, which corresponds to a white antiblock. Let f(y) = h, and assume without



loss of generality that h is even. If z; and z, are the two type-AQ points adjacent to y, then we must have
f(z1) = f(22) = h. If z3 and 24 are the two type-Al points adjacent to y, then we must have f(z3) =h+1
and f(z4) = h £ 1, not necessarily the same (see Figure 10). So this white antiblock will border exactly two
non-adjacent edges of C.

h+1 h+1 h-1 h-1
—> —> - -
h h h h h h h h [ h h h h
- — -~ —
h+1 h-1 h+1 h-1

Figure 10: The possibilities for a white antiblock.

Hence the graph C constructed in this way from a height function f is indeed a chain graph, and ¥(C) = f.
This completes the proof. [ ]

For ease of notation, define ((7) = ¥(¢(7)). For a 4m x 4n rectangle I', the map ( is the canonical bijection
between 7r and Hr.

Lemma 8 Let I' be a 4m x 4n rectangle and let 71,19 € Tr be tilings of I'. The tilings 11 and o differ by
a 2-move if and only if the height functions ((11) and ((72) differ by 1 on some type-B point, and are the
same everywhere else. The tilings 71 and 1o differ by a 4-move if and only if the height functions ((m1) and
C(m2) differ by 2 on some type-A point, and are the same everywhere else.

Proof: By inspection of the structure of cuts and cornerless points, one sees that the 2-move must be
centered at a type-B point, and the 4-move must be centered at a type-A point. From Figure 11, one can
see that if 71 and 72 differ by a 2-move, then the height functions {(71) and {(72) differ by 1 in their values
on the corresponding type-B point. Similarly, if 71 and 7o differ by a 4-move, then the height functions (1)
and ((7) differ by 2 in their values on the corresponding type-A point.
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Figure 11: The 2-move and 4-move, and their effect on (7).

As for the converse, suppose there are height functions fi; and f; which are identical everywhere, except
fi(y) = h and fo(y) = h + 1 for some type-B point y. Thus the value of fi (or f2) on the neighbors of y
must be h,h+ 1,h, and h + 1 (since they must alternate even and odd). Hence the picture must look like
the bottom left of Figure 11, possibly rotated. Going backwards, we see what the chain graph and the tiling
must then look like, and that in fact, (71(f1) and (~1(/f2) differ by a 2-move.

Similarly, suppose there are height functions f; and f which are identical everywhere, except fi(x) = h+1
and fo(x) = h — 1 for some type-A point x. Thus f1(y) = fa(y) = h for all neighbors y of z. Hence the



picture must look like the bottom right of Figure 11. Going backwards, we see what the chain graph and
the tiling must then look like, and that in fact, (~1(f;) and (~!(/f2) differ by a 4-move. [

For height functions fi, fo € Hr, say that f; and f differ by a 2-move (or 4-move) if the tilings ¢ ~1(f1)
and (~!(f2) differ by a 2-move (or 4-move). By the previous Lemma, one can see that performing a 2-move
on a height function f is equivalent to increasing or decreasing its value by 1 at some type-B point. Similarly,
performing a 4-move is equivalent to increasing or decreasing the value of f by 2 at some type-A point. Of
course, such moves may only be applied if the function that results is a valid height function.

6 Local connectivity from height functions
Theorem 1 will easily follow from the following lemma.

Lemma 9 Let I" be a 4m x 4n rectangle, and let fi, fo € Hr be height functions. It is always possible to
convert f1 into fo by performing a sequence of 2-moves and 4-moves.

Proof: For a 4m x 4n rectangle T, let fy be the height function which is 1 on the type-Al points of T,
and 0 everywhere else. We would like to show that every height function f can be transformed into fy. If
every height function can be transformed into fj, it follows that any height function can be transformed
into any other. Suppose f(x) > 1 for some z. Let h be the largest value that f attains. Suppose there is a
type-B point y which attains this value. Then f must take the values h,h — 1, h, and A — 1 on the neighbors
of y. So we can perform a 2-move to change f(y) to h — 1 and still have a valid height function. We do
this for all type-B points at which f attains the value h. Now look at any remaining (type AO or A1) point
x having f(z) = h. We must have f(z) = h — 1 for the neighbors z of x, since there are no type-B points
remaining for which f(z) = h. So we can perform a 4-move to change f(z) to h — 2. We do this for every
point where f attains the value h. Now the largest value which appears is at most h — 1, and we repeat the
procedure until we have f(z) <1 for all z.

We do a similar thing for points where f(x) < 0, increasing them until f(z) > 0 for all . At this point,
all points will have the value 0 or 1 (in particular, f(z) = 0 for all type-AO points z, and f(x) = 1 for all
type-Al points). It just remains to set f(y) = 0 for all type-B points y, which can be done by a sequence of
2-moves. This finishes the procedure, proving the lemma. [ ]

7 The lattice structure on height functions

There is a natural partial order on Hr. If f1, fo € Hr are height functions, we say f1 < fo iff fi(z) < fa(x)
for all points x. This partial order can be extended to tilings—say 71 < 7o if {(71) < {(72).

Theorem 10 For any 4m x 4n rectangle I', the poset Pr consisting of all tilings of T, with this order
relation, is a distributive lattice.

Proof: In order to prove that Pr is a lattice, we need to show that for height functions f; and fs, there
exists a unique greatest lower bound (“meet”) a and least upper bound (“join”) . We define afx) =
min{ f1(z), fo(x)} and B(z) = max{fi(x), f2(z)}, for all z. Clearly a < f; and « < fo, and all other lower
bounds are less than a. It just remains to be shown that « is a valid height function. Clearly the values
of a on the boundary will be 0, and the type-A0 points will be even and the type-Al points will be odd,
because these properties hold for f; and f. As for adjacent values differing by at most 1, suppose x and y
are adjacent points, and a(x) > a(y) + 2. Without loss of generality, assume a(y) = f1(y). Then it would
follow that f1(z) > a(xz) > a(y) +2 = f1(y) + 2, a contradiction. Therefore, « is a valid height function.
The proof for § is analogous.

To prove that Pp is a distributive lattice, we need to verify the distributive laws: For height functions f,
g, and h,

(fVONFVh)=FfVgnh) and (fAgV(fAR)=FA(gVh).



For any x we have:

(Fvg) A(fVh)(x) = min(max(f(z), g(z)), max(f(z), h(z)).

The functions min and max satisfy the distributive laws, so we have

min(max(f(z), g(x)), max(f(z), h(x)) = max(f(z), min(g(z), h(x)) = (f vV (g A h))(2).

Hence

(fVg) A(fVh)=FVI(gAh),
as desired. Note that changing the sign of functions switches the role of V and A, which implies the second
distributive law. Therefore, Pr is a distributive lattice. [ |

8 Non-rectangular regions

A quadruplicated simply connected region is a region which is formed by taking a simply-connected union
of grid squares and dilating the figure by 4 in each direction. Let Q denote the set of all such regions. As
we did for rectangles, we will assume that the corners of such a shape have coordinates which are congruent
to (0,0) mod 4. Notice that Q contains all 4m x 4n rectangles.

Theorem 11 The second part of Theorem 2 holds for all regions I' € Q.

Proof: Suppose there exists a region I' € Q which can be tiled in a way which violates some of the
supposed cuts and cornerless points. Let IV be the smallest 4m x 4n rectangle which contains I'. We can
extend the tiling of T to a tiling of TV by adding tiled 4 x 4 squares to the part of IV which is not in T". This
gives a tiling of IV which violates the necessary cuts and cornerless points, which contradicts Theorem 2. ®

As a result of this, all the above results for rectangles are also true for all ' € Q. The proofs are the same
as before.

The results do not hold if we drop the condition of being simply-connected. (Notice that the correspon-
dence between chain graphs and height functions breaks down if the region is not simply connected, because
points on the boundary of the region need not be on the unbounded face of the chain graph, so they may
have nonzero height.) For example, Figure 12 shows a tiling of a non-simply connected region where neither
the 2-move nor the 4-move can be applied.
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Figure 12: Tiling of a non-simply connected region.
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Theorem 12 Let S denote the set of all simply-connected regions. For tilings by T-tetrominoes, the set S
does not have a local-move property.

Proof: Let A; denote the region shown in Figure 13. It is straightforward to see that this region can be
tiled in only two ways, namely the way shown and its mirror image. Since there are no intermediate tilings,
and no tile is in the same place in both tilings, the only way for local connectivity to hold for this region is
if we declare this entire transformation to be one local move.

In fact, we can generate infinitely many regions which admit only two tilings. Let A, denote the region
in Figure 14, where the total length of the region is 8% 4 2. As before, it can only be tiled in two ways,
so in order to have local connectivity, the entire region must be considered to be a local move. No finite
set of local moves can contain all of these, hence any finite set of local moves is insufficient to give local
connectivity for these regions. [}
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Figure 14: The region Ay.

9 Enumeration of tilings and the Tutte polynomial

For a region I' € Q, define the graph Gr as follows. Include a vertex for each type-Al point, and connect
two vertices with an undirected edge if they are 4 units apart (vertically or horizontally). Similarly, define
Gt by including a vertex for every type-A0 point, and again connecting those vertices which are 4 units
apart. Note that when I' is a 4m x 4n rectangle, the graphs Gr and G} are isomorphic to the m x n and
(m+1) x (n+ 1) rectangular shape subgraphs of the square grid.

For a graph G, we let V(G) and E(G) denote the set of vertices and edges of G respectively. Let ¢(G)
denote the number of connected components of G. If e € E(G), let G\e be the graph formed by deleting e
from G. Similarly, let G/e be the graph formed by contracting e in G.

The Tutte polynomial T'(G;z,y) is a polynomial in the variables z and y which is defined for undirected
graphs G. Typically it is defined in terms of the following recursive formulas (see [22]):

T(G;x,y) =1 if G has no edges,

T(G;z,y) =y -T(G\e;z,y) if e is a loop,
o T(Gix,y) =x-T(G/e;x,y) if e is a cutedge,
T(G;z,y) =T(G\e;z,y) + T(G/e;z,y) if e is neither a loop nor a cutedge.
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Another equivalent definition of T(G;x,y) is as follows. Let H be a spanning subgraph of G (that is, a
subgraph of G which contains all the vertices of G). Then

T(G;z,y) = Z (z — 1)C(H)—C(G) (y — 1)C(H)+|E(H)|—|V(G)\
HCG

where the sum is over all spanning subgraphs H C G.
Theorem 13 For every I' € Q, the number of T-tetromino tilings of T is equal to 2 - T(Gr; 3, 3).

To prove this, we introduce a few lemmas about spanning subgraphs of Gt and GF-.
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Figure 15: A tiling 7, and the graphs o(7) (solid lines) and o*(7) (dotted lines).

Given a tiling 7 of T", define o(7) to be the spanning subgraph of Gr which includes those edges which
do not cross any tile. Similarly, define o*(7) to be the spanning subgraph of G- which includes those edges
which do not cross any tile (see Figure 15).

Suppose H is a spanning subgraph of Gr. Define w(H) to be the spanning subgraph of G}. consisting of
those edges which do not cross any edge of H.

Lemma 14 Fizx T € Q and a tiling 7 € Tr. Then w(o(1)) = o*(r). Furthermore, no edge of the chain
graph ¢(T) crosses an edge of either o(t) or o*(7). Conversely, any edge of Gr or G} which does not cross
any edge of ¢(7) is an edge of o(7) or o* (7).

Proof: Notice that the points where an edge of Gt and an edge of G} intersect are precisely the type-B
points in the interior of I'. Consider any such point. Recalling Figure 5, observe that exactly one of the
two edges which meet there will avoid crossing tiles of 7. Hence each such point is on an edge of either
o(7) or o*(7), but not both. So an edge of Gf is in ¢*(7) if and only if no edge of o(7) crosses it. Hence
o*(1) = w(o(7)).

Recall that in ¢(7), each edge corresponds to a tile; the edge connects the two blocks in which the tile
lies. Edges of o(7) and ¢*(7) run along block boundaries; an edge is present in these graphs if and only if
no tile crosses that boundary. If no tile crosses that boundary, then no edge of ¢(7) will either. Conversely,
if no edge of ¢(7) crosses a block boundary, then no tile crosses that boundary, hence that boundary will be
an edge of o(7) or o*(7). (See Figure 16.) [

Corollary 15 Suppose a region T' € Q and tilings 71,72 € Tr satisfy o(11) = o(12). Then ¢(11) and ¢(72)
are identical up to the orientation of the edges.

12



Figure 16: The graphs o(7) and ¢*(7), and the chain graph ¢(7).

Proof: Let H = o(m1) = o(72). For each white antiblock, there is exactly one edge of Gr which crosses it.
The presence or absence of that edge in H determines which pair of edges along the white antiblock must be
included in the corresponding chain graphs. This gives all the edges of the chain graphs, except those which
do not border a complete white antiblock (ones near the boundary of the region). By inspection, one can
see that all those edges must be included in order to have total degree 2 at each vertex of the chain graphs.
|

Lemma 16 Let ' € Q, and let H be a spanning subgraph of Gr. Then
c(w(H)) = c(H) + [E(H)| = [V(Gr)| + 1.
Proof: We fix I' and prove this by induction on the number of edges in H. If H has no edges, then
c¢(H) = |V(Gr)|, so c¢(H) + |E(H)| — |V(Gr)| + 1 = 1, which is equal to ¢(w(H)), as required. Now assume
that the result holds for all subgraphs H C Gr with |E(H)| < k.

Consider a subgraph H with |E(H)| = k, and let e € E(H). First, suppose that e is a cutedge of H.
Then ¢(H\e) = c(H)+ 1, |[E(H\e)| = |E(H)| — 1, and c(w(H\e)) = c¢(w(H)). We conclude:

c(w(H)) = c(w(H\e)) = c(H\e) + [E(H\e)| = [V(Gr)| + 1 = ¢(H) + [E(H)| = [V(Gr)| + 1.

Now suppose that e is not a cutedge of H. Then c¢(H\e) = ¢(H), |E(H\e)| = |E(H)|—1, and c(w(H\e)) =
c(w(H)) — 1. We have

c(w(H)) = c(w(H\e)) +1 = c(H\e) + |[E(H\e)| = [V(Gr)[ + 2 = ¢(H) + [E(H)| - [V(Gr)| + 1,
as desired. Therefore c(w(H)) =c¢(H) + |E(H)| — |V(Gr)| + 1 holds for all subgraphs H C Gr. [ ]

Suppose H is a spanning subgraph of Gr. Define a(H) = 2¢(H) + |E(H)| — |V(Gr)|. Theorem 13 now
follows from the following lemma.

Lemma 17 Let T be a region in Q. For every spanning subgraph H C Gr, there are exactly 2°) tilings T
for which o(1) = H.

Proof: We need to show that for every spanning subgraph H C G, the corresponding (undirected) chain
graph consists of a(H) cycles. Each cycle can be oriented in two ways, hence we will get 2¢(#) valid chain
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graphs which correspond to H. Since chain graphs are in one-to-one correspondence with tilings, the result
will follow.

Let C be a chain graph which corresponds to H. If C' consists of k cycles, then it divides the plane into
k + 1 zones (possibly having holes). Each such zone is a maximal connected region on which the height
function f is constant. Each zone must contain at least one type-A point, and thus must contain at least
one vertex of H or w(H). It cannot contain points from both H and w(H), since the value of f is odd on
the vertices of H and it is even on the vertices of w(H). Observe that all vertices of H or w(H) which live
in the same zone are connected. Hence H and w(H) have a total of & + 1 connected components. Then
k=c(H)+cw(H))—1=2c(H)+|E(H)|—|V(Gr)| = a(H), so the number of cycles in C'is equal to a(H),
which proves the lemma. [ ]

10 Sampling of tilings

Let I" € Q be a quadruplicated simply-connected region. Define a Markov chain M whose states are T-
tetromino tilings of I'. Allow a transition from 77 to 7o if 7y and 7 differ by a 2-move or 4-move, with the
probability of such a transition being 1/N, where N = |I'| is the area of I'. Observe that N/2 is larger
than the maximum number of different local moves which can be applied to any one tiling. Now, let the
probability of staying put in the state 71 be 1 — k/N > 1/2, where k is the number of different local moves
which can be applied to 7.

Observe that M is symmetric, and aperiodic since the probability of staying put is always > 1/2. There-
fore, by Theorem 1, the Markov chain M is ergodic and converges to the uniform distribution on 7r. The
mixing time of M remains open, but we would like to make the following conjecture:

Conjecture 18 The mixing time of the Markov chain M is polynomial in the area of T'.

We refer the reader to [1] for the various definitions of the mixing time of Markov chains and related
results. Now, if the conjecture is true, we can use the Markov chain M to sample tilings 7 € 7p from a
nearly uniform distribution. Using the notion of self-reducibility (see introduction, [18]), we can use sampling
to approximate |71|. The self-reducibility of tilings follows from the following lemma.

Lemma 19 Let I' € Q, and consider a tiling 7 € Tr chosen uniformly at random. Let S be the leftmost
4-by-4 square in the top row of T'. Unless S is all of T, the probability that S is isolated in T (covered by
exactly 4 tiles) is at least 1/3 and at most 2/3.

Proof: The 4-by-4 square S corresponds to a vertex s in Gr. Notice that because there is nothing to the
left of S or above it, the vertex s must have degree 1 or 2 in Gr. The square S will be isolated if and only
if no edge of o(7) is incident to s.

Case 1: Suppose s has degree 1 in Gr. Let e be the edge of Gr incident to s. Let H be a spanning
subgraph of Gr — {s}. Let Hy be the spanning subgraph of Gr which consists of just those edges in H,
and let H; be the spanning subgraph of Gr which consists of those edges in H, plus e. Consider all tilings
7 such that o(7) is either Hy or H;. We want to know what proportion of these tilings have o(7) = Hp.
Notice that |E(Hp)| = |E(H1)| — 1, and ¢(Hp) = c¢(Hy) + 1. It follows that a(Hy) = a(H1) + 1. So by
Lemma 17, there will be twice as many tilings with o(7) = Hy as there are with o(7) = H;. This is true for
any H C Gr — {s}. So upon picking a random tiling 7, the probability that e is present in o(7) is 1/3. So
in this case, S is isolated with probability 2/3.

Case 2: Suppose s has degree 2 in Gr. Let e; and e be the edges of Gr incident to s, and let ¢; and ¢,
be the vertices adjacent to s along edges e; and es respectively. Let H be a spanning subgraph of Gr — {s}.
Let Hy be the spanning subgraph of G which consists of just those edges in H, let H; be the graph which
includes the edges of H plus e, let Hy include the edges of H plus ez, and let Hs include the edges of H
plus e; and e;. Consider two subcases.

Subcase 2a: Suppose t; and to are in different components of H. Notice that |E(Hp)| = |E(H1)| -1 =
|E(H2)| — 1 = |E(H3)| — 2, and ¢(Hp) = ¢(Hy) +1 = ¢(H2) +1 = ¢(H3) +2. So a(Hy) = a(Hy)+ 1=
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a(Hs) +1 = a(H3z) + 2. So among all tilings 7 which come from one of these graphs, 4/9 of them will have
o(1) = Hy, 2/9 of them will have o(7) = Hy, 2/9 of them will have o(7) = Ha, and 1/9 of them will have
o(1) = Hs.

Subcase 2b: Suppose t1 and t2 are in the same component of H. In this case, |E(Hy)| = |[E(H1)| —1 =
|[E(Hs)| — 1 = |E(Hs)| — 2, and ¢(Hp) = c(Hy) +1 = ¢(H2) +1 = c(H3) + 1. So a(Hy) = a(H)+1=
a(Hs) + 1 = a(Hs). So among all tilings 7 which come from one of these graphs, 1/3 of them will have
o(1) = Hy, 1/6 of them will have o(7) = Hy, 1/6 of them will have o(7) = Hs, and 1/3 of them will have
O'(T) = Hg.

Combining subcases 2a and 2b, we get the following. For any H, either 1/3 or 4/9 of the tilings which
correspond to H will have S isolated. Hence when we sum over all possible graphs H, we find that between
1/3 and 4/9 of all tilings of T have S isolated, when s has degree 2 in Gr.

This proves the lemma. u

~—

11 Final remarks

We should mention that our chain graphs seem to be well known in the Statistical Physics literature under a
name “fully-packed loop model on the square lattice”; in this case all loops have fugacity 2. We refer to [?]
for an appearance of this model in Combinatorics literature, exact terminology and further references.

A number of questions remain for future study. First and foremost, it would be interesting to show that
the mixing time of M is polynomial, resolving Conjecture 18. If the proof goes along similar lines as that
in [9], it should lead to new interesting combinatorial notions of the “intermediate” height functions between
the smallest and the largest (of a fixed region).

A related question would be to show hardness of approximation of the number of T-tetromino tilings of
regions I' € Q. For general regions and for planar bipartite regions #P results have been obtained for various
evaluations of the Tutte polynomial (see [20, 22]), but for regions on a square grid much work is yet to be
done (cf. [5]).

In a different direction, are there other tiling type problems which lead to, perhaps other, evaluations of
the Tutte polynomial? Can the present construction be extended to coverings of certain perhaps complicated
graphs with copies of K7 3, so that their number is equal to T'(G; 3, 3) for general graphs G?

A more philosophical (and thus more difficult) question is to explain the meaning behind T-tetrominoes.
What geometric properties of the T-tetrominoes force the rigid structure discovered by Walkup? Do all such
structures imply the existence of height functions?

In general, are there other simple collections of tiles so that a certain rich collection of regions has a
rigid structure of tilings, while general simply connected regions do not? Philosophically, this amounts to
understanding the extent the boundary conditions control the structure of tilings in the middle. The example
of domino tilings of Aztec diamonds comes to mind [3].

Finally, what can be said about the asymptotic behavior of the number a, of T-tetromino tilings of a
4n x 4n square? It is not hard to show that there exists a limit ¢ = limloga,/n? as n — oco. It would be
interesting to find upper and lower bounds on ¢ similar to that in [11, 5].
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12 Appendix

12.1 The ice graph

Ice graphs are another type of directed graph which can be associated with a tiling. These graphs, and their
associated height functions, provide another means of proving local connectivity for regions I' € Q.

For a region I € Q, let Br be the set of type-B points in I' or dI". A directed graph on Br is called an
ice graph if it satisfies the following conditions:

e every two points which lie at opposite corners of the same block of I" are connected with an edge, either
one direction or the other, but not both, and

e every vertex has equal indegree and outdegree.

This notion has been explored by Eloranta [4] and others.

Let Zr denote the set of all ice graphs of a region I'. Call a vertex alternating if it is incident to four edges
which are oriented “in, out, in, out”, in alternating order. Let z(G) be the number of alternating vertices in
an ice graph G.

In [10] the Makarychev brothers constructed a map p : 7+ — Zr as follows.

For a tiling 7 € 7p, define a directed graph on Br as follows. Observe that within each block, three
squares belong to one T-tetromino, while one square, call it the oddball, belongs to a different T-tetromino.
By inspection, we see that the oddball must be incident to a type-B point, rather than a type-A point. For
each block, include a directed edge from the point next to the oddball square to the opposite corner of the
block (see Figure 17). Define p(7) to be the directed graph which results.

Figure 17: A tiling 7, and the ice graph pu(r).

Lemma 20 (K. and Y. Makarychev) For any region I' € Q, the map p is a surjection from TIr to Ir, in
which every ice graph G is the image of 2°(%) tilings.

Sketch of proof: First let us show that p(7) is an ice graph. Every edge connects two opposite corners
of some block, so this graph will have edges in the correct places. Notice that each type-B point is adjacent
to exactly two oddballs (recall Figure 5), unless the point is on dT', in which case it is adjacent to only one.
Therefore, every vertex has equal indegree and outdegree. So u(7) is in fact an ice graph.

Now we just need to show that every ice graph G comes from exactly 2%(¢) tilings. Take a vertex of G.
If the vertex is on OT', there is only one way to place the tile which touches this vertex (see Figure 18).
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Figure 18: A boundary vertex, a nonalternating vertex, and the two options for an alternating vertex.

Similarly, if the vertex is not on the boundary, and not alternating, there is only one way to place the two
tiles which touch this vertex. However, if the vertex is alternating, there are two ways to place the tiles
around the vertex. The squares covered by the two tiles are the same in either case, so the decision of which
one to use does not affect the rest of the tiling. Hence there are 22(4) ways to convert an ice graph G into a
tiling. [ |

Lemma 21 If 11,7 € Tr are tilings such that p(m) = p(72), then 11 and T2 are local-move equivalent.

Sketch of proof: As we just saw, the only way in which these tilings may differ is in the way the
tiles next to alternating points are arranged. Converting one such configuration into the other is done by
performing a 2-move. Each tile is adjacent to only one type-B point, so these moves are disjoint and can
be done independently of each other. So one can convert any such tiling into any other by a sequence of
2-moves. ]

12.2 Height on the ice graph

For a region I' € Q, let Ar be the set of type-A points in I" or dI'. Say that a function f : Ap — Z is an
ice-height function if it satisfies the following conditions:

o f(z) =0 for all points z € JT', and
e |f(z) — f(y)] =1 whenever x and y are adjacent (differ by 2 in each coordinate).

Let Jr denote the set of all ice-height functions of a region I'.
Theorem 22 For any region T’ € Q, we have |Jr| = |Zr|.

We define a map v : Ir — Jr as follows. Let G € Zr be an ice graph. Define a function f° on the faces
of G by the following rules. Let f° have the value 0 on the unbounded face of G. As we pass an edge of
the graph, if the edge is oriented left-to-right as we pass it, let the value of f° increase by 1. (Similarly, if
the edge is oriented right-to-left, let the value of f° decrease by 1.) Now define f : Ar — Z by letting f(x)
equal the value of f° on the face in which z lies (see Figure 19). Define v(G) to be this function f.

Theorem 22 will follow from the following lemma.

Lemma 23 For any region I' € Q, the map v is a bijection between Iy and Jr.

Proof: Let G be an ice graph, and let f be v(C). The function f is well-defined for the same reason
that the height function for the chain graph is well-defined—Dbecause every vertex has equal indegree and
outdegree. It is clear that such a function meets the criteria for being an ice-height function.

From an ice-height function f, one can reconstruct the ice graph G = v~1(f) by directing every edge so
the face with greater height is on the left. Since the net change in height going around any vertex is 0, every
vertex will have equal indegree and outdegree, thus the graph so constructed will be a valid ice graph. R

For ease of notation, define £(7) = v(u(7)). For a region I' € Q, the map ¢ is the canonical bijection
between 7r and Jr.
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Figure 19: An ice graph G, and the function f = v(G).

Lemma 24 Let I' € Q and let 71,7 € Tr be tilings of I'. If the tilings 7 and 1o differ by a 2-mowve, then
&(11) = &(72). If the tilings 71 and 1o differ by a 4-move, then £(11) and (7o) differ by 2 on some point, and
are the same everywhere else. If f1 and fo are ice-height functions which differ by 2 on some point and are
the same everywhere else, then there exist tilings 71 and o such that £(11) = f1,£(12) = fa, and 71 and 1
differ by a 4-move.

KX Ko

Figure 20: The effect of local moves on the ice graph.

Sketch of proof: A 2-move can only occur at an alternating type-B point, so if 7, and 75 differ by a
2-move, then p(71) = p(m), so §(m1) = £(12) (see Figure 20).

If 71 and 75 differ by a 4-move, then p(m) and p(72) differ by the reversal of a directed 4-cycle, thus &(7y)
and £(72) will differ by 2 on the point inside that 4-cycle, and be the same everywhere else.

Now suppose f; and fy are ice-height functions such that fi(x) = h+ 1 and fo(x) = h—1, but f1 = fo
everywhere else. We must then have fi(y) = fa(y) = h for the neighbors y of . So x will be surrounded by
a counterclockwise directed 4-cycle in the ice graph corresponding to f;, and a clockwise directed 4-cycle in
the ice graph corresponding to fs. The problem is that a tiling which corresponds to f; may look like the
left side of Figure 21. However, in such a case, there is always another tiling (which differs from the original
by some 2-moves) such that a 4-move can be applied. [ ]

For ice-height functions f1, fo € Jr, say that f; and fy differ by a 4-move if there exist tilings 7,7 € Tr
which differ by a 4-move such that £(71) = f1 and £(m2) = f2. By the previous Lemma, one can see that
performing a 4-move on an ice-height function f is equivalent to increasing or decreasing its value by 2 at
some point. Of course, such a move may only be applied if the function that results is a valid ice-height
function.

Notice that for tilings 71 and 72, having £(71) and &(72) differ by a 4-move does not imply that 7 and 7o
differ by a 4-move. However, it does imply that there exist tilings 71 and 74 which differ by a 4-move such
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Figure 21: A tiling where a 4-move cannot be applied, and one where it can.

that £(77) = &(m1) and £(74) = &(72). It then follows, by Lemmas 21 and 23, that 71 is local-move equivalent
to 71 and 7 is local-move equivalent to 75. Hence 71 and 75 will be local-move equivalent whenever £(7;)
and &(7z) differ by a 4-move, or more generally, by a sequence of 4-moves.

Theorem 1 will now easily follow from the following Lemma.

Lemma 25 Let T' € Q, and let f1, fo € Jr be ice-height functions. It is always possible to convert fi into
f2 by performing a sequence of 4-moves.

Proof: For any region, there will be a unique ice-height function fy whose value at each point is either 0
or 1. (Each face is either “even” or “odd”, depending on how many steps from the exterior it is, thus each
even face will have the value 0, and each odd face will have the value 1.) It will be sufficient to show that
any ice-height function f can be transformed into fo. Suppose f(x) > 1 for some point z. Let  be the point
where f attains its largest value, call it h (if there are several possible points, choose any one). We must
then have f(y) = h — 1 for the neighbors y of . Thus we can perform a 4-move, and decrease f(z) to h — 2.
Repeat this process until f attains no values greater than 1. Now if there are points « where f(z) < 0, find
the one where f attains its minimum. We can perform a 4-move to increase f(z) by 2. We repeat this until
f attains no values less than 0. Now 0 < f(z) <1 for all z, so we are done. [ |
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Note:

After the paper was finished there has been several subsequent developments. First, Michel Las Vergnas
established a connection between our Theorem 13 and his results in the paper “On the evaluation at (3,3)
of the Tutte polynomial of a graph”, J. Combin. Theory Ser. B, vol. 45 (1988), 367—372. The authors were
not aware of this paper, but the connections is in the same spirit as the appendix.

The authors later generalized and extended Theorem 13 in this paper to plane and ribbon graphs in the
recent preprint “Combinatorial evaluations of the Tutte polynomial”, which is available from:
http://www-math.mit.edu/ pak/research.html
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ABSTRACT. Let T be a finite set of tiles. The group of invariants G(T), introduced
by the author [P], is a group of linear relations between the number of copies of tiles
in tilings of the same region. We survey known results about G, the height function
approach, the local move property, various applications and special cases.

Introduction

The problem of tileability of a region is very old, and in many instances com-
putationally hard, even for small sets of tiles (see e.g. [MR,Ro]). The subject of
this paper is different, although not unrelated. We study a group of invariants
G = G(T), associated with a set of tiles T. This notion was introduced in [P], and
further studied in [MuP,MoP]. The elements of G correspond to linear relations for
the number of copies of tiles used in different tiling of every fixed region I'. Turns
out, this group has various nice properties, and in certain special cases can be fully
computed.

In this paper we survey much of what is known about G, the basic algebraic
properties, some complexity results, as well as some applications and special cases.
We describe some examples when coloring arguments do not suffice, while a different
technique can be applied. A number of results never appeared before; their proofs
will be sketched. We also include conjectures and open problems for further study.

Rather than define the group of invariants here, let us discuss a small but very
interesting example of domino tilings, which was one of our motivations. Denote
by 71, T2 the vertical and horisontal domino tiles, and let T = {71,72}. Let I" be a
connected region on a square grid. The problem of tileability of I' by T corresponds
to finding a perfect matching in a dual graph, so it can be solved in polynomial
time [LP].

Now, let A be a tiling of ' by dominoes. Denote by «a;(A), az(A) the number
of times tiles 71, 7 appear in A. Clearly, a;(A) + a2(A) = |I'|/2, which follows

Key words and phrases. Polyomino tilings, tile invariants, Conway group, undecidability,
height function.
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from the area consideration. Also, one can show that a;(A) = const(I') mod 2,
where the const depends only on the region I', and not on the tiling. This follows
from a simple coloring argument [P]. We call the linear relations as above the tile
invariants. In general, tile invariants are the linear relations of the type

(*) crag(A) +caaz(A)+ ... = const(l') mod m,

where the const(I') depends only on the region I', and not on the tiling A of T';
¢i € Z,and m = oo is allowed. The group G(T) can be defined as the group of such
invariants, with addition as a group operation (the precise definition will be given
in section 1). In the case of dominoes, the group of invariants is G(T) = Z X Zo,
generated by the two invariants described above.

Our goal is to determine the group of invariants, and compute it in some special
cases. For example, as in the case of dominoes, tile invariants can often be derived
from certain colorings of the squares. In section 1 we follow [P] and introduce the
group of valuations E C G, closely related to the extended coloring arguments. As
we mentioned above, in general not all tile invariants can be obtained by the ex-
tended coloring arguments. This difference can be underscored by the complexity
results. We show that in general case computing G is NP-hard, and even undecid-
able when considered on the whole plane. At the same time, E can be determined
in polynomial time (see section 3.)

Now, if the group G(T) is computed, one can use it to obtain criteria for tileabil-
ity of regions T tileable by T with a proper subset T' of tiles. Indeed, in this case
the number of times «; the tiles 7; € T' can occur in the tiling of I' must satisfy a
number of linear relations. Existence of integral solution of these relations gives a
tileability criteria. This approach was pioneered in [CL] and later successfully used
in [P] to obtain tileability results which cannot be proved by coloring arguments
(see section 9.)

The difficulty with the group of invariants is proving that a suspected relation
is indeed a tile invariant. At the moment we see only two ways of proving such a
result. The first has to do with the local move property. Recall that one can obtain
any domino tiling A; of a simply connected region I' to any other domino tiling
Ay of T by a sequence of 2 x 2 moves (see e.g. [LP,T].) Now, in general, it suffices
to check that a given relation is preserved by such moves. In fact, one can easily
compute the whole group of invariants in this case (see section 4.)

FiGure 0.1. Local 2 x 2 move.

Unfortunately, very few sets of tiles have a finite number of local moves. For
example, even for dominoes in three dimensions there exist infinitely many princi-
pally different simply connected regions which have exactly two domino tilings. In
the other direction, even when we believe that there exist a finite number of local
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moves, even when we conjecture we know them all, the problem of proving this
claim may be very hard.

The second and the most successful at the moment approach is based on the no-
tion of height function, and was inspired by the Conway group [CL] and Thurston’s
article [T]. Roughly, Thurston defined a function from edges in the grid into a
line, which maps tileable regions into loops. This approach is useful for proving
local move property and finding new tile invariants [T,CL]. In the case of domino
tilings, Thurston’s height functions proves the connectivity of tilings by the 2 x 2
moves. It also gives a remarkable linear time algorithm for testing tileability of
simply connected regions [Ch,F]. In sections 4, 5 we present general conditions for
the technique to succeed.

