MEDITERRANEAN MATHEMATICAL COMPETITION

Problem 1

Let $S = \{1, ..., 999\}$. Determine the smallest integer m, for which there exist m two-sided cards $C_1, ..., C_m$ with the following properties:

- Every card C_i has an integer from S on one side and another integer from S on the other side.
- For all $x, y \in S$ with $x \neq y$, it is possible to select a card C_i that shows x on one of its sides and another card C_i (with $i \neq j$) that shows y on one of its sides.

Solution

The answer is m = 666.

First, we construct a set of m=666 cards with the desired property: For every triple $\{3k-2,3k-1,3k\}$ with $1 \le k \le 333$, we introduce one card with numbers 3k-2 and 3k-1, and one card with numbers 3k-2 and 3k. This altogether yields $2 \cdot 333 = 666$ cards. Now consider $x,y \in S$ with x < y. If $x,y \in \{3k-2,3k-1,3k\}$ for some k, then the card with numbers 3k-2 and 3k-1 shows x and the card with numbers 3k-2 and 3k whows y. If x and y belong to different triples, it is trivial to select two cards C_i and C_j that show x and y.

Next, we show that $m \geq 666$ must hold. Consider a card system C_1, \ldots, C_m with the desired property, and divide S into two parts:

- S₁ contains all elements of S that show up on exactly one card.
- $S_{\geq 2}$ contains all elements of S that show up on at least two cards.

Clearly $|S_1| + |S_{\geq 2}| = 999$. As every card has two sides, the *m* cards altogether show 2m numbers. This implies

$$|S_1| + 2|S_{\geq 2}| \leq 2m. \tag{1}$$

Next, observe that no card can show two numbers x and y from S_1 : In that case it would be impossible to select a card C_i that shows x and another card C_j (with $i \neq j$) that shows y. This implies

$$|S_1| \leq m. \tag{2}$$

By adding up (1) and (2), we derive

$$2 \cdot 999 = 2(|S_1| + |S_{\geq 2}|) \leq m + 2m$$

which implies the desired lower bound $m \ge 2 \cdot 999/3$.

Problem 2

- (a) Decide whether there exist two decimal digits a and b, such that every integer with decimal representation ab222...231 is divisible by 73.
- (b) Decide whether there exist two decimal digits c and d, such that every integer with decimal representation cd222...231 is divisible by 79.

Solution

- (a) Suppose that such digits a and b do exist. Then x = ab2231 and y = ab231 are divisible by 73, and so is 10y x = 79. A contradiction.
- (b) There are many ways of settling this. First, one has to guess that c=7 and d=0 might work. (Look for a small integer z, such that the decimal representation of 79z ends with the digits 31. As the unit digit of z must be 9, we try z=10n+9 and 79z=790n+711. As 79z-1=790n+710 ends with 30, we conclude that 79n+71 should end with 3, which means that 9n+1 should end with 3. Hence we try n=8 and z=89, which yields 79z=7031. Done with guessing.)

First proof that c = 7 and d = 0 works: Every integer 70222...231 can be written as

$$70 \cdot 10^m + \frac{2}{9} (10^m - 1) + 9 = \frac{1}{9} (632 \cdot 10^m + 79) = 79 \cdot (8 \cdot 10^m + 1) \frac{1}{9}.$$

Second proof that c = 7 and d = 0 works: Induction. Clearly $7031 = 89 \cdot 79$. In the inductive step, express the (m + 1)-digit number x = 7022...231 in terms of the m-digit number y = 7022...231. Since x = 10y + 79, the inductive assumption on y implies that also x is divisible by 79.

