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Problems

Algebra

A1. Let Z be the set of integers. Determine all functionsf : Z Ñ Z such that, for all
integersa and b,

f p2aq � 2f pbq � f pf pa � bqq:

(South Africa)

A2. Let u1, u2, . . . , u2019 be real numbers satisfying

u1 � u2 � � � � � u2019 � 0 and u2
1 � u2

2 � � � � � u2
2019 � 1:

Let a � minpu1; u2; : : : ; u2019q and b � maxpu1; u2; : : : ; u2019q. Prove that

ab¤ �
1

2019
:

(Germany)

A3. Let n ¥ 3 be a positive integer and letpa1; a2; : : : ; anq be a strictly increasing
sequence ofn positive real numbers with sum equal to2. Let X be a subset oft 1; 2; : : : ; nu
such that the value of �

�
�
�
�
1 �

¸

i PX

ai

�
�
�
�
�

is minimised. Prove that there exists a strictly increasingsequence ofn positive real numbers
pb1; b2; : : : ; bnq with sum equal to 2 such that

¸

i PX

bi � 1:

(New Zealand)

A4. Let n ¥ 2 be a positive integer anda1, a2, . . . , an be real numbers such that

a1 � a2 � � � � � an � 0:

De�ne the set A by
A �

 
pi; j q

�
� 1 ¤ i   j ¤ n; |ai � aj | ¥ 1

(
:

Prove that, if A is not empty, then ¸

pi;j qPA

ai aj   0:

(China)

A5. Let x1, x2, . . . , xn be di�erent real numbers. Prove that

¸

1¤ i ¤ n

¹

j � i

1 � x i x j

x i � x j
�

#
0; if n is even;

1; if n is odd.

(Kazakhstan)
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A6. A polynomial Ppx; y; zqin three variables with real coe�cients satis�es the identities

Ppx; y; zq � Ppx; y; xy � zq � Ppx; zx � y; zq � Ppyz � x; y; zq:

Prove that there exists a polynomialF ptq in one variable such that

Ppx; y; zq � F px2 � y2 � z2 � xyzq:

(Russia)

A7. Let Z be the set of integers. We consider functionsf : Z Ñ Z satisfying

f
�
f px � yq � y

�
� f

�
f pxq � y

�

for all integersx and y. For such a function, we say that an integerv is f -rare if the set

X v � t x PZ : f pxq � vu

is �nite and nonempty.

(a) Prove that there exists such a functionf for which there is anf -rare integer.

(b) Prove that no such function f can have more than onef -rare integer.

(Netherlands)
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Combinatorics
C1. The in�nite sequencea0, a1, a2, . . . of (not necessarily di�erent) integers has the

following properties: 0 ¤ ai ¤ i for all integers i ¥ 0, and
�

k
a0



�

�
k
a1



� � � � �

�
k
ak



� 2k

for all integersk ¥ 0.
Prove that all integersN ¥ 0 occur in the sequence (that is, for allN ¥ 0, there existsi ¥ 0

with ai � N ).
(Netherlands)

C2. You are given a set ofn blocks, each weighing at least1; their total weight is 2n.
Prove that for every real numberr with 0 ¤ r ¤ 2n � 2 you can choose a subset of the blocks
whose total weight is at leastr but at most r � 2.

(Thailand)

C3. Let n be a positive integer. Harry hasn coins lined up on his desk, each showing
heads or tails. He repeatedly does the following operation:if there are k coins showing heads
and k ¡ 0, then he �ips the kth coin over; otherwise he stops the process. (For example, the
process starting with T HT would be T HT Ñ HHT Ñ HT T Ñ T T T, which takes three
steps.)

Letting C denote the initial con�guration (a sequence ofn H 's and T's), write `pCqfor the
number of steps needed before all coins showT. Show that this number `pCq is �nite, and
determine its average value over all2n possible initial con�gurations C.

(USA)

C4. On a �at plane in Camelot, King Arthur builds a labyrinth L consisting ofn walls,
each of which is an in�nite straight line. No two walls are parallel, and no three walls have a
common point. Merlin then paints one side of each wall entirely red and the other side entirely
blue.