While our exposition is somewhat brief due to the space limitations, we include a
large number of examples and references when the techniques in the survey were suc-
cessfully applied to various tiling problems. Among others, we present a final result
of computation of the ribbon tile invariants [MoP], started earlier in [CL,MuP,P1]
(see section 6). We also go at length to describe the Generalized Sperner’s Lemma
which can also be defined as a tile invariant for a special set of tiles (section 8.1).
We conclude with the heuristic method for study of general set of tiles.

Many results are only stated in the main body of the paper. We sketch the
proofs of new results in section 10.
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1. BASIC DEFINITIONS

The most general tiling problem can be formulated as follows. Let A be a finite
or infinite set, and let B be a collection of finite subsets, which we call regions. Let
‘~’ be an equivalence relation on B. We will assume that ‘~’ preserves size (the
number of elements in the region). Finally, let T be a finite subset of B (the set of
tiles). Denote by T the set of regions 7 € B such that 7 ~ 7 € T. We assume that
77 forall 7,7 € T.

A typical example is a square grid A = Z? with a set of simply connected regions
B and translation equivalence ‘~’. Note that we view tiles here as subsets of squares,
for example dominoes correspond to pairs of adjacent squares in the grid.

The problem of tileability by the set of tiles T is a decision whether a given set
I' € B can be presented as a disjoint union of regions in T:T=U T;, where 7; € T
for all ;. We denote such tilings by A and write A - I". This problem is hard even
in some very simple special cases, and will not be studied in this paper. Instead,
we will study an abelian group G(T, B) which can be defined as follows.

Let T = {r,...,7} be the set of tiles, where k = |T|. For every tiling A of a
region T' € B denote by «;(A) the number of tiles 7 € A such that 7 ~ ;. Now let

G(T,B) = Z*/Z{(c1 (A) — a1 (4'),...,ar(A) — ay(4")), VT € B, VA, A' - T),
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where on the right hand side we have a subgroup of k-vectors with A, A’ any two
tilings by T of the same region I' € B. This is a group of invariants, the main
subject of this paper. The elements of G(T, B) are called tile invariants.

In general, G(T,B) may depend heavily on the set of regions (all regions vs.
simply connected regions) as well as a set of tiles (adding one tile may destroy
most of the tile invariants). Note also that if By C Bs, then G(T,B:) D G(T, Bs).
Similarly, if Ty C T, then

G(T3,B) C G(Ty,B) x z!T=I=IT1l,
Define a coloring group
O(T) =271+ -+ 2, =0, V7 = {z1,...,2,} € T).

One can think of elements of Q as of functions f : A — Z, such that f(T') =
Yower f(z), and f(r) = 0 for all T € T. The function f is called a coloring map.
Before recently, coloring maps were the main tool to prove untileability [G]. Indeed,
if f(T') # 0, this immediately implies that I' is not tileable by T. In this case we
say that a coloring argument f rejects tileability of I'. Let us add that any map
f A = @G, where G is abelian, can obtain from the above functions. In other
words, if any coloring arguments f : A — G rejects tileability of T', for some abelian
group G, it also rejects tileability for some f: A — Z,,.
Now, define an extended coloring group

O(T) =ZMNZ(z1+ -+ 2 =y1 + - + yr),

where 7 = {z1,...,2.}, 7 = {y1,...,r},and T ~ 7' € T. Clearly, O(T) Cc O(T).
One can think of the elements of O(T) as of functions f : A — 7, which are
constant on equivalent tiles in T. We call such functions an eztended coloring
maps.

There is a natural map v : O(T) — ZT which maps the functions to their values
on tiles in T. We have Q(T) = v~!(0). By definition, the value f(T') of a function
in O(T) is independent on the tiling by T, so v extends to the quotient group G(T).
Denote by E(T) the image of v in G(T). We call E(T) the group of valuations of
the set of tiles T. From above,

E(T) ~ O(T)/O(T).

By definition, the subgroup E(T) C G(T) consists of all tile invariants which follow
from the extended coloring maps.

Computing the coloring group and the group of valuations is of interest, so as
to see which tileability criteria and which group invariants are “easy to obtain”.

Unless stated otherwise, for the rest of the paper we will assume that A C Z2,
where Z? denotes the square grid with elements - 1 x 1 squares. Denote by B, Bse,
Bn the set of all regions, of all simply connected regions, and the set of regions
in N x N square. The equivalence relation consists of parallel translations of the
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regions (no rotation or reflection is allowed). Let the set of tiles T consist of some
k tiles, each of size < R. By abuse of notation, we use 7 € T to denote 7 € T.
The main questions of this paper can be stated as follows:

Group of Invariants Problem (GI) :
Given T C Z?, compute G(T, B) (or G(T, Bs.), G(T, By)).

Tileability Problem (T) :
Given T C Z%, T € B (or By, By), decide whether T is tileable by T.

Group of Valuations Problem (GV) :
Given T C Z?, compute E(T).

Coloring Group Problem (CG) :
Given T C 77, compute O(T).

The last two problems are very much related, but we decided to separate them
for convenience.

We say that a tile invariant is finite (infinite) if the order of the element in G is
finite (infinite). Using definition () in the introduction, the invariant is infinite if
m = o0o. We will come back to tile invariants in the next section.

Remark 1.1 Much of this survey can be understood with conventional defini-
tions of the tilings on a square grid. The point of this somewhat overgeneralized
section was to introduce the general concepts and notation we use throughout the
paper, as well as to prepare the reader to possible extensions and generalizations.
While much of the results in the paper can be generalized by verbatim, we decided
to keep the presentation simple for the sake of clarity. At the same time we hope
that after reading this section the reader is fully equipped to generalize the results
to any appropriate level.

Remark 1.2 One should keep in mind that the tile invariants were implicitly
introduced in [CL] in order to obtain new tileability criteria. Although we downplay
the connection in this paper, the results that are obtained in this direction can be
judges as the most unexpected. See section 9 for for details.

2. ALGEBRAIC ASPECTS

Fix a set of tiles T = {r,...,7} C Z?. Consider G = G(T,B). Since G is
abelian, it can be presented as

G 7" X (Z2)™ X (Ziz)™ x =+ X (Lpe)™™ X ..

el

where r < k is called the free rank of G, denotes rk(G), and Z'* C G is called the
free subgroup of G. Similarly, denote by M = Zquc my the torsion rank of G, and
T = (Z2)™ x (Z3)™3 x ... C Gis called the torsion subgroup of G. By construction,
the torsion subgroup is always finite.

Proposition 2.1 For N sufficiently large, we have G(T,Bn) = G(T, B).
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Sketch of proof. Consider a sequence of subgroups Gy = G(T, By ). Recall that
Gy D Gyy1. By Hilbert Basis Theorem, this sequence stabilizes. O

Now let us turn to signed tilings and the coloring group. Denote by x(I') € RA
the characteristic function of a region I'. One can think of a tiling of I' by T as of
decomposition x(T') = x(7) + x(7') + ..., where 7,7',--- € T. The signed tiling
is similar decomposition, where each tile is used with a positive or negative sign.
Note that the notion of the coloring argument extends to signed tilings as well.

Theorem 2.2 [P] A region I has a signed tiling by T if and only if there is no
coloring argument which would reject tileability.

Sketch of proof. Note that signed tilings by T form a group S(T), with addition
as an operation. By definition, we have O(T) = ZT/S(T), which is a reformulation
of the result. O

Similarly to the coloring arguments, consider the extended coloring arguments
for signed tilings. Define E,(T) = E(T U —T'), where —T contains the negative
tiles —7, with x—, = —x,. We claim that

Indeed, let f : A — Z be any extended coloring map. Since x_, + X, = 0, we have
f(—=7) = —f(7) and thus E, (T) C E(T). On the other hand, E(T) C E,(T) since
every extended coloring map by definition corresponds to an extended coloring map
for signed tiles T U —T, and therefore defines a proper valuation on T U —T.

An interesting class of tile invariants are the abelian invariants, which are defined
as tile invariants which remain invariants for signed tilings. Define group of abelian
invariants A(T) = G(T U —T). From above, we conclude that E(T) C A(T). In
fact, this is an identity:

Theorem 2.3 A(T) =E(T). O

The real meaning of Theorem 2.3 can be seen in the following observation. If
for some reason we have an abelian invariant, we can conclude that there exists
a coloring map which defines it. In practice, finding such coloring map can be
complicated. We leave the proof to the reader.

3. COMPLEXITY ASPECTS

It is well known that the tileability problem is NP-complete when T is finite [GJ].
It is also undecidable when I’ is the whole plane [Be,Ri]. We shall prove that the
similar situation holds for GI Problem. But first we need to state it as a decision
problem.

GI-rank Problem: Given T, r, decide whether rk G(T,B) > r.
Bounded GI-rank Problem: Given T, r, N, decide whether rk G(T,By) > r.

Theorem 3.1 The GI-rank Problem is undecidable. Similarly, the Bounded
GI-rank Problem is NP-hard.
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The proof is given below in section 10. Roughly, Theorem 3.1 implies that
computationally GI is intractible. A simple check shows that Theorem 3.1 extends
to simply connected regions as well (i.e. computing the rank of G(T, By.) is also
undecidable). It seems likely that the proof can be modified to show that computing
any of the exponents m,, in the torsion group is also undecidable.

Now, let us fix the set of tiles T. Recall that rk(G) < |T|. Proposition 2.1
implies that the negative answer to the Bounded GI-rank Problem can be obtained
by an exhaustive search for some finite N = N(T). In other words, a sequence of
Bounded GI-rank Problems is in co-NP (as N grows). The certificate for rk(G) < r
is a collection of I > n — r bounded regions I';, 1 < i <[, and two collections of
tilings A;, A} F T';, such that

rk Z{(ar(Ai) —on (A), ... ap(Ay) —ap(4)),i=1...1) > n—r.

In a way this makes it unlikely that there is a good generic way to establish the
tile invariants for general sets of tiles. For example, if height functions exist for
a given set of tiles, this puts the Bounded GI-rank Problem into NP. However, it
is believed that an NP-hard problem cannot be in NP N co-NP [GJ]. We will not
attempt to formalize and extend this observation.

For the signed tilings, one can define the Signed Tileability Problem (ST) by
analogy. Observe that Theorem 2.2 can be used now to establish the certificates
for rk(Q) > r, m,(0) > m. Using the logic as above one would conclude that ST
and CG must have efficient solutions. This is true indeed.

Bounded CG-rank Problem: Given T, r, N, decide whether rk O(T, By ) > r.
Bounded GV-rank Problem: Given T, r, N, decide whether rk E(T,By) > r.

Theorem 3.2 Bounded CG-rank Problem and Bounded GV-rank Problem are
in P.

The proof is based on a simple reduction to a linear algebra problem, and is
given in section 10. We believe that currently known algorithms for solving linear
equations over the integers (see [BK,LLL,Sc]) can be used to determine the full
groups O(T, By ), E(T,By). Further, we conjecture that there exist an efficient
algorithm for computing O(T, B), E(T, B). We hope to return to this problem in
the future.

4. HEIGHT FUNCTIONS

There seem to be no general agreement as to what exactly is the method of
height functions, especially when dimension increases. Here we present our personal
approach with no attempt to justify it.

Suppose T is a fine set of tiles of the plane Z?, or any other plane graph L
with straight edges for that matter (for example L can be triangular of hexagonal
lattice). Let V' be a different plane, which will also be fixed. Suppose the edges of
L are oriented, and there is a function ¢ : L — V which maps oriented edges into
vectors in V. Also, let ¢(x,y) = —(y,z) for all edges (x,y) € L oriented from y
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to . Now, every path #; — x2 — z3 — ... can be mapped to a path in V' (up to
translation): vy = vo — vs — ..., where v;1+1 — v; = p(z;, z;+1). We think about
the image of the path on a graph as a polygon in V' with straight edges.

The function ¢ is called a height function if the following condition is satisfied:

(%) For every simply connected region T tileable by a set of tiles T, the image
©(AT) is a closed loop.

Here the boundary 9T is a closed path with any fixed starting point and oriented
counterclockwise. We will always assume that there is a finite number of equivalence
classes of values ¢(x,y) for all (z,y) € L. The condition (x) may seem difficult to
check, so the following result helps to simplify it.

Theorem 4.1 [t suffices to check (%) only for the tiles 7 € T.

The theorem follows easily by induction from the following lemma of independent
interest.

Lemma 4.2 Let I' C R? be a simply connected region and is tiled by simply
connected regions Ty,...,T,. Then there exist © such that T — 7; is also simply
connected.

Lemma 4.2 seems to be well known in geometric group theory, although we were
unable to obtain any reference to that. In this context it was sketched in the pioneer
paper [CL]. A simple proof can be found in [MP] (see also [Pr]).

Let us remark that in 3 and more dimensions Lemma 4.2 as stated is incorrect'.
On the other hand, proof of Theorem 4.1 requires a result somewhat weaker that
that in the lemma. For example, one can change the statement to “there exist
i1,...,0; such that regions 7;; U ... UT;, and T — (Til Uu...u Til) are simply
connected®”. We do not believe that even this weaker condition holds. It would be
interesting to find an explicit counterexample to that.

Now, once the height function is given, it can be used to prove certain tile
invariants for the set of tiles T, not unlike the extended coloring arguments. Indeed,
consider any extended coloring argument f : V — G (G is abelian), where now we
require the value f(p(7)) to be invariant of the location of the 7 on the plane. By
construction, f(p(T)) is always the sum of the f(¢(7;)) and is independent of the
tiling. Therefore the values ¢; = f(¢(:)), 7 € T define a tile invariant for T.

Formally, denote by E, (T) the group of valuations of extended coloring argu-
ments on V for the set of tiles ¢(7;). Then

(xx) E,(T) € G(T, Bsc).

This means that in certain cases when there exists a height function, one can
obtain proofs of certain tile invariants by finding an appropriate extended coloring

LA counterexample is a family of six blocks which form a three dimensional cross shape figure,
and is hard to disassemble. In this case no block can be removed without the remaining union of
five blocks having a hole inside. Versions of this puzzle can be often found in toy stores.

2 Actually, we need a slightly stronger condition on the intersection of the two simply connected
parts.
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argument in V. In other words, one can sometimes compute the whole group of
invariants G(T, Bsc ).

We should note here that condition (x) does not necessarily imply that o(A),
A F T is a tiling of T' with tiles (7;)3. Rather, we obtain a signed tiling of ((T).
Still, the conclusion (*x) remains valid in view of results in section 3.

Let us emphasize once again, that the relationship
height functions <— tile invariants

seem to go smoothly only on a plane. In principle, of course, neither A nor V' have
to be planar. There are several interesting example of the height functions when
V is a line and dimension of A varies. We will come back to such examples in the
next section. Let us note also that we don’t seem to have any nontrivial example
of two-dimensional height functions when A is not planar, and nothing at all when
V' is three and more - dimensional.

5. LOCAL MOVES

5.1 One-dimensional height functions.

Let T be a finite set of tiles, B be any set of finite regions. We say that T
satisfies local move property with respect to B if there exists a finite set of regions
I'y,...,Ty € B, and two collections of tilings A;, A} F T, for all 1 < i < £ (cf.
section 3), such that

(¢) For every ' € B and two tilings A, A" =T, there exists a sequence of tilings
A=By — By — ... = B; = A', where the arrow X — Y is between two tilings
which differ in a region I ~ T';, with the tilings X,Y restricted to I' C T', being
the tilings A; and Aj.

Theorem 5.1 If T satisfies local move property with respect to B, then the
GI-rank Problem is in P.

The main problem with the local move property is scarcity of the sets of tiles
which have it and difficulty of proving it in this case. Most known approaches are
more or less ad hoc, with a small exception of the height function approach. Again,
there seem to be no consensus of how this should work in general. We describe here
a version of it, following [T,Ch,ST].

Let A C R? be a d-dimensional structure (set of lattice cubes, simplices, etc.)
For every I' C A denote by T the set of points € R? inside I'. Suppose ¢ : A = R
is a one dimensional height function, such that ¢ : 7 — R can be defined at all
points z € 7 (by using piecewise linearity, or otherwise). This defines a function
pAa: T — R for every tiling A - T'. We say that p(A) < p(A"), where A, A’ - T, if
for all points x € T we have 4 (z) < pas(x). Finally, denote by ‘<’ a partial linear
order on tilings A, A" - T':

A< A" if and only if ¢(A) < (4.

3The tiles ¢(7;) C V may also not be uniquely defined. The extended coloring argument f
defined above must be constant on all such tiles though.



10 IGOR PAK

Note that a priori there could be incomparable tilings.
Now, suppose the “suspected” set of local moves

satisfied the following properties:
(o) Either A; < A} or A; > A} for all 1 <i < (.

(e0) Ifz € r— T, is a local mazimum of pa, A T, then there exists a local
move A — A’ such that A’ < A.

(e @ @) For all x € OT there exists a unique tile 7., T 3 x, such that if © is a
local mazimum of pa, AFT, then A> T.

Theorem 5.2 Let B = Bs. and d = 2. If (O) and a one-dimensional height
function ¢ satisfies (o) — (e @ ®) for all T € B, then T satisfies the local move
property with respect to B, with (O) as a set of local moves. Further, the mazimum
number M of local moves to be made satisfies M < c|T'|?, where ¢ = ¢(T) does not
depend on U'. Finally, the Tileability Problem is in P in this case.

To avoid problems related to generalizations of Lemma 4.2, the above result
covers only the case d = 2. For d > 3 we need an additional geometric condition to
compensate for absence of the Lemma. Formally, consider the following property:

(%) For every local maxima x € 9T, ' € B we always have ' —7, = T'UT" L. ..,
where I, T, ... € B.

It is easy to see that B satisfies () for d = 2, so the following result is a
generalization of Theorem 5.2.

Theorem 5.2' If in condition of Theorem 5.2 the property (&) is also satisfied,
then conclusion of Theorem 5.2 holds for all d > 2.

Note that the conclusion of Theorem 5.2 implies, by Theorem 5.1, that the GI
Problem is also in P in this case. As we shall see, the examples include domino
tilings, zonotopal tilings, etc. It would be interesting to find analogs of (e) for
two-dimensional height function. This could positively resolve the connectivity
conjecture for ribbon tilings.

Conjecture 5.3 If T satisfies the local move property with respect to Bse, then
Tileability Problem for regions I' € By is in P.

While we have only few known examples of the local moves property, the conjec-
ture seem to hold. Theorem 5.2 seem to support the conjecture. Note that if I' € B
is untileable, then (¢) holds by default. Heuristicly, the conjecture suggests that for
any set of local moves one should be able to define a “generalized one-dimensional
height function”, and apply the analog of the last part of Theorem 5.2.

5.2 Tiling Polytope.

Let us conclude this section with a polytopal interpretation of the local moves.
Define rational tilings (cf. [SU]) to be decompositions x(I') = & x(7)+&' x(7')+. ..,
where 7,7',--- € T, k, k', € Qy.
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Theorem 5.4 Rational Tileability Problem is in P.

Proof. Let ‘<’ be a lexicographic order on A. For any 7 € T, denote by 7, the
unique tile ~ 7, such that x < y for all y € 7,. In other words, let 7, be the tile
obtained by translation of 7 such that z is the smallest element in 7,.

Let & = |T|. For any region I' € B, consider a polytope Pr C RFT =
]R( Gz, xEl,TE T>, defined by the following linear equations and inequalities:

azr >0, Veel',T €T,
Z ayr =1, Vyer.

T,T: T4 DY

Now, every rational point (a) in the polytope Pr corresponds to a rational tiling
with kK, = a,,.. Since the system is rational, the rational tileability is equivalent
to P, being empty or not. The latter can be determined in polynomial time (see
e.g. [Sc]). O

Proposition 5.5 Let Pr be the polytope defined in the proof of Theorem 5.4.
Then the integer points in Pr correspond to the (usual) tilings of T with the set of
tiles T. O

One can think of the points in Pr as of nonnegative real tilings of I'. All the
vertices are the rational tilings. Unfortunately, not all of them are integer (the
usual) tilings. Denote by Pr C Pr a convex hull of the integer points. We call Pr
the tiling polytope. By definition, f’p is a 0 — 1 polytope.

Let A, A’ - T. We say that a local move A — A’ is primitive if for no B+ T we
can have two nonintersecting local moves A —+ B and B — A’.

Theorem 5.6 The primitive moves A — A’, where A, A’ - T, are in one-to-one
correspondence with edges in the tiling polytope Prp.

We should mention here that for large I' the set of edges of the tiling polytope is
much larger than the set of local moves described in the beginning. Indeed, while
the local moves can be (and usually are) primitive moves, the minimal set of local
moves is a very small subset of primitive moves which can be compositions of a
number of (intersecting) local moves.

It is tempting to study the simplex method or other optimization problems on
tiling polytopes. The difficulty is that the minimum number of linear relations and
inequalities which define Pr is probably exponential in |I'| (it’s superpolynomial
unless P=NP).

5.3 Zonotopal tilings.

It was noted on many occasions that one can think of tilings by “lozenges” (ana-
logues of dominoes in the triangular lattice) as of projection of the cubic surface, at
least for certain nice simply connected regions. In fact, Thurston’s height function
coincides with the height of the surface in these cases (see [T,ST]). Let us briefly
mention here that one can consider zonotopal tilings which extend this observation.
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Let M be a finite set of vectors in ¥V = R? and suppose (M) = V. Consider a
polytope Py defined as a Minkowski sum of elements in M (considered as intervals).
Such polytopes are called zonotopes. Call basis blocks zonotopes Pp such that
B C M, (B) = B = d. Polyhedral subdivision of P,, into basis blocks are called
zonotopal tilings. They have a number of interesting properties, in particular the
basis blocks in every zonotopal tiling are in one to one correspondence with bases
of a matroid M [BLSWZ,St,Z]. In fact, much of the information about Pj; and
zonotopal tilings can be obtained from from the (oriented) matroid structure of M
(see references above).

Fi1GURE 5.1. Two zonotopal tiling of a centrally symmetric 10-gon.

Among the most interesting properties of zonotopal tilings is (non)existence
of a one-dimensional height functions. The latter correspond to the so-called 1-
extensions of M (into R¥*!). One can show that all zonotopal tilings that arise
from every such extension are connected by “local moves” (in zonotopes generated
by d+ 1 vectors). While 1-extensions of M may generate all tilings, all 1-extensions
can make a graph of zonotopal tilings connected (there is a related notion of a co-
herent subdivision [GKZ,Z]). Still, there exist zonotopal tilings disconnected from
the others. We refer to the above mentioned [BLSWZ,GKZ,St,Z] and the references
therein.

6. RIBBON TILES

6.1 Basic definitions.

Let A = Z* be the square grid. Let 2 = (i,57) € A be the square in Z* with 4
increasing downward and j increasing to the right. As before, let ‘~’ be defined by
translations.

Fix an integer n > 2. A region 7 € B is called a ribbon tile if every diagonal
1 — J = const contains at most one square of 7. Denote by T, the set of ribbon
tiles with n squares. It is easy to see that |T,| = 2" !, with tiles 7 encoded by
€ = (€1,...,€n_1), € € {0,1} as follows. Start in the lower left corner of 7 and
move northeast; each upward move encode with 1, each right move with 0. Denote
by 7. the tile as above, and by «a,(A) the number of times tile 7. occurs in a tiling A.

Define 2-moves to be the local moves which involve exactly two ribbon tiles. For
description of all such moves see [P]. As observed by Adin [Ad], the total number
of such moves is (‘g"l). This formula is somewhat misleading since not all pairs of
ribbon tiles can form a 2-move, while some pairs can form it in several ways.
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FIGURE 6.1. Ribbon trominoes.

FIGURE 6.2. Example of 2-move for ribbon tiles.

The main object of this section is the successful computation of G(T), ), and the
local move property with respect to 2-moves. Note that there is an obvious area
invariant which states that the total number of tiles 7 is |['|/n.

6.2 Dominoes.

This is a classical example studied for decades (see e.g. [G,Ka,LP,TF]). Thurston
[T]. defined an important one-dimensional height function ¢ which became a model
for our generalization in section 5. Color the squares with two colors (black and
white) in a checkerboard fashion. Orient all edges upward and to the right. The map
¢ is defined on edges in Z?, and is +1 (—1) if the edge is moving counterclockwise
(clockwise) around a black square.

One can show that the above height function with the set of 2-moves satisfies
(e) — (e ®e). From here we obtain the local move property for 2-moves with respect
to Bse as an immediate conclusion of Theorem 5.2. An elementary example shows
that this does not hold for non simply connected regions. We should mention here
that the result can be generalized to any planar regular graph with a bipartite dual
graph [Ch]. Also, a careful look at the tileability algorithm reveals that it has cost
O(|T']), faster than other (general) matching algorithms [LP,Sc]. This result can be
extended to non simply connected regions as well [F].

As mentioned in the introduction, the group of invariants G(T3) ~ E(Ts) ~
7, x Zs in this case.

6.3 Ribbon Trominoes.

The set of ribbon trominoes is the celebrated example, studied Conway and
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Lagarias [CL]*. They defined a two-dimensional height function ¢ which maps edges
of the square lattice into a Cayley graph of a specially chosen group embedded in
R?. The latter consists of hexagons and triangles. The sum of the winding numbers
around centers of hexagons gives a nonabelian tile invariant:

ap1 — aig = const(T).

One can conclude from here that the group of invariants G(T3) ~ Z2 On the other
hand, direct computation shows that E(T3) ~ Z x Z3 [CL,P], so the infinite tile
invariant above cannot be proved by means of coloring arguments.

The local move property for 2-moves with respect to Bs. remains open (see
below). A special case was considered in [We] for the starecase shaped regions
introduced in [CL] (see also [P]).

Before we conclude, let us mention here that the approach was later modified by
Muchnik and the author [MuP] to prove that G(T4) ~ Z? X Zs. At the same time,
]E(T4) ~7 X Z4 [P]

6.4 The general case.

It was recently shown in [MoP] that for all n > 2 :

Z™, ifn=2m+1,
G(T,,, Bse) ~

7™t x 7y, ifn=2m.

This proved the conjecture of the author [P], previously known only for n < 4. The
main result of [P] is a similar result for a smaller set of regions G(T,, By.), where
B:.) is the set of row convex regions. The author in [P] also found an explicit basis
for the group:

Z Qe — Z a. = const(T"), 1 <i<n/2,

€ €,=0,€,_;=1 € e;=1,€,_;=0

and
Z a. = const(I') mod 2, n=2m.

€ €pn/2=0

On the other hand, it was shown in [P] that E(T,) ~ Z x Z,, and all tile invariants
in the basis do not follow from the extended coloring arguments.

The technique used in [MoP] is notable since it used a new construction of the
two-dimensional height function ¢, which mapped the edges of the square lattice
into {w*,0 < k < n— 1} C C, where w = exp(2mi/n). Then the authors take a
signed area in C as a the generalized coloring argument. Remarkably, this single
real-valued invariant contains all tile invariants presented above.

Denote by By and By the set of regions with Young diagram and skew Young
diagram shape (see e.g. [M,JK]). It was shown in [P] that T, has local move
property (for 2-moves) with respect to By. The result, already more general than

4They actually considered one additional disconnected tile which we ignore. This set of tiles
appeared after translation of the trominoes in hexagonal lattice into the square lattice [CL].
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FIGURE 6.4. Ribbon tile 7 = 79011, vectors w”, height function (7).

[We], was later extended by the author to include Bsy (unpublished). Following [P],
we conjecture the local move property with respect to all simply connected regions.
The computation of G(T,,, Bs.) and the height function arguments [MoP] seem to
support, the conjecture.

7. SMALL SETS OF TILES

7.1 T-tetrominoes.

It was shown in [Wa] that four rotations of T-tetromino can tile a m x n rectangle
if and only if 4 divides both m and n. It is easy to see that the result cannot be
proved by the coloring arguments. Nevertheless, no height function argument is
known.

FiGure 7.1. Four T-tetrominoes.

FIGURE 7.2. Local moves: 2-move and 4-move.

The set of tiles is of interest since it also seem to have a local move property.
Observe that besides the 2-moves there is also a 4-move involving a reflection in
a 4 x 4 square. We conjecture that these local move suffice. It seems that the
combinatorial technique in [Wa] can be extended to prove the local move property
with respect to rectangular regions.
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7.2 Bars and Rectangular shapes.

Let T be a set of two “bars”, i.e. of m x 1 and 1 x n rectangles. Claire and Rick
Kenyon found a remarkable application of the height functions in this case [KK].
They introduced a tree-valued height function, and proved properties (o) — (e ®e) in
this case. From here they deduced the local move connectivity (the only local move
required is Ay — As, where Ay, Ay b m X n rectangle), obtain the general bound on
the distance (it’s O(|T'|?/?) in that case) and present a linear algorithm for testing
tileability. The authors show that their analysis can be modified to rectangular
regions m X n and n X m. In particular, the authors present a quadratic algorithm
for tileability and prove the local move property for 2 x 3 and 3 x 2 rectangles.

While the authors do not compute the group of invariants, it can be easily
determined from either local move property or coloring arguments. Let us note that
the polynomial algorithms for tileability exist only for simply connected regions, as
in general case the problem is NP-complete [Ro] (see also [BJLS]).

7.3 L-trominoes.

Let T be the set of four rotations of L-trominoes. We showed in [P] that
G(T,B) = E(T) = 7Z x Z2. The proof involves some explicit coloring arguments.

FiGuRrE 7.3. Four L-trominoes.

The set T has no local move property, as shown in [P]. There, we constructed
large regions with exactly two tilings. Also, for general regions the tileability is
NP-complete [MR]. It would be interesting to see if the same is true for simply
connected regions. Let us mention here an old result that a n x n square with one
square deleted can be tiled with T unless n is divisible by three [CJ].

7.4 Skew and square tetromino.

This example wa introduced by Propp, who found a very nice application of
the height function approach [Pr]. The group of invariants G can be computed
completely in this case, by using the coloring arguments and a nonabelian tile
invariant presented in [Pr], which implies that rk(G) = 2. There are two interesting
features in this case. First, the authors makes a distinction between “odd” and
“even” 2 x 2 squares. In principle, this can be done in other special cases, by
taking a smaller group of translations. Still, this is by far the most interesting such
example, as the infinite tile invariant becomes a finite tile invariant when odd and
even squares are identified.

For the second feature, Propp in [Pr] defines a tile invariant as a signed area,
refraining from the “winding number” approach in [CL]. This was the approach
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FIGURE 7.4. Skew and square tetromino.

continued in [MoP]. We hope the reader will enjoy this well written article and
completes the computation of the full group of invariants as an exercise.

7.5 Dominoes again.

Let T be a simply connected region, and let k be a fixed integer. Consider all
domino tilings of I" with exactly k& vertical domino. Recall that k& can vary for
different domino tilings, although its parity remains fixed. It was noted by Gupta
[Gu] that sometimes one can make a connected graph G(T',k) on these domino
tilings by introducing 2 x 3 moves (see Figure 7.5). He showed that G(I',k) is
connected when I is a rectangle, the Aztec diamond, etc., but not in general case.
We refer to [Gu] for the details.

FIGURE 7.5. 2 x 3 moves.

In general, suppose T is a finite set of tiles and I is a tileable region. One can
ask whether local connectivity exists for tilings A - T'" with given set of numbers
a;(A), defined as in the introduction. The work of Gupta suggests that certain nice
sets of tiles and certain regions might satisfy this remarkable property.

7.6 More examples.

Consider the following two sets of tiles T, T. The first contains two rotations
of T-tetromino and skew tetromino which fit into 2-row strip (see Figure 7.6). The
second contains two rotations of T-pentamino, S-pentamino and skew tetromino,
which fit into 3-row strip (see Figure 7.7). As before, we allow only translations of
the tiles.

We are interested whether either or both sets have nonabelian tile invariants,
local move property, height functions, etc. It is an exercise to establish these prop-
erties for regions which fit in 2-row and 3-row strip tiled by T; and T2 respectively.
Also, replacing skew tetrominoes with a square tetromino gives an interesting mod-
ification of T2. We challenge the reader to resolve these problems.

7.7 Other lattices.



18 IGOR PAK

FIGURE 7.6. 2-row skew and T-tetrominoes.
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FiGUuRE 7.7. S and T - pentaminoes and skew tetrominoes.

It was realized rather early that tiling problems are of interest on other lattices
as well [G]. The original question in [CL] comes from a hexagonal lattice, and the
running example in [T] is the set of “lozenges”, analogues of dominoes on a trian-
gular lattice. A number of results for small sets of tiles on a triangular lattice was
discovered recently by Rémila [Ré]. The author’s approach is somewhat different
from this article’s main theme, and we strongly suggest it as a complimentary read-
ing. Finally, a nice local connectivity result for squares-and-octagons was obtained
by Gupta in [Gu].

8. TILINGS IN MANY DIMENSIONS

There is little known about tilings in many dimensions, although there seem to be
no clear reason for that. As mentioned before, we do not know of any nonabelian tile
invariant even for three-dimensional tiles. Without attempt to review the subject,
let us present few examples that seem relevant.

8.1 Generalized Sperner’s Lemma.

The Sperner’s Lemma is the following classical result. Let A be a triangular
lattice, I' be a n-triangle with deleted three corner triangles. Color the vertices of
the triangle with colors {0, 1,2}, so that the sides are colored with 0, 1, 2 (clockwise).
Then there exists a (0, 1, 2) colored triangle. In fact, the number of (0, 1, 2) triangles
minus the number of (0,2,1) triangles (reading colors clockwise) is always 1.

While the Sperner’s Lemma is often associated with Brouwer’s fixed point the-
orem (see e.g. [Sh]), its generalizations are easier to obtained in the context of the
Stokes Theorem. We present here the Generalized Sperner’s Lemma, which implies
an abelian tile invariant for a certain set of tiles. While the generalization below is
probably well known (and follows easily from Stokes Theorem) the interpretation
of it in the language of tile invariants seems new and will be presented here along
with a short proof of the lemma.

Let us state the Generalized Sperner’s Lemma first in two, and then in all di-
mensions. Let I' be any region on a triangular lattice colored with {0, 1,2}. Denote
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FIGURE 8.1. Sperner’s Lemma.

by a4 (T) and a_(T") the number of triangles with all three colors (0,1,2), going
clockwise and counterclockwise respectively. Then ay — a_ = const(9T"), where
¢ = const(OT") depends only on the coloring of the boundary. Note that we do not
require I' to be simply connected. The boundary 0T' may be disconnected, but the
coloring must be fixed on vertices of each connected component.

In general case, let I" be any region in V = R? with a fixed simplicial subdivision.
Fix an orientation in R? by taking a basis (e1,...,eq) in V. Consider any coloring
of vertices of I" with d+1 colors {0, 1,...,d}. We say that I'is (d+1)-colored in this
case. We say that a simplex is positive (negative) if it is (d 4+ 1)-colored with basis
(07, 3, ey 0_)d) having a positive (negative) volume, defined as a determinant of
the corresponding linear transformation. Denote by a4 (T") and a—_(T") the number
of positive and negative simplices in T, respectively. Then o — a— = const(dT'),
where the constant depends only on the coloring of OT", and not on the interior of .
Let us state this result as follows.