Problem 3

Let a, b, c, d be four positive real numbers. Prove that

$$\frac{(a+b+c)^2}{a^2+b^2+c^2} + \frac{(b+c+d)^3}{b^3+c^3+d^3} + \frac{(c+d+a)^4}{c^4+d^4+a^4} + \frac{(d+a+b)^5}{d^5+a^5+b^5} \le 120.$$

Solution. For $n \ge 2$, consider the function $f:(0,+\infty) \to \mathbb{R}$ defined by $f(x) = x^n$. Since $f'(x) = nx^{n-1}$ and $f''(x) = n(n-1)x^{n-2} > 0$, then f is convex and we have, on account of Jensen's inequality,

$$f\left(\frac{x+y+z}{3}\right) \le \frac{1}{3}\left(f(x) + f(y) + f(z)\right).$$

That is,

$$\frac{(x+y+z)^n}{3^n} \le \frac{1}{3} (x^n + y^n + z^n) \Leftrightarrow \frac{(x+y+z)^n}{x^n + y^n + z^n} \le 3^{n-1}.$$

We have,

• For
$$n = 2$$
, $\frac{(a+b+c)^2}{a^2+b^2+c^2} \le 3$.

• For
$$n = 3$$
, $\frac{(b+c+d)^3}{(a+c+d)^3} < 9$.

• For
$$n = 4$$
, $\frac{(c+d+a)^4}{c^4+d^4+a^4} \le 27$.

• For
$$n = 5$$
, $\frac{(d+a+b)^5}{d^5 + a^5 + b^5} \le 81$.

Adding up the preceding, yields

$$\frac{(a+b+c)^2}{a^2+b^2+c^2} + \frac{(b+c+d)^3}{b^3+c^3+d^3} + \frac{(c+d+a)^4}{c^4+d^4+a^4} + \frac{(d+a+b)^5}{d^5+a^5+b^5} \le 120.$$

Equality holds when a = b = c = d, and we are done.

Problem 4

The triangle ABC is inscribed in a circle γ of center O, with AB < AC. A point D on the angle bisector of $\angle BAC$ and a point E on segment BC satisfy OE is parallel to AD and $DE \perp BC$. Point K lies on the extension line of EB such that EA = EK. A circle pass through points A, K, D meets the extension line of BC at point P, and meets the circle of center O at point $O \neq A$. Prove that the line $O \neq A$ is tangent to the circle $O \neq A$.

Solution

Draw the segments OA,OD. Let Q' be a point on the circle γ such that $\angle Q'OD = 90^{\circ}$, and Q' lies on different sides of D with respect to line AO. We prove that Q'=Q.

Draw the segments AK,KD,AQ',Q'D. Suppose that line AD meet the circle γ again at $M \neq A$ $M \neq A$, then M is the midpoint of arc \widehat{BC} , and $MC \perp BC$. Notice that $DE \perp BC$, we have OM parallel to DE. Since OE is parallel to MD, the quadrilateral OMDE is a parallelogram, so DE=OM=OA, therefore the quadrilateral AOED is an isosceles trapezoid, then we can see that DE=AO=OQ', EK=EA=OD. Notice that $\angle DEK = \angle Q'OD = 90^\circ$, we have $\triangle DEK \simeq \triangle Q'OD$. Then $\angle OO'D + \angle DKE = \angle EDK + \angle DKE = 90^\circ$.

Moreover
$$\angle AQ'O = 90^{\circ} - \frac{1}{2} \angle AOQ' = 90^{\circ} - \frac{1}{2} (270^{\circ} - \angle AOD) = \frac{1}{2} (\angle AOD - 90^{\circ}) = \frac{1}{2} (270^{\circ} - 2AOD) = \frac{1}{2} (270^{\circ} -$$

$$= \frac{1}{2}(\angle AED - 90^{\circ}) = \frac{1}{2} \angle AEK = 90^{\circ} - \angle AKE.$$
 So,

 $\angle AQ'D + \angle AKD = (\angle AQ'O + \angle AKE) + (\angle OQ'D + \angle DKE) = 90^{\circ} + 90^{\circ} = 180^{\circ}.$

Then A,K,D,Q' are concyclic. Since $Q' \neq A$, this shows that Q'=Q.

From $\triangle DEK \simeq \triangle QOD$, we get DK=DQ, then $\angle KAD = \angle QAD$, and therefore $\angle KAB = \angle QAC$ since $\angle BAD = \angle CAD$.

Finally, by $\angle PQC = \angle BCQ - \angle KPQ = (180^{\circ} - \angle BAQ) - (180 - \angle KAQ) = \angle KAB = \angle QAC$, and the line PQ is tangent to circle γ .