At the intersection of two walls there are four corners: two diagonally opposite corners
where a red side and a blue side meet, one corner where two red sides meet, and one corner
where two blue sides meet. At each such intersection, there is a two-way door connecting the
two diagonally opposite corners at which sides of di�erent colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The
knights can walk through doors, but cannot walk through walls.

Let kpLq be the largest numberk such that, no matter how Merlin paints the labyrinth L,
Morgana can always place at leastk knights such that no two of them can ever meet. For
eachn, what are all possible values forkpLq, whereL is a labyrinth with n walls?

(Canada)

C5. On a certain social network, there are2019users, some pairs of which are friends,
where friendship is a symmetric relation. Initially, thereare1010people with1009friends each
and 1009people with1010friends each. However, the friendships are rather unstable, so events
of the following kind may happen repeatedly, one at a time:

Let A, B , and C be people such thatA is friends with both B and C, but B and C
are not friends; thenB and C become friends, butA is no longer friends with them.

Prove that, regardless of the initial friendships, there exists a sequence of such events after
which each user is friends with at most one other user.

(Croatia)
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C6. Let n ¡ 1 be an integer. Suppose we are given2n points in a plane such that
no three of them are collinear. The points are to be labelledA1, A2, . . . , A2n in some order.
We then consider the2n angles= A1A2A3, = A2A3A4, . . . , = A2n� 2A2n� 1A2n , = A2n� 1A2nA1,
= A2nA1A2. We measure each angle in the way that gives the smallest positive value (i.e.
between0� and 180� ). Prove that there exists an ordering of the given points such that the
resulting 2n angles can be separated into two groups with the sum of one group of angles equal
to the sum of the other group.

(USA)

C7. There are60 empty boxesB1, . . . , B60 in a row on a table and an unlimited supply
of pebbles. Given a positive integern, Alice and Bob play the following game.

In the �rst round, Alice takes n pebbles and distributes them into the60 boxes as she
wishes. Each subsequent round consists of two steps:

(a) Bob chooses an integerk with 1 ¤ k ¤ 59 and splits the boxes into the two groups
B1, . . . , Bk and Bk� 1, . . . , B60.

(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes
one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pebbles. Find the smallestn
such that Alice can prevent Bob from winning.

(Czech Republic)

C8. Alice has a map of Wonderland, a country consisting ofn ¥ 2 towns. For every
pair of towns, there is a narrow road going from one town to theother. One day, all the roads
are declared to be �one way� only. Alice has no information onthe direction of the roads, but
the King of Hearts has o�ered to help her. She is allowed to askhim a number of questions.
For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the
direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wonderland with at most one
outgoing road. Prove that she can always �nd out by asking at most 4n questions.

Comment. This problem could be posed with an explicit statement aboutpoints being awarded for
weaker boundscn for somec ¡ 4, in the style of IMO 2014 Problem 6.

(Thailand)

C9. For any two di�erent real numbers x and y, we de�ne Dpx; yq to be the unique
integer d satisfying 2d ¤ | x � y|   2d� 1. Given a set of realsF , and an elementx P F , we say
that the scalesof x in F are the values ofDpx; yq for y PF with x � y.

Let k be a given positive integer. Suppose that each memberx of F has at mostk di�erent
scales inF (note that these scales may depend onx). What is the maximum possible size ofF ?

(Italy)
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Geometry

G1. Let ABC be a triangle. Circle � passes throughA, meets segmentsAB and AC
again at pointsD and E respectively, and intersects segmentBC at F and G such that F lies
betweenB and G. The tangent to circleBDF at F and the tangent to circleCEG at G meet
at point T. Suppose that pointsA and T are distinct. Prove that line AT is parallel to BC.

(Nigeria)

G2. Let ABC be an acute-angled triangle and letD, E, and F be the feet of altitudes
from A, B, and C to sidesBC, CA, and AB , respectively. Denote by! B and ! C the incircles
of triangles BDF and CDE , and let these circles be tangent to segmentsDF and DE at M
and N , respectively. Let line MN meet circles! B and ! C again at P � M and Q � N ,
respectively. Prove thatMP � NQ.