Theorem 8.1 (Generalized Sperner’s Lemma) Let ' be a triangulated
region in R with a fived (d + 1)-coloring of the boundary OT. Let A be a (d+ 1)-
coloring of the interior vertices. Then

at(A) — a_(A) = const(9T),

where const depends only on the coloring of the boundary, and not on coloring A.

Now, the lemma can be reduced to an infinite tile invariant for a special set of
tiles. First, take the tiles to correspond to (d + 1)-colorings by somewhat changing
the boundaries around the vertices in a consistent way which depends on the color
(cf. proof of Theorem 3.1). For example, a small simplex can be added to, or sub-
tracted from the sides of a large simplex so that only simplices with the same “color”
can fit together (see Figure 8.2). Denote by T this new set of tiles, corresponding
to all possible (d + 1)-colorings of vertices of d-dimensional simplices. In Figure 8.2
we exhibit one such two-dimensional tile corresponding to (1,2, 3)-coloring.

Now notice that the “coloring” of the boundary uniquely defines the shape of
the boundary. Thus the “colorings” of the interior vertices of I' are in one-to-
one correspondence with tilings of I' with T. Consider the tiles which correspond
to (d 4+ 1)-colorings with distinct colors, with positive and negative orientation.
Theorem 8.1 implies that the difference between the number of certain “positive”
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FiGURE 8.2. Modification of a 3-colored triangle.

and “negative” tiles is an fixed integer which depends on the boundary 9. We
suggest the reader think through this simple, almost classical construction.

Let us note that from the proof (see section 10) it follows through verbatim
that the infinite invariant defined in the lemma holds for signed tilings by T as
well. Thus the tile invariant is abelian, and by Theorem 2.3 can be obtained by an
extended coloring argument. Interestingly, this coloring argument is not obvious,
and depends heavily on the way the set T is constructed.

Remark 8.2 The Sperner’s Lemma has a number of variations, generalizations
and applications. Let us first mention a similar in the spirit work [SS] where
Sperner’s Lemma is used to obtain relations for the volume(s) of simplices in tilings.
The first d-dimensional version of the lemma can be found in [BC]. The cubical
version, perhaps more acceptable for traditional tiling concepts, can be found in
[Wo]. We refer to [Sh] for various application to fixed point results.

8.2 Parity check.

We will adopt the same notion of as in the previous subsection. Consider any
triangular lattice A C R?, such that the dual graph is bipartite. In other words,
we assume that the simplices are colored with black and white. An example is a
regular partition of the cubic lattice with each cube partitioned into d! simplices
corresponding to permutations of basis vectors. The sign of the permutation then
determines the color of the simplex.

Now consider colorings of vertices with m colors, m > d. We say that a simplex
is r-deficient if it has exactly (d + 1 — r) distinct colors of the vertices. Let T' be
any region in A with a fixed coloring of the boundary, and let A be any coloring
of the interior vertices. Denote by py(A) (p—(A)) the number of black (white)
1-deficient simplices. Similarly, denote by ay(A) (a4 (A)) the number of black
(white) 0-deficient simplices. Finally, let p = py —p_, a = a1 —a_.

Theorem 8.3 We have 2p(A) + (d + 1)a(A) = const, where const = const(T")
depends only on the coloring of the boundary OT and not on A.

The proposition can be restated as an infinite abelian invariant of a certain set of
tiles. We leave the details to the reader. As a bonus, the theorem implies that for
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odd d the total number of 1-deficient tiles has a fixed parity even when black and
white tiles are indistinguishable. Even this is a nontrivial finite abelian invariant.

Let us conclude this part by presenting a special case when two independent tile
invariants appear from such construction. This result is due to Moore and Newman,
and it appeared in [MN]. We follow [Mo] in our presentation.

Consider any triangular lattice A C R? with a bipartite dual graph. Fix a
black/white coloring of triangles. Let I' be a region in A with a fixed coloring of
the boundary with colors {1,2,3,4} = I. Denote by p4(i,j, k) and p_(i,j, k) the
number of black and white triangles colored with i, j,k € I. Let

ar =p1(1,1,2) +p1(1,2,2) + p£(3,4,4) + p+(3,3,4),

B =p£(1,1,3) +p£(1,3,3) + px(2,4,4) + px(2,2,4),

Y+ = p+(1,1,4) + p1(1,4,4) + p£(2,3,3) + p£(2,2,3),
a=ar—a-, =0y —-P-, v=74—7-.

Theorem 8.4 ([MN]) We have a(A) — 3(A) = consty, S(A) —v(A) = consty,
where consty, consts depend only on the coloring of the boundary T and not on A.

We challenge the reader to obtain a proper generalization of the theorem to
higher dimensions [Mo].

8.3 3-dimensional dominoes.

While dominoes on a square grid satisfy the local move property with respect
to simply connected regions, this is no longer true for 3-dimensional dominoes.
Heuristicly, in three dimensions there is enough space to make large simply con-
nected “local moves”. Formally, for any n there exist a simply connected region I'
with exactly two domino tilings Ay, As - T', so that the move A; — A, involves at
least n dominoes.

Indeed, consider a cycle of size 4 n with a (n — 1) x (n — 1) square shaped hole
inside. Think of the cycle lying in a (z,y) plane. Color this square with black
and white colors in the usual checkerboard fashion. Fill this hole with dominoes
pointing up or down (in the direction z), depending on whether the square is black
or white. Now notice that there are exactly two domino tilings of this region T, as
the positions of the vertical dominoes are fixed by the construction, and the only
freedom we have is given by two possible tilings of the cycle. The move will involve
2n dominoes then, which proves the claim.

The construction naturally extends to tilings in any d > 3 dimensions. This
makes it rather unlikely that there exists a one-dimensional height function as
described in section 5.1. On the other hand, the tileability by dominoes is in P for
any d (see [LP]).

Let us note that there are other generalizations of the 2-dimensional dominoes.
For example, in three dimensions, one can consider 2 x 2 x 1 blocks. The similar
construction to the one above shows that there is no local move property with re-
spect to the simply connected regions. It would be interesting to see if the tileability
is also in P in this case (cf. [MR]).
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8.4 Generalized ribbon tiles.

During the search of the nonabelian tiling arguments in many dimensions, one
may ask as to whether some generalization ribbon tiles have any. Consider the
obvious generalization, corresponding to connected d-dimensional tiles with at most
one cube in every plane L, : ¥; + ... + x4 = c. Denote by T% the set of such tiles
in d dimensions with n cubes. Note that |T¢| = d"~!. The problem of finding
the tile invariant group G(T¢,Bs.) remains open in general case. Preliminary
computations (for d = 3, n = 3,4) suggest that rk G(T3,Bs.) = 1, i.e that there
is no infinite nonabelian invariant in this case (area is clearly an infinite abelian
invariant). We conjecture that tk G(T%,Bs.) = 1 for all d > 3. It is conceivable
however, that the rank may increase if the set of regions is more restrictive. It
would be interesting to find a nontrivial example of that.

9. FiINAL REMARKS

Let us begin by saying that in our opinion, papers [T], [CL] had a profound
effect on the study of tilings, by introducing new techniques and methods into the
field. The notion of tile invariants and the group of invariants [P] were inspired
by [CL] and f-vectors in simple polytopes [Z]. Tile invariants have yet to become
widely accepted. It is our goal here is to convince the reader that computing G(T)
for various sets of tiles T is an important problem, which might lead to a better
understanding of tilings.

To summarize this paper, me propose a new approach to the study of any fixed
set of tiles T. Fist, one can compute the coloring group O(T), an extended coloring
group Q(T) and the group of valuations E(T) (cf. Theorem 3.2). Then one should
attempt to determine G(T, Bs.) by computing Gy = G(T, Bs. N By) for N large
enough. If at some point Gy = E(T), this implies that there are no nonabelian
invariants (cf. Proposition 2.3), so the set T is not so interesting.

Suppose, on the other hand, that the calculations suggest existence of some
nonabelian invariants in G(T). Then, one should check whether T satisfies local
move property. If yes, attempt to find a one-dimensional height function which
proves that (cf. Theorem 5.2). Then compute G(T) from local moves. If T does
not satisfy the local move property, one should attempt to find nontrivial height
functions ¢, and compute groups E, (T) # E(T). Since E, C G(T, By ), one might
be able to compute the whole group of invariants that way (cf. section 6.3,4).

While Theorem 3.1 seem to suggest that the above prescription works only for
special sets of tiles, we consider a success a proof of any nonabelian tile invariant
or any local move property. The theory is still in the early stages of development,
so even partial results are of interest.

Few words about the tileability applications. After all, tileability of the starecase
shaped regions by the ribbon L-trominoes was the original motivation in [CL]. In
general, suppose we are given two sets of tiles T C T, and a fully computed tiling
group G(T',B). Now let T € B be a region tileable by T'. This determines all the
constants const(I') for all tile invariants (). Now restriction of the tile invariants
for TV to T gives a number of integer linear equations which may or may not have
integer solutions. In the latter case the region is untileable by T (see [CL,P]).
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From the point of view of tileability criteria, this seem like a weak approach.
Indeed, in general, we need at least as many invariants as the number of tiles |T|,
and these tile invariants are hard to find and to prove. On the other hand, the
integrality of solutions helps. In [P] we found several (un)tileability results in this
direction. As a bonus, an easily computable coloring group O(T) can determine
whether a certain tileability argument follows from the coloring argument. Or, as it
was done in [CL], one can prove untileability of a I' and then find a signed tilings of
I' by TU—T. By Theorem 2.2 one cannot prove untileability of I by the coloring
arguments then.

There is a number of open problems that remain unresolved. Beside those men-
tioned earlier (Conjecture 5.3, questions about various small sets of tiles, etc.), let
us stress again that we have yet to find an efficient algorithm for computing E(T)
on the whole plane. It would be interesting to find other approaches to computing
the group of invariants, besides the height functions, or find a reasoning why there
cannot be any. It would be also very exciting to prove a local move property for
some natural large set of tiles.

Let us conclude by saying that the local move property and one-dimensional
height functions have important consequences in Statistical Physics and in study of
Markov chains. Roughly, random application of local moves gives an easy way to
sample random tilings; existence of the height function representation assists one
in proving the rapid mixing. We refer to [BH,MN,PW LRS,RY] for references and
details.

10. PROOF OF RESULTS

Proof of Theorem 3.2 (sketch).

We need to show that given N, T = {r,...,7}, |7:| < R, one can solve Bounded
CG-rank and Bounded GV-rank Problems in time polynomial in N, k, and R.
Without loss of generality we will assume that N > R.

Denote by S the N x N square. Consider first a coloring group O(T,By). It
is defined as Z° quotient by the relations corresponding to translations of the tiles
7; € T which lie in S. The rank of O is equal to the dimension of the corresponding
real vector space (with the same integer linear equations).

There are at most N2 translations of each tile, there are k tiles. In total, we need
to calculate the rank of the system of at most N2k equations with N2 variables.
This can clearly be done in polynomial time.

For the extended coloring group O(T, By ), we obtain a somewhat different set
of equations. Fix one translation 7/ C S of each tile 7; € T. Now, each translation
7/' gives an equation corresponding having to sum of the function on squares in 7}’
equal to the sum of the function on squares in 7{. Again, we need to calculate the
rank of the system of at most N2k equations with N? variables.

Now, for the rank of the group of of valuations we have

rkE(T,BN) = rk@(T,BN) - I‘k@(T,BN).

This completes the proof. [
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Proof of Theorem 4.1 (sketch).

Use induction on the number of tiles in I' to prove (x). The base is tautological.
For the step of induction, consider 7 from Lemma, 4.2 such that IV = " — 7 is simply
connected. Fix a counterclockwise orientation on 07, dI', and OI". Let = € OT be
the starting point of the path P along the boundary. The paths P’, R along the
boundaries of I, 7 are mapped into loops by inductive assumption. Observe that
the intersection P'U R will appear twice, once in each direction. On the other hand,
P =(P'—P'NnR)U(R— P'NR). Adding the values of the height function ¢ along
P as above, we obtain that P is also mapped into a loop. This completes the step

of induction. O
s L—‘
T r

FIGURE 10.5. Simply connected regions I', 7 and I — 7.

Proof of Theorem 5.1 (sketch).

We need to determine the group of invariants G(T,B) in time polynomial in
k= |T|, K, and M = maXx; |Fz|

Indeed, tile invariants are precisely the maps f : T — Z which are invariant
along the moves. In other words, we have

G(T) = Z"/Z (o (As) — an(A)), ..., o (A;) — ar(A})), 1< i < 1),

Now, calculating all a;(4;) is polynomial in k, M. Proceed as in the proof of
Theorem 3.2. Indeed, it remains now to determine rank of the system of ¢ linear
equations (over R). This can be done in polynomial time [Sc]. O

Proof of Theorem 5.2 (sketch).

Denote by A = A(T') the poset of all tilings A - T', with ‘<’ as an order relation.
We claim that A has a minimum element Ay. Indeed, start with any tiling A - T"
and calculate p4. We claim that there exists a sequence of local moves from A
to Ag. First, find any local maximum z € L. Ifz ¢ OT', then apply a local move
A — A’, and proceed by induction. If z € 9T", then both A, Ay contain 7,. Delete
7 from I'. Observe that we obtain either one region with smaller area or several
smaller regions. Again proceed by induction. This proves the local connectivity
property with respect to B.

The second part follows from the following observation. Denote by Aj the largest
element in A. Then M < 2A, where A is the number of local moves from Ay to
Ar. Fix a value 0 of any point z € 9. Let ¢o = wa,, vr = wa,. Let h be the
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maximum value of ¢ on edges of A. Then for the maximum value Hy of ¢; we have
H; < h|OT| < ch|T|, where 0 < ¢ < d2?. Similarly, for the smallest value Hy of ¢
we have H > —ch|T|.

Now, for every A I T' define

B(4) = / oa@) dp,

where the integration is taken over T and dp is the usual euclidean measure on R?.
We have R
$(Ar) = (4o) < u(D)(Hr — Ho) < [T,

where ¢’ is a constant which depends only on T. Denote by § the smallest change
of ¢ under the local move:

5 = min [1:(4;) — w(A)] > 0.

We conclude that A < (¢//§) |T')? < ¢ |T|?, which proves the claim.

For the last part, consider the following algorithm. Compute ¢ on OI'. From
above, the local maxima of ¢y = 4, are on the boundary. Find a maximum value
of z € OT'. This is clearly a local maximum of ¢o. Now delete 7, from T' and
proceed accordingly. Eventually we either determine Ay completely, or at some
point we have to delete 7, from I" in an impossible situation. Since Ay is unique,
this implies untileability of I in that case. Note that the cost of the algorithm is
O(|T|*¢k). This completes the proof of the theorem. O

Proof of Theorem 5.6.

First, observe that tilings A F T' correspond to vertices of Pr. Indeed, suppose
otherwise. By abuse of notation we can write this as A = 5y By + 2By + ...,
where 1,2, -- € Ry. But that means that zeroes of (a, ) on the left hand side
correspond to zeroes on the right hand side, i.e. By, Bs,--- = A. This proves the
claim.

Similarly, consider two tilings Ay, As - T'. Let

Av=2A1+(1-NA =B +peBa+...,

where 0 < A < 1. The point Ay lies on the interval [4;, A2]. By the observation
above, only tiles that are in Ay, As can appear in B;. Therefore all tiles that lie
in A; N As must also appear in each of the B;. On the other hand, a tile 7, € A
must appear in B; with the total weight A. Having or not having 7, splits the set
of tilings B; into two subsets. Since every element y € A must belong to some tile,
the total set of tiles splits between tiles that contain and don’t contain 7,. Denote
these sets of indices by I and J. The above implies that either every B; = Ay,
i € I, every Bj = Ay, j € J, or there exist B;, Bj, i € I, j € J, such that A; = C
and C — A, are non-intersecting local moves (and the same is true for 47 — D
and D — A,). This completes the proof. O
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Proof of Generalized Sperner’s Lemma 8.1 (sketch).

Define an orientation of the (d — 1)-dimensional simplices on the boundary to
agree with orientation of V' = R?. Formally, we say that a simplex on the boundary
is positive (negative) if it is colored with d colors € {0,1,...,d} and coloring the
remaining vertex of a unique d-dimensional simplex in I" with the remaining color
would make this simplex positive (negative). Denote by 4 (9I') and S_(0I') the
number of positive and negative simplices on the boundary. A simplex (of any
dimension) with repeated colors we call neutral.

Let us prove by induction that in conditions of the theorem we have:

const (') = (d + 1) (B+(0T) — B ().

First, let us prove the base of induction. Indeed, for a single positive (negative)
d-dimensional simplex all (d+ 1) simplices on the boundary are positive (negative).
If the d-dimensional simplex is neutral, then the symmetry argument implies that
const = 0 in this case.

For the step of induction, we can delete any d-dimensional simplex from I". Now
observe that const(9T") is additive with respect to such division since the intersection
of the boundaries is taken with opposite signs, and thus cancel each other (cf. proof
of Theorem 4.1). We omit the easy details. O

Proof of Theorem 8.2.

Consider all 0-deficient (d—1)-dimensional simplices in T, i.e. (d—1)-dimensional
faces with d distinct colors. Each such face is either on the boundary or is a
boundary of one black and one white d-dimensional simplex. Denote by A the
number of such faces. Denote by 6+ (6—) the number of of such faces on the
boundary, so that the adjacent simplex is black (white). By counting A separately,
as a boundary of black or white squares, we obtain

A=2p;+(d+Dag+6- =2p_ + (d+ 1)a_ + ;.
Subtracting the sides in the last equality, we conclude
2p+(d+1)a=0dr —6_.

This proves the result. O
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Added in Print:

In the past year few advances has been made. First, Scott Sheffield resolved
most of the open problems on ribbon tilings in “Ribbon tilings and multidimen-
sional height functions”, arXiv preprint math.CO/0107095. Among other things,
he proved the local connectivity property, conjectured by the author in [P] (see
section 6.4) and found a linear time algorithm for testing tileability.

Second, Cris Moore, Ivan Rapaport and Eric Remila defined a height function
and proved a local connectivity property for the set of colored square tiles similar
to that in section 8.2. Their paper “Tiling groups for Wang tiles” will appear in
Proc. SODA’2002.

Finally, the author resolved affirmatively the question whether computing (un-
bounded) group E(T) is decidable (“Computational complexity of tile invariants’,
preprint, 2001.)
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ABSTRACT. Let T be a finite set of tiles, and B a set of regions I' tileable by T.
We introduce a tile counting group G(T, B) as a group of all linear relations
for the number of times each tile 7 € T can occur in a tiling of a region I"' € B.
We compute the tile counting group for a large set of ribbon tiles, also known
as rim hooks, in a context of representation theory of the symmetric group.

The tile counting group is presented by its set of generators, which consists
of certain new tile invariants. In a special case these invariants generalize the
Conway-Lagarias invariant for tromino tilings and a height invariant which is
related to computation of characters of the symmetric group.

The heart of the proof is the known bijection between rim hook tableaux
and certain standard skew Young tableaux. We also discuss signed tilings by
the ribbon tiles and apply our results to the tileability problem.

0. TRIVIA

Suppose we are given a set of the tiles on a plane. We are allowed to use
translations of the tiles to arrange them in a geometric shape (each tile may occur
several times). This arrangement is called tiling of that shape. One can ask whether
a given region can be tiled by a given set of tiles, and if it can, how many different
tilings there are.

For example, with a set of tiles shown in Figure 0.1 one can make four different
tilings of the 4-by-6 rectangle. Two of them are shown in Figure 0.2. Now one can
try to find a criterion for when you can tile a rectangle. Observe that each of these
tiles alone can tile the whole plane.

H b i)

FiGure 0.1. FiGUre 0.2.

Our personal favorite example is given by the set of tiles shown in Figure 0.3.
One can show that there exists only one tiling of the fourth quadrant (see Fig. 0.4).
The proof is left to the reader.

It turns out that there are certain nice sets of tiles for which it is not clear
whether a given region can be tiled. Here is an example. Consider the 8 tiles shown
in Figure 0.5. One can show that the 25-by-25 square cannot be tiled by these tiles.
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FiGUrEe 0.5.

Of course, this could be proved by an exhaustive search. In general, the following
result holds.

Theorem 0.1. If an a-by-b rectangle can be tiled by the tiles shown in Figure 0.5,
then 10 |a - b.

Another example. Consider 6 tiles shown in Figure 0.6. We again have

Theorem 0.2. If an a-by-b rectangle can be tiled by the tiles shown in Figure 0.6,
then 10 |a - b.

|

FIGURE 0.6.

Of course, an area argument shows that 5|a - b.

Consider now a different region. Let Ay be a triangular shape as in Figure 0.7.
One can check that Agy can be tiled by the tiles shown in Figure 0.6 while Aos
cannot. Generally,
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N

FIGURE 0.7.

Theorem 0.3. If An can be tiled by the tiles shown in Figure 0.6, then N =
0,4,15,19 (mod 20).

It turns out that all three theorems can be proved by use of the same kind
of argument. Heuristically, the reason for untileability arises from the following
question, completely different in nature:

e Given a set of tiles and a tileable region, are there any linear relations for the
number of times each tile occurs in a tiling?

The rest of the paper explains the relevance of this question. All three theorems
are proved in section 7.

1. INTRODUCTION

Let Z? be a square lattice, and R the set of all compact simply connected regions
in Z2. We think of these regions as disjoint unions of 1 x 1 squares. Sometimes
they are called polyominoes. Fix a finite set of tiles T = {m,...,7v}, 7 € R,
i=1,...,N. Let tiles be invariant under translations. We say that a region I' € R
is tileable by T if it can be presented as a disjoint union of the regions

I'= H T]'-,
1<5<

where each region ’7']/», 1 <j < lis a translation of some 7;;. Such a disjoint union
is called a tiling s of I". Denote S = S(I', T) a set of all tilings of " by the set of
tiles T.

Fix a set of tiles T and a region I' € R. There are two basic questions one can
ask:

o IsT tileable by T?

e IfT is tileable by T, what do the tilings look like?

The first question is very classical and well understood (see e.g. [G]). It is usually
not hard to find a tiling if T is tileable by T, while proving the opposite can be
extremely difficult. Except for ad hoc examples, there are basically two techniques
for proving that a region cannot be tiled: coloring arguments and Conway group
analysis (see [CL], [T]). Note also that the case when T contains a 1-by-1 square
is trivial: every region is tileable.

While the first questions admits only a “yes” or “no” answer, the second question
could be posed in many ways, each of them giving us some information about the
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structure of the tiling set S(I', T'). One can find the following two questions in the
literature (see e.g. [G], [CEP]):

e How many tilings of I' are there?

o What do random tilings s € S(I', T) look like?

It turns out that the answers to these questions depend heavily on the geometry
of ', and can be very complicated even in very simple cases. In particular, finding
the number of tilings |S(T', T)| is a more general problem than just finding whether a
certain region has a tiling. In some cases this problem is known to be NP-complete,
and probably cannot be solved by means other than exhaustive enumeration (see
[GJ, p. 257]).

To avoid these difficulties we propose another approach to the problem. We fix
only T and ask about properties of tilings of all regions at once. We would like to
ask the following two questions:

o Are there any relations for the number of times each tile occurs in a tiling of
a given region?

o Is there a finite set of local replacement rules (we also call them local moves
or just moves) such that for every region I' € R, any tiling of I' can be changed
into any other tiling by a sequence of moves?

Before we give formal definitions, let us illustrate what happens in the case of
dominoes. Although small, this example will illustrate the variety of approaches as
well as the complexity of a problem.

Let T2 be a set of two tiles: horizontal domino 71 and vertical domino 75 (see
Fig. 1.1). Tt is easy to come up with a necessary condition for tileability (see e.g.
[G]). Color the region in a checkerboard fashion. Since each domino must contain
one black and one white square, the total number of black squares must be equal
to the total number of white squares. For example, the region shown in Figure 1.2
cannot be tiled by dominoes since it has 8 black squares and only 6 white squares.
Unfortunately, there exist untileable regions with an equal number of black and
white squares (see e.g. Fig. 1.3). This means that we need a stronger condition for
tileability.

Now suppose we have a region I' that is known to be tileable. We want to
compute the number of tilings I' has. This turns out to be an interesting and
nontrivial question. In the case of a 2-by-m rectangle the number of tilings is a
Fibonacci number F(m) = F(m — 1) + F(m — 2) (see Fig. 1.4). In the case of a
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general rectangle the problem was solved by Kastelyn and Temperley & Fisher (see
[Ka], [TF]). In the case of an Aztec diamond (see Fig. 1.5) the domino tilings were
enumerated by Elkies, Kuperberg, Larsen and Propp (see [EKLP]). Both results
gave rise to many other questions about domino tiling (see e.g. [CEP]). In this
work we do not further consider any numerical results of this type.

Let T' be a region tileable by dominoes 71, 7. Consider s € S(I", T2), a domino
tiling of I'. Suppose s consists of a; = ai(s) copies of the horizontal domino 71,
and of az = az(s) copies of the vertical domino 5. Of course, 2 (a1 + az) is equal
to the area |I'| of the region (see Fig. 1.6). This gives us the first relation. There
is one more relation which is less obvious: az = Const (mod 2). To see this, let
us color black every other column of the region I' (see Fig. 1.7). Denote by c1,
co the number of black and white regions respectively, and put d = ¢; — ¢o. Since
horizontal dominoes contain exactly one black and one white square, and vertical
dominoes contain two squares of the same color, we immediately get as = d/2
(mod 2) (see Fig. 1.7).

FIGURE 1.8. FiGURE 1.9.

Here is another way to look at the set of tilings S(I', T2). Let us allow the
following local replacement rules (or simply moves): take two adjacent horizontal
or vertical dominoes and flip them (see Fig 1.8). Of course, this move gives us a
new tiling of T' (see Fig 1.9). It is known that by a sequence of such moves we
can get from any tiling s € S(I', T2) of a simply connected region I" to any other
tiling s’ € S(I', T2) (see e.g. [T]). From this we immediately get aq(s) + az(s) =
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a1(s’) + az(s’) and as(s) = az(s’) (mod 2), since these identities are trivial for any
single move. This also implies that for a general region there is no other relation
for the numbers ay, as that does not follow from these two. We will use similar
logic when proving our main results.

Now we are ready to introduce the tile counting group and tile invariants. Let
T ={m,...,7n} be a set of tiles. Denote by Rt C R set of regions tileable by T.
Let B C Rt be a fixed subset of tileable regions. Consider a tileable region I' € B.
We identify each tiling s € S(I', T) with its multiset of tiles, s ~ {r;,,..., 7, }. Of
course, by doing so we lose some information about the geometric structure of the
tilings, since there could be many tilings of T" with the same multiset of tiles (see
e.g. Fig. 1.4). As before, by |T'| we denote the area of T'.

Let Z{T) be a group of formal integer linear combinations of T. With each pair
of tilings s1,s2 € S(T,T') of a region I' € B we associate a relation:

(Ti1+"'+7'il:Tj1+"'+7'j7,)~

Let I be the linear span of such relations for all regions I' € B and for all pairs of
tilings s1, s2 € S(T,T'). Define the tile counting group to be the quotient group

G(T;B) = Z(T)/I.

This will be the main object of our study. Since both groups in the quotient are
abelian, one can think of a tile counting group G(T;B) as a subgroup of Z(T).
Thus it is reasonable to describe G(T; B) by its set of independent generators (or
the basis) given in Z(T).

For example, let Ty be a set of dominoes (see Fig. 1.1), and B a set of simply
connected regions. The two tilings in Figure 1.8 correspond to the relation 2 -7 =
2 - 1o. Since every domino tiling of a simply connected region can be obtained
from every other domino tiling, I in this case is generated by the above relation.
Therefore

G(To;B) =Z%/1 ~ 7 x Zs.

The basis can be given as 71 + 72, 71 — T2 € Z(T2). Note that the second generator
has order 2 as an element in G(Ts; B), while it has infinite order as an element of
Z(T3).

Here is another way to describe the tile counting group. Let G be an abelian
group, not necessarily finite. A map f : B — G is called a tile invariant (or just
an invariant) if for any tileable region I' € B and for any tiling s € S(T', T) of it,
s~ {7} !

s> Ty}, Where ’7']/» is a translation of a tile 7;, we have

J@) = fm) +- 4 f(7)
The problem is to find all the tile invariants for a fixed set of tiles T. Clearly a tile
invariant is determined by its values on T, so the problem of finding an invariant
is equivalent to finding maps f : T — G which can be extended to the set of all
regions B.

Let > cpa(r) € Z(T) be an element of a tile counting group G = G(T; B).
Suppose m is its order in G (m could be infinity). Then a map f : T — Z,,,
m < oo, or f: T — Z, m = oo, defined by f(7) = a(r) (mod m) or f(7) = a(7),
is a tile invariant, where by Z,, we mean the additive group of integers modulo
m. Conversely, every tile invariant can be lifted to an element of the tile counting
group. Thus the problem of computing the tile counting group G(T) is equivalent to
describing all invariants. We say that tile invariants f1, f2,... form an independent
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basis of invariants if they correspond to an independent generating set in a tile
counting group. An invariant f : T — G is called trivial if f(7) =0 for all 7 € T,
where 0 € G is the identity element. Otherwise the invariant is called nontrivial.
An invariant f : T — G is called primitive if G ~ 7Z or Z,, for some m. For the
rest of the paper we will be considering only primitive invariants.

Note that when B = T every map f : B — G is a tile invariant, i.e G(T,T) ~
ZITl. Generally, the bigger that our set of regions B, the more equations we have
on f, and the fewer tile invariants we get.

The obvious example of a nontrivial tile invariant is given by the area of tiles:

Jo:T—7Z, folr:)= |7

which can be extended to all tileable regions: fo(I') = |T'|. This implies that the
tile counting group has Z as a subgroup. In the case of domino tiles Ty we also get
another invariant (see above):

feoi:To—=Zo, fu(r1)=0, fi(r2) =1 mod 2.

The main result of this paper is a description of a tile counting group for the
following set of tiles.

Let the axes on a plane be as shown in Figure 1.10. We say that squares (i, j)
and (7', j') lie on the same diagonal if i — j =i’ — j’. For example, the two squares
(2,4) and (5,7) lie on the same diagonal (see Fig. 1.10). A ribbon tile is a simply
connected region with no two squares lying on the same diagonal. An example of a
ribbon tile is shown in Figure 1.11. Denote by T,, the set of all ribbon tiles 7 with
n squares: |7| = n. Obviously, T is the set of dominos (see Fig 1.1). The sets T3,
T4 and T5 are shown in Figures 1.12 — 1.14.

Note that |T,| = 2"~1. Indeed, we can encode each ribbon tile by a sequence
(€1,...,6n—1) of n — 1 zeroes and ones as follows. Call the lower left square the
starting square. Begin with the starting square and move along the tile. Write 0
when going right, and write 1 when going up. See Figures 1.12 — 1.14 for these
coding sequences for all tiles in T3, T4 and T'5.
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Definition 1.1. Consider the sequence of maps f1, ..., fm: Tn = Z,m = | 25|,
defined as follows:
fi(Eh oo 757171) =& — En—i-

We call the map f; the i-convexity invariant.
Definition 1.2. The constant map fy : T,, — Z defined as
fO(Ela e agn—l) =1

is called the area invariant.

Note that the area invariant is designed to be 1 on a tile 7 € T, rather than n.
This is designed to simplify the statement of the main result (see below.)



RIBBON TILE INVARIANTS 9

FIGURE 1.15.

Definition 1.3. If n is even, the map f, : T;, — Z5 defined as
Je(e1,. . 6n1) = €2 (mod 2)

is called the parity invariant.

Before we state our main results, we need to specify the set of regions B € R,,.
A region I’ € R is called row-convez (column-conver) if every horizontal (vertical)
line either intersects I' in an interval or does not intersect it at all (see Fig. 1.15).
Let B, be a set of tileable row-convex simply connected regions. The main result
of this paper is the following theorem.

Theorem 1.4. Let B = B,.. be as above. Then:

1) When n=2m+ 1, G(T,,B) ~ Z™*! and the maps fo, f1, ..., fm form an
independent basis of invariants.
2) When n = 2m, G(T,,B) ~ Z™ X Zs and the maps fo, fi, -+, fm-1, [«

form an independent basis of invariants.

When n = 2 Theorem 1.4 says that the area and parity invariants form an
independent basis. Analogously, when n = 3 Theorem 1.4 says that, aside from the
area invariant fy, there exists one other nontrivial tile invariant f; : T — Z, where

H(10) =1, f1(01)=—-1, f1(00) = f1(11) =0

(see Fig. 1.12). In a different form this invariant was discovered by Conway and
Lagarias in [CL] (see also [T]). To say that f; is an invariant is equivalent to saying
that:

#10 — # 01 = Const.

This means that the number of times the 10 tromino occurs in a tiling minus the
number of times the 01 tromino occurs in the same tiling of a region I' depends
only on the region I', and not on the tiling.

Here is another nontrivial invariant that exists for all n > 1.

Definition 1.5. Consider the map f, : T;, — Z defined as follows:
f‘(Elv"wEnfl):51+52+"'+5n71 (mOd 2)
We call f, the height invariant.

The reason why f, is called the height invariant can easily be seen from the
picture. Consider the smallest rectangular box the ribbon tile 7 can fit in (see
Fig 1.16). Then fo(7) = a — 1 (mod 2), where a is the height of the rectangle.
This invariant was considered earlier in connection with certain characters of the
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symmetric group Sy (see [R], [JK], [S]). Namely, it corresponds to signs in the
Murnaghan—Nakayama summation formula for computing the character values on
the conjugacy classes (n®), where N = a-n (see [JK], [M] for details). Observe that

F it o+ fmo1+ fm mod2 n=2m+]1,
it + fmer+fe mod2, n=2m.

This proves that f, is indeed an invariant provided Theorem 1.4 holds.

Now let us say a few words about how Theorem 1.4 is proved. We shall present a
finite set of moves which preserve the invariants but enable us to get from any tiling
to any other. Formally, let B, be the set of row- and column-convex regions such
that when fit into the smallest possible box they contain the upper right, upper left
and the lower left corner of the box (see Fig. 1.17).

Theorem 1.6. Let B = B, be as above. For every n > 1 there is a finite set of
at most n 4™ moves such that any tiling of ' € B by T,, can be transformed by a
sequence of moves to any other such a tilmg

When n = 2 we need only one move (see Fig 1.8). When n = 3 we already need
6 moves (see Fig 1.18). Together with Theorem 1.6, we prove this in section 3.

To finish the introduction, let us compare the definition of tile invariants with
the generalized coloring arguments introduced by Conway and Lagarias (see |CLl).

Let G be an abelian group, not necessarily finite, and e its identity element. A
map f: R — G is called a coloring map if for every region I' € R we have

f@) = fl@) + -+ f(@)r),
where z1, ..., x| are the squares in I'. Of course, f is defined by its values on all
1 x 1 squares.

*Ron Adin points out that the minimum number of local moves is exactly (‘TQ"‘). The cal-
culation uses our analysis in section 3. This gives (3) = 6 moves for n = 3, and (§) = 28 for
n = 4.
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A coloring map f: R — G is called T-coloring if f(I') = e forallT' € Ry. In a
sense the T-coloring maps are complementary to tile invariants, which are defined
only on tileable regions.

It is clear that to show that f is a T-coloring map, all we need is to check that
f(r") = e for all translations 7’ of a tile 7 € T. If this is the case, we say that f
gives a coloring argument for a set of tiles T. The idea is that we show that now
f(I') = e becomes a necessary condition for T-tileability, which is usually easy to
check. Various arguments can be found in [G].

To give an example, recall the argument we used to prove untileability by domi-
noes (see Fig. 1.2). It was, basically, a map f : R — Z, defined by

o 1,ifi+j=1 mod 2,
f(w)Z{

0,ifi4+7=0 mod 2.
The map f is an example of a T-coloring map. Indeed, observe that, by definition,
for both vertical and horizontal dominoes 71, 72 (see Fig. 1.1) we have f(nr1) =
f(TQ) =0.
It turns out that coloring arguments cannot be used to prove Theorems 0.1 —0.3.
In particular, we have the following result.

Theorem 1.7. Let T be the set of tiles shown in Figure 0.5. Consider a rectangle
=[5 -axb5-b], where a and b are odd. Then for any T-coloring map f: R — G
we have f(T') =e.

Recall that by Theorem 0.1 the region I' in Theorem 1.7 is not T-tileable. Thus
Theorem 0.1 cannot be proved by the use of coloring arguments only. Theorem 1.7
and its analogs for other sets of tiles will be proved in section 8.

Let us note that coloring maps can be used not only to prove untileability but
also to find some tile invariants. Here is how this can be done.

Let T be a set of tiles, and G an abelian group. Consider a map g : T — G.
Suppose f: R — G is a coloring map such that f(7') = g(7) for all translations 7/
of atile 7 € T. Then there exists a tile invariant g : Rt — G such that g(7) = g(7)
for all 7 € T. We call this an extended coloring argument corresponding to the map
f-

For example, let T = Ts be the set of dominoes. Consider the coloring map
f + R — Zs defined by f(i,j) = j mod 2. In a different form the map f was
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considered earlier (see Figure 1.7). We have g(m1) = 1 and g(m2) = 0 (see Figure
1.1), which proves that the map fo (see Definition 1.5) is indeed an invariant if
n=2.

One can try to use the extended coloring argument to get all the tile invariants
for a given set of tiles T and a set of regions B C Rr. It is easy to see that this
is impossible if the tile counting group G(T,,, B) 2 G(T,, Rt), i.e. if there exists
a tile invariant for the set of regions B that is not an invariant for the set of all
T-tileable regions Rr. It turns out that in the case of the ribbon tiles T,,, n > 2,
neither convexity nor parity invariants follow from extended coloring arguments.
Analogously, for the height invariant we have the following result.

Theorem 1.8. Let T, n > 1, be a set of ribbon tiles. Then the height invariant
fe follows from the extended coloring argument if and only if n = 2.

The proof of Theorem 1.8 is given in section 9. Of course, the “if” part is already
proven. Incidentally, proving this theorem was the original goal of this work.

The rest of the paper is constructed as follows. In section 2 we define a rim hook
correspondence, which is used in section 3 to prove Theorem 1.6. In section 4 we
check that the coloring maps defined in Definitions 1.1 — 1.3 are invariant under the
local moves defined in Theorem 1.5. In section 5 we present a technique for working
with tile invariants which enables us to extend the set of regions. In section 6 we
show that there are no ribbon tile invariants other than those given in Theorem
1.4. Then we prove the main theorem itself.

The second part of the paper contains several applications of the main result.
In section 7 we use ribbon tile invariants to find necessary conditions for tileability.
We prove Theorems 0.1 — 0.3 and a few other similar results. In section 8 we define
and analyze signed tilings and prove Theorem 1.7 along with other related results.
This section is motivated by the work [CL] of Conway and Lagarias, although we
were able to avoid the use of combinatorial group theory. In section 9 we prove
Theorem 1.8 and explore the connection between extended tile arguments and tile
invariants. Finally, in section 10 we present several conjectures and open problems.

This work was done while the author was a postdoctoral fellow at MIT. The
research was supported by a National Science Foundation Postdoctoral Research
Fellowship.

2. THE RIM HOOK BIJECTION

Let us recall some standard notation in combinatorics related to the representa-
tion theory of the symmetric group (see e.g. [IK], [M]).

A partition is a nonincreasing integer sequence A = (A1, Ao, ..., A1), A1 > Ag >

- > XN > 0. With each partition A we associate a region I'y, called a Young
diagram or a Ferrers shape, defined as follows:

Ty={(i,j) €Z?|1<i<I,1<j< N}

See Figure 2.1 for the Young diagram associated with the partition (5,5,4,3,1).
Denote [A| = A1 + -4+ X\ = [Tyl

A skew Young diagram Ty, is the set theoretic difference of the Young diagrams
associated with the partitions A and p:

Fage =\ Ty

For example, the skew Young diagram I'(5 5 4,3,1)\(3,2) is shown in Figure 2.2.
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To simplify the notation we will use A to denote both the partition and the
corresponding region I'y, which we also call the Young diagram of shape A. By R,
and R,y we denote the set of all Young diagrams and the set of all skew Young
diagrams, respectively.

By Aopu we denote the skew Young diagram obtained as the disjoint union of the
Young diagrams A and g where p is located to the right and above A. The example
of (3,3,1)0(2,1) = (5,4,3,3,1)\ (3,3) is shown in Figure 2.2.

A Young tableau is a Young diagram A filled with integer numbers which increase
in rows and columns (see Fig. 2.3). A Young tableaux is called standard if these
numbers are 1, ..., |A|. We can think of a Young tableau as a flag of Young diagrams
D=XcCAXcC...CAN* =\ A skew Young tableau is defined analogously.

Recall that by T,, we denote a set of ribbon tiles with n squares (see Figs. 1.12-
1.14). A rim hook tableau is a tiling of a Young diagram I'y by ribbon tiles 7 € T,
filled with numbers 1,2, ... |A|/n (squares in the same tile are filled with the same
number), and such that squares of tiles with greater numbers are located either to
the right or below squares of tiles with smaller numbers (see Fig. 2.4). Again we
can think of a rim hook tableau as a flag of Young diagrams.

The rim hook bijection ¢ maps Young diagrams A, |A| = m - n, tileable by T,
into n-tuples of Young diagrams (v!,...,v"), [v'| + - + [v"| = m. The bijection
@ is designed in such a way that whenever we add a ribbon tile to the diagram
A on the outside, there exist i, 1 < i < n, such that ¥ gets a square on the
outside (see Fig. 2.5). If we think of rim hook tableaux as flag sequences of tileable
Young diagrams, the rim hook bijection maps these flag sequences into the n-tuples
of Young tableaux filled with numbers 1,..., m which are increasing in rows and
columns in each tableau. It is known that this establishes a bijection between the
rim hook tableau of a fixed tileable Young diagram A and the n-tuples of Young
tableaux with shapes ¢(A\) = (v!,...,v") which are filled with numbers 1,...,m,
where |A\| = m - n (see e.g. [JK], [SW]).

The easiest way to understand the rim hook bijection is to look at Figure 2.6.
Take a rim hook tableau tiled with 14 tiles 7; € T3 and rotate it counterclockwise
135° degrees. Then project all hooks on the horizontal axis, preserving their labels
and relative order. Split the “shadows” into three (n in the general case) separate
sets of “shadows” depending on their horizontal coordinate mod 3. Then simply
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shorten the shadows and reverse the procedure. At the end we get three Young
tableaux filled with the numbers 1,...,14 (see Figure 2.6).

Theorem 2.1. The map ¢ defined above is a one-to-one correspondence.

The theorem goes back to Nakayama and Robinson (see [R], [JK]). In modern
times it was rediscovered by Stanton and White (see [SW], [F'S]) and is sometimes
attributed to them.

Another way to think of the rim hook bijection is to say that it establishes a
bijection between rim hook tableaux of shape A and standard Young tableaux of
the skew shape v! o--- o 1™ We shall use this interpretation in the next section.
Various proofs and applications of the theorem can be found in [JK], [ES], [S].
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3. LOCAL MOVES

Let A\ i be a skew Young diagram. We define local moves on a set of standard
Young tableaux of shape A\ p as follows. Take a pair of numbers ¢ and ¢ + 1,
1 <4 < |A], and exchange them if they lie in different rows and columns. We claim
that, using these moves, one can start with any standard Young tableau of shape
A\ ¢ and get any other such tableau.

Formally, let Q(X\\ p) be a graph with vertices all standard Young tableaux of
shape A\ pr and edges obtained by applying local moves. An example with A = (3, 2)
and p = 0 is shown in Figure 3.1.

Theorem 3.1. Let A\ p is a skew Young diagram. Then its graph Q(X\ p) is
connected.

This result is known and not hard to prove. Some generalizations and applica-
tions can be found in [BW], [BK].

Sketch of Proof. Introduce an orientation of edges of the graph Q(A\ p) by distin-
guishing situations when a local move exchanges ¢ and ¢ + 1 with ¢ + 1 lying to the
right and above 4 from those where ¢ + 1 lies to the left and below i (see Figure
3.1). Observe that the orientation is acyclic and has exactly one sink. This proves
the result. O

Consider what happens if we apply the bijection ¢ to the vertices of a graph
Q(A\ p) in Theorem 3.1. Fix a skew Young diagram v = v o--- o v™. Define local
moves on a set of rim hook tableaux of shape A = ¢~!(v!,..., ") by the image
of the corresponding local moves on a standard skew Young tableaux. Observe
that squares in a Young tableau of shape v correspond to rim hooks in a rim hook
tableau of shape A\. Thus the corresponding local moves on a set of rim hook
tableaux will preserve all the rim hooks except two. Since these rim hooks have
consequent labels, together they form a skew shape which has exactly two rim hook
tableaux (see Figure 3.2). Note that the two rim hooks may lie far from each other,
in which case the local move is just relabeling of their numbers. When n = 1 this
is the only case that occurs.

Now we are ready to state an analog of Theorem 3.1. Denote by Q,(A\ p)
a graph with rim hook tableaux as vertices and edges connecting those pairs of
tableaux which have the same set of all but two rim hooks.

Theorem 3.2. Let X\ be a Young diagram tileable by T.,,. Then its graph 2, () is
connected.

1]2]5
/34 \
1[3]5 1]2]4 1]2]3
2] 4 3|5 415
\134/
2[5

FiGURE 3.1.
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Note that here we do not claim that €, (A\ ) is connected for any tileable skew
Young diagram A\ p. It is true and can be proved by the straightforward general-
ization of the rim hook bijection. We avoid the use of this natural generalization
for the purpose of studying ribbon tile invariants.

Proof. Define (v1,...,v") = ¢()\) to be the image of A under the rim hook corre-
spondence. Consider G = Q(v! o---ov™). The correspondence ¢ ~! maps vertices
of G onto 2,(\) and edges onto edges. In other words, ¢~ !(G) is a subgraph of
0,()\). By Theorem 3.1 the graph G is connected. Therefore the graph ,()) is
also connected. |

Now let us make a graph on the ribbon tilings of A\. The idea is to erase the
labels in the rim hook tableaux and connect those that were connected before.

Formally, consider a graph ©,()\) with vertices being all ribbon tilings s €
S(T'y,T) of a fixed shape A. Define the edges to be the pairs of tilings that differ
by exactly two tiles. Two examples of such graphs ©5(3,3,2) and 03(3, 3,3, 3) are
shown in Figure 3.3 and Figure 3.4 respectively.

Theorem 3.3. Let A be a Young diagram tileable by T.,,. Then the graph ©,(\) is
connected.
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Proof. Consider a map ¢ : £,,(A) — 0, (\) which maps rim hook tableaux to ribbon
tilings by erasing labels of tiles. By definition ¢ maps edges of ,,()\) into edges of
©,,(A). Therefore, in order to prove that 0, () is connected, all we need to show
is that each vertex has a preimage. Indeed, if this is true, in order to find a path
between two vertices in ©,,(\) we simply take their preimages, find a path between
them in Q,(A), and then map it back to 0, (\).

In other words, the theorem in now reduced to the following lemma. O

Lemma 3.4. Every ribbon tiling of a Young diagram X admits a labeling which
makes it a rim hook tableau of shape ).

Proof. We prove the lemma by induction on the number of squares |A|. The base
case is trivial. Fix a Young diagram A. By the border strip of A we mean the set
of squares (¢,5) € A such that (i + 1,5+ 1) ¢ X. A tile 7 is called a border tile
if it lies in the border strip (see Figure 3.5). We claim that every ribbon tiling of
A must contain at least one border tile. If we find such a tile 7, label it with the
largest number. Then there are no tiles that lie to the right of or below 7, and we
can proceed by induction with A\ 7.

In order to find a border ribbon, start with the lower left corner. It must belong
to some tile. This tile has this square as its starting square. If it is not a border
tile, find the first border square that is not in that tile. It must belong to some
other tile. This tile also has this square as its starting square. Keep on doing so
until we find the border tile. It must always exist, since the top right corner must
also belong to some tile, and this square cannot be a starting square of any tile
unless n = 1, in which case it is a border tile by definition (see Figure 3.6).

This proves the induction step together with the lemma. The lemma in turn
implies Theorem 3.3. O

Proof of Theorem 1.6. Observe that the set or regions B = B, is exactly the set of
all Young diagram shapes. Take the moves to be as described above. The number
of different moves is bounded by the the number of pairs of ribbon tiles aligned
to each other. The latter number is easily bounded by n - 4™, which proves the
theorem. |

Finally, we would like to note that in the proof of Lemma 3.4 rim hooks need
not be of the same length.
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4. TILE INVARIANTS

Let B = By be a set of tileable Young diagram shapes. In the previous section
we showed that all the tilings of A € B, can be obtained from each other by a finite
set of moves. Here we show that the maps f;, 0 < i < n/2, are constant along these
moves. In other words, we shall prove Theorem 1.4 for the set of regions B,.

Let us look at the structure of the moves we introduced in section 3. Consider a
large enough example, shown in Figure 3.2. Recall that each ribbon tile is encoded
by a sequence (£1,...,6,—1) of m — 1 zeroes and ones. In this notation our pair of
tiles is mapped into a similar pair:

00110101,01011110 — 00100101,01010110.

Subtracting the sequences as vectors, we get the vectors (0,0,0,—1,0,0,0,0)
and (0,0,0,0,—1,0,0,0). In other words, the first tiles in a pair differ at the fourth
place, where 1 becomes 0. Respectively, the second tiles in a pair differ at the fifth
place, where 1 again becomes 0. Note that all tiles contain n = 9 squares, and
544 =9. We claim that this is a general observation.

Lemma 4.1. In every move defined above one tile sequence changes from 1 to 0
(or from 0 to 1) at some place i while another has exactly the same change at place
n—i.

Proof. The proof is done by the following observation. Note that each skew Young
diagram shape which corresponds to a move can be broken into three parts by
the number of squares in a diagonal parallel to the line y = —z (see Figure 4.1).
After the move, the southwest and northeast part remain the same, while the
middle part remain divided into two identical small ribbon tiles which get switched
now. Therefore, the differences in tile sequences occur only in places where the
southwest and northeast parts touch the middle part. If the southwest part was
touching the upper of two small ribbon tiles, it now touches the lower one. This
means that at place ¢ the number in a sequence changed from 1 to 0 (see Figure
4.1). Respectively, the northeast part was touching the lower of two small ribbon
tiles and now is touching the upper one. This means that at place n — ¢ the number
in a sequence changed from 1 to 0.

The second case, when the southwest part was touching the upper of two small
ribbon tiles before the move, and the lower tile after the move, is analogous. This
proves the lemma. O

Now recall the definitions of the convexity invariants:

filer, .., en—1) = €i — €n—i;

FIGURE 4.1.
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where 1 < < L"T’lJ Analogously, the parity invariants are defined by
fe(er,. .., en—1) = €m mod 2,

where n is even and m = n/2.

Lemma 4.2. The maps f; and f« are invariant under the local moves.

Proof. The lemma follows easily from Lemma 4.1. Indeed, as we showed above, if
a move changes tiles 71, 72 into tiles 71, 74, then

filr)) = filn) £1,  filrg) = fi(m2) ¥ 1,
where the different sign in the second equation comes from the minus sign in f; =
Ei — En—i-
Therefore

film) + fi(r3) = fi(m1) + fi(72),
which proves that the maps f; are invariant under the local moves.

The case of a parity invariant is slightly different, since here we do not have
opposite signs. Instead we have

fu(r]) = fu(n) £1, fu(73) = fu(m) £ 1.

Therefore

fi(m1) + fi(13) = fi(m1) + fi(r2) £2 = fi(m1) + fi(r2) (mod 2),

which proves that the map f, is invariant under the local moves. This finishes the
proof of the lemma. O

Recall that by fo we denote the area invariant.

Corollary 4.3. Let B = By, be a set of tileable Young diagram shapes. Then, when
n=2m+ 1, the maps fo, f1, ..., fm are the ribbon tile invariants. Analogously,
when n = 2m, the maps fo, f1, ..., fm—1, f« are the ribbon tile invariants.

Proof. By Lemma 4.2 the maps f; and f, are invariant under the local moves. By
Theorem 3.3 we can get any ribbon tiling of a Young diagram from any other.
Therefore these maps are indeed invariants on a set of tileable Young diagram
shapes. This proves the corollary. O

Note that Corollary 4.3 proves only one part of Theorem 1.4 for the set of regions
B = B,. The second part, which states that these invariants form a basis, will be
proven in section 6.

5. INCREASING THE SET OF REGIONS

In this section we will generalize Corollary 4.3 from the set of Young diagram
shapes to the set B,.. of all row-convex regions. As an intermediate step we use a
set of all skew Young diagram shapes.

Our approach is based on the following general observation.

Lemma 5.1. Let T be a set of tiles, and let By C By be two sets of T-tileable
regions. Suppose for each region I'y € By there is a region I'y € By such that
Iy DTy and Ty \ Iy is T-tileable. Then, if f : Bo — G is an invariant on By, it is
also an invariant on Bs.
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FIGURE 5.1.

Proof. We need to show that for any I'ys € By all tilings s € S(I'2, T) have the
same G-value of f. We know that for any I'y € By there is a region I'y € Bj,
'y D Ty, such that T'y \ T'p is T-tileable. Therefore the set of tilings S(I'y, T) is
in a correspondence with a subset &’ C S(I'y, T) such that all the tilings s € &
have the same fixed tiling of T'y \ I's. By definition the value of f is the same on all
tilings of S(I'y, T). Since it is fixed on I'y \ I'y, it must be the same on S(I'y, T).
This finishes the proof. O

We call the set By of T-tileable regions reducible to By, if By C By and they
satisfy the conditions of Lemma 5.1. Of course, if B3 is reducible to By and Bs is
reducible to By, then Bjs is reducible to B;.

Lemma 5.2. Let By, be the set of T, -tileable skew Young diagram shapes, and
By the set of T,,-tileable ordinary Young diagram shapes. Then B, is reducible to
By C Bgy.

Proof. Indeed, all we need to prove is that every skew Young diagram can be
imbedded in an ordinary Young diagram so that their difference is tileable by the
ribbon tiles. There is an easy way to do that just by using the horizontal and the
vertical tiles.

The idea is shown in Figure 5.1. We start with the rightmost column of a skew
Young diagram shape and move to the left. Whenever we move left, add on top a
column of vertical tiles until they equal or exceed the column on the right. If they
do exceed the column on the right, for each exceeding square add to the right a
row of horizontal tiles until they equal or exceed the row below. In example shown
in Figure 5.1 we do nothing for the first two columns. For the third column from
the right we add one vertical tile and two horizontal. We add just one vertical tile
for each of the next two columns. For the sixth column we are forced to add three
vertical and two horizontal tiles, etc.

We stop when we are finished with the last column (the ninth in case of Figure
5.1). By construction we always have a Young diagram shape to the right of the
building column. Therefore the resulting shape is also a Young diagram shape.
This proves the lemma. O

Remark 5.3. In [Pa] we use this construction to define a generalization of the rim
hook bijection for skew shapes. Note also that Lemma 5.2 can be generalized for
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any set of tiles T which contains a horizontal and a vertical tile, not necessarily of
the same length.

Lemma 5.4. Let By, be the set of T, -tileable skew Young diagram shapes, and
B the set of T, -tileable row-convex regions. Then B, is reducible to Bsy C Bi..

Proof. Indeed, all we need to prove is that every row-convex region can be imbedded
in a skew Young diagram so that their difference is tileable by ribbon tiles. There
is an easy way to do that just by using just horizontal tiles.

The idea is shown in Figure 5.2, and is similar to the idea used in Lemma 5.2.
We start with the top row of our row-convex region and move to the bottom row.
Each time we move down we add a row of horizontal tiles to the left so that they
equal or exceed the row above. When get to the bottom we start adding rows of
horizontal tiles to the right of the region in such a way that each row equals or
exceeds the row below (see Figure 5.2). At the end we get a skew Young diagram
shape, which proves the lemma. O

Corollary 5.5. The statement of Corollary 4.3 holds for the set B,. of row-convex
T, -tileable regions.

Proof. By Lemmas 5.2 and 5.4, B, is reducible to B,. By Lemma 5.1 this implies
that every ribbon tile invariant for the set of regions B, is also an invariant for the
set of regions B,... Together with Corollary 4.3, this proves the result. |

6. THE TILE COUNTING GROUP

Here we will prove that there are no invariants other than those which follow
from convexity, parity and area invariants. Together with Corollary 5.5 this implies
the main result of the paper, Theorem 1.4.

The idea is to show that every invariant is completely defined by its values on
the horizontal and two-row ribbon tiles.

Denote 79 = 0000 ... 0, 7, = 0 ... 010 ... O (1 is in the i-th place),

1<i<n-—1. Let B,, C T, be the set of tiles 7;, where 0 < i <m = L%J

Lemma 6.1. Let f1, fo : B — G be two ribbon tile invariants. We claim that if
for every T € By, we have f1(1) = fo(7), then f1 = fo.

Proof. We need to show that for every ribbon tile 7 € T, we have fi(7) = fa(7).
This would immediately imply that f; = fo. We prove it by induction on the height
ht of a ribbon tile (see the Introduction):

ht(t) =1+e1+e2+---+ep_1.

First we prove the base of the induction. If ht(7) = 1, then 7 is a horizontal tile
7o € By If ht(7) =2, then 7 € B, or 7 = 7;, m < i < n — 1. Observe that 7; and
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Tnh—q form a two-row skew Young diagram shape which can also be divided into two
horizontal tiles (see Figure 6.1). Therefore if invariants fi, fo agree on B,, they
must also agree on all the two-row ribbon tiles.

Now suppose the claim holds for all tiles 7 € T,, with ht(7) < k. Let 7 € T, be
a ribbon tile and ht(7) = k. The sequence corresponding to 7 can be presented in
the form (e1,...,€;,1,0,0,...,0). The two-row ribbon tile 7,,_;_1 can be aligned
with the top two rows of 7 to form a skew Young diagram shape (see Figure 6.2).
This region can also be divided into a horizontal tile and a tile 7" with a sequence
(€1y...,€i,0,0,0,...,0) (see Figure 6.2). Note that ht(7') = ht(r) — 1 = k — 1.
Therefore if invariants fi, fo agree on all tiles 7 € T,,, ht(7) < k, they must also
agree on all tiles 7 € T,,, ht(7) = k. This proves the induction step and finishes
the proof of the lemma. O

Proof of Theorem 1.4. Corollary 5.5 implies that our maps are indeed invariants.
All we need to prove now is that they are independent and generate the whole tile
counting group.

To show independence, consider values our invariants take on B,, C T,,. The
area invariant fj is a constant on all B,,, including 7y. The convexity invariant f;
is nonzero only on the tile 7;. Analogously, the parity invariant is nonzero only on
the tile 7,,, n = 2m. This immediately implies independence.

Now, Lemma 6.1 proves that a tile invariant is completely determined by its
values on B,,. This implies that when n = 2m + 1 there can be no invariants that
are not generated by fo, fi, ..., fm. Therefore G(T;B) ~ Z™*1.

We still have a little room left when n = 2m, since the parity invariant takes
values in Zy rather than in Z. Recall that in the proof of Lemma 6.1 we showed
that if f is an invariant, then

f(7i) + f(Ta—i) = 2 f(70)

(see Figure 6.1). When ¢ = m this gives 2 - f(7,,) = 2 - f(7), which implies that
there can be no invariants that are not generated by fo, f1, ..., fm—1 and f..
Therefore G(T; B) ~ Z™ X Zy. This finishes the proof of Theorem 1.4 O

7. APPLICATIONS TO TILEABILITY

In this section we use ribbon tile invariants to give new tileability criteria for
certain sets of tiles. Among the results we prove Theorems 0.1 — 0.3.
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We use the following logic. Let T C T, be a subset of ribbon tiles. Suppose I is
a region which is tileable by T,,. Then we can use tile invariants to find diophantine
equations for the number of times each tile 7 € T,, occurs in the tilings. When
restricted to a smaller set of tiles T, sometimes these equations do not have an
integer solution. This would imply that I' is untileable by T. Generally, having a
solution for these equations becomes a tileability test which is easy to use in practice.

Here are a few examples when we apply the above logic successfully.

1. Let T C T4 be the set of four tiles shown in Figure 7.1. We ask for which
values (a, b) the rectangle [a x b] can be tiled by T. Note that since T is asymmetric,
we need to use the following notation: a is a height and b is a width of a rectangle.

Theorem 7.1. Let T be the set of tiles in Figure 7.1. Then the rectangle [a x b)
can be tiled by T if and only if (a,b) satisfies one of the following:

1) 4a,
2) 8lb, a >3,
3) 2la, 4/b.

Proof. The tileability in cases 1) — 3) follows from the existence of tilings of the
rectangles [4 x 1], [2 x 4] and [3 x 8] (see Figure 7.2).

To prove untileability in all the other cases we need several observations. First,
it is obvious that no rectangle [1 x b] can be tiled.

Suppose now a is odd, @ > 3. Then 4|b and the rectangle [a x b] can be tiled
by a horizontal tile [1 x 4] € T4. Thus the height invariant (see Definition 1.5)
fo=f1+ f2 (mod 2), fe: B — Zs, has the value

fo([a x b]) = 0.

However, fo(7) = 1 for all 7 € T. Therefore in order to be tileable, the rectangle
[a x b] must contain an even number of tiles, i.e. 8/b and we are in case 2).

Now we need to show that no rectangle [a x b] with a,b =2 mod 4 can be tiled
by T. This can be done by coloring arguments (see the Introduction). We will do
it in the next section (see Corollary 8.5). O

2. Let T C T5 be the set of eight tiles shown in Figure 0.5. Note that in this
case T is symmetric under the transposition. Theorem 0.1 claims that a rectangle
[a x b] can be tiled by T only if 10|a - b. We claim that an even stronger statement
is true.

Hb—'ﬁ:ﬂ

FIGURE 7.1.

= [ApPr

FIGURE 7.2.
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Theorem 7.2. Let T be the set of tiles in Figure 0.5. Then the rectangle [a x b)
can be tiled by T if and only if 10la - b and a,b > 1.

Proof. The tileability follows immediately from the existence of tilings of the rect-
angles [2 x 5], [3 x 10] and of the rectangles [5 x 2], [10 x 3] transpose to them (see
Figure 7.3).

The other direction is similar to the proof of Theorem 7.1. Observe that if a
rectangle [a x b] can be tiled by T, then either a or b can be divided by 5. But
then [a x b] is tileable by either a horizontal tile 7y or a vertical tile 7¢, 79, 7 € Ts.
Observe that

fo(70) = fo(1$) =0 mod 2,

where fo : B — Zs is a height invariant. Therefore fo([a x b]) = 0 for any tileable
rectangle [a x b]. On the other hand, for any tile 7 € T we have fo(7) = 1.
Therefore there must be an even number of tiles in [a X b], i.e. 10]a-b. This proves
the theorem. O

3. Let T C T;5 be the set of six tiles shown in Figure 0.6. Note that in this case
T is also symmetric under the transposition.

Theorem 7.3. Let T be the set of tiles in Figure 0.5. Then the rectangle [a x b)
can be tiled by T if and only if 10la - b and a,b # 1, 3.

Proof. The tileability follows immediately from the existence of tilings of the rect-
angles [2 x 5], [7 x 10] and of the rectangles [5 x 2|, [10 x 7] that are transposed to
them (see Figure 7.4).

To show the other direction, use the same reasoning as in the proof of Theorem
7.2. If a rectangle [a x b] can be tiled by T, then its area must be divisible by 5
and therefore it is tileable by either a horizontal or a vertical tile in T5. Thus the
1-convexity invariant f; is 0 on any tileable [a x b]. On the other hand, fi(7) = +1
for each 7 € T. Therefore [a x b] has to be tiled by an even number of tiles, and
10]a - b. This finishes the proof of the theorem. O

Theorem 7.4. The triangular shape AN can be tiled by tiles shown in Figure 0.6
if and only if N =0,4,15,19 (mod 20).

Proof. First we prove the tileability part. Observe that A, and A;5 are both tileable
(see Figure 7.5). Now, if we have tilings of the regions A,s, Ay we can construct a
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tiling of the region Aps4 n41 assuming the rectangle [(M + 1) x (IV +1)] is tileable.
(see Figure 7.6). Analogously, if we have tilings of the regions Aps, Ay we can
construct a tiling of the region Ajsqn assuming the rectangle [M x NJ is tileable
(see Figure 7.7). Since both [5 x 16] and [4 x 15] are tileable (see Theorem 7.3),
this gives us tilings of Agg = Ajs4541 and A9 = Ays45. Going further, if Ay is
tileable, then Aggyas is also tileable. This covers all the values N = 0,4,15,19

(mod 20).
To prove the “only if” part, start by computing the area. We have
N(N+1
o) = XY,

Since the area must be divisible by 5, this gives us 5|N (N + 1) and N = 0,4
(mod 5). Now, in each of these cases it is easy to see that Ay can be tiled by Ts.
Indeed, both Ay and As can be tiled by T (see Figure 7.8). Since any rectangle
[a x D] is tileable by either a horizontal or a vertical tile in T5, we can use the
construction in Figure 7.7 repeatedly and tile Ay for all N = 0,4 (mod 5).
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Now we can compute the value of the 1-convexity invariant f; on Ay, N =0,4
(mod 5). We have

fi(As) = f1(A5) =0, fi(An+s) = fi(AN),

which gives us

J1(Asmia) = f1(Asmys) = 0.

Since f; takes only the values +1 on T, this implies that in order to be tileable Ay
must have an even number of tiles. Thus 2|fy = W, and 20|N (N +1). This
immediately implies N = 0,4,15,19 (mod 20). O

4. Let T C Tj5 be the set of eight tiles shown in Figure 7.9. As before, we solve
the tileability problem for rectangular and triangular shapes.

Theorem 7.5. Let T be the set of tiles in Figure 7.9. Then a rectangle [a x b] can
be tiled by T if and only if (a,b), a < b, satisfies one of the following:

1) 10la-b, a > 8,

2) a=4,6, 5|b,

3) a=25, 2)b.

Proof. The tileability follows from the existence of tilings of the rectangles [4 x 5],
[5 x 6] and of the rectangles [5 x 4], [6 x 5] that are transposed to them (see Figure
7.10). Indeed, then we can construct rectangles [4 x 5m], [6 X 5m], [5 x 27], r > 3,
which cover cases 2) and 3). An easy check shows that this also implies tileability
in case 1).

Now let us prove the “only if” direction. First, we show that 10 must divide
ab in order for [a x b] to be tileable by T C T5. Indeed, the area fo = a - b must
be divisible by 5, which implies that [a x b] is tileable by either a horizontal or a
vertical tile in T5. Now this implies that the 2-convexity invariant takes the value
zero on a rectangle, while its value is £1 on each of the eight tiles in T. Therefore
[@ x b] must contain an even number of tiles in order to be tileable by T, which
proves the claim.

Observe that since 10|a - b, a,b > 7, covers by case 1) we are left with the cases
when a or b is at most 7. It is easy to see that there are no tileable rectangle with
a = 2,3. An elaborate search of about a dozen beginnings shows that there are no



RIBBON TILE INVARIANTS 27

[ - ]

FIGURE 7.11.

tileable rectangle with a = 7. These cover all the untileable cases, and finishes the
proof of the theorem. O

Theorem 7.6. The triangular shape Ay can be tiled by tiles shown in Figure 7.9
if and only if N =0,5,14,19 (mod 20).

Proof. First we prove the tileability part. Observe that Ay and A4 are both tileable
(see Figure 7.11). Recall that by Theorem 7.5 the rectangles [14 x 5], [15 x 6] and
[20 x N], N > 5, are all tileable by T. Using the same construction as in the proof
of Theorem 7.4 (see Figures 7.6 and 7.7), we get tilings on Ajg, Agy. We also get
a tiling of Aggqn from a tiling of Ay. This covers all the values N = 0,5,14,19
(mod 20) and proves the “if” part.

To prove the “only if” part, first recall that the area is divisible by 5 if and only
if N =0,4 (mod 5), and in all these cases Ay is tileable by T5 (see the proof of
Theorem 7.4). Compute the 2-convexity invariant fo(Ax). We have (see Figures
7.7 and 7.8)

f2(As) = fo(As) = =1,  fa(Anys) = fo(An) — 1,

which gives us

f2(Asmia) = f2(As5mis) = —m.

Since fo takes only the values +1 on T, this implies that in order to be tileable
the number of tiles in Ay, 45 must have the same parity as m. This immediately
implies N = 0,4, 15,19 (mod 20), and finishes the proof. O

8. SIGNED TILINGS AND COLORING ARGUMENTS

Instead of ordinary tilings one can try using signed tilings (see [CL]), which are
basically placements of tiles on a plane with weights +1 or —1 assigned to each of
them. We say that they tile a region if the sum of the weights of the tiles is 1 for
every square inside a region and 0 elsewhere.

Even with small sets of tiles it often happens that there are untileable regions
which have signed tilings. For example, the region in Figure 1.3 has no ordinary
domino tiling but has a signed domino tiling. Indeed, simply tile the rectangle
[3 x 4] by dominoes and add two horizontal dominoes on the top and on the bottom
with negative signs.
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It turns out that signed tilings are easier to study because of their connection
with coloring arguments. By analogy with tile invariants, a coloring map f : R — G
is trivial if f(T') = 0, for every v € R, where 0 is an identity element in an abelian
group G. Otherwise f is called nontrivial.

Theorem 8.1. A region I' has a signed tiling if and only if there is no abelian
group G that has a nontrivial T-coloring map f: R — G.

Proof. Indeed, consider a group & obtained as a free abelian group generated by
elements x; ; that correspond to squares of a square grid. Let J C & be a subgroup
generated by sums x;, j, + i, j, + ... that correspond to translations of tiles.
Observe that the T-coloring maps correspond to the elements of the quotient
group & /7. Therefore for every region I' there exists a T-coloring map f: R — G
such that f(I") # 0 unless the sum of squares of I' lies in J. On the other hand,
a region I' has a signed tiling if and only if the sum of its squares lies in J. This
proves the result. [l

By analogy with the tile counting group we define a coloring group O(T) = & /7.
It follows from the proof of the theorem that signed tilings and T-coloring maps
are basically dual to each other. However, it is convenient to separate them, since
they give a different view of the subject.