(Vietnam)

G3. In triangle ABC , let A1 and B1 be two points on sidesBC and AC, and let P and Q
be two points on segmentsAA 1 and BB 1, respectively, so that lineP Q is parallel to AB . On
ray P B1, beyond B1, let P1 be a point so that = P P1C � = BAC . Similarly, on ray QA1,
beyond A1, let Q1 be a point so that = CQ1Q � = CBA. Show that points P, Q, P1, and Q1

are concyclic.
(Ukraine)

G4. Let P be a point inside triangleABC . Let AP meet BC at A1, let BP meet CA
at B1, and let CP meet AB at C1. Let A2 be the point such that A1 is the midpoint of P A2,
let B2 be the point such that B1 is the midpoint of P B2, and let C2 be the point such that
C1 is the midpoint of P C2. Prove that points A2, B2, and C2 cannot all lie strictly inside the
circumcircle of triangleABC .

(Australia)

G5. Let ABCDE be a convex pentagon withCD � DE and = EDC � 2 � = ADB .
Suppose that a pointP is located in the interior of the pentagon such thatAP � AE and
BP � BC. Prove that P lies on the diagonalCE if and only if areapBCD q � areapADE q �
areapABD q � areapABP q.

(Hungary)

G6. Let I be the incentre of acute-angled triangleABC . Let the incircle meetBC, CA,
and AB at D, E, and F , respectively. Let lineEF intersect the circumcircle of the triangle
at P and Q, such that F lies betweenE and P. Prove that = DP A � = AQD � = QIP .

(Slovakia)

G7. The incircle ! of acute-angled scalene triangleABC has centreI and meets sidesBC,
CA, and AB at D, E, and F , respectively. The line throughD perpendicular toEF meets!
again at R. Line AR meets! again at P. The circumcircles of trianglesP CE and P BF meet
again at Q � P. Prove that lines DI and P Q meet on the external bisector of angleBAC .

(India)

G8. Let L be the set of all lines in the plane and letf be a function that assigns to each
line ` P L a point f p̀ q on `. Suppose that for any pointX , and for any three lines`1, `2, `3

passing throughX , the points f p̀ 1q, f p̀ 2q, f p̀ 3q and X lie on a circle.
Prove that there is a unique pointP such that f p̀ q � P for any line ` passing throughP.

(Australia)
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Number Theory

N1. Find all pairs pm; nq of positive integers satisfying the equation

p2n � 1qp2n � 2qp2n � 4q � � � p2n � 2n� 1q � m!

(El Salvador)

N2. Find all triples pa; b; cq of positive integers such thata3 � b3 � c3 � p abcq2.
(Nigeria)

N3. We say that a setS of integers isrootiful if, for any positive integer n and any
a0; a1; : : : ; an PS, all integer roots of the polynomiala0 � a1x � � � � � anxn are also inS. Find
all rootiful sets of integers that contain all numbers of theform 2a � 2b for positive integers
a and b.

(Czech Republic)

N4. Let Z¡ 0 be the set of positive integers. A positive integer constantC is given. Find
all functions f : Z¡ 0 Ñ Z¡ 0 such that, for all positive integersa and b satisfying a � b ¡ C,

a � f pbq |a2 � b f paq:

(Croatia)

N5. Let a be a positive integer. We say that a positive integerb is a-good if
� an

b

�
� 1 is

divisible by an � 1 for all positive integersn with an ¥ b. Supposeb is a positive integer such
that b is a-good, but b� 2 is not a-good. Prove thatb� 1 is prime.

(Netherlands)

N6. Let H �
 X

i
?

2
\

: i PZ¡ 0

(
� t 1; 2; 4; 5; 7; : : :u, and let n be a positive integer. Prove

that there exists a constantC such that, if A € t 1; 2; : : : ; nu satis�es |A| ¥ C
?

n, then there
exist a; bPA such that a � bPH . (Here Z¡ 0 is the set of positive integers, andtzudenotes the
greatest integer less than or equal toz.)

(Brazil)

N7. Prove that there is a constantc ¡ 0 and in�nitely many positive integers n with the
following property: there are in�nitely many positive integers that cannot be expressed as the
sum of fewer thancn logpnq pairwise coprimenth powers.