It is important to note that whenever we have a T-coloring map which proves
that a certain region I' is untileable, this also implies that I' has no signed tiling.
Therefore in the event when I' is untileable but has a signed tiling (like the region
in Figure 1.3 mentioned above), it also means that this fact cannot be proved by
use of T-coloring maps. Traditionally the coloring maps were a major instrument
in proving untileability results (see [Gl), so it is often desirable to check whether
they can be used to prove any of our negative results. Below we will show that
the results we obtained in the previous section in fact cannot be proved by use of
coloring arguments.

Finally, let us point out where the difference between signed and ordinary tilings
comes from. Instead of an abelian group G one can take a monoid M (commutative
semigroup with an identity element). One can also define a semigroup morphism
from all regions to M which is the identity on all tiles. It is not hard to prove a
theorem similar to Theorem 8.1 which says that a region I' has a tiling if and only
if there exists no morphism which is not the identity on I' (cf. [CL]). We skip the
details.

Theorem 8.2. Let T, be a set of ribbon tiles, and let O(T,,) be its coloring group.
Then

o(T,) ~Z" 1.
Proof. Let Z be an abelian group generated by elements zg, 21, ..., 2,—1. Define a
coloring map
C:R—=Z/(z0++ 2n-1),
which acts on generators as follows:
C(a?z',j) = Z(j—imodn)-

To prove that ¢ is indeed a T,-coloring map, note that by definition ribbon tiles
in T, contain no two squares lying on the same diagonal. Therefore they must
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contain squares lying in n subsequent diagonals: ¢, i+1, ..., i+n—1, where ¢ € Z.
Thus for all 7 € T,

C(T):Zi+"'+zn+21+"'+zi71:0

and ( is indeed a T,,-coloring map.

We can now prove that the coloring group for the set of ribbon tiles T, is Z" .
Let us prove that for any region I'; {(I') = 0, there exist a signed tiling of I'.
Then, by Theorem 8.1, this will imply that the coloring group is isomorphic to
Z/(z0+ -+ 2n_1) =~ Z"1, which proves the result.

Let dy be the difference of ribbon tiles 00 ... 01 and 00 ... 00 which have the
same starting square. Observe that adding d; to a region adds a square z; ; and
subtracts a square ;41 ;41 lying on the same diagonal. Let d be the difference of
two horizontal tiles 00 ... 0, one of them having the starting square z; ; and the
other in x; ;1. By analogy with dy, d2 adds a square z; ; and subtracts a square
Z; j+n lying on the same diagonal modulo n. Note that all the differences d; and
ds are equivalent up to translation.

Now, let T' be a region such that {(I') = 0. We show that by adding enough
differences d; and do we can get an empty region. Indeed, by using do’s we can
move all the squares of I" into the first n diagonals. Furthermore, by using ds’s
we can move all the squares of I' into the squares z¢, 0,1, ..., , To,n—1. Since
¢(T") = 0, this means that we get the same weight m at each of these squares. Now
subtract m copies of the horizontal tile. We get an empty region, which is exactly

what we needed. This finishes the proof of the theorem. O
Note that if we use only d; without ds we get a sequence of numbers ..., m_1,
mg, M1, M2, ..., which are numbers of squares in diagonals. This sequence gives

rise to a coloring argument for the ordinary tilings that is more general than the To-
coloring map (. For example, it proves that the region in Figure 1.3 is untileable
by dominoes. Indeed, the sequence is 1,1,2,2,2,1,1. The first two ones imply
that there is a domino lying in the first two diagonals. Now, the two in the third
place implies that there must be two dominoes that lie in the the third and fourth
diagonal. Consequently, there must be two dominoes that lie in the the fifth and
sixth diagonal. But this is impossible since the sixth number in the sequence is one.
Therefore the region in Figure 1.3 is indeed untileable by dominoes.

When we restrict our set of tiles to a subset, all the coloring maps remain.
However, a priori other coloring maps may appear. We show that in the cases
considered in the previous section this does not happen.

Theorem 8.3. For the set of tiles shown in Figure 7.1 the coloring group is Z3.
For the sets of tiles shown in Figures 0.5, 0.6 and 7.9 the coloring group is Z*.

Proof. All we need to show is that our sets of tiles generate differences d; and ds.
This would imply that their coloring group is the same as that of the ribbon tiles.

1) For the set of tiles in Figure 7.1, d; comes from subtracting 010 and 001 with
the same starting square. The difference dy comes from subtracting 100 and 001
with starting squares x; ; and x;_1 ; respectively.

2) For the set of tiles in Figure 0.5, d; comes from subtracting 0010 and 0001
with the same starting square. The difference dy comes from subtracting 0111 and
1110 with starting squares z; ; and x; ;11 respectively.

3) For the set of tiles in Figure 0.6, denote ds the difference between 0111 and
1110 with starting squares x; ; and x; ;41 respectively. It adds x; ; and subtracts
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Z;i—3,j+2. Analogously define a difference di, between 0001 and 1000 with starting
squares ;—1 ; and x; ; respectively. It subtracts x;; and adds x;_3 j+3. Now the
difference d; comes from adding do and db.

4) For the set of tiles in Figure 7.9, d; comes from subtracting 0010 and 0011
with the same starting square. The difference dy comes from subtracting 0010 and
0100 with starting squares x; ; and x; ;11 respectively. O

Theorem 8.3 basically tells us that {(I') = 0 is a criterion for a region I' to have
a signed tiling in each of those cases. Before we can conclude, we need the following
technical result.

Lemma 8.4. 1) Let n = 5, T' = An. Then {(T') = e if and only if N = 0,4
(mod 5).

2) Let n=>5, T =[a x b]. Then ¢(I') = e if and only if 5la - b.

3) Let n =4, T = [a x b]. Then ¢(T') = e if and only if 4|a or 4/b.
Proof. Parts 1) and 2) follow immediately from the area being divisible by 5 and
existence of tilings by T5 in all these cases (see the proof of Theorem 7.4).

Part 3) is analogous except for the case when a,b = 2 (mod 4). In this case a
simple direct computation of zeta shows that ¢ # e. O

Corollary 8.5. 1) Let n =5, and let T be any of the sets of tiles shown in Figures
0.5, 0.6 and 7.9. Then AN has a signed tiling by T if and only if N = 0,4 (mod 5).
2) Let n =5, and let T be any of the sets of tiles shown in Figures 0.5, 0.6 and
7.9. Then [a x b] has a signed tiling by T if and only if 5|a - b.
3) Let n =4, and let T be the set of tiles shown in Figure 7.1. Then [a x b] has
a signed tiling by T if and only if 4|a or 4|b.
Proof. This follows immediately from Lemma 8.4 and Theorems 8.3 and 8.1. O

Corollary 8.6. None of Theorems 0.1 — 0.3 can be proved by the coloring argu-
ments.

9. EXTENDED COLORING ARGUMENTS AND TILE INVARIANTS
Recall the definition of a coloring group:
O(T) = &/3,

where & is a free abelian group generated by elements x;; that correspond to
squares of a square grid, and let 7 C & be a subgroup generated by sums z;, ;, +

Ziy 4, + ... that correspond to translations of tiles.
By analogy, define an extended coloring group as follows:
o(T) =8/7,

where 7' C & is a subgroup generated by relations
Tiy g1t Tig,jo 0 = Tpygr T Tpoyge T -0,

where the tiles 71 = [, (ix,jx), 72 = [, (Pr,qr) are translations of the same tile
7 € T. Of course, O(T) C O(T).

By definition, every extended coloring argument for a set of tiles T corresponds
to an element of the extended coloring group O(T). In other words, there is a
map v : O(T) — G(T). Since v is homomorphic, the image E(T) = v(O(T)) is a
subgroup in the tile counting group G(T). Call this image E(T) C G(T) a torsion
group.
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FIGURE 9.1.

Theorem 9.1. E(T) ~ O(T)/O(T).
Proof. By definition, O(T) is the kernel of v. This implies the result. O

Now we can show that in the case of ribbon tiles most of the invariants cannot be
derived by the extended coloring arguments. We shall give a complete description of
the torsion group E(T,,) and compare it with the previously computed tile counting
group G(T,) D E(T,,).

Definition 9.2. Let T,, be a set of ribbon tiles. A map fy : T,, — Z,, defined as

n—1
fv(er, .y en_1) = Z -€; (mod n)
i=1

is called the shade invariant.

An easy geometric interpretation of fy is given in Figure 9.1. Imagine there is
a wall behind our ribbon tile 7, and the light is coming from the southeast. Then
fv(7) is equal to the shaded area modulo n.

First, observe that fy is a tile invariant. Indeed, if n is odd we have

fv=f+2fa+--+mfn (modn),

where f; is the i-convexity invariant and n = 2m + 1. Analogously, if n is even we
have

fo=fit2fot A (m=1) fmr + fol

Z

(mod n),

where n = 2m and g = f.|** mod n is a parity invariant lifted to Zso ,:

glet,...,en—1) =mey  (mod 2m).

This gives fy € G(T). Let us show that fy € E(T), i.e. that the shade invariant
can be obtained by the extended coloring argument. Indeed, consider a coloring
map f: R — Z, defined by f(i,7) =4 mod n. It is easy to see that v(f) = fy and
therefore fy € E(T,). Analogously, the area invariant fo = v(g) € E(T),), where
g : R — Z is a coloring map defined by

o 1,i—j5=0 mod n,
1.5) = {0, i—j#0 modn.
We claim that except for fy and fy and their linear combinations, no other non-
trivial invariant can be obtained by the extended coloring argument.
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Theorem 9.3. Let T,, be a set of ribbon tiles, fy the area invariant and fy the
shade invariant. Then E(T,,) ~ Z X Z,,, and the maps fo, fy form an independent
basis of invariants.

Proof. We already showed that fo, fy € E(T,). Since they are independent, to-
gether they generate Z x Z,.

In the other direction, recall the computation of the coloring group O(T,,) ~
7"~ given in Theorem 8.2. Let us compute Q(T,,). By Theorem 9.1 this is all we
need to find E(T).

Denote 7o =00 ... 0,77 =11 ... 1 and 72 =10 ... 0. Let us find all coloring
maps f: R — & (see the proof of Theorem 8.1), f(¢,j) = x; ; such that the sums
of squares in translations of 79_2 are constant. Note here that a priori v(f) does
not have to be a tile invariant, since we do not check the relations for other ribbon
tiles.

We claim that f is determined by values 1,1, 1,2, ..., Z1,, and x21. Indeed,
translations of 7o and 7 give us ; ; = Titn,j = T j4n. NOW, given & j, ... 2; j4n—2
and the value f(72) =x11 + -+ 1 n—1 + 221, We get

Tipry = f(T2) =@ij = = Tijin-2.
Therefore, given x1 1, ..., 21,5, and x2;, we first determine z; ;, for all j € Z, then

Z3,j, then x3 ;, etc. For the negative rows use x; ; = ®;4n,;. This proves the claim.
Now, by taking a quotient O(T,)/O(T,) we can make all values 1,1, T1,2,
.y T1,n—1 zero (see the proof of Theorem 8.2). Let x1, = a, z21 = a+ 2. The

computations above give us ;41 = a+17 2z and n z = 0. Therefore f = a- fo+2- fy,

and fo, fy generate the whole torsion group E(T,). O

As a corollary, from Theorem 9.3 we immediately get Theorem 1.8. As we noted
in the introduction, another way to prove Theorem 1.8 would be to find a tileable
region I' € Ry, \ Rye, n > 3, such that fo is not constant on the set S(I', T,,) of
ribbon tilings. When n = 3 one such example is shown in Figure 9.2. The value of
fe is 1 on the first tiling and 0 on the second tiling. Note also that such a region
I’ probably must have at least one hole inside (see Conjecture 10.1 in the next
section).

FIGURE 9.2.

10. CONCLUSION

Let us summarize the results in the paper and compare them with open ques-
tions.

The main result of the paper is a description of the tile counting group for a set
of ribbon tiles. Note, however that we only considered row convex or column convex
regions (which probably include all the interesting ones). However, Conway and
Lagarias in [CL| were able to prove that for n = 3 the map f; is an invariant for all
simply connected regions. Recently Muchnik and the author in [MP] used a similar
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technique to show that for n = 4 the maps f; and f. are invariants for all simply
connected regions. All the available evidence points to the following conjecture

Conjecture 10.1. The i-converity and parity maps are the group invariants for
all simply connected regions.

The major point of our proof is Theorem 1.6, which claims that there is a finite
set of moves which can change any tiling of a given Young shape region to any
other tiling. This result has been generalized by the author for any skew shape (see
[Pal). In fact we believe in the following conjecture.

Conjecture 10.2. Let I' be any simply connected region tileable by T,,. Then the
graph ©,(T") is connected.

In other words, we claim that the moves defined in section 3 suffice. Of course,
the results of section 4 imply that Conjecture 10.1 follows from Conjecture 10.2.

Let us move now to other sets of tiles. Unfortunately it is not always true that
there exist a finite number of moves (or local replacement rules as they are also
called). For example, let T D T3 be the set of all trominoes (see [G] and Figure
10.1). There are infinitely many regions with exactly two tilings that are not local
in any sense (see Figure 10.2). Even though there are no finite number of local
moves, there still can be some invariants other than the area. Here is an example.

Let T be the set of four trominoes 7y, ..., 74 in Figure 10.1. Let B = Rt be

the set of all T-tileable regions. Define maps fi,2, f2,3 : T — Z3 as follows:
fr2(m) = fi2(m2) =1, f1,2(m3) = f1,2(1a) = 0,

J2,3(12) = fa3(13) = 1, J2,3(11) = f2,3(14) = 0.

Theorem 10.3. Let T and B = Rt be as above, and let fo be an area invariant.
Then tile counting group

G(T,B) ~7Z x 73
and the maps fo, f1,2, f2,3 form an independent basis of invariants.
Theorem 10.3 basically claims that there is one nontrivial tile invariant f o,
which can be stated as follows:
e For any convex region I' the number of times modulo 3 the tiles 7 and m
occur in a tiling of I depends only on I

Theorem 10.3 also claims that rotations of f; 2 and the area invariant generate
the whole tile invariant group.

P 5 d R

T, T, T,

FIGURE 10.1.

*Conjecture 10.1 was recently established by C. Moore and the author (July 2000).
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—
FIGURE 10.2.
FiGURE 10.3.

Proof of Theorem 10.3. The idea is similar to the one used in section 6. By defini-
tion G(T; B) = ZT /I, where I is the linear span or relations obtained from different
tilings of the same region. Thus having enough relations that generate I’ C I will
imply that G(T;B) C ZT/I’. In this particular case two types of relations will
suffice.

First, there is a relation obtained from the two tilings of [2 x 3] (see Figure 10.3):

T+ T3 =T+ T4
Then there is another relation which comes from the two tilings in Figure 10.4:
4-74y+17=4-173+T1].

In combination with the first relation and rotations, this gives 3-7 = --- = 3 - 74.
Simple further computations show that the maps fo, fi,2, f2,3 are independent and
generate the whole tile counting group G(T, Rr). Therefore we have G(T,Rt) C
Zx73.

Now it remains to prove that f; o is indeed an invariant. This in turn would
imply that f; o is an invariant, and prove the theorem. This can be done by the
tile extended coloring argument.

Let g : R — Z3 be a coloring map defined by g(i,5) = j — 4 (mod 3). Observe
that g € O(T). Compute the corresponding tile invariant f = v(g) : Rt — Zs. We
have

f(m)=f(m3) =0, f(re) =—-1, f(r2) =1 mod 3.
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L uy

~
Ryl

FIGURE 10.4.

FIGURE 10.5.

By the symmetry, we also have another tile invariant f’: Rt — Z3, given by

() = f'(ra) =0,f () =—-1, f'(r3) =1 mod 3.
From this we get

fie=f+[f —fo mod3.
Therefore both f; 2 and f3 3 are T-invariants. This finishes the proof. O

Note that in the proof of Theorem 10.3 we used nothing but coloring arguments.
Of course, with a smaller set of tileable regions, when the tile counting group
becomes bigger, this would be impossible. That was the case with ribbon tiles.
Indeed, in section 9 we showed that the height invariant cannot be extended to
the set of all tileable regions, so the tile counting group G(T,,, Rt,) C G(Tx, Brc).
Thus finding the tile counting group is probably hard in general unless all invariants
follow from the extended coloring arguments.

Even in the case of all T-tileable regions it is still possible to have invariants
which do not follow from any extended coloring arguments. Indeed, consider the
set T of two tiles shown in Figure 10.5. It is easy to see that any region either is
untileable or has a unique tiling. On the other hand, extended coloring arguments
can prove only the area invariant. Note that in this case every region has a signed
tiling.

We believe that having E(T) ~ G(T,Rr), is a rather rare event. However it
might occur for certain nice sets of tiles such as finite sets of rectangles. Without
making a precise conjecture, let us state the following problem.

Problem 10.4. Let T be a finite set of rectangles, and let B be the set of convex
regions tileable by T. Find tile invariant group G(T;B) and the torsion group
E(T).
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For example, let T consist of two rectangles [2 x 1] and [1 x 3]. It is not hard to
see that G(T; B) ~ E(T) ~ Z x Zs. There is some recent literature relevant to the
problem (see [K¢] for details).

In this paper we always considered tiles to be identical if they can be obtained
by translation. Following some recent literature (see e.g. [Pr]), one can try to
distinguish between ribbon tiles with different starting points. It seems to us that
at least theoretically the whole analysis of the paper can be generalized for this case,
though some computations may become complicated. We challenge the reader to
find tileability applications of these generalizations.

Our proof of the main theorem was based on an ad hoc method which probably
cannot be generalized in full for other sets of tiles. The heart of the proof is the
rim hook bijection. There are shifted, tree, and skew analogs of this bijection (see
[F'S] and [Pa]), but they all can be reduced to the original bijection in one way or
another.

Problem 10.5. Find a three-dimensional analog of the rim hook bijection.

Of course, there are infinitely many open questions and problems, but the reader
is probably too tired already to be bothered by whatever is left.
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JloKazaTesbCTBO COCTOUT U3 HECKOJIbKHX yacTel. CriepBa Mbl HCCJIELyeM MTPO-
M3BOJIbHbIE 3AMOLLEHHUSI TPSIMOYTOJIbHUKA TETPOMUHO, 3aTeM CBeJIeM 3aj1auy 3a-
MoOlLleHHSI (MPSIMOYTOJIbHUKA ) K IBOMCTBEHHOM 3a1aue (six-vertex model). 1, na-
KOHell, BOCMoJ1b30BaBLINCh TeopeMoli [ Eloranta] o iokanbHbIX X01aX B six-vertex
model, nosiyunum Tpedyemblii pe3yJibTar.

st yno6eBa Mbl 6y1eM HCTOJb30BaTh CJeIyIolHe Ha3BaHUs Uil HAanpaB-
JIeHUH: cesep (Bepx), roe (HU3), 3anad (J1eBo), B0cmok (NpaBo).

PaceMoTpuM MPOU3BOJIbHBIF MPSIMOYTOJIbHUK 41 X 4m U ero Npou3BoJbHOE
3amolleHue. [IpoBeneM B HeM JAMAroHa/u ¢ 1aroM B 4 KJIETKH (CM. PUCYHOK).
Takum 06pazom Mbl pazaeu/u NPsSIMOYroJIbHUK Ha KBAAPAThl (HAKJIOHEHHbIE Ha
45°). J1nst KpaTKOCTH OyieM Ha3bIBbITb CTOPOHbBI 9THUX KBAJAPAaTOB — pebpaMHu.
CkaxeMm, 4to peO6po peryJsipHo (B JaHHOM 3aMOILLEHHH ), €CJIM OHO TIepeceKaeT
POBHO OJIHO TeTPOMHUHO. Ha caenytoniem pucyHke HapucoBaHbl 4 peryJisipHbIX
pebpa (KpacHbIM 1IBeTOM 0003HaUeHbl pebpa, TeMHO-KpacHbIM — pebpa, nepe-
cekarole TeTpoMuHo). HazoBem 3amollieHue peryJisipHbIM, ecjid Bce pebpa B
TOM 3aMOLIEHUN peryJsipHbl. Mbl XOTUM J10Ka3aTh, UTO BCE 3aMOLIEHUS pery-
JISIPHBI.

Cesep

Or



3anymepyem pebpa, HauMHasi ¢ CeBepO-3anaj Horo (BepXHero JeBoro) yria, 1B1-
rasichb C I0ro-3amnajia Ha CeBepo-BOCTOK:

Jlemma 1. [lycts P 3amouleHue, B KOTOPOM MepBble 1 pebep peryJisipHbl,
torja (n + 1)-oe peGpo TakKe peryJsipHo.

JlokazareabcTBo. Pacemorpum (n + 1)-oe pe6po B 3amoliiennn P 1 noka-
JKeM, UTO OHO peryJisipHo. J1Jisi 5TOro npeirnonoxKum npotusHoe: (n+1)-oe pe6po
He peryJisipHo, T.e. uepe3 JBe KJIeTKH pebpa MpOXoAsIT pasjiMuHble TETPOMUHO.

D10 peOPO MOXKET ObITh «BEPTHKAJNbHBIM» — HJITH C CEBepPO-3araja Ha 1oro-
BOCTOK HJIM «<TOPU30HTAJIbHBIM» HJITH C l0r0-3arajia Ha ceBepo BOocToK. Mbl pac-
CMOTPHUM 3TH JIBA CJIyuast OTAEJbHO.

BeptukaabHoe pe6po
Ha caienytonmx pucyHkax TeMHO-KPaCHBIMU XKUPHBIMH JIMHUSIMH BblJIe/I€HbI TTE€P-
Bble N pebep (Mpo 3TH pebpa HaM H3BECTHO, UTO OHU PeryJsipHble), (n + 1)-oe
pe6po MoKpalleHo B CUHUE U 2KeJIThle LIBeTa.

PaccMoTpuM TeTpOMHUHO, TPOXOJIsiliiee Yepe3d CUHIOI0 KJETKY (CM. pUcyHOK ). OHO



He repeceKaeT peryJisipHble pebpa 1 He TIPOXOJIUT Uepe3 XKeJNTYI0 KIETKY (BTOPYIO
KJIETKy pe6pa). 3HauuT, BOOOIIe FTOBOPSI, BO3MOKHbBI CJIEIyIOIIHE BAPHAHTDI:
BAPUAHT V1:

[ NN

r

B 3Tom ciyuae 3esieHyto KJIeTKy He MOXKET COJepKaTh HU OJiHA (hUrypa TETPO-
MHHO (BaxKHO, UTO Ha I0ro-3amnaje oT 3TOH KJETKU peryJsipHoe pebpo, KoTopoe
COJIEPKUT KJIETKH OJIHOTO U TOTO K€ TETPOMHUHO ).

BAPHUAHT V2:

i

Ecisi1 TeTpOMHHO pacroioxKeHo, KaK Ha PUCYHKE Bbllle, TOCMOTPUM KaKHe TeT-
POMMHO MPOXOAAT Uepes KJIeTKH, TOMeUeHHble KpecTHKaMu. EMHcTBeHHast BO3-
MO2KHOCTb (yUHUTBIBAsl TO, UTO PeryJsipHbie (2KUpPHbIE) pe6pa TETPOMUHO MOXKET
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nepecekaTb TOJBKO MO JIBYM KJ€TKaM) — 3TO TeTPOMHHO, HAPUCOBAHHbIE TO-
JyObIM M 3eJiIeHbIM 1BeTOM. Ho 3esieHoe TeTPOMHMHO CTOMT TOUHO TaK Ke, KaK
¥ CHHee TI03TOMY, pacCMaTpHUBasi TETPOMHHO HA CEBEPO-BOCTOKE, Mbl [10JIyUaeM
MOCJ/IeI0BATENLHOCTD FOJIyObIX U 3esleHbIX TeTpoMHuHO. O1HaKO 3Ta MocJ/ea10Ba-
TeJILHOCTh JIO/KHA Tlepeceub BEPTHKAIbHYIO WK TOPU3OHTAJBHYIO (BOCTOUHYIO
WJI CEBEPHYIO COOTBETCTBEHHO) CTEHKY MPSMOYTroJbHUKA. 3HAUUT TaKOe 3aMO-
11l€HHEe HEBO3MOXKHO.
[opu3soHTaabHOE pebpo

3ametum, 4To Ji060€e TeTPOMUHO, Mepecekalolilee PO30BbIH KBAApaT (CM. PUCY-
HOK), TepeceKaeT ero 1o ABYM KJeTKaM. [leficTBUTENbHO, eCJi 3TO TETPOMUHO
nepecekaeT OJHO U3 TPeX PeryJsipHbIXx peGep KpacHOro KBajapaTa, TO e€ro JBe
KJIETKH JIeKaT Ha 9TOM peryJsisipHoM peOpe, a ocTajibHble IBE MOJIKHBI J1€2KATh
Mo OJIHY CTOPOHY OT pebpa, T.e. 06e JiexKaT B KpacHOM KBajpaTte. T.K. Bce KJIeTKH
KPacHOTo KBajpaTta MoOKPbIThl KAKUM-HUOY/Ib TETPOMUHO, @ TETPOMUHO, MPOXO0-
Jsile uepes peryJsipHble peGpa, MokpbIBalOT yeTHoe (0 MM 2) 4uciio KJIeToK
KBajpaTa, TO U TETPOMHHO, MPOXOJsilee yuepe3 ueTBepToe pedpo, A0IKHO Mo-
KPbIBaTh YeTHOE UHCJIO KJIETOK (XOTs uepes3 ueTBepToe (HeperyasipHoe) pebpo nu
MPOXOJIAT JIB€ TETPOMUHO, SICHO, UTO JIMIIb OJIHO U3 HUX MOXKET MepeceKaTh po-
30BbIll KBapar).

]

Kak u B ciyuae ¢ BepTHKa/NbHBIM peOpoM, pacCMOTPUM TETPOMHUHO TPOXOJIs-
LLLy10 Uepe3 CHHIOK KJIETKY. BHIHO, UTO ec/i OHO MepecekaeT po30Bblii KBaapar
M0 JIBYM KJI€TKaM, TO OHO COAEPKHUT H 2KEJITYIO KJIeTKY, a 3HaUMT 3T0 pebpo pe-
ryJisipHo. Takum 06pa3om 3TO TETPOMMHO HE MOXKET COJIePKaTh KJETOK PO30BOIO
KBaJpara.



PaccmoTpum ocraBiimecs BapHaHThbl PACMONOKEHHUST STOTO TETPOMHUHO (HX

JBa):
BAPUAHT H1:

]

Ecusin cuHee TETPOMUHO Pacosio:KeHO KaK Ha PUCYHKE, TO Mbl [10JIyuaeM cJiydai
aHasiornunbiil V2. PaccmaTpuBasi TETpPOMHHO MPOXOJSILIKE uepe3 KAeTKH, 060-
3HAUCHHbIC erCTI/IKaMH, Mbl BUIUM, UTO HpOLLO.H)KeHI/Ie 3aMOUIEHHUA Ha CeBepo—
BOCTOK oIpeae/saeTcsd ogHa3HauHO (KaK Ha pI/ICYHKe). OlIHaKO TakKoe MMpoaoJIzKe-
HHUE JO0JI2KHO Iepeceyb CEBEPHYIO UJIKM BOCTOUHYIO I'paHHULLY.

BAPUAHT H2:

[ [ NN

Ecsin TeTpoMiHO pacnoJfioxkeHo, Kak Ha 3TOM PUCYHKe, TO Mbl c/leslaeM H306pa-
JKEHHYIO 371eCh 3aMeny (xom) u npuiiaem K caydato H1. (T.e. Mbl ud3mMmeHum Hauie
3amollleHre U 1o nmyHKTy H1 yBuamum, uTo 0HO HEBO3MOKHO).
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Takum 06pa3om, Mbl mokasaJiu, uto (n + 1)-oe peGpo peryJsipHoe.

Yoo

[Ipumensist iemmy 1, N0 MHAYKIMH, Mbl 10Jy4aeM:

Teopema 1. Jlio6oe 3amoliieHHe NPSIMOYToJIbHUKA 41 X 4m urypamu TeT-
POMMHO — PEryJisipHO.

3amMeuaHue: U3 3TOH TeopeMbl Jierko caeayet Teopema [ Walkup], uto dury-
pamu TETPOMHHO MOXKHO 3aMOCTHTb TOJIbKO MPSIMOYTOJIbHUKH BUAa 4n X 4m.
JlelAcTBUTENLHO, PE/NOI0KUM, UTO MPSIMOYTOJbHUK Kk X [ (k M [ He neauTest
Ha 4) MO’KHO 3aMOCTHTb TeTpoMUHO. [ToBTOPSISI 3TO 3aMolleHHe HECKOJIBKO pas,
Mbl MOYKEM 3aMOMCTHUTb MPSAYyrosbHUK 4k X 4[. K 3ToMy 3amolleHHI0 Mbl yKe
MOxKeM NpUMeHUTb Teopemy 1. T.e. 370 3amoleHue peryJsipHo. Tenepb ecyiu Mbl
paccMOTPUM M3HAUaJbHOE 3aMOLLEHHE, OHO OYJIeT TaK Ke peryJ/sipHo, HO M3-3a
«TpaHUu4HOr0» 3(PdeKTa 3T0 HEBO3IMOKHO — B CEBEPO-BOCTOUHOM YIJ1y peGpom
Oynet oTpedaHa 06J1aCcTb, KOTOPYIO HEBO3MOXKHO 3aMOCTHTb.

Tenepb MOCMOTPUM KaK MOKPLIBAIOTCS KBaJApaThl, OTPaHHUEHHbIE peOpamH.
Kak Mbl y2ke 3HaeM, Kaxka1oMy peOpy KBaaparta COOTBETCTBYeT OJHO TeTPOMHHO.
OHO MOXKeT Jie2KkaTh B OJIHOM U3 IBYX CMEXKHBIX KBapaToB. Mbl Gy/1eM TOBOPHUTb,
UTO OHO HAMpaBJIEHO U3 KBAJlpaTa, He CojlepaKallero 1o TeTPOMHUHO, B KBaJpar,
ero cojepxkauldi. Takum 06pa3oM KaxkJ0My 3aMOIILEHHIO COOTBETCTBYET pac-
CTaHOBKa CTPEJIOK Ha peOpax «IBOUCTBEHHOH» pelleTKH (OHa Ha pUCYHKe HapHu-
COBaHa CepbIM LIBETOM ) C BEpILIMHAMHU B LIeHTpaxX KBaapaToB. [Ipuuem B Kaxyto
BEpPLLUMHY HANPaBJIEHO POBHO JIBE CTPEJIKH.

Hao6oport, Jierko BUAETb, UTO KaxKJ10H pacCTaHOBKE CTPEJOK (MPH KOTOPOH
B KaK/1yl0 BEPLIMHY JIBOHCTBEHHOH pELIETKH CMOTPST POBHO JIBE CTPEJIKH) CO-
OTBETCTBYET KaKOe-TO 3aMOLLEHHE TETPOMUHO. DTO J10CTATOYHO [IPOBEPUTD J10-
KaJIbHO: HY?>KHO 0Ka3aTb, UTO JII0OOH KOMOWHALMH BXOJASLLMX CTPEJIOK B LIEHTP
KBaJlpaTa COOTBETCTBYET KaKoe-TO 3aMollleHhe caMmoro Keajapata. [Ipuuem Bce-
0 Pa3JIMUHbIX BAPHAHTOB BXOXK/JIEHHUS CTPEJIOK JIBA (C TOUHOCTBIO /10 BPALLEHHUS ):
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1. Cocennue CTpesKl CMOTPST BO BHYTPb!

2. lnameTpasibHO MPOTHUBOIOJIOKEHHBIE CTPEJIKH CMOTPSIT BO BHYTPb. DTOMY
BAPUAHTY COOTBETCTBYIOT JIBA 3aMOLLIEHHsI (KOTOPbIE MepeBOJISITCS JAPYT B
npyra npeoobpaszoBanusimu M1A u M1B):

LT
[N\

LT
[N\

2a 2b

UTo6bl 3a/1aua pacTaHOBKH CTPEJIOK CTaJsla SKBUBAJEHTHOH 3ajaue 3aMollile-
HHU$1 PUTYpaMHU TETPOMHHO, OTOXKJIECTBUM 3aMOLLEHUST OTJIMUAIOLLMECS TOJbKO Ha
npeo6pazoanusi M1A u M1B. Takum o6pazom o6pa3om Mbl CBeJM 3aauy 3a-
MOILLIEHHUS K CJIeIyIOLIIeH 3a1aue:

3anaua «Six-vertex model». [lana peietka, Ha ee peGpax Hy»KHO pacTa-
BUTb CTPEJIKH TaK, YTOOBI B KAXKJIyt0 BEPIIHHY BXOJHUJIO POBHO JIBE.

JloKaxkeM CJIelyIolIyto TEOPEMY.

Teopema 2 |Eloranta]. [1yctb nana peuierka B oJiHoCBsI3HOM obsacTh. To-
raa Jo0ylo pacCTaHOBKY CTPEJOK MOXKHO MepeBecTH B J0OYI0 APYrylo ¢ Mo-
MOLLbIO MOCJIE0BATEIbHOCTH JIOKAJIbHBIX X0/10B, 00pallatoluX CTPeJIKH LHKJ/Ia
BOKPYT OJIHOM KJIETKH.




Jloka3atebcTBO. BBeneM (yHKIHMIO BBICOTHI h(z) Ha KJETKAaX pelleTKH.
[Tpu nepexoie oT 01HO# KJIETKH K IPYroi h Gy/ieT yBeJMUNBaTLCS Ha 1, €CJii Mbl
repeceKkaeM CTPEJIKY HIIyLLYIO CJleBa HalpaBo (OTHOCUTEIbHO X0/1a HAlllero JIBU-
KEHHUsT), ¥ YMEHbIIATbCsl HA 1 B IPOTHBHOM cJjiyuae. Dta (yHKLHs orpejeseHa
KOPPEKTHO, T.K. €CJIM Mbl ITPOI/IEM 0 3aMKHYTOMY LIUKJY UMCJIO CTPEJIOK, BBIXO-
JSLIMX U3 1IMKJIA, OyIeT PaBHO UUC/Y CTPEJIOK, BXOAAIIMX B LUK (3TO CJeiyeT
M3 TOTO, UTO B KAXK/lyl0 BEPILIMHY BXOAUT POBHO JIBE CTPEJIKH U BBIXOJHUT CTOJBKO
Ke, 3HAUUT BEPEH 3aKOH COXPaHEHMs: B KaXK/blH IIMKJI «BTEKAET» CTOJIBKO 2Ke
CTPEJIOK CKOJIbKO U «BbITeKaeT» ). Ha rpanuiie nosoxxum h(z) pashoii 0.

PaccmoTtpum Mpou3BosIbHYIO pacCTaHoOBKY cTpesiok. [IpuBenem ee nokalb-
HBIMH XOJIaMH K OJIHOMY M3 JIOKAJIbHbIX MUHUMYMOB (0/IHa pacCTaHOBKA CTPEJIOK
MeHblIIIe UJIH paBHA APYroi, ecyiu (PyHKIUS BbICOTHI EPBOI MeHbIlIE WM paBHA
(yHKLMK BBICOTBI BTOPO# B KaxKj10il KjeTke). [TokaxkeM, uTo (yHKIIMS BHICOThI
TOJTy4eHOH pacKpacKH He COJIEPIKHUT JIOKaIbHBIX MAKCUMYMOB. [leiicTBUTEBHO,
€CJIM KJIeTKa KJIeTKa s — JIOKaJIbHbIH MaKCUMYyM, TO ee JI0JKeH Oblal 6bl 06X0-
JIUTb LMKJ (T.K. BO BceX HamnpaBieHusix h(zx) yObiBaeT), o6paTuB HanpapjeHue
3TOTO LMKJIA Mbl YyMEHbILIMM 3HaueHue h(s) Ha 2 U He U3MEHUM 3HAUeHHs B JIpy-
rux Toukax. Mrak, Ha rpanuue h(x) paBua 0, a BHyTpH o6JacTu h(z) He HMeeT
JIOKAJIbHBIX MAaKCUMYMOB, 3HAUUT BHYTpH h(z) cTporo orpuuatesbHa. OTcrosa,
CJIEJIyeT, YTO Ha TPaHHLLe BCe CTPeJIKK 0OpallleHbl 10 4acoBoi cTpesike. AHaJo-
TMUHO, BHYTPH CTPEJIKH TaKxkKe 00pasyloT KOHIIEHTPHUECKHE LIMKJbL. TaknM 06-
PO30M MbI MTOKa3aJIi, UTO BCE PACCTAHOBKH CTPEJIOK, SIBJSIOLIHECS JOKATbHBIMHU
MHUHHMYMaMH, OJIHHAKOBbIE.

Yora.

Tenepnb nepeiiieM oT ABOACTBEHHOI MOJIENIH K MOJIEJIH 3aMOLLIEHHS (UTYypaMK
TETPOMHHO. J1erko BUIETb, UTO 0OPALIEHHIO LMK/ COOTBETCTBYET CJIEIYIOIIHE
JIOKAJILHBIN XOJI;

M2

Takum O6p830M 9TOT XOZ U IBa X044, 10 KOTOPbIM Mbl OTO2KACCTBUJIN 3aMOILe-
HUA:



-

006pasyloT CUCTEMY JIOKaJIbHBIX XOJI0B /15l 3aMOLLEHHs MPSIMOYTOJIbHUKA (DUTY-
paMu TeTPOMHHO.
Wrak, runoresa [1aka nokazana B 4aCTHOM cJjiyuae J/1s1 IPSIMOYTOJIbHUKOB.

Cnucok aurepaTtypbl

[Eloranta] Kari Eloranta, Diamond Ice, Jour. of Stat. Phys., 1999

[KP] Michael Korn, Igor Pak, Tilings of rectangles with T-tetrominoes,
http/Avww-math.mit.edw~pak/itet11.pdf

[Pak] Igor Pak, Tile Invariants: New Horizons, 2001

[Walkup] D. W. Walkup, Covering a rectangle with T-tetrominoes, Amer.
Math. Monthly 72 (1965), 886-988
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JlokazarenbcTBO runotesbl [1aka o cucreme
JIOKAJIbHBIX XOJIOB JI/151 3aMOILIEHUH
MPsIMOYTOJIbHUKOB (pUrypamu T-TeTpOMHHO

Koncrantun Makapbiues*
[Opuit Makapbiues'

AHHoOTaUUs

B sroit pa6ote Mbl 1okaxem runotesdy Mrops [1aka o 3amouienusix oa-
HOCBSI3HOI 00JacTH (DUrypamMi TETPOMHHO IS CJlydast 3aMOLIEHHI Tpsi-
mMoyrosibHHKa. [TpoGJiema Oblsia He3aBHCHMO pelleHa B padote Muxaunna
Kopua u Mrops [1aka [KP].

lunoresa Ilaka [Pak]. JlioGoe 3amoienue ogHOCBSA3HON 001aCTH (DUTry-
pamu T-TeTpoOMHHO MOXKHO MEPEBECTH B J1I000€ JIPYroe MoC/e10BaTeIbHOCTHIO
JIOKAJILHBIX XOJI0B CJIE/YIOIIEr0 BUJA:

*IIpuncronckuii Yuusepeurer, kmakarye@cs.princeton.edu
M Ipuncronckuit Yuupepcurer, ymakaryc@ecs.princeton.edu



JIoKa3aTesbCTBO COCTOUT M3 HECKOJIBKHX uacTel. CriepBa Mbl HCCJIEyeM IPO-
HU3BOJILHBIE 3aMOIIICHUSA HpﬂMOyI‘OJII)HI/IKa TeTpOMI/IHO, 34TEM CBEJIEM 34/1a1y 34d-
MOILIEHHUS ( IPSIMOYTOJILHUKA ) K IBOUCTBEHHOH 3a1aue ( six-vertex model). 11, na-
KOHeIL, BOCII0/Ib30BaBIIUCH TeopeMoH [ Eloranta] o jokaabHBIX X0/1aX B Six-vertex
model, noJjryurm TpeGyeMblil pe3y/ibTar.

JLst ynoGeBa Mbl OyJieM MCIIO/Ib30BATh CJEAYIONIME HA3BAHUS JI/Is1 HATIpaB-
JICHUH: cegep (Bepx), toe (Hu3), sanad (J1eBo), 80CMOK (11paBo).

PaccMOTpUM 1IPOU3BOJIBHBIN IIPSIMOYTOJIBHUK 41 X 4m U €ro IPOU3BOJILHOE
3amouienue. [IpoBeaeM B HeM auaroHasu ¢ marom B 4 KJETKH (CM. PUCYHOK).
Takum 06pa3omM Mbl pasaeuIn IPSIMOYTONbLHUK HA KBAJPATH (HAKJIOHEHHbIE HA
45°). Jlns kpaTKOCTH Oyj1eM HAa3bIBHITH CTOPOHBI 9THX KBAJAPATOB — pebpamu.
CkaxeMm, uTo peGpo pPeryspHo (B JAHHOM 3aMOIIEHHH ), €CJH OHO MepeceKaer
POBHO OJIHO TeTpOMHHO. Ha cieayiomem pucyHkKe HAPUCOBAHBI 4 PEryJISIPHBIX
pebpa (KpacHbIM 1IBeTOM 0003HaUeHbl pedpa, TeMHO-KpPAaCHBIM — pebpa, nepe-
cekawolme TerpoMuHo). HaszoBem 3amoliienne peryssipHbIM, ecyii Bee pefpa B
9TOM 3dAMOIICHHUHN PEryJ/ISIPHBL. Mb1 xoTHM JI0OKA3dTh, UTO BCC 3dMOIICHHUS PEry-
JISIPHBI.

Cesep

a s
o

A

IOr



3anymepyem pe6pa, HAUMHAS ¢ CEBEPO-3aI1aIHOTO ( BEPXHET0 JIEBOTO ) YIJIA, JIBU-
rasich C I0ro-3arnaja Ha CeBepo-BOCTOK:

Jlemma 1. Ilycts P 3amoliienue, B KOTOPOM TepBbIe 1 peOep peryJ/asipHbl,
Torja (n + 1)-oe peOpo TaKKe PEryssipHo.

Joka3areabctBo. Pacecmorpum (n + 1)-oe pe6bpo B 3amoriennn P u roka-
JKEM, UTO OHO PeryJisipHo. J1J1st 9TOT0 npe/uio1oKuM npoTuBHoe: (n+1)-oe pebpo
HE PETYJISIPHO, T.€. uepe3 JBe KJIETKU pedpa MPoXo/IsiT Pa3/IHUHbIe TETPOMHHO.

D10 peGpo MOKET ObITH «BEPTHKAJILHBIM» — HJITH C CEBEPO-3aI1ajia Ha I0ro-
BOCTOK MJIH «TOPHU30HTAJILHBIM» MJITH C I0T0-3a11a/1a Ha ceBepo BOCTOK. Mbl pac-
CMOTPHM 9TH JIBA CJIyuast OTAE/bHO.

BepTukanbHoe pe6po
Ha ciietyronux pucyHKax TeMHO-KPACHBIMU XKUPHBIMHU JINHUSIMU BBLJIEJICHBI [TEP-
BBle N pebep (po 3TH peGpa HaM HU3BECTHO, UTO OHHU peryJsipubie), (n + 1)-oe
pebpo MOKPALIEHO B CHHUH U XKeJIThIE 1IBETA.

PaccMoTpuM TETPOMHHO, TIPOXO/ISIIIIEE Uepe3 CHHIOK KJETKY (CM. pucyHOK ). OHO



He repecekaer peryJsipable pedpa u He IPOXO/IUT Uepes XKeJTYIO KIETKY ( BTOpyIo
KJIEeTKy peGpa). 3HauuT, BOOOIIE TOBOPS, BO3MOMKHBI CJIEIYIONIHE BAPHAHTHI:
BAPUAHT V1:

l I

B 3TOM cityuae 3es1eHyI0 KJIETKY HE MOXKET COJIepKaTh HU OJiHA (hUTypa TeTpo-
MHHO (BaXKHO, UTO HA I0TO-3aMajle 0T 3TOH KJIETKH pery/sipHoe pebpo, KoTopoe
COJICPZKHUT KJIETKH OJHOTO U TOI'O K€ TCTpOMl/IHO).

BAPUAHT V2:

Ec/iu TeTpOMHHO pacioioKeHo, KaK Ha PUCYHKE BbIIIIE, [IOCMOTPUM KaKHE TeT-
POMHHO TIPOXOAT Uepes KJAETKH, TOMEUeHHbIE KpeCTUKaMU. EiMHCTBeHHAs BO3-
MO2KHOCTb (yUHTBIBASI TO, UTO PEryJ/sipHBIE (AKUPHBIE) pebGpa TETPOMUHO MOKET

+



MepecekaTh TOJBKO M0 JIBYM K/JIETKAM) — 3TO TETPOMHHO, HAPUCOBAHHBIE TO-
JAyOBIM U 3e/ieHbIM 11BeToM. Ho 3e/1eHoe TeTpOMHHO CTOMT TOUHO TaK Ke, KaK
U CHHEe MOITOMY, PACCMATPHUBAST TETPOMHHO HA CEBEPO-BOCTOKE, MBI MOJyUaeM
MOCJIEI0BATENBLHOCTD TOJIYOBIX U 3€JI€HBIX TeTPOMUHO. OJIHAKO 9T MOCJ/Ie10Ba-
TE/ILHOCTD JI0JKHA Tepeceub BEPTUKAILHYIO HJIH TOPH30HTAILHYIO ( BOCTOUHYIO
WJIH CEBEPHYIO COOTBETCTBEHHO ) CTEHKY IPSIMOYTOJIbHUKA. 3HAUHT TAKOE 3aMO-
IIEHHE HEBO3MOKHO.
l[opusoHTanbHoe pedpo

3amerum, uto J060e TETPOMUHO, MIePECceKaloliee PO30BIH KBAApAT (CM. pUCY-
HOK), TI€PECEKAET €ro 10 JBYM KJIeTKaM. J[efCTBUTE/ILHO, €C/IH 9TO TETPOMUHO
MepPEeCeKaeT OHO M3 TPeX PEry/sipHbix peGep KpacHOTO KBajJpaTa, TO €ro JABe
KJIETKH JIEXKAT HA STOM PEryJ/sipHoM peOpe, a 0CTa/IbHBIE JBE JIOIKHBI JIEKATh
10 OJIHY CTOPOHY OT pebpa, T.€. 00€ JexkKaT B KpacHOM KBajpare. T.K. Bce KJIETKH
KPACHOTO KBaJpaTa MOKPHITHl KAKUM-HHUOY/Ib TETPOMHHO, & TETPOMUHO, TIPOX0-
JSIIIAE uepes3 peryJisipuele pedpa, MoKpuiBaioT uetHoe (O uiam 2) 4ue/io KIeToK
KBaJIpaTa, TO U TETPOMUHO, TPOXOJISIIEe Uepes ueTBepToe pedpo, J0MKHO M0-
KPBIBATH YETHOE UMCJIO KJIETOK (XOTS uepe3 ueTBepToe ( HeperyasipHoe) pedpo u
MPOXOJIAT JIBE TETPOMHHO, SICHO, UTO JIMIIb OJTHO U3 HAX MOXKET MepeceKkaTh po-
30BBIH KBAPAT).

| | 5"

T

Kak u B ciiyuae ¢ BepTHKAJbLHBIM peOpOM, PACCMOTPUM TETPOMMHO IIPOXOJisI-
LLYIO Ue€pe3 CHHIOI0 KJIETKY. BH/IHO, UTO €C/in OHO 1epeceKkaer po30Bbli KBA1paT
0 JIBYM KJIETKAM, TO OHO COJCPKHUT U KEJITYIO KJICTKY, 4 3HAUUT 9TO pebpo pe-
ry/sipHo. Takum 06pa3om 5T0 TETPOMUHO HE MOXKET COAEPKATh KJIETOK PO30BOTO
KBa/para.



PaccMOTpUM OCTaBIIMECS] BAPHAHTHI PACIIOJIOXKEHHST STOTO TETPOMHHO (HX
JIBa):
BAPUAHT H1:

Ecnu cunee TeTpOMUHO PACIIONOKEHO KAK HA PUCYHKE, TO MBI IOJIyuaeM Cayuan
aHajiornuHbii V2. PaccmaTpuBasi TETPOMUHO TIPOXOJISIIIME Uepe3 KIeTKH, 060-
3HAYCHHBIC KPECTUKAMH, MBI BUJHUM, UTO IIPOIOKEHUE 3aMOIIICHHST HA CEBEPO-
BOCTOK OTIPEJIE/ISETCS 0/THA3HAUHO (KaK Ha pucyHKe ). OTHAKO TAKOE POI0JIKe-
HHE JIOJIKHO TIepeceub CeBEPHYIO UM BOCTOUHYIO IPAHUILY.

BAPUAHT H2:

| | L’

T

T

¢yt TeTpOMHHO pacCIiosIoKeHO, KaK HAa 9TOM PUCYHKE, TO MBI ¢/le1aeM H300pa-
JKEHHYIO 3/1eCh 3aMeHy (X0/) U npuiaeM K cayuato H1. (T.e. mbl uamenum name
3aMolleHue U 1o myHkTy H 1 yBuaum, uro oHO HEBO3ZMOKHO ).
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Taxkum 06pazom, Mbl TI0Ka3aJu, uto (n + 1)-oe peGpo pery/sipHoe.

U.t.a.

[Ipumensisi ieMmy |, 110 UHTYKIIMH, MBI TIOJTyYa€eM:

Teopema 1. Jlio6oe 3amolieHne NPsIMOYToJIbHUKA 4n X 4m. (hurypamu ter-
POMHHO — PETYJISIPHO.

3ameuanue: U3 3TOH TeOpeMbl Jierko cieayer Teopema [ Walkup], uro cury-
paMH TETPOMHHO MOXKHO 3aMOCTHUTH TOJILKO IIPSIMOYTOJIbHUKH BUJA 4n X 4m.
JIeHCTBUTE/ILHO, TIPEUTIOI0KHUM, UTO IPSIMOYTOJIbHUK k X [ (k wiu | He penurcs
Ha 4) MO2KHO 3aMOCTUTD TeTpoMUHO. [ToBTOPSISE 9TO 3aMolIIeHEe HECKOIBKO Pas,
Mbl MOKEM 3aMOMCTHTDH NPSYrOJbHUK 4k X 4], K 93TOMy 3aMOIIEHUIO MBI yKe
MOKeM TpuMeHUTDb Teopemy 1. T.e. 910 3amornienue pery/sipno. Teneps ecyin Mbl
pPaCcCMOTPHUM M3HAUYAJIBLHOE 3aMOIIIEHHE, OHO GY/IET TaK XKe PEery/sipHo, HO U3-3a
«IpaHuyHoro» 3(deKTa 9T0 HEBO3ZMOKHO — B CEBEPO-BOCTOUHOM YIJIy peGpoM
OyzeT oTpesana 00J1aCTh, KOTOPYIO HEBO3MOXKHO 3aMOCTHUTD.

Teneps MOCMOTPUM KaK MOKPBIBAIOTCS KBAJIPATHI, OTPAaHHUEHHbIE peGpaMH.
Kak MBI y2Ke 3HaeM, KaxK/J10My pebpy KBajIpata COOTBETCTBYET OJIHO TETPOMHUHO.
OHO MOKET JIEZKATh B OJIHOM U3 JIByX CMEXKHBIX KBAIPAaTOB. MBI Oy/IEM TOBOPHTD,
YTO OHO HAIIPABJICHO U3 KBAJIPATa, HE COJIEPKAIIEr0 9TO TETPOMUHO, B KBAJ1PaT,
ero cojepxanmi. Takum 06pazoM KaxKj0My 3aMOILEHHIO COOTBETCTBYET pac-
CTAHOBKA CTPEJIOK Ha pebpax «JIBOUCTBEHHON» PEIIETKH (OHA HA PUCYHKE HAPU-
COBAHA CEPBIM I[BETOM ) C BEPIIHHAMHE B IIEHTpPaX KBaApartos. | Ipuuem B Kax1yo
BEPIIMHY HAIIPAB/ICHO POBHO JIBE CTPEJIKH.

l Yl 1 L 1 1 1

| T T T

Hao6opor, /1erko BUJETh, UTO KaxK/I0H PACCTAHOBKE CTPEJIOK (IIPU KOTOPOU
B KaXK/Iyl0 BEPIIHHY JIBOUCTBEHHOH PEIIETKH CMOTPSIT POBHO JIBE CTPEJIKH) CO-
OTBETCTBYET KAKOE-TO 3aMOLIEHHE TETPOMUHO. DTO J0CTATOUHO IIPOBEPUTH J10-
KAJIbHO: HY2KHO [10KAa3aTh, UTO JII0OOH KOMOUHAIIMH BXOALIUX CTPEJIOK B LICHTP
KBa/[paTa COOTBETCTBYET KAKOE-TO 3aMOlLIeHre caMoro keajapata. [ Ipuuem Bee-
0 PA3JIMUHBIX BAPHAHTOB BXOXKICHHUS CTPEJIOK JIBA (C TOUHOCTBIO 10 BPAILEHHUS ):
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1. CocejHue CTPESKH CMOTPST BO BHYTPb:

]
L]

2. JluameTpaibHO POTUBOIO/IOKEHHBIE CTPEJIKH CMOTPSIT BO BHYTPb. DTOMY
BAPUAHTY COOTBETCTBYIOT J[BA 3AMOLICHHUS ( KOTOPbIE NIEPEBOATCS JIPYT B
Jpyra npeo6pasoBanusimu M1A u M1B):

N|
%

|
%

2a 2b

YTo0bl 33/1aua paCTAHOBKH CTPEJIOK CTAJIa 9KBUBAJCHTHOH 3a/1aue 3aMollle-
HUs1 PUTYPAMHU TETPOMHHO, OTOXKJICCTBUM 3aMOIIECHUSI OTJIMUAIOIIMECS TOJBKO Ha
npeo6pasoBanuss M 1A u M1B. Takum o6pazom 06pa3om Mbl CBEJIH 331Uy 3a-
MOILIEHHSI K CJIE/YIONIEH 3a1aue:

3anaua «Six-vertex model». /lana penierka, Ha ee pefpax HyKHO pacTa-
BUTb CTPEJIKH TaK, UTOOBI B KAXKJIyI0 BEPIIHHY BXO/HJIO POBHO JIBE.

JloKaxkeM CJIeIyIolLyIo TEOPEMY.

Teopema 2 |Eloranta]. [lycTs nana pemerka B oiHOCBsI3HOH 06acti. To-
rj1a Jo0YI0 PACCTAHOBKY CTPEJIOK MOXKHO NEPEBECTH B JIOOYIO JPYIYIO ¢ MO-
MOIIIBIO TTOC/IEOBATEILHOCTH JOKAIBHBIX X0/I0B, 00 PATIAIONIHX CTPEJIKH [IHK/IA
BOKPYT OJIHOH KJICTKH.




JlokasaTenbcTBO. BBejsieM (yHKIMIO BHICOTHI h(x) HA KJIETKAX pEIIeTKH.
[Ipu nepexoie 0T 0JHOH KJAETKH K JIPYrou h Oy/IeT yBEJIUUUBATLCS HA 1, €CJIH MBI
NepeceKaeM CTPEJIKY Mo CJIeBa HATIPABO (OTHOCUTE/BLHO X0/1a HAIIIETO JIBU-
JKEHHS1), U YMEHbILIATHCSI HA | B IPOTUBHOM CJiyuae. JTa (QyHKIHMS onpejieieHa
KOPPEKTHO, T.K. €C/IH MBI IIPOHJIEM 110 3aMKHYTOMY LIUKJ/IY UHC/IO CTPEJIOK, BBIXO-
JUILIUX U3 LIHK/A, OYJIeT PABHO UMCJY CTPEJIOK, BXOASAIIUX B LUKJI (9TO CJIELyET
13 TOT0, UTO B KAKJ1yl0 BEPIIMHY BXO/HUT POBHO JIBE CTPEJIKU U BBIXOAUT CTOJLKO
K€, 3HAUUT BEPEH 3aKOH COXPAHEHUSI: B KAXKJIbIH LUK/ «BTEKAET» CTOJbKO KE
CTPEJIOK CKOJBKO ¥ «BHITeKaer» ). Ha rpanuiie nosoxum A(x) pasroi 0.

PacemoTpuM npousBO/IbHYIO PACCTAHOBKY CTpeaoK. IIpuBenem ee nokasb-
HBIMH XO/IAMH K OJTHOMY M3 JIOKAJIbHBIX MUHUMYMOB (O/IHA PACCTAHOBKA CTPEJIOK
MEHbIIIE WX PABHA JIPYTOH, €C/IH (PYHKIHMS BBICOTHI IEPBOH MEHbIIE WK paBHA
(bYHKIIMH BBICOTBI BTOPOH B KaxKJI0H KjeTke). [TokaxeM, uTo (yHKIIHS BBICOTHI
MOJIy4€HOH PACKPACKH HE COJICPKHT JIOKAJIbHBIX MAKCUMYMOB. JIeHCTBUTENBHO,
€CJIM KJIETKA KJIETKA § — JIOKAJIbHBIM MAKCUMYM, TO €€ JIOJKEH Obl1 Obl 00X0-
JUTDH UK (T.K. BO BCEX HAnpasJieHusix h(x) yObiBaer), 0OpaTHB HAIPABJCHHE
9TOTO 1UKJIA Mbl YMEHbIIIUM 3HaueHHE h(S) HA 2 ¥ HE U3MEHUM 3HAUCHUSI B JIPY-
rux Toukax. Mrak, na rpanuue A(x) pasua 0, a BuyTpu o6Jactu h(x) He umeer
JIOKAJIbHBIX MAKCUMYMOB, 3HAUUT BHYTpU h(x) cTporo orpunaresnbia. Orcioa,
CJIEJlyeT, UTO Ha TPAHHLIE BCE CTPEJIKH 0OpAILEHBI 110 YaCOBOH CTpesike. AHai0-
THUHO, BHYTPH CTPE/JIKH TaKkKe 00pa3yloT KOHIEHTPHUECKHE IIUK/bL. TakuM 00-
PO30M MBI II0KA34J4, UTO BCE PACCTAHOBKHU CTPEJIOK, SABJISIOLIMECS JOKAIbHBIMU
MHHHMYMaMH, O/IMHAKOBBIE.

Yo,

Teneps nepeiieM oT IBOHCTBEHHON MOJICIH K MOJIEJIH 3aMOIIIEHHST (PUTYPAMH
TETPOMHUHO. JIerKo BHAETH, UTO 0OPAIIEHHIO 1IMKJIA COOTBETCTBYET CJIEIYIONINH
JIOKAJIbHBIH XOJL:

Takum 06p830M 9TOT XOJ( U JIBd XOJid, 110 KOTOPBLIM Mbl OTO2KJICCTBUJHN 3dMOIIC-
HUsA:



S, g

00pasyioT CUCTEMY JIOKAJLHBIX XOJIOB YISl 3AMOIIEHHS TIPSIMOYTOJIbHUKA (hUTy-
pamHu TeTPOMHUHO.
Hrak, runoresa [laka jokaszana B 4aCTHOM cJjydae jjist IPsIMOYTOJIbHUKOB.
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When can a given finite region consisting of cells in a regular lattice (triangular,
square, or hexagonal) in R? be perfectly tiled by tiles drawn from a finite set of tile
shapes ? This paper gives necessary conditions for the existence of such tilings using
boundary invariants, which are combinatorial group-theoretic invariants associated
to the boundaries of the tile shapes and the regions to be tiled. Boundary invariants
are used to solve problems concerning the tiling of triangular-shaped regions of
hexagons in the hexagonal lattice with certain tiles consisting of three hexagons.
Boundary invariants give stronger conditions for nonexistence of tilings than those
obtainable by weighting or coloring arguments. This is shown by considering
whether or not a region has a signed tiling, which is a placement of tiles assigned
weights 1 or —1, such that all cells in the region are covered with total weight 1
and all cells outside with total weight 0. Any coloring (or weighting) argument that
proves nonexistence of a tiling of a region also proves nonexistence of any signed
tiling of the region as well. A partial converse holds: if a simply connected region
has no signed tiling by simply connected tiles, then there is a generalized coloring
argument proving that no signed tiling exists. There exist regions possessing a
signed tiling which can be shown to have no perfect tiling using boundary
invariants. € 1990 Academic Press, Inc.

1. INTRODUCTION

Packing, covering, and tiling problems are among the most basic com-
binatorial problems. Here we consider problems concerning the possibility
or impossibility of tiling finite regions of a regular lattice tiling of R? by
translations of a finite set of (lattice) tiles.
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184 CONWAY AND LAGARIAS

There are three regular lattice tilings of R? which are the triangular lat-
tice, square lattice, and hexagonal lattice, pictured in Fig. 1.1. Each of these
tilings divides R? into cells, and any cell can be obtained from any other
cell by a translation. A lattice figure or region, is a finite union of (closed)
cells that is connected. Lattice figures for the three types of lattices are
called polyiamonds, polyominoes, and polyhexes, respectively. Two lattice
figures are equivalent if one can be obtained from the other by a transla-
tion. They are congruent if one can be obtained from the other by a
Euclidean motion, which includes rotations and reflections. A (lattice) tile
is a simply connected lattice figure. A set X2 of lattice figures tiles a region
R if R can be covered with translates of figures in X' such that each cell in
R is covered by exactly one lattice figure.

Tiling problems on lattices are in general computationally difficult
problems. Consider the following two problems:

PLANE TILING PROBLEM
Instance. A finite set X of tiles.
Question. Does X tile the whole lattice?
FINITE TILING PROBLEM
Instance. A region R and a finite set X of tiles.
Question. Does 2 tile R?

The Plane Tiling Problem is undecidable, as can be shown by a suitable
encoding of the undecidable Wang Tiling Problem (also called the Domino
Problem, see [2; 24; 14, Chap. 11]), in which each colored edge of a colored
square (Wang tile) is replaced with an appropriately serrated edge following
the lattice edges. The Finite Tiling Problem is clearly decidable by
exhaustive enumeration and is in the computational complexity class NP
because if a tiling exists it can be nondeterministically “guessed.” However,
it is NP-complete, as may be shown using an encoding of Square Tiling
(see [8, p. 257]) again obtained using tiles with serrated edges. Conse-
quently it is unlikely that there exists a polynomial time algorithm to solve

\ \/ /

AVAVA

ta) Triangular (b) Square ic) Hexagonal

Fig. 1.1. Regular lattice tilings of R2
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FiG. 1.2. Triangular region 7.

the Finite Tiling Problem. Special methods do exist which can often be
used to prove nonexistence of tilings of regions with a single tile. These
include coloring and weighting arguments among others [3-6; 8-13; 16-20;
26].

In view of the difficulty of the general Finite Tiling Problem, it is not too
surprising that even apparently simple-looking tiling problems can prove
difficult to solve. This paper arose from considering the following sets of
tiling problems on the hexagonal lattice. Let T, denote the triangular array
of cells in the hexagonal lattice having (V7§ ') cells pictured in Fig. 1.2. The
triangle tiling by triangles problem is to decide: for which values of N can
Ty be tiled by congruent copies of the triangular tile T, pictured in
Fig. 1.3a? The triangle tiling by lines problem is to decide: for which values
of N can T, be tiled by congruent copies of the three-in-line tile L,
pictured in Fig. 1.3b? In these problems one permits tiles to be rotated or
reflected. In terms of equivalence classes of tiles the first problem above
allows tiling by two inequivalent tiles and the second problem allows tiling
by three inequivalent tiles, as pictured in Fig. 1.4.

These two tiling problems have the following answers.

THEOREM 1.1.  The triangular region T, in the hexagonal lattice can be
tiled by congruent copies of the triangular tile T, if and only if

N=0, 2,9, or 11 (mod 12).

THeEOREM 1.2. It is impossible to tile the triangular region Ty in the
hexagonal lattice with congruent copies of the three-in-line tile L.

K oo

(a) Triangular tile Ty b} Three-in-line nle L,

Fig. 1.3. Tiles for triangle tiling problems.
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ST

ta) Triangular tiles (b) Line tiles

FiG. 14. Tile sets of translation-inequivalent tiles.

To solve these problems, we introduce combinatorial group-theoretic
invariants associated to the boundaries of the tiles and the region to be
tiled; we call these boundary invariants. Section 2 defines these invariants
and shows that for a simply connected region R a necessary condition for
a tiling by tiles in a set 2 to exist is that the combinatorial boundary of the
region R be contained in a group 7(X) generated by the boundaries of the
tiles in 2 (Theorem 2.1). This group-theoretic criterion seems in general
no easier to verify than to solve the original problem. It can, however, be
successfully applied to the case of the two triangle tiling problems,
using group-theoretic properties specific to these problems. This is done in
Section 3.

These solutions to the two triangle tiling problems are somewhat com-
plicated, and it is reasonable to ask if simpler solutions exist. We
investigate the relation between boundary invariants and other known
necessary conditions for a tiling to exist. A region R has a signed tiling
using tiles from a set X if there exists a placement of a finite number of such
tiles, possibly overlapping, with each such tile assigned a weight of + 1 and
—1, such that for each cell in R the sum of the weights of tiles covering
that cell add up to + 1, while for each cell outside R the sum of the weights
covering that cell is 0. Clearly a necessary condition for a tiling to exist is
that a signed tiling exist. It is easy to determine when signed tilings exist
for the triangle tiling problems.

THEOREM 1.3. The triangular region T, in the hexagonal lattice has a
signed tiling by congruent copies of the triangular tile T, if and only if

N=0 or 2 (mod 3).

THEOREM 1.4. The triangular region T\ in the hexagonal lattice has a
signed tiling by congruent copies of the three-in-line tile L; if and only if

N=0or 8 (mod?9).

These results are proved in Section 4.
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Section 5 studies a notion of generalized coloring argument which
includes known coloring and weighting arguments as special cases. Any
generalized coloring argument that proves nonexistence of a tiling also
proves nonexistence of a signed tiling (see Theorem 5.2). In view of the
theorems above we immediately obtain the following consequence.

THEOREM 1.5. It is impossible to solve the triangle tiling problems by a
generalized coloring argument.

This result gives a sense in which the two triangle tiling problems above
do not have a simple solution.

Another interesting example is provided by a result of Walkup [26]
showing that an r x s rectangle can be perfectly tiled by T-tetrominoes if
and only if r=5=0 (mod 4). It can be checked that such rectangles have
signed tilings by T-tetrominoes if and only if rs=0 (mod 8). Hence this
problem also cannot be solved by a generalized coloring argument.
Walkup’s ingenious argument is special to the 7-tetromino; its relation to
the combinatorial group theory approach of this paper is not obvious.

The boundary invariants defined in Section 2 can in principle be defined
for tilings on finite subregions of any periodic tiling of R? or of hyperbolic
space H".

We are indebted to Peter Doyle, Roger Lyndon, and Hugh Montgomery
for helpful comments.

2. BounDaRY INVARIANTS: THE TILE GROUP

Boundary invariants can be defined for any regular lattice; for simplicity
we treat only the case of the square lattice. The triangle tiling problems
described in Section | for the hexagonal lattice can be translated into
mathematically equivalent tiling problems on the square lattice, see Section 3.

The square lattice in R? consists of lattice points, edges, and cells. A
lattice point is a member of Z°. Two lattice points are neighbors if they are
at distance one from each other, so each lattice point has exactly four
neighbors. An edge is a line segment connecting two neighboring lattice
points; it is either horizontal or vertical. A cell is the set of all points making
up the interior and boundary of a square of area one having its four
vertices at lattice points.

A (directed) path P in the square lattice consists of a sequence of directed
edges specified by a sequence of lattice points {(x,, y;):0<i<n}, where
the ith directed edge connects (x;, .y, v,_;) to (x, y;). It is closed if
(X9, ¥o) = (x,, »,). A directed path is simple if no edge appears twice and
if it does not cross itself, where we say a path crosses itself if there is
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% W%

FiG. 2.1. Arrangements of cells, (a) and (b) are simply connected, (c) is not.

O<i<n and j#i with (x;, y,)=(x;, y;) and the two edges from
(x;_1» yi_1) to (x,, > ¥;, ) consist of either two horizontal or two vertical
edges.

A region R is a finite connected set of closed cells. The topological
boundary OR of R is an (unordered) set of directed edges found as follows.
The topological boundary dC of a cell C consists of its four edges, oriented
counterclockwise. The boundary of dR is formed by taking the set of all
edges in OC for all cells C in R, and discarding any edges that occur twice
with opposite orientations. A region R is simply connected if its complement
R=R?— R is connected and if its boundary edges can be ordered to form
a simple closed path. (This definition coincides with R being simply con-
nected in the usual topological sense [23, p. 144].) Some examples
illustrating these definitions are pictured in Fig. 2.1.

A simple closed path bounding a simply connected region R is uniquely
specified by its first edge e; we call such a path an oriented boundary of R
with leading edge e and denote it by 0R(e). The first vertex in JdR(e) is
called the hase point of dR(e). Some examples are shown in Fig. 2.2.

An n-tile is a simply connected region consisting of n cells. The notion
of n-tile differs slightly from n-omine in that an n-tile may possibly be
disconnected by removal of a single point while an n-omino may not,
and r-ominos are required to be connected but not necessarily simply
connected.

A tile type consists of the set of all translations of a tile.

A tiling problem consists of a region R and a set 2 of tile types. A region
R can be covered or tiled by X' if there exists a set of tiles in X that cover
each cell of R exactly once.

We describe directed paths in the square lattice by words in the free
group F= {4, U) on two generators (where 4 = “across,” U="up”). To

(5 5

€4
aR(eq) = U2 Tua~1ua? oR(ez) = UAZU 24~ Tya!

FiG. 2.2. Oriented boundaries and associated words in free group.
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the path P= {(x;, y,):0<i<n} we assign the word W= W(P) in F given
by

W:GnGn—l "'Gl’
where
A if (x,y)=0,_ 0+ 1Ly 1)
A>l 1f (.‘C,‘, yi)z(xi— 1 }z—l)a

-

f (xiv ,Vi)= (X;_ 1» }’;7 1 +1)’
Ut if (x,py)=(x,_,¥y_,—1).