(Canada)

N8. Let a and b be two positive integers. Prove that the integer

a2 �
R

4a2

b

V

is not a square. (Hererzs denotes the least integer greater than or equal toz.)
(Russia)
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Solutions

Algebra

A1. Let Z be the set of integers. Determine all functionsf : Z Ñ Z such that, for all
integersa and b,

f p2aq � 2f pbq � f pf pa � bqq: (1)

(South Africa)

Answer: The solutions aref pnq � 0 and f pnq � 2n � K for any constant K PZ.

Common remarks. Most solutions to this problem �rst prove that f must be linear, before
determining all linear functions satisfying (1).

Solution 1. Substituting a � 0; b � n � 1 givesf pf pn � 1qq � f p0q � 2f pn � 1q. Substituting
a � 1; b � n givesf pf pn � 1qq � f p2q � 2f pnq.

In particular, f p0q � 2f pn � 1q � f p2q � 2f pnq, and sof pn � 1q � f pnq � 1
2 pf p2q � f p0qq.

Thus f pn � 1q � f pnqmust be constant. Sincef is de�ned only on Z, this tells us that f must
be a linear function; write f pnq � Mn � K for arbitrary constants M and K , and we need only
determine which choices ofM and K work.

Now, (1) becomes

2Ma � K � 2pMb � K q � M pM pa � bq � K q � K

which we may rearrange to form

pM � 2q
�
M pa � bq � K

�
� 0:

Thus, either M � 2, or M pa� bq � K � 0 for all values ofa� b. In particular, the only possible
solutions aref pnq � 0 and f pnq � 2n � K for any constantK PZ, and these are easily seen to
work.

Solution 2. Let K � f p0q.
First, put a � 0 in (1); this gives

f pf pbqq � 2f pbq � K (2)

for all bPZ.
Now put b � 0 in (1); this gives

f p2aq � 2K � f pf paqq � 2f paq � K;

where the second equality follows from (2). Consequently,

f p2aq � 2f paq � K (3)

for all a PZ.
Substituting (2) and (3) into ( 1), we obtain

f p2aq � 2f pbq � f pf pa � bqq

2f paq � K � 2f pbq � 2f pa � bq � K

f paq � f pbq � f pa � bq � K:
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Thus, if we set gpnq � f pnq � K we see thatg satis�es the Cauchy equationgpa � bq �
gpaq� gpbq. The solution to the Cauchy equation overZ is well-known; indeed, it may be proven
by an easy induction thatgpnq � Mn for eachn PZ, whereM � gp1q is a constant.

Therefore,f pnq � Mn � K , and we may proceed as in Solution 1.

Comment 1. Instead of deriving (3) by substituting b � 0 into ( 1), we could instead have observed
that the right hand side of (1) is symmetric in a and b, and thus

f p2aq � 2f pbq � f p2bq � 2f paq:

Thus, f p2aq � 2f paq � f p2bq � 2f pbq for any a; b P Z, and in particular f p2aq � 2f paq is constant.
Setting a � 0 shows that this constant is equal to� K , and so we obtain (3).

Comment 2. Some solutions initially prove that f pf pnqq is linear (sometimes via proving that
f pf pnqq � 3K satis�es the Cauchy equation). However, one can immediately prove that f is linear by
substituting something of the form f pf pnqq � M 1n � K 1 into ( 2).
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A2. Let u1, u2, . . . , u2019 be real numbers satisfying

u1 � u2 � � � � � u2019 � 0 and u2
1 � u2

2 � � � � � u2
2019 � 1:

Let a � minpu1; u2; : : : ; u2019q and b � maxpu1; u2; : : : ; u2019q. Prove that

ab¤ �
1

2019
:

(Germany)

Solution 1. Notice �rst that b ¡ 0 and a   0. Indeed, since
2019°

i � 1
u2

i � 1, the variables ui

cannot be all zero, and, since
2019°

i � 1
ui � 0, the nonzero elements cannot be all positive or all

negative.
Let P � t i : ui ¡ 0uand N � t i : ui ¤ 0ube the indices of positive and nonpositive elements

in the sequence, and letp � | P| and n � | N | be the sizes of these sets; thenp � n � 2019. By

the condition
2019°

i � 1
ui � 0 we have0 �

2019°

i � 1
ui �

°

i PP
ui �

°

i PN
|ui |, so

¸

i PP

ui �
¸

i PN

|ui |: p1q

After this preparation, estimate the sum of squares of the positive and nonpositive elements
as follows:

¸

i PP

u2
i ¤

¸

i PP

bui � b
¸

i PP

ui � b
¸

i PN

|ui | ¤ b
¸

i PN

|a| � � nab; (2)

¸

i PN

u2
i ¤

¸

i PN

|a| � |ui | � | a|
¸

i PN

|ui | � | a|
¸

i PP

ui ¤ | a|
¸

i PP

b � � pab: (3)

The sum of these estimates is

1 �
2019¸

i � 1

u2
i �

¸

i PP

u2
i �

¸

i PN

u2
i ¤ �p p � nqab� � 2019ab;

that proves ab¤ � 1
2019.

Comment 1. After observing
°

i PP
u2

i ¤ b
°

i PP
ui and

°

i PN
u2

i ¤ | a|
°

i PP
|ui |, instead ofp2; 3qan alternative

continuation is

|ab| ¥

°

i PP
u2

i

°

i PP
ui

�

°

i PN
u2

i

°

i PN
|ui |

�

°

i PP
u2

i

� °

i PP
ui

	 2

¸

i PN

u2
i ¥

1
p

¸

i PN

u2
i

(by the AM-QM or the Cauchy�Schwarz inequality) and similar ly |ab| ¥ 1
n

°

i PP
u2

i .

Solution 2. As in the previous solution we conclude thata   0 and b ¡ 0.
For every indexi , the number ui is a convex combination ofa and b, so

ui � x i a � yi b with some weights0 ¤ x i ; yi ¤ 1, with x i � yi � 1.

Let X �
2019°

i � 1
x i and Y �

2019°

i � 1
yi . From 0 �

2019°

i � 1
ui �

2019°

i � 1
px i a � yi bq � �| a|X � bY, we get

|a|X � bY: p4q
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From
2019°

i � 1
px i � yi q � 2019we have

X � Y � 2019: p5q

The system of linear equationsp4; 5q has a unique solution:

X �
2019b
|a| � b

; Y �
2019|a|
|a| � b

:

Now apply the following estimate to everyu2
i in their sum:

u2
i � x2

i a2 � 2x i yi ab� y2
i b2 ¤ x i a2 � yi b2;

we obtain that

1 �
2019¸

i � 1

u2
i ¤

2019¸

i � 1

px i a2 � yi b2q � Xa2 � Y b2 �
2019b
|a| � b

|a|2 �
2019|a|
|a| � b

b2 � 2019|a|b � � 2019ab:

Hence,ab¤
� 1

2019
.

Comment 2. The idea behind Solution 2 is the following thought. Supposewe �x a   0 and b ¡ 0,
�x

°
ui � 0 and vary the ui to achieve the maximum value of

°
u2

i . Considering varying any two of
the ui while preserving their sum: the maximum value of

°
u2

i is achieved when those two are as far
apart as possible, so all but at most one of theui are equal toa or b. Considering a weighted version of
the problem, we see the maximum (with fractional numbers ofui having each value) is achieved when
2019b
|a| � b

of them are a and
2019|a|
|a| � b

are b.

In fact, this happens in the solution: the numberui is replaced byx i copies ofa and yi copies ofb.
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A3. Let n ¥ 3 be a positive integer and letpa1; a2; : : : ; anq be a strictly increasing
sequence ofn positive real numbers with sum equal to2. Let X be a subset oft 1; 2; : : : ; nu
such that the value of �

�
�
�
�
1 �

¸

i PX

ai

�
�
�
�
�

is minimised. Prove that there exists a strictly increasingsequence ofn positive real numbers
pb1; b2; : : : ; bnq with sum equal to 2 such that

¸

i PX

bi � 1:

(New Zealand)

Common remarks. In all solutions, we say an index setX is pai q-minimising if it has
the property in the problem for the given sequencepai q. Write X c for the complement ofX ,
and ra; bs for the interval of integersk such that a ¤ k ¤ b. Note that

�
�
�
�
�
1 �

¸

i PX

ai

�
�
�
�
�

�

�
�
�
�
�
1 �

¸

i PX c

ai

�
�
�
�
�
;

so we may exchangeX and X c where convenient. Let

� �
¸

i PX c

ai �
¸

i PX

ai

and note that X is pai q-minimising if and only if it minimises |� |, and that
°

i PX ai � 1 if and
only if � � 0.