Figure 2.2 gives the words associated to the oriented boundaries with
specified base points for the regions pictured.

There is an obvious mapping in the reverse direction which assigns to
cach word W in F the directed path P(W) starting from the fixed base
point (0, 0) in Z* obtained by reading the word W from right to left, and
one clearly has W(P(W))=W.

Given an oriented boundary dR(e) of a simply connected region R we let
JR(e) also stand for the word W(éR(e)) in F. The words

{0R(e): e a counterclockwise oriented edge of dR}

are cyclic permutations of each other, hence are all conjugate in F. For
example for the regions in Fig. 2.2,

OR(e,)=(UA?) dR(e,)(UA?) L.

The combinatorial boundary [R] of a simply connected region R is the
conjugacy class in F containing all the oriented boundaries dR(e) of R, i.e.,

[OR]={WOR(e)W : WeF}.

In what follows we use standard terminology in combinatorial group
theory: {W,, W,, ..) denotes the subgroup of a free group F generated by
the words W,, for any subgroup G of F let N(G) denote the smallest
normal subgroup in F containing G, and let [G:G] denote the com-
mutator subgroup of G, ie., the group generated by the commutators
W W, W;'W;! for all W,, W,eG.

The cycle group C is the subgroup of the free group F consisting of
all words associated to closed directed paths in the square lattice. The
combinatorial boundary of any simply connected region is contained in
the cycle group C. In Section 5 we show that the cycle group is the
commutator subgroup [F:F] of F, hence is a normal subgroup of F, and
in fact it can be shown that C = N({AUA ‘U~ ">).
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We assign to a set of tiles 2= { R;} a subgroup of F that contains all the
boundaries of the tiles. The tile group T(ZX) is the smallest normal subgroup
of F containing the combinatorial boundaries [dR;] of all tiles in X, i.e.,

T(Z)=N({IR;(e)): 1 <i<m))={W IR, (e) W ""WeF, 1 <i<m).

Here 0R;(e;) 1s an oriented boundary of R,.
The tile group T(Z') is contained in the cycle group C and is certainly a
normal subgroup of C. We call the quotient group

h(Z)=C/T(Z)

the tile homotopy group. This name is suggested by analogy with the first
homotopy group, based on the observation that C consists of the set of
(allowable) closed paths in the lattice, while (roughly speaking) T(2X)
represents the paths that can be deformed to the empty path by picking up
or laying down tiles.

The basic invariant that we assign to a region R to be tiled with a set
of tiles 2 is its combinatorial boundary [0R] viewed as a conjugacy class
in the tile homotopy group C/T(Z).

THEOREM 2.1. A necessary condition that a simply connected region R
have a tiling by tiles in a set X is that the combinatorial boundary [0R] of
R be contained in the tile group T(2).

It requires some care to give a completely rigorous proof of this result.
Here we sketch a proof indicating the essential ideas, omitting proofs of
some facts about 2-dimensional topology that can be proved along the
lines of [23, Chaps. 5, 6].

Proof (Sketch). We must show that if R has a tiling in 2 then
[OR] = T(ZX). Since T(X) is a normal subgroup of F it suffices to show that
some oriented boundary dR(e) of R is in T(X).

The proof is by induction on the number of tiles in a tiling by 2. The
result is clear when R is tiled by a single tile in 2. So suppose J is a tiling
of R with k =2 tiles.

CLAM. There exists a decomposition R= R* U R** such that R*, R**
are both nonempty simply connected regions which can be tiled by X, and
there are directed edges e, of OR*, e, of OR** so that

OR(e,;) = 0R**(e,) 0R*(e,).

The claim immediately completes the induction step, because dR*(e,),
JR**(e,) e T(X) by the induction hypothesis, hence dR(e,) e T(X).
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FiG. 2.3. Thickening.

Proof of Claim. First observe that the simple connectivity of R means
essentially that it is topologically a disk with a simple closed curve as
topological boundary. This is not literally true because R may have
separating vertices, but becomes true if R is enlarged by adding two extra
small squares of size ¢ around each separating vertex and deforming 0R
appropriately, see Fig. 2.3. (This process is called thickening in [23,
p. 1421

In the following argument we describe simply connected regions as
though they were disks with Jordan curve boundaries, and the argument
carries over to the general case by thickening.

Pick any tile S in 4 such that dR and S have an edge in common.
Then, since ¢R and 0§ are Jordan curves and S < R, one has joint parti-
tions of OR and 0S as

OR=0R, U - UJRy,
0S=08,0 --- VS,

in which all dR; and 0S, are simple paths, each 0R,#(J is a set of
consecutive edges of 0R, dR,,,, =055, and 0S,,nJdR= . Figure 2.4
illustrates such a decomposition—the first edge of dR, is a common edge
of dR and 08. (In this definition 4S; and OR are treated as sets of edges. In
fact 0S,, and OR treated as point sets may have isolated vertices in
common, see Fig. 2.4.) Note that this definition allows 9S,,= ¢J, and this
may sometimes occur, see Fig. 2.5b.

Now let dR* denote 0R, together with the reversal of all edges in 0S,.
Then @R* is a simple closed path and encloses a nonempty region R* that

R, 651 6R1

052 7/* 2S¢

1Z - .
07000
i, / 7
Sy //// 3S4 "

383=09R3y dRs 0S5=4Rs

3Rg

oR

Fic. 24. Boundary of region R containing the tile S.
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he2 R* 4 €4
* R* * R**

€s R¥%*

Case (ai Cases (b) and 1¢)

FiG. 2.5. Combining tile boundaries.

is simply connected. Let R** = R— R*. Then R** has the simple closed
path

OR**=05,008,V08; U0R,LISs U --- UIRy,

as boundary, hence is simply connected. Now the tile S separates all the
cells in R* from the cells in R** — S, hence all tiles in the tiling 7 — {S}
of R— S lie either in R* or R**, so J gives tilings 7 * of R* and 7 **
of R**.

Finally, we observe that

OR(e,)=0R**(e,) OR*(e,),

where e, is the first edge in 6R,, provided e, is chosen suitably. The choice
is: e, 1s the first edge in 45, if 0S,# J (case (a)). Otherwise if 05, # &
then e, is the first edge in 05, (case (b)), while if S, does not exist then e,
is the first edge in 85, (case (c)). These cases are illustrated in Fig. 2.5; case
(c¢) occurs when R** =S, This proves the claim. |

Theorem 2.1 provides a necessary condition for a perfect tiling to exist,
hence serves as a criterion for proving nonexistence of perfect tilings. In
general this theorem trades one hard problem for another. However in the
special circumstances of the triangle tiling problems of Section 1, this
criterion can be successfully applied.

3. TRIANGLE TILING PROBLEMS

The triangle tiling problems of Section 1 are easily converted to equiva-
lent tiling problems on the square lattice. The region to be tiled becomes
a “staircase” pictured in Fig. 3.1. The tile sets 2, and %, for the two tiling
problems are pictured in Fig. 3.2. Figure 3.2 gives a representative word for
the combinatorial boundary [JR] of each of the tiles pictured. A repre-
sentative word for the boundary of the “staircase” region T is

0T y=AU M4 'U). (3.1)
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]

FiG. 3.1. Staircase region 7.

The nonexistence parts of the proofs of Theorems 1.1 and 1.2 apply the
criterion of Theorem 2.1: in these cases the boundary [07,] is not
contained in the appropriate tile group T(Z;). The proofs use a group-
theoretic argument exploiting the special character of the tile group
involved, due to the first author. One computes invariants associated to a
special subgroup H of the free group F =F,, defined below. The group H
contains [0T,] and the tile groups T(Z,) of the two problems and has
easily computable invariants, which are a consequence of the fact that the
quotient group F/H has a planar Cayley diagram.

Recall that the Cayley diagram 4(F ,/K) (also called the group diagram,
graph, or color diagram) is a graph with directed labelled edges associated
to a presentation of a quotient group G =F,/K of the free group F, on g
generators, where K is a normal subgroup of relations. In the Cayley
diagram of G each vertex corresponds to an element W of G, and for each
generator S; of F, there is a directed edge labelled i from vertex W to
vertex S;W. In particular every vertex in a Cayley diagram has 2g edges
incident on it, with g edges directed inwards and g edges directed outwards.

The subgroup K of relations defining G =F /K has a simple character-
ization in terms of its Cayley diagram. Let 4(F /K) denote the undirected
labelled graph obtained from %(F_/K) by ignoring the directions on the

-2, -1 .2
aRy=A2U 3 A )
} aR4= AUT3ATIY3

2
oRp=(AUT T A" 2y2 ! 43
aRs = (AU (AT

B

(a) Triangle ule set I, {b) Three-in-line tile set T,

FiG. 3.2. Tile sets for triangle tiling problems.
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edges. Associate to any word W=G¢Gyr-! ---G} in the free group F,
(where the G, are generators and each ¢,= +1) a directed path on the
edges of the undirected graph ?(Fg/K) starting from the identity vertex /
which at the ith step follows a directed edge from the vertex labelled
W,=GaG\---GY to W, ., =G%;\W, along the unique edge labelled i
between W, and W, . Then a word W is in K if and only if it corresponds
to a closed path in #(F/K) starting from 1.

The special subgroup H of F, is defined by the property that it has
associated quotient group G =F,/H whose (undirected) Cayley diagram
9 (F,/H) is the infinite planar graph that tiles the plane with hexagons and
triangles as pictured in Fig. 3.3. The shaded vertex denotes the identity ele-
ment, and if F,= {4, U) then A-generator edges border triangles labelled
A and similarly for indicate U-generator edges. The graph 4(F,/H) is the
boundary of a lattice tesselation of the plane by equilateral triangles
and hexagons. The group G is isomorphic to one of the 17 plane
crystallographic groups (the one labelled p3 in [6, p. 49]), and the
subgroup of relations H is given by

H=N(A> U (U '4)). (3.2)

In the sequel we take as the definition of H that its elements correspond to
closed paths in the undirected Cayley diagram %(F./H); the explicit
characterization (3.2) of H is never used.

The relevance of H to the triangle tiling problems is established by the
following claim.

CLAIM.  The tile groups T(X ), T(X,) and the combinatorial boundaries
[6Ty] for N=0 or 2 (mod 3) are all contained in H.

}{
o e
Qe

N
><

Fic. 3.3. Cayley diagram %(F,/H).
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Proof of Claim. Since H is a normal subgroup of F,, it suffices to check
that representative generators of {[0R]: Re X} and of [Ty ] are in H. To
do this, one checks that such generators give closed paths starting from
in 4(F,/H). This is easily done for the boundaries dR given in Fig. 3.2. It
remains to check dT,. To do this, one observes first that 4°, U® and
(A~'U)? are in H. Next, these relations imply that Ty =AU ~Y(4 'U)"
is in H provided that 7, is in H for N=1i (mod 3), and one easily checks
that T,, 0T, are both in H. |}

The planar nature of the Cayley diagram 4 =%(F,/H) gives rise to a
large class of group-theoretic invariants associated to elements of H, which
consist of the winding numbers of the paths associated to elements of H
about the hexagonal and triangular cells in the plane of the Cayley
diagram. Let s be a cell (either hexagonal or triangular) in this tiling and
let x, be a point in the interior of s. The winding number (o1 index) w(P; s)
of a closed directed path P in % around s counts the number of times P
encloses the cell s in the counterclockwise direction and is given by

t
w(P; s) =§1— dz. (3.3)

niJpz— X,
This quantity w(P; s) is well defined independent of the choice of point x,
in s, and is additive in the sense that for two closed paths P, and P,
starting at the same point W in % one has

w(P,P;s)=w(P,:s)+w(P,;s). (3.4)

These facts about winding numbers in R are proved in basic texts on
complex analysis, cf. [1, pp. 114-118; 15, pp. 233-241].

The winding number w( ; s} induces a map w( ;s): H— Z which assigns
to a word VeH the value w(P(V);s) where P(V) is the closed directed
path in 4 associated to V, and (3.4) shows that this mapping is a
homomorphism. Let S be any finite or infinite set of cells in Z and let

w(P; S)y=3 w(P;s).

ye S

This is well defined, since any closed path in the Cayley graph encloses a
finite number of cells and it is clear that w( ;S)H-Z is a
homomorphism.

Now we use these invariants to solve the triangle tiling problems.

Proof of Theorem 1.1. Since all tiles in X', cover three cells, the region
T, cannot be tiled unless the number of cells N(N+1)/2 in Ty is a
multiple of 3, hence N=0 or 2 (mod 3).

582a7532-3
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We will show that 87 is not in the tile group T(X',) when N=3, 5, 6,
or 8 (mod 12), and hence that no tiling exists in these cases by Theorem
2.1. Consider the homomorphism ¢: H— Z with ¢(V) = w(V; S), where S is
the set of all hexagons in the Cayley diagram 4 =%(F,/H). Using the
boundaries in Fig. 3.2a it is easy to calculate that §(éR,) =1, ¢(3R;)= — 1.
The translation-invariance of the Cayley graph ¢ allows one to see that

W OR, W~ ')=¢(CR,), for i=1,2,
for any word W in the free group. Hence

#LOR J}=1,  H([OR})= -1
We know that 67, € H, and (3.1) yields

¢(6TN)=[%QJ. (3.5)

Suppose that 0T, is in the tile group T(2'), in which case there exists
an integer m and words W, such that

OTy=[] WAOR )" W ', (3.6)

where each k;,=1 or 2 and each ¢,=1 or —1. Then

BTV =Y JW,(R)* W)=Y eh(@R,)=m (mod2). (3.7)
i=1 i=1

Next we introduce a second homomorphism : H— Z which views a
word in H as defining a closed directed path in the square lattice Z°
starting at (0, 0) as in the proof of Theorem 2.1 and which associates to
each such path the sum of its winding numbers about all cells in the square
lattice. That is, for a tile R the mapping y(0R) counts the number of cells

covered by the tile, so that, for example, one has

YW OR, W 'y=y(0R,)=3 for i=1,2,
for all W in the free group F,, and one has

N+1
l//(r?TN)=( 5 ) (3.8)
Now the hypothesis (3.6) gives

WOTW) = 3 Y(W,(OR)" W)= 5 eh(@R,)=m (mod2). (39)

i=1 i=1
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Combining (3.5), (3.7), (3.8), and (3.9) yields

()

which is a necessary condition for 0T to be in the tile group 7(Z2,). Both
sides of this congruence are periodic (mod 12), and it is easily checked that
this congruence does not hold for N=3, 5, 6, and 8 (mod 12), proving that
dT ¢ T(X,) in these cases.

It is easy to construct tilings for N=0, 2, 9, or 11 (mod 12). We leave
it to the reader to construct such tilings for T,, Ty, Ty,, and T,,. One then
proceeds by induction on K, constructing tilings for T,x, , for L=2, 9,
11, and 12 from that for T, using the scheme pictured in Fig. 3.4, noting
that since a 2 x 3 rectangle can be tiled, so can a 5 x 6 rectangle and an
11 x 12 rectangle, whence an L x 12K rectangle can be tiled.

Proof of Theorem 1.2. Since all tiles in 2, cover three cells, one must
have N=0 or 2 (mod 3) as above. We will show that 0T, is not in the tile
group T(Z,) in all cases, so that a tiling of T, is impossible by Theorem
2.1. To do this, consider the homomorphism ¢: H— Z which counts the
sum of all winding numbers around all triangles labelled U in the Cayley
diagram 9(F,/H) in Fig. 3.3. One easily calculates using the boundaries in
Fig. 3.2b that

P(OR3) = ¢(0R,) = ¢(0R5)=0. (3.10)
As in the previous proof one has
P(WOR,W~')=¢(0R)) for i=3,4,5,

for all W in the free group. A computation using (3.1) in the Cayley
diagram yields

N‘”] (3.11)

¢(am=[—3—— .

T2k

L x 12K F]__l

Fic. 34. Tiling of Ty, , for L=2,9, 11, 12.
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Suppose that 0T, were in the tile group T(Z',), so that

Ty=1] Wi(OR)" W[,

i=1
where each W,eF,, each k;€ {3,4,5} and each ¢,=1 or — 1. Then

m

#OTy)= ). e:$(0R,)=0,
=1
by (3.10). This contradicts (3.11) for N> 2, and this contradiction proves
that 6T, is not in T(Z,) for N=0 or 2 (mod 3). 1|

A wide variety of related tiling problems can be solved using invariants
associated to groups H for which F,/H has a planar Cayley diagram. See
Thurston [25] for extensions of this approach and more examples.

4. TRIANGLE TILING PROBLEM: SIGNED TILINGS

Recall that a signed tiling of a region R by tiles from a set X consists of
placements of a finite set of tiles, each assigned a weight of 1 or —1, such
that for each cell in R the sum of the weights of the tiles covering this cell
is 1 and for each cell not in R the sum of the weights covering this cell
is 0.

Proof of Theorem 1.3. Since each tile in a signed tiling covers +3 cells
(taking weights into account), the number of cells in Ty must be=0
(mod 3). Since T, has (¥3"') cells, this requires N =0 or 2 (mod 3).

It suffices to exhibit signed tilings for N=3, 5, 6, 8 (mod 12). Let
N=12K+ L where L =3, 5, 6, or 8. Then the triangular region 7T, may be
decomposed as pictured in Fig. 3.4 into regions T,x, T, and a rectangular
region L x 12K. The region T ,x may be tiled by Theorem 1.1, and the
L x 12K rectangular region can also be tiled by congruent copies of the
triangular tile T, by observing that a 3 x 2 rectangle can be so tiled, as can
5x 6, 6x6, 8x6 rectangles. Hence to prove the theorem it suffices to find
signed tilings of T;, Ts, T, and T. Such tilings are easy to find. A signed
tiling for T} is pictured in Fig. 4.1; signed tilings for Ts, T, and Ty are left
as exercises for the reader. [

1 WEIGHT +1 TILES: 123, 245, 356

3
4]|s

WEIGHT -1 TILES: 235

Fic. 4.1. Signed tiling of T; by triangle tiles.
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Proof of Theorem 1.4. We first show that
N=0 or 8 (mod 9)

is a necessary condition for a signed tiling to exist. Number consecutively
the horizontal rows of cells in the staircase region T, in the square lattice
so that row j contains exactly j cells. The tile set 2, consists of three tiles
labelled R;, Ry, R; in Fig. 3.2, which we relabel 4, B, and C, respectively,
for notational convenience. A placement of tile 4 always has three cells in
a single row, while B and C always have one cell in each of three con-
tiguous rows. Suppose that a signed tiling exists for T and for this tiling
let ng(J) (resp. ngc(j)) count the number of tiles of type B or C having
weight +1 (resp. —1) which contain one cell in each of rows j, j+ 1, and
j+2, and set

npclJj)=nge(j) —ngcl))-

By counting the number of tiles covered in row j by this signed tiling one
finds that

ngc(j—2)+ngc(j—1)+nge(j)=Jj (mod 3), I<j<N, (4.1a)
npc(f—2)+nge(j—1)+nge(j)=0 (mod 3), Jj<0orj>N. (4.1b)

Since a signed tiling is finite, there is a positive integer k such that all
tiles are in rows —k to +k. Hence nzc(—k—1)=ng-(—k—2)=0 and
applying the congruences for j= —k, —k+ 1, ..., 0 successively one obtains

npe(j)=0 (mod3), —k<j<0.

Similarly starting from ngq(k+1)=nz-(k+2)=0 and working back-
wards using j=k+2,k+ 1, k, .., N+ 3 successively one obtains

nge(j)=0 (mod 3), N+1<jgk (4.2)

=

|

// .

FiG. 4.2. Signed tiling of T by three-in-line tiles. (A weight —1 tile is placed on the shaded
squares. )
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Tok

8 x 9K {;I-—‘

Fic. 4.3. Signed tiling of Ty, 5 by three-in-line tiles.

Now working forwards using the congruences for j=1, 2, .., N one finds
for 1 <j< N that ng(j) (mod 3) is periodic with period 9 and takes the
values (1,1,1,2,2,2,0,0,0)forj=(1,2,3,4,5,6,7,8,9), respectively. But
(4.2) implies that ngo(N—1)=ng-(N)=0 (mod 3); this is impossible
unless N=0 or 8 (mod 9).

It remains to construct signed tilings for N=0 or 8 (mod 9). A signed
tiling for N =38 is easy to find, and one is given in Fig. 4.2. Signed tilings
for N=9K, 9K + 8 can be constructed by induction on K. Given a signed
tiling for 9(K— 1)+ 8 we obtain one for 9K by tiling the last row with tiles
of type R;. Then given a signed tiling of 7,, we may subdivide Tyx ¢ as
pictured in Fig. 4.3, and use the signed tilings of Tox and Ty provided by
the induction hypothesis together with a tiling of the 8 x 9K rectangular
region with R; tiles. This completes the construction. [

5. GENERALIZED COLORING ARGUMENTS AND TILE HOMOLOGY

Many tiling problems have been resolved using arguments involving
colorings or weightings of the cells of the underlying lattice. We show that
such arguments have a natural interpretation in terms of boundary in-
variants and that the strongest such arguments are equivalent to detecting
the existence of signed tilings.

Consider the square lattice with its associated free group F= {4, U)
and cycle group C = [F:F]. Coloring or weighting arguments correspond
to additive invariants assigned to cells of the square lattice. Part (iii) of the
following theorem shows that a natural group encoding such invariants is
the maximal abelian quotient group A,= C/[C:C], which we call the cell

group.

THEOREM 5.1. (i) The cycle group C consists of all words W such that
P(W) is a closed directed path in Z°, ie., C=[F:F].
(it) The group [C:C] consists of all words W such that P(W) is a
closed directed path in Z* with winding number O around every cell in Z°.
Consequently, [C:C7 is a normal subgroup of F.



TILING WITH POLYOMINOES 201

(iii)) The group Ay=C/[C:C] is a direct sum of a countable number
of copies of Z, which are in one-to-one correspondence with the cells c; of the
lattice Z*. The projection map =, ;:C — Z onto the c;th Z-summand of A,
is given by the winding number w(P(WY}; c;).

We defer the proof of this theorem to the end of this section, in order to
proceed directly to the discussion of coloring arguments.

A generalized coloring map is any homomorphism ¢: C — A, where A
is an abelian group. A generalized coloring argument uses a generalized
coloring map ¢ to show that a simply connected region R cannot be tiled
by tiles in a set X by showing that the image of the combinatorial
boundary [JR] under ¢ is not contained in the image of the tile group
T(2) under ¢. Since all such homomorphisms ¢ can be factored as the
projection w:C—>A,=C/[C:C] composed with a homomorphism
#: A, — A, the strongest generalized coloring map is the projection 7 onto
the cell group A,.

We justify the name “generalized coloring argument” by showing how
the coloring argument in Golomb [9] can be formulated in terms of a
generalized coloring map. It is well known that the checkerboard with two
opposite corners removed (“mutilated checkerboard™) pictured in Fig. 5.1
cannot be tiled with dominoes. To prove this one colors the checkerboard
in a checkerboard pattern. Depending on where the mutilated checker-
board is placed on the lattice, it covers either 30 black squares and 32
white squares or 32 black squares and 30 white squares. Since each domino
in a tiling covers one square of each color, any perfectly tiled region must
contain the same number of squares of each color, hence the mutilated
checkerboard cannot be tiled.

To obtain an equivalent generalized coloring argument one colors the
cells of the lattice Z* in a checkerboard pattern with the cell c; having
lower left corner (i, j) being colored black if i+ j=0 (mod 2) and white if
i+j=1 (mod 2). Now define a map ¢: C>Z@®Z given by ¢ =6, @ ¢,
where ¢,(W) counts the sum of the winding numbers of the closed path
P(W) about all cells ¢;; with i + j=0 (mod 2) (the “white” cells) and @,( W)

aT, =U"2Aa"Ty2a

D] aTy=U"1A"2pya2 “ o

aR=u"7a Ty A" TyTayaT

F1G. 5.1. Mutilated checkerboard and dominoes.
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denotes the sum of the winding numbers of the closed path P(#) about all
cells ¢; with i+ j=1 (mod 2) (the “black cells”). The mutilated checker-
board R has boundary 0R=U""(A"'U" ') 4" 'U"(AU) A" while

T(E)=N({U A 2UA%, U4 "'U%A4)),

see Fig. 51. Now ¢([dR])={(30,32),(32,30)} while #(T()) =
{(n,n):neZ}, which shows that R cannot be tiled by dominoes.’

Other coloring and weighting arguments used in [5, 7, 9, 10, 13, 17] can
be framed in terms of generalized coloring maps in similar fashion.

The information about nonexistence of tilings given by any generalized
coloring map ¢:C-—> A is completely expressed in terms of the tile
homotopy group, using the quotient map ¢: C/T(Z)— A =A/¢(T(L))
induced by factoring out the tile group T(Z'); indeed ¢([GR]} is contained
in ¢(T(X)) if and only if J([OR]) consists of the identity element in A.
Conversely, any homomorphlsm ¢ from the tile homotopy group h(2) into
an abelian group A arises from the generahzed coloring map ¢:C - A
given by ¢ =g 7, where 7: C - C/T(X) is the natural projection. Thus we
may equally well consider generalized coloring arguments as specified by
homomorphisms ¢ from the tile homotopy group h(ZX') to abelian groups A

In this new context the maximal information available about tilings is
given by the map =n,:h(X) - H(2), where H(2) is the maximal abelian
quotient group of h(X).2 We call H(X) the tile homology group, by analogy
with the well-known fact that the first homology group is the maximal
abelian quotient group of the first homotopy group. Using the projection
7: C - C/T(2) we have H(2) = C/B(Z), where B(X) is the kernel of 7 7.
We call B(2) the tile boundary group. B(2) is the smallest normal subgroup
of C containing T(ZX) and [C:C]. We claim that

B(Z)=T(Z)[C:C], (5.1)

and that B(X) is a normal subgroup of F. The inclusion T(2)[C:C] <
B(ZX) is clear. To prove the other inclusion, note that T(X)[C:C] is a
normal subgroup of F (hence of C) using the general fact that G,G,=
{g182: £:€G,, g,€G,} is a normal subgroup of a group G whenever G,
and G, are both normal subgroups of G. Since B(ZX) is the smallest normal
subgroup of C containing T(Z) and [C:C], it follows that B(2)<
T(X)[C:C], proving the claim.

! Since homomorphisms map conjugacy classes to conjugacy classes, one may ask why the
image #([dR]) is not a single element in the abelian group Z @ Z. This is because [dR] is
actually an F-conjugacy class, so its image is actually a conjugacy class in the nonabelian
group F/[C:C].

>The map =, is exactly the quotient map =,: C/T(2)— Ay/n(T(Z)) induced from the
strongest generalized coloring map n: C — A, = C/[C, C], as is easily checked.
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The discussion above shows that the maximal information about non-
existence of tilings obtainable by a generalized coloring argument concerns
whether or not the combinatorial boundary [JR] is in the tile boundary
group B(X). Now we show that this condition is a necessary and sufficient
condition for a signed tiling to exist.

THEOREM 5.2. For a simply connected region R and set of tiles X the
following conditions are equivalent:

(i) R has a signed tiling using tiles in X,

(ii) The combinatorial boundary [OR] is in the tile boundary group
B(Z).

Proof. (i)=> (ii). Suppose that R has a signed tiling. Place R on 7>
so that it has an oriented boundary R with base point (0,0). Let
{(T,, &) 1 <i<k} denote the signed tiling of R, with ¢,=1 or —1 being
the sign of the tile T,. Let 47, denote an oriented boundary of tile 7, with
base point (0, 0), and let W, be an oriented path from m, to (0, 0), where
m; is the basepoint where the tile 7 is placed. Consider the word

.
W=(aR) " [] (W.(aT)" Wi ).

i=1

We claim that P(W) is a closed path which has winding number 0 about
all cells in Z?, so that by Theorem 5.1(ii), We [C:C]. To see this, we note
that P((0R) ') has winding number — 1 about all cells in R and winding
number 0 elsewhere, while P(W,(0T,)* W, ') has winding number &; about
all cells in T; and winding number 0 elsewhere, so the claim follows by
definition of a signed tiling. Thus We [C, C] and

k
aR=< [T w.(aT)" W.-"‘)) o

i=1

is expressed as an element of T(Z)[C:C], which is B(X). Since B(Z) is a
normal subgroup of F, the conjugacy class [¢R] = B(X).

(1) = (i). Place R so that it has an oriented boundary dR with base point
(0, 0). Since dReB(X) and B(Z)=T(X)[C:C], one has

k
6R=<H (W, (0T, W,.')) w1,

i=1

where 0T, are oriented boundaries of tiles in 2 with basepoint (0, 0), ¢, takes
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values +1, and We [C:C]. Now we can reverse the previous argument.
By Theorem 5.1(ii) the path P(W) associated to the word

W=(0R)" (ﬂ (WAOT,)" W ))

has winding number 0 about all cells. Computing the winding numbers of
P((OR)™") and P(W(0T,)” W ') about each cell shows that {(7,,¢;)} is
a signed tiling of R. |

Theorem 1.5 follows easily from this result.

Proof of Theorem 1.5. Theorem 5.3 and the discussion preceding it
show that a generalized coloring argument can only prove the nonexistence
of a tiling by proving the nonexistence of a signed tiling. Since we have
shown that both triangle tiling problems have instances having a signed
tiling but no perfect tiling, these problems cannot be solved by any
generalized coloring argument. |

We have obtained the following hierarchy of successively weaker tiling
invariants.

THEOREM 5.3. Let R be a simply connected region and X a set of tiles.
Consider the conditions:

(H1) R can be tiled using tiles in 2.
(H2) [0R] is in the tile group T(2).
(H3) [0R] is in the tile boundary group B(Z).

Then (H1)=(H2)=(H3). These implications are not reversible in
general.

Proof. The assertion (H1)=>(H2) is exactly Theorem 2.1. (H2) = (H3)
is immediate.

To show (H2)#(H1) let the tile set X consist of a 2 x2 square and a
3 x 3 square. Consider the L-shaped region R obtained by removing a 2 x 2
square from the upper right corner of a 3 x3 square. It is clear that
[#R]eT(2) and that R cannot be tiled by translates of these two tiles.

The implication (H3)#(H2) follows from the triangle tiling by lines
problem. By Theorem 1.4 a signed tiling exists for N=0 or 8 (mod 9), and
(H3) then holds by Theorem 5.2. The proof of Theorem 1.2 shows that
(H2) does not hold in this case. ||

By using semigroups instead of groups one can obtain a necessary and
sufficient condition for a tiling to exist. The tile semigroup T*(2) is defined
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to be the subsemigroup of the free group F generated by the conjugacy
classes {[0T]: Tel}.

THEOREM 5.4. Let R be a simply connected region and X a set of tiles.
The following conditions are equivalent:

(i) R can be tiled by tiles in X,
(ii) [OR] is contained in the tile semigroup T*{Z).

Proof. (i)=(ii). The proof of Theorem 2.l actually shows this.
(i1) = (i). Using tiles with basepoints, if [0R]=T™*(2), then dR can be
expressed as

k .
OR=[] W.(aT)W ',
i=1
from which a tiling of R can be directly read off, using winding numbers
around cells of R. |

Now we give the proof that was deferred.

Proof of Theorem 5.1. (i) Let C, consist of all words W such that
P(W) is a closed directed path in Z% C, is clearly a normal subgroup
of F.

We first show that [F:F] < C,. Expressing a word W in the generators
A, U, A", U™ as a directed path it is easy to see this path is closed iff

# occurrences(A) = # occurrences(4 '),

# occurrences(U) = # occurrences(U!).

All commutators ABA~'B~" have this property, hence [F:F] < C,,.

Now we prove Co < [F:F]. Let W be a word representing an element of
C,. We assign to each word W an invariant (, &, I), where # is the length
of the word, & is the maximum value i* + j of any vertex (i, j) e Z? visited
by the path P(W), and !/ denotes the number of vertices (i, j) with
i’+ j?=k (counted with multiplicity) that are visited by the path P(W).
Note that k and / are both less than n*. We proceed by induction on triples
(n, k, ) ordered lexicographically. The base case is (0,0, 0), which is the
identity. For the induction step, if W contains any adjacent pairs of gener-
ators GG ™' we may cancel them and decrease its length. If this is not the
case, the path P(W) corresponding to W traverses no edge twice in succes-
sion. Let (i, j) be a vertex with i>+ j2 = k visited by P(W). If (i, j) is in
the first quadrant, then either W= W,A4 ~"'UW, with UW, visiting vertex
(i, j) or W=W,U "AW, with AW, visiting vertex (i, j), as pictured in
Fig. 5.2.
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FiG. 5.2. Shortening a word in the first quadrant.

In the first case the word W= W,UA 'W, has a lexicographically
smaller value (n, k,/—1) or (n, k', *), and in the group F one has

W= (W,A"UAU'"W; W,

where W,A4 'UAU 'W, "' is a conjugate of a commutator, so it is in
[F:F]. By the induction hypothesis, W is in [F:F], hence so is W. In the
second case above we use W= W,AU 'W, and the same argument.
Similar arguments work for (i, j) in the other three quadrants, completing
the induction step, and proving Co=[F:F]=C.

(ii) Let C, consist of all words W such that P(W) is a closed path
with winding number 0 about all cells. C, is clearly a normal subgroup of
F. We must show C;=[C:C].

We show [C:C]cC,. Since winding numbers are additive, if
W,, W,eC then both they and their inverses correspond to closed paths,
whence

w(Ww, W, Wlez‘l;C(/)
=w(W,;c,) +wWyse))+wWi ' e)+w(W5'e,)=0,

for all cells c;.

We show C; = [C:C] by induction on the invariant (n, k, /) ordered as
in the previous argument. The base case is the empty word, identified with
the identity element of F. For the induction step, let W have value (n, £, /).
If W contains any adjacent pairs of generators of the form GG ', we may
cancel them and complete the induction step. Otherwise let (i, j) with
i+ j2=k be a vertex visited by the path corresponding to W. For the sub-
sequent argument we relabel the cells so that ¢; denotes the cell whose
vertex furthest from the origin (0, 0) is (4, /). We examine all the visits of
the path of W to (i, j). Suppose (i, j) is in the first quadrant. At each visit
the path either arrives at this vertex from (i, j— 1) and exits to (i — 1, j) via
A~'U, or else arrives from (i—1, j) and exits to (i, j—1) via U™'4, as
in Fig. 5.2. Now we compute the winding number w(W;c,) using the
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argument principle, as in [15]. Since the path never crosses the line
i+ j=k, one has

w(W; c,;) = # occurrences(A4 ~'U) — # occurrences(U~'4),

where this sum is over visits to (4, j) only. Since this winding number is
zero, there must be at least one visit of each kind, and one has
W=WyA'\UW,U "AW, or W=W,U '"AW,A 'UW,, where W, W,,
W, are possibly empty words, and the path of W visits (i, j) in the middle
of A7'U and of U~'A. In the first case, let W= W,U4~'W,AU 'W,,
which has invariant either (n, k, [ —2) or (n, k', *), and note that as words
in F one has

W= (WA "UW,U "AYUA '"W;' AU "W HW.