In some solutions, a scaling process is used. If we have a strictly increasing sequence of
positive real numbersci (typically obtained by perturbing the ai in some way) such that

¸

i PX

ci �
¸

i PX c

ci ;

then we may put bi � 2ci {
° n

j � 1 cj . So it su�ces to construct such a sequence without needing
its sum to be2.

The solutions below show various possible approaches to theproblem. Solutions 1 and 2
perturb a few of theai to form the bi (with scaling in the case of Solution 1, without scaling in
the case of Solution 2). Solutions 3 and 4 look at properties of the index setX . Solution 3 then
perturbs many of theai to form the bi , together with scaling. Rather than using such perturba-
tions, Solution 4 constructs a sequencepbi qdirectly from the set X with the required properties.
Solution 4 can be used to give a complete description of setsX that are pai q-minimising for
somepai q.

Solution 1. Without loss of generality, assume
°

i PX ai ¤ 1, and we may assume strict
inequality as otherwisebi � ai works. Also,X clearly cannot be empty.

If n P X , add � to an , producing a sequence ofci with
°

i PX ci �
°

i PX c ci , and then scale
as described above to make the sum equal to2. Otherwise, there is somek with k P X and
k � 1 PX c. Let � � ak� 1 � ak .

� If � ¡ � , add � to ak and then scale.

� If �   � , then consideringX Y t k � 1u z tku contradicts X being pai q-minimising.

� If � � � , choose anyj � k; k � 1 (possible sincen ¥ 3), and any � less than the least
of a1 and all the di�erences ai � 1 � ai . If j P X then add � � � to ak and � to aj , then
scale; otherwise, add� to ak and � {2 to ak� 1, and subtract � {2 from aj , then scale.
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Solution 2. This is similar to Solution 1, but without scaling. As in that solution, without
loss of generality, assume

°
i PX ai   1.

Suppose there exists1 ¤ j ¤ n � 1 such that j P X but j � 1 P X c. Then aj � 1 � aj ¥ � ,
because otherwise consideringX Y t j � 1u z tj u contradicts X being pai q-minimising.

If aj � 1 � aj ¡ � , put

bi �

$
'&

'%

aj � � {2; if i � j ;

aj � 1 � � {2; if i � j � 1;

ai ; otherwise.

If aj � 1 � aj � � , choose any� less than the least of� {2, a1 and all the di�erencesai � 1 � ai .
If |X | ¥ 2, choosek PX with k � j , and put

bi �

$
'''&

'''%

aj � � {2 � �; if i � j ;

aj � 1 � � {2; if i � j � 1;

ak � �; if i � k;

ai ; otherwise.

Otherwise, |X c| ¥ 2, so choosek PX c with k � j � 1, and put

bi �

$
'''&

'''%

aj � � {2; if i � j ;

aj � 1 � � {2 � �; if i � j � 1;

ak � �; if i � k;

ai ; otherwise.

If there is no 1 ¤ j ¤ n such that j P X but j � 1 P X c, there must be some1   k ¤ n
such that X � r k; ns (certainly X cannot be empty). We must havea1 ¡ � , as otherwise
consideringX Y t 1u contradicts X being pai q-minimising. Now put

bi �

$
'&

'%

a1 � � {2; if i � 1;

an � � {2; if i � n;

ai ; otherwise.

Solution 3. Without loss of generality, assume
°

i PX ai ¤ 1, so � ¥ 0. If � � 0 we can take
bi � ai , so now assume that� ¡ 0.

Suppose that there is somek ¤ n such that |X X rk; ns| ¡ | X c X rk; ns|. If we choose the
largest suchk then |X X rk; ns| � | X c X rk; ns| � 1. We can now �nd the required sequencepbi q
by starting with ci � ai for i   k and ci � ai � � for i ¥ k, and then scaling as described
above.