Calling the right side of this expression ZW, one finds after inserting
suitable words of the form DD ' that

Z=MNM-'N-!,

where M= W4 'UW,U "AW; "' and N=W,UA4'U '"AW; ' Since M
and N yield closed paths, it follows that Z is in [C:C]. By the induction
hypothesis W is in [C:C], hence so is W. Similar arguments work in the
second case W= W, U '"AW,A 'UW, and for (i, ) in the other three
quadrants. This completes the induction step showing C, < [C:C], and (ii)
is proved.

(iii) Define a homomorphism =, n,; from C to @, Z by
n; ;= w(P(W); c;). This map is well defined by part (i) and its kernel is
LC:C] by part (ii). Hence its image is isomorphic to C/[C:C]. §
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ABSTRACT. Ribbon tiles are polyominoes consisting of n squares laid out in a path,
each step of which goes north or east. Tile invariants were first introduced in [P1],
where a full basis of invariants of ribbon tiles was conjectured. Here we present a
complete proof of the conjecture, which works by associating ribbon tiles with certain
polygons in the complex plane, and deriving invariants from the signed area of these
polygons.

1. INTRODUCTION

Polyomino tilings have been an object of attention of serious mathematicians
as well as amateurs for many decades [G]. Recently, however, the interest in tiling
problems has grown as some important ideas and techniques have been introduced.
In [P1], the second author introduced a tile counting group, which appears to encode
a large amount of information concerning the combinatorics of tilings. He made a
conjecture on the group structure, and obtained several partial results. A special
case of the conjecture was later resolved in [MP]. In this paper we continue this
study and complete the proof of the conjecture.

Consider the set of ribbon tiles T,,, defined as connected n-square tiles with no
two squares in the same diagonal z + y = ¢ (as in the figures below). It is easy to
see that |T,,| = 2", as each tile can be associated with a path of length n — 1 in
the square lattice, each step of which goes east or north. Recording these moves by
0 and 1 respectively, we obtain a sequence & = (g1,...,6, 1) € {0,1}""1, which
uniquely encodes a ribbon tile. We will refer to this tile as 7..

Key words and phrases. Polyomino tilings, tile invariants, Conway group, height representation.
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FIGURE 1. Two dominoes.
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FIGURE 2. Four ribbon trominoes.
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F1GURE 3. Eight ribbon tetrominoes.

Now, let T’ be a finite simply connected region, and let v be a tiling of T' by
ribbon tiles in T;,, n > 2. We denote by a.(v) the number of times the ribbon tile
7. is used in v.

Conjecture 1.1 [P1] Let ' and v be as above. Then for everyi, 1 <i <n/2,
we have:
Z a:(v) — Z as(v) = ¢(),
e £,=0,ep_;=1 e g;=1,ep_;=0

where the ¢;(T) depend only on T and are independent of the tiling v of T. Fur-
thermore, when n is even, we have:

Z a-(v) = c«(T) mod 2,

€t Epy2=1
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where ¢« (L) is also independent of v.
The main result of the paper is a proof of this conjecture for all n > 2 :

Theorem 1.2 Conjecture 1.1 holds for tilings by ribbon tiles T, for all n > 2,
and for all simply connected regions T'.

A few words about the history of this conjecture. For n = 2, it implies that for
every domino tiling of I') the parity of the number of vertical dominoes is always
the same. This, in fact, holds for every region, not just the simply connected ones,
and follows from a folklore coloring argument (see [G,P1] for details).

For n = 3, the conjecture gives only one relation:

ao1(v) — aro(v) = 1 (D).

This is the celebrated Conway-Lagarias relation for trominoes [CL]. Recently, the
conjecture was established for n = 4 [MP], using a combinatorial technique similar
to [CL]. In this notation, it was shown in [MP] that:

apo1 + ao11 — @101 — @111 = c1 (D),

ao10 + Go11 + @110 + @111 = ¢« (') mod 2.

It was shown in [CL], in a certain rigorous sense, that even for n = 3, the
conjecture can’t be proved by means of coloring arguments. This was extended by
the second author to all n > 4 [P1]. It was observed in [P1], that for n = 3 there
exists a non-simply connected region for which the relations in the conjecture do
not hold. Thus, there is little hope of generalizing the conjecture to all regions.

The conjecture originated in [P1], where the author considered only row (or
column) convex regions I', and proved the linear relations in Conjecture 1.1 for all
such I’ [P1, Theorem 1.4]. The technique used a connection with combinatorics of
Young tableaux which could not be extended to all simply connected regions (see
[P1] for details). The author in [P1] also showed that the linear relations in the
conjecture are the only relations which can occur between the a.(v), even for this
smaller set of regions (see section 2 below).

About the proof technique: We use notion of tile invariants, introduced in [P1],
but here we define new real-valued invariants, which we call adéle invariants. As
it turns out, these invariants imply all the integer-valued invariants that we need
to establish. We then show the validity of the adele invariants by presenting them
as a signed area of a certain polygon corresponding to each tile. These two results
together imply Theorem 1.2.

The rest of the paper is structured as follows. In section 2 we introduce tile
invariants and compute the tile counting group based on Theorem 1.2. Much of the
material follows [P1], so we present only sketches of the proofs for completeness. In
section 3, we define and study the adele invariants. Small examples are computed
in section 4. We exhibit the relationship between the adele invariants and integer
invariants in section 5. This completes the proof of Theorem 1.2. We conclude with
final remarks in section 6.
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2. TILE INVARIANTS

Let us start by defining tilings and tile invariants. Let A be a set of (closed)
squares of a square grid Z2 on a plane. A region is a finite subset I' C A. Region
I’ C A is called simply connected if its boundary 9T is connected. We say that two
regions I' and T are equivalent, denoted T" ~ T, if T" is a parallel translation of T"
(rotations and reflections are not allowed). Let I = {I" : T" ~ T'} be the set of
regions equivalent to I'.

Let T = {r,...,7-} be a finite set of simply connected regions, which we call
tiles. By 7; we denote the set of their parallel translations, and let T=U7. A
tiling v of T, denoted v - T, is a set of tiles 7 € ’f‘, such that their disjoint union

is I':
F:I_lT.

Here we ignore the intersection of the boundaries.

Let G be an abelian group, and let ¢ : T — G be any map. We extend the
definition of ¢ to all 7 € T, by setting () = ¢(r;) for all T ~ 7;. We say that the
map ¢ is a tile invariant of T if, for every simply connected region I' and every
tiling v F I by the set of tiles T, we have:

> elr) = (D),

TEV

where the constant on the r.h.s. depends only on the region I'" and is independent
of v. In this paper G is either Z, or Z,(= Z/nZ), or R (with addition as the group
operation).

Tile invariants are directly related to numerical relations between the respective
numbers of times differently-shaped tiles occur in a tiling. Indeed, let a;(v) = |vN7;|
be the number of tiles 7 ~ 7; in the tiling v - I". We immediately have:

r

Y wm)aiw) =Y o) = (D).

i=1 TEV
In [P1], we introduced a tile counting group G(T), which is defined as a quotient:
G(T) =2"/{(a1(v) — a1 ("), ...,a,(v) — ar(v")), v, V' F T),

where v, V' are tilings of the same simply connected region I' by the set of tiles T.
Computing the tile counting group G(T) is a difficult task, even in simple cases.
The main result of this paper is a computation of G(T,) for the case of ribbon
tiles:

Theorem 2.1 Ifn = 2m+ 1, then G(T,) ~ Z™". If n = 2m, then G(T,) ~
7™ x ZQ.

Theorem 2.1 was stated as a conjecture in [P1]. It was shown in [P1] that it
follows from Theorem 1.2. For completeness, we sketch the proof below.
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Sketch of proof. Indeed, in [P1, Theorem 1.4] it was shown that G(T) C Z™*!
for n = 2m + 1 and G(T,,) C Z™ X Zs for n = 2m. Observe that one can view
the relations in Conjecture 1.1 as elements of G(T, ). Recall that these relations,
together with the trivial area invariant fo (defined by fo(r) =1 for all 7 € T,,),
are independent in Z™ (see the proof of Theorem 1.4 in [P1, § 5]). Now Theorem
1.2 implies the result. O

Before we conclude this section, let us make a final observation on the relations
in Conjecture 1.1 implied by previous work. Following [P1, § 9], define the shade
invariant as follows:

n—1
fy(me) = Z k- e mod n,
k=1
where ¢ = (e1,...,e,—1). The fact that it is an invariant follows easily from an

extended coloring argument [P1, § 9]. Namely, consider a coloring of the squares
¢ : 7% — 7, defined by ((z,y) = y mod n. Note that the sum of the colors in each
ribbon tile 7 is equal to fy(7) + C, where C = C(n) € Z, is a constant which
depends only on n. We omit the (easy) details.!

Proposition 2.3 When n is even, the relations in the first part of Conjecture 1.1
imply that in the second part.

Proof. We will show that the mod 2 relation follows from the m = n/2 relations
in the first part, and the shade invariant. In the language of invariants, consider
the k-convezity invariants fy, introduced in [P1] :

fe(re) =er —en—k, where e = (e1,... ,en—1).

We need to show that the shade invariant and the k-convexity invariants generate
the parity invariant f,:

f(1e) = € mod 2, where n = 2m.
But this is immediate since
fv mod 2 = (f1+2f2+ +(m—1)fm,1) + f« mod 2
(cf. [P1, § 9]). This completes the proof. O
3. NEW RIBBON TILE INVARIANTS AND THE SIGNED AREA

Let T, be the set of ribbon tiles, defined as above. From now on, we will also use
a different encoding of T,,, by sequences a = (ay,...,a,) € {£1}" 1 T, = {7.},
where 7, =7, if a;=1—2¢; forall1 <i<n—1 (i.e. 0 > +1 and 1 — —1).

Tn contrast with other ribbon tile invariants we introduce, the shade invariant can be extended
to all regions, not just the simply connected ones [P1, Theorem 9.1].
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For every 1 </ < n we define a function ®,: T,, -+ R as follows:

n—1
2rk l
P = i
o(Ta) Z a sin —-—,
k=1
where a = (aq,... ,an—1), ar € {£1} as above. The main result of this section is

the following key observation:

Theorem 3.1 The function ®,: T, — R is a tile invariant for the set T, of
ribbon tiles, for all 1 </ < n.

We will call &, the {-th adéle invariant. Note that when n = 2m, we have
®,,(7) =0 for all 7, € T,. The claim of the theorem is trivial in this case.

The proof of Theorem 3.1 is based on a new geometric construction. But first
we need several definitions.

Let the squares of the grid have numbers written on them, from 0 to n — 1, with
the rule that (z,y) € Z? has the number = + y mod n. Let us orient edges of the
grid eastward and southward as in figure 1 below. Set labels on the edges so that
the edge between square k and (k + 1 mod n) has label k.

Let ¢ # n/2 be fixed for the rest of this section. On a complex plane V = C,
fix n vectors vg,v1, ... ,Un_1, where vy = e>™*f/? We say that a loop in V is a
polygon if it is a closed (perhaps self-intersecting) path with straight edges.

Now, let T be a simply connected region on a grid, and let 0T be the boundary
of T. Fix any integer point O € JI'. Consider a sequence of edges on the grid
obtained by moving along OT' counterclockwise, starting at O. Recall that these
edges are oriented and labeled with integers modulo n.

We shall describe a map n = ¢, which maps simply connected regions I, tileable
by T, into polygons in V. First, fix any O’ € V. As one moves along the sequence
of edges of 9I', add a vector +v; € V, where j is a label of the edge in JTI', and a
sign =+ is chosen depending on whether the edge in T is oriented counterclockwise
or clockwise (see figures below). We denote the resulting path by n(y) = n(T).
Note that it already has an induced orientation.

@~/ T
3 4| <

oy1j2)3] 4 W

FiGURE 4. The ribbon tile 7 = 79911 with labels on the edges, the
roots of unity vy, ..., vs, vy = e>™*/5 and the closed loop (7).
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In the figure above we present a V-pentomino (cf. [G]), which is encoded by
a = (+1,+1,-1,—1) in our notation, along with 5 vectors vg,...,vs, and the
corresponding polygon. Note that a priori, it is unclear whether our map is well-
defined, i.e. whether all tileable regions correspond to closed loops in V. By defini-
tion, n(T) is only a path starting at O', with straight edges.

Lemma 3.2 The above map np is well-defined, i.e. for any simply connected
region T tileable by Ty, the path 1,(T) is a closed loop in V.

Proof. We prove the result by induction on the area of I'. Suppose T is one of
the ribbon tiles and let (k + 1 mod n) be the label of the square in the lower left
corner. Let O be the point in the upper left corner of this square. Now observe
that the sequence of edges in &7 has two labels k, then a sequence w of labels, then
two labels k, and then the same sequence as w but in the opposite order. Observe
also that the first two edges, with the label &, are directed counterclockwise, while
the second two are clockwise. This implies that the pieces of 1(7), corresponding to
these four edges, form two straight parallel intervals oriented in opposite directions.

Note also, that each edge in the first sequence w has an orientation which is
opposite to that of a corresponding edge in the second (reversed) w. Therefore, the
pieces corresponding to the two w are exactly parallel to each other, with a shift of
2v. We conclude that n(7) is a closed loop in V, so n is well-defined for ribbon
tiles. This proves the base of our induction.

The induction step is straightforward. Let I' be a region tileable by T,,. Fix any
tiling of T'. Consider a tile 7 in the tiling such that I'' = T"\ 7 is simply connected.
In [MP, Lemma 2.1] we prove that there always exists such a tile?. Now present 6"
as a union of two regions, IV and 07 (intersections of these will cancel each other
as they have opposite orientations). If both n(I") and n(r) are closed, then n(T") is
also closed. This completes the proof. [

Let us present now a standard inductive definition of a signed area A(7y) of an
oriented polygon v in V (see e.g. [GO]). If 7 is not self-intersecting, define A(y)
to be the usual area times £1 depending on whether + is oriented counterclockwise
or not. If 7 is self-intersecting at point x, split v into the disjoint union of two v,
and ~y, (separated by the point z), and let A(y) = A(y1) + A(y2).

Now let I' be a region tileable by T,,. Let us show that for any ¢, the signed
area of v = (") is invariant under parallel translation of I' (recall that the
construction of 1, involves a fixed labeling of the plane, so a priori it may differ
for I ~ T'). Indeed, observe that for a parallel translation IV ~ T', we have a
cyclic shift of the labels of the edges in OT". Therefore 7,(I’) is simply a rotation
of n¢(T") by a multiple of 27”2 Thus these two loops have the same signed area
A(ne(T")) = A(ne(T)). Similarly, the choice of the starting point O € 0T (and
O’ € V) doesn’t change the signed area of 7. We shall prove now that there exists
a closed formula for A(y) when T is a ribbon tile.

2Versions of this result were also used in [CL,Pr].
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Proposition 3.3 Let v = ny(74), where a = (ay,...,a, 1) € {£1}" L. Then

n—1
2wkl
Aly) =2 i :
(v) Z a sin —-

k=1

Proof. This follows immediately from the analysis used in the induction step in
the proof of Lemma 3.2. Indeed, let us translate the tile 7 so that the lower left
square has label 1. Also, choose point O € 97 as in the proof above. Recall that the
signed area remains unchanged. Observe that the signed area is exactly the area
of the parallelogram whose vertices are the endpoints of two horizontal intervals of
length 2. Therefore A(y) = 2 - height, where height is the height of the image of a
sequence of labels w, defined as in the proof above. Now, the height of the image
of w is the sum of the heights of each of the vectors vy, taken with a sign ay, for
k=1,...,n— 1. This implies the formula in the proposition. O

Proposition 3.4 Let v+ T be a tiling of I' by ribbon tiles in Ty. Then

Z A(ne(r)) = A(ne(T)), forall 1<€<n-1.

TEV

Proof.  This is an immediate corollary of the induction step in the proof of
Lemma 3.2. Indeed, let us prove the claim by induction on the area of I'. The
claim is trivial when I' = € T,,.

Now, by construction, v is a union of v; and 7., where v = ny(T"), 11 = ne(I"),
and v, = ny(7). By definition, this implies that A(y) = A(v) + A(y2). This
completes the inductive step and finishes the proof. O

Proof of Theorem 3.1 This is a corollary of Propositions 3.3 and 3.4. Indeed,
Proposition 3.4 implies that

@(r) = 5 A(ni(r)

for every ribbon tile 7 € T,,, and every 1 < ¢ < n—1. Now Proposition 3.4 implies
that ®, satisfies the definition of a tile invariant. O

4. EXAMPLES

Let n = 3. In the Figure 4 below, we show all four ribbon trominoes 7,, along
with the corresponding polygons 7:1(7,) € V. Let us calculate the values of the
adele invariant ®,. Consider the straight trominoes first. Observe that the signed
area of the corresponding polygons is zero. Indeed, the two equilateral triangles
cancel each other, since we circle one equilateral triangle clockwise and the other
counterclockwise. On the other hand, for the two right trominoes the adele invariant
®; = ++/3. Indeed, in both cases these polygons circle eight equilateral triangles,
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FiGURE 4. Four ribbon trominoes 7, and the corresponding closed
loops 11 (7a)-

in the first case counterclockwise and in the other clockwise. Thus the signed area
is A =48 @ = 421/3, which implies the claim.

Now observe that % - ®; coincides with the Conway-Lagarias invariant (see

section 1). This gives a new interpretation of this remarkable invariant in terms of
an “area,” rather than the “winding number” as defined in [CL].

Let us note here that for n = 3,4 the group of translations of V' = C by integer
linear combinations of vectors v; is a lattice in V. Thus the corresponding polygons
n(7) have a natural combinatorial group structure and can be described by the
technique of [CL]. However, for other values of n these vectors do not form a
lattice, and instead form a dense set in the plane. This explains the reason why
[MP] were able to completely resolve the case n = 4, and why the case n = 5 has
remained mysterious until now. (We note that signed area on the square grid is
used to study other tetrominoes in [Pr].)

Consider the case n = 5. Let us calculate the adele invariant of several rib-
bon pentominoes. First, let 7 be the V-pentomino, which corresponds to a =
(+1,+1,—-1,-1). We have

1 2 4
d(7) = §A(n1(7a)) = sing7r +sin?7r —sinf%7r — sin%r
2 A 5+V5 5-5
= 2sin — + 2sin — = .
sin 5 + 2sin 5 \/ 5 +\/ 5

The same calculation can be done for all remaining ribbon pentominoes. For
example, for I- and Z-pentominoes, which correspond to (+1,+1,+1,+1) and
(=1,+1,+1,—1), all adeéle invariants are zero. In general, we have:

Proposition 4.1 Let 7 be a ribbon tile with a 180° rotational symmetry. Then
Oy(7) =0 forall 1 <lL<n-—1.

Proof.  Having 180° symmetry implies that ay = a,—j for all k < 5. On

the other hand, we have sin Q“T“ = - sinw, i.e. all the sign terms in the

expression for ®,(-) cancel each other. This implies the result. O
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e Q0 e 9
=1 P s

R

F1GURE 5.  Several ribbon pentominoes 7, and the corresponding
closed loops 71(7). The remaining ribbon pentominoes, as well as
the corresponding closed loops, can be obtained from these by rotation,
reflection, etc.

Before we conclude, let us state two possible ways of deriving the linear relations
in Conjecture 1.1 from adéle invariants.

We consider only the case n = 5. Recall that sin ¥ and sin %" are rationally
independent. Observe that for all regions T' tileable by T}, we have:

(o) 1 (T) = —2¢4 sin2—7r — 2¢s sin 4_71',
5 )
where ¢; = ¢;(T') and ¢(T) are as in Conjecture 1.1. Indeed, this holds for all
ribbon tiles 7 € T, and thus by additivity for all tileable simply connected regions
I'. Since ¢; and c» are integers, by rational independence, the adéle invariant then
induces two integer-valued invariants.
Another approach is based on using both ®; and ®,. We have:

4 2
(090) Dy(7) = —2¢1¢ sin?7r + 2¢y sin ?ﬂ-

We can write both (¢) and (¢o) as

s 27 s A
@) ==2ee) (T Tk ).

Since the matrix on the r.h.s. is invertible, we can obtain ¢; and ¢, as a linear
combination of ®1, ®» (the same for every tile 7, € Ts).

We will show in the next section that we can generalize this argument for any n,
and prove Theorem 1.2.

5. PROOF OF THEOREM 1.2

Let » = 2m + 1 be an odd integer, n > 3. We claim that in this case the
functions ®,(7), 1 < £ < m, are linearly independent (as real functions on T,,).
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Similarly, when n = 2m is an even integer, the functions ®,(7), 1 < £ < m, are
linearly independent (note that ®,,, = 0 in this case). Let us state this as follows:
(n—1)

Lemma 5.1 For all n, we have dim (®1,...,®,,,) = m, where m = LTJ

Proof of Theorem 1.2. By Proposition 2.3, it suffices to prove only the first
part of Conjecture 1.1. We claim that this part follows from Lemma 5.1. Indeed,
let W = (f1,..., fm), where fi is a k-convexity invariant defined in the proof of
Proposition 2.3.

Using sin27kl/n = —sin27(n — k){/n, we can rewrite the ¢-th adele invariant
as follows:
= 2k L i 2rk L
(} = — _ 1 = — — _ 1
(7o) Z(ak o, k) sin - 2 (sk €n k) sin -
k=1 k=1
- 2kl
=2 i
ka sin ——,
k=1
where a = (a1,...,an—1) € {£1}"7 1 e = (e1,... ,6n-1) € {0,1}"7}, ap =

1—2¢eg, forall 1<k <n-—1 (sothat 7, = 7). This implies that &, € W. From
Lemma 5.1 we obtain:

m=dim(®y,...,®,) <dim(fi,..., fm) =dimW <m,

and therefore (®q,...,®,,) = W. We conclude fi, € (®1,...,P,,) foralll <k <
m. The linearity of tile invariants implies that f is a tile invariant of the set T, of
ribbon tiles (cf. proof of Proposition 2.3). This completes the proof of Theorem 1.2.
O

Proof of Lemma 5.1 Suppose n = 2m + 1 is odd. Consider two n x n matrices
X = (xke), Y = (Yre), 0 < k, £ <n—1, defined as follows:

2wkl . 2kt
T,¢ = COS s Yk, = S1N .
n n

Since Z = X +4-Y is a Vandermonde matrix Z = (zx¢), 25,¢ = exp(2mik {/n), we
immediately have:

det(Z) — H (e2ﬁik/n _ e27ril/n) ;é 0.
0<k<f<n—1

Thus rk(Z) =

From yre = —Yn—#,e, Yoo = 0, and ¢ = 2, _pe, we obtain rk(Y) < m,
andrk(X) < m + 1. Since 2m + 1 = rk(Z) = rk(X +iY) < rk(X) + rk(Y"), we
immediately have rk(Y) = m. From yg; = —yg,n—¢, 1 <€ < m, we conclude that
an m X (n — 1) submatrix Y' = (z), where 1 <k <n—1,1<¢<m, has rank
tk(Y') = m. One can think of a € {£1}"~! as vectors R*~!. Since

((I)l(TC!)a sy (I)m(Ta)) = (Oé) LY

s
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and dim(a) =n — 1, we get dim (®4,...,®,,) =m.

When n = 2m, the proof follows verbatim, except that in this case ym, ¢ =
+yo¢ = £1 (depending on the parity of £). Then rk(X) = rk(Y) = m, and the
result follows. O

6. FINAL REMARKS

The main result in this paper can be viewed as an existence of a large number
of invariants for tilings by ribbon tiles. Still, the source of these invariants remains
something of a mystery, yet to be discovered. It seems that such a rich structure
of invariants is an exception rather than the rule, and these sets of tiles enjoy some
special properties others do not. In this section we shall speculate on the possible
explanations for these questions.

Let us start by saying, that although we do not pursue here the ‘rational in-
dependence’ approach (see section 4), it can in fact be used. In fact, it is quite
straightforward for prime n, while for composite n one has to employ ®4, for
each d|n and MGbius inversion. In the original version of the paper the authors
favored this idea, while at the end we chose to employ an elementary linear algebra
approach. Let us mention here that the arguments in section 5, while elementary,
were influenced by the ideas in [BF]. As the referee pointed out, one can think of
the proof as an application of the discrete Fourier transform.

We shall note here, that miraculously, for any n, the real-valued tile invariant
®, already induces a large number ¢(n) = Q(n/loglogn) of linearly independent
integer-valued ribbon tile invariants. It would be interesting to find other examples
of this phenomenon.

Let us now state the following conjecture, which seems more plausible now in
view of Theorem 1.2.

Conjecture 6.1 [P1] Define 2-flips to be transformations of tilings by T,, which
involve exactly two tiles. Then for any simply connected region T, and any two
tilings v, V' of T, there is a sequence of 2-flips which moves v into v'.

The are several reasons behind this conjecture. For n = 2 the truth of the
assertion is well known (see e.g. [T1]). For n > 3 it has been established when T
has the shape of a Young diagram [P1] or skew Young diagram [P2]. For n = 3
it was also proved by an ad hoc argument for a very special set of regions [W].
There is also a topological reason in favor of the conjecture [T2]. Perhaps the most
compelling reason,® however, is given by the following result:

Proposition 6.2 [P1] Conjecture 6.1 implies Theorem 1.2.

Indeed, assume the conjecture. Then to prove Theorem 1.2 one needs only to
check that the invariants are preserved along the 2-flips. As the structure of the
flips is known, this is straightforward. We refer to [P1] for details.

3As the referee validly points out, this is rather a reason for wishing that Conjecture 6.1 were
true. While we agree, we leave the final judgement to the reader.
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To conclude, let us speculate on how Conjecture 6.1 can be proved. The most
promising and relevant method seem the “height representation” approach, pio-
neered in this context by Thurston [T1].* In view of importance of the subject, let
us elaborate on this.

A height representation is a way of assigning a height to each site in the lattice
so that a given tiling corresponds to a surface, i.e. a function from the lattice to
the space in which the heights take their values. While the best-known height
representations are integer-valued, in general they can be two- or more-dimensional
vectors, or elements of a non-Abelian group (see [K,KK,MP,Pr,T1].

Height representations have many uses. If one desires to sample randomly from
the set of tilings of a given simply connected region, these representations can be
used to prove that this set is connected under some set of local moves [K,R], to
devise exact sampling Monte Carlo algorithms based on these moves [PW], and to
place upper limits on the mixing time of these algorithms [LRS]. They can also be
used to develop an efficient algorithm to tell whether a given region can be tiled at
all [K,R], which is interesting since this problem is NP-complete in general, even
for some simple sets of tiles (see e.g. [MR]).

For tilings, the standard approach is to define how the height changes, by small
increments, as we move along the boundary between one tile and another. In order
for the height to be a single-valued function, it must return to its original value
whenever we travel around a loop. Therefore, each type of tile induces a relation in
the height group [CL,T1], or, in the Abelian case, a linear constraint on the amount
by which the height increases or decreases as we traverse different kinds of edges.

For instance, domino tilings of the square lattice have a height representation
which can be thought of as follows. We color the lattice as a checkerboard, with
white and black squares alternating. Whenever we move along an edge of the
lattice, we change the height by +1 if the square on our left is black, and —1 if it
is white. The reader can easily check that a set of moves encircling a horizontal or
vertical domino will have a total height change of +1+14+1—-1—-1-1=0. In
fact, this is our mapping n in the case n = 2. We refer the reader to [KK,R,T1] for
other examples and details.

Now consider what happens in our case. We define a complex-valued height
function which is defined by local rules. It seem likely that our height function
is a projection onto two dimension of the height function with values in an n-
dimensional lattice [T2], but we were unable to make this observation precise. If
only we could show a “nice” behavior under 2-flips, we would be able to prove
Conjecture 6.1 and perhaps even give a linear time algorithm for checking tileability
by ribbon tiles. So far, this remains a fantasy, so we leave the reader here until
further developments.
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1. INTRODUCTION

A ribbon polyomino is a polyomino which has at most one square (i, j)
in every diagonal i — j=c. A tetromino is a polyomino with four squares.
Up to translations there are exactly 8 different ribbon tetrominoes, which
we denote 7y, ..., Tz as in Fig. 1. Let T= {1y, .., 7s}.

Now let I" be a simply connected region (a finite connected set of
squares), and let v be a tiling of I' by ribbon tetrominoes. This means that
I" is covered without intersection by parallel translations of ribbon
tetrominoes. Denote by «;(v) the number of times tetromino t; occurs in
the tiling v. While numbers @; may be different for different tilings, this is
no longer true for certain linear combinations of them.

TueoreM 1.1.  For every simply connected region I' and a tiling v of 1" we
have

a,(v)+as(v)—ag(v)—a;(v)=C{(I")
and
a;(v)+a,(v)+a;(v)+ag(v)=C,(I) (mod 2),

where C, ,(I') are functions of I" and do not depend on v.

The theorem was conjectured by the second author in [ P], where it was
proved for all row (column) convex regions. A more general version of the
conjecture for all ribbon polyominoes remains open (see [ P] for details).

! We are grateful to Jim Propp for introduction to the subject and interest in our work.
2 Supported by an NSF Postdoctoral Research Fellowship.
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FIGURE 1

While the result for row (column) convex regions was obtained by use of
the Young tableau technique, here we rely on the technique developed by
Conway and Lagarias in [CL].

It remains open whether there exists a finite set of “moves” such that by
using these moves one can start with any tiling and get to any other tiling
of a given simply connected region. Such a set of moves was proposed in
[ P] where this property was shown for Ferrer’s shapes. In case of domino
tilings and lozenges the result is known for all simply connected regions
(see [ST, T]).

It is important to note that as shown in [P] the theorem cannot
be obtained by use of the coloring arguments (see [G, CL]). Thus our
result lays in line with other “hard” results for trominoes (see [CL]),
T-tetrominoes (see [W]), skew and square tetrominoes {see [Pr]), and
rectangles (see [K]).

2. PROOF OF THE THEOREM

Observe that all tiles e T are simply connected. This fact is crucial in
the induction we present below. Our proof relies on the following lemma.

LemMA 2.1.  Let 1" be a compact simply connected region. Assume that v
is a tiling of I' by tiles t, €T. Then there exists a tile T in the tiling v such
that (I'— 1) is simply connected.

Versions of the lemma have appeared previously in [CL, Pr]. We give
here a new rigorous proof of the claim.

Proof. Denote by |v| the number of tiles in a tiling v. The result is tri-
vial for |v|=1,2. Now suppose |v|>2. We say that two regions are
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attached if the intersection of their boundaries contains an interval. Note
that two regions can be attached from either inside or outside.

Observe that if we remove any tile t €v which is attached to I, then we
obtain a region which is a union of simply connected regions. Indeed, this
follows from I'“ + 7 being connected since I is simply connected, and 7 is
attached to I (I'* is a complement of I".)

Denote by /(7) the number of tetrominoes in the smallest connected com-
ponent in I'—t, and by #(7) the number of connected components of I"'— .
We will show that there exists a tile Tev such that either n(z)=1 or
[(t)=1. This implies the lemma. Indeed, in the first case tile 7 is the desired
tile while in the second case we can simply remove a unique tile 7’ in either
of the smallest connected components and obtain the desired simply con-
nected region I'—17'.

Now, let 7 be a tile attached to 1. Let I'; be any smallest connected com-
ponent obtained after removing 7. Observe that the boundary of I'; is made
up of pieces of the boundary of I" and z. As 7 is simply connected, I'; has
a common boundary with I, otherwise the boundary of 17 lies inside the
boundary of 7. Consider any tile 7" in I'; which is attached to . Consider
removing tile 7" instead of 7. In this case, the component of I'— 7’ which
contains 7 also contains all components of {'—17 other than [, simply
because they are attached to t. We call it a big component of I'—7'.
Observe that besides the big component all the other components must be
of size smaller than /(7). If there are no components other than the big
component, then #(z")=1 and tile 7' is the one desired in the lemma. If
there exists such a component, we have /(z") </(7). Now proceed by induc-
tion until either n(t)=1 or #{7)=1.

This finishes proof of the lemma.

Let £,={A4, B> be a [ree group generated by A4, B. 4 represents the
direction from left to right and B represents the up direction.

For any region I and a point x on the boundary &I define a word e(I")
obtained by reading & counterclockwise starting from x. For example for
7, starting at the lowest left corner w(t,) = AB°ABA~?B~3. Any region has
more than one representation depending on the starting point. However, it
is easy to see that all these presentations are conjugates of each other.

Consider a subgroup G={A"* B* (AB)*>> of F,, generated by the
elements as shown, and let /= N(G) be the smallest normal subgroup of
F, which contains H. Finally, consider a quotient F,/H and its Cayley
graph representation given in Fig 2. Here we have an edge correspond to
a generator 4 or B if it belongs to the corresponding square.

LemMa 2.2. If I'is tileable by tiles T then (1) is in H.

Proof. By Lemma 2.1, it is sufficient to check that for every tile 7T we
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have m(t)e H. Indeed, if this is true, we can use induction to show that
(e H.

On the other hand, for the Cayley graph above it is easy to check that
every tile in T is mapped into a closed path on the graph. This proves the
lemma.

Now, to each simply connected region /" which is tileable by tiles T we
can assign a closed path m(I') on the Cayley graph of F,/H, although this
path is not uniquely defined. By assigning weights to each cell in Fig. 2 and
counting the winding numbers of the path of 8" with respect to these
weights we will show that the identities in the theorem hold. (cf. [CL]).

Lemma 2.3, Assign values 0 to each cell that correspond to A* and B*
and values 1 to each cell of ABAB. Then

ay(v)+as(v) —ag(v)—a;(v)

is equal to —1 times the winding number of ABAB cells.

Proaf. Use induction on the number of tiles covering /. For n=1,
check that the paths associated to tiles t, and 7, enclose two cells ABAB
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going clockwise. Similarly, paths for tiles 7, and 7, enclose two cells ABARB
going counterclockwise. Paths for tiles 7, and 75 enclose no ABAB cells.
Finally, paths for tiles 7, and 74 enclose 2 ABAB cells, one in the clockwise
direction and one the in counterclockwise direction. Thus for n=1 the
statement is true.

Assume the statement is true for n=4k. Let I" be covered by n=k +1
tiles. By Lemma 2.1, there exists a tile T such that I'—7 is a simply con-
nected region. Call it I';. Then by a suitable conjugation am(f")= (1) >w(t)
(here o is a group operation in F,). Now use the additivity property of
winding numbers and the induction assumption for the region [7,. This
proves the lemma.

Note that the first part of the Theorem 1.1 follows immediately from
Lemma 2.3. Similarly, the second part is implied by the following result.

Lemma 24,  Assign the values to each cell as shown on the Fig. 3.
Namely, assign —1 to squares (i, j} with exactly one coordinate divisible
by 4. Assign 1 to the remaining squares. Then

a(v)+ax(v)+a;(v)+ag(v) (mod 2)

is equal to } times the winding number of the region I
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Proof. The proof is similar to the proof of Lemma 2.3. It is easy to
check that the winding numbers are: 2 (mod 4) for 7,, 2 (mod 4) for 7,
0{(mod 4) for 75, 0 (mod4) for z,, 0{mod4) for 75, 0(mod 4) for 74,
2{mod 4) for 7;. 2(mod 4) for 4. The rest of the proof goes along the
lines of the proof of Lemma 2.3. We omit the details.
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