If no such k exists, we will derive a contradiction. For eachi PX we can choosei   j i ¤ n
in such a way that j i P X c and all the j i are di�erent. (For instance, note that necessarily
n P X c and now just work downwards; each time ani P X is considered, letj i be the least
element ofX c greater than i and not yet used.) LetY be the (possibly empty) subset ofr1; ns
consisting of those elements inX c that are also not one of thej i . In any case

� �
¸

i PX

paj i � ai q �
¸

j PY

aj

where each term in the sums is positive. Sincen ¥ 3 the total number of terms above is at
least two. Take a least such term and its corresponding indexi and consider the setZ which
we form fromX by removing i and addingj i (if it is a term of the �rst type) or just by adding j
if it is a term of the second type. The corresponding expression of � for Z has the sign of its
least term changed, meaning that the sum is still nonnegative but strictly less than � , which
contradicts X being pai q-minimising.



16 Bath � UK, 11th�22nd July 2019

Solution 4. This uses some similar ideas to Solution 3, but describes properties of the index
setsX that are su�cient to describe a corresponding sequencepbi qthat is not derived from pai q.

Note that, for two subsetsX , Y of r1; ns, the following are equivalent:

� |X X r i; ns| ¤ |Y X ri; ns| for all 1 ¤ i ¤ n;

� Y is at least as large asX , and for all 1 ¤ j ¤ | Y |, the j th largest element ofY is at least
as big as thej th largest element ofX ;

� there is an injective functionf : X Ñ Y such that f piq ¥ i for all i PX .

If these equivalent conditions are satis�ed, we writeX ¨ Y. We write X   Y if X ¨ Y and
X � Y .

Note that if X   Y, then
°

i PX ai  
°

i PY ai (the second description above makes this clear).
We claim �rst that, if n ¥ 3 and X   X c, then there existsY with X   Y   X c. Indeed,

as |X | ¤ | X c|, we have|X c| ¥ 2. De�ne Y to consist of the largest element ofX c, together
with all but the largest element ofX ; it is clear both that Y is distinct from X and X c, and
that X ¨ Y ¨ X c, which is what we need.

But, in this situation, we have

¸

i PX

ai  
¸

i PY

ai  
¸

i PX c

ai and 1 �
¸

i PX

ai � �

�

1 �
¸

i PX c

ai

�

;

so |1 �
°

i PY ai |   | 1 �
°

i PX ai |.
Hence if X is pai q-minimising, we do not haveX   X c, and similarly we do not have

X c   X .
Considering the �rst description above, this immediately implies the following Claim.

Claim. There exist 1 ¤ k; ` ¤ n such that |X X rk; ns| ¡ n� k� 1
2 and |X X r`; ns|   n� ` � 1

2 .
We now construct our sequencepbi q using this claim. Let k and ` be the greatest values

satisfying the claim, and without loss of generality suppose k � n and `   n (otherwise
replaceX by its complement). As ` is maximal, n � ` is even and|X X r`; ns| � n� `

2 . For
su�ciently small positive � , we take

bi � i� �

$
'&

'%

0; if i   `;

�; if ` ¤ i ¤ n � 1;

; if i � n.

Let M �
°

i PX i . So we require

M� �
�

n � `
2

� 1



� �  � 1

and
npn � 1q

2
� � p n � `q� �  � 2:

These give

 � 2� �
�

npn � 1q
2

� 2M



�

and for su�ciently small positive � , solving for  and � gives 0   �    (since � � 0 gives
� � 1{pn� `

2 � 1q and  � 2� ), so the sequence is strictly increasing and has positive values.
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Comment. This solution also shows that the claim gives a complete description of sets X that are
pai q-minimising for somepai q.

Another approach to proving the claim is as follows. We provethe existence of̀ with the claimed
property; the existence ofk follows by considering the complement ofX .

Suppose, for a contradiction, that for all 1 ¤ ` ¤ n we have |X X r`; ns| ¥
P

n� ` � 1
2

T
. If we ever

have strict inequality, consider the setY � t n; n � 2; n � 4; : : :u. This set may be obtained fromX by
possibly removing some elements and reducing the values of others. (To see this, consider the largest
k P X z Y , if any; remove it, and replace it by the greatestj P X c with j   k, if any. Such steps
preserve the given inequality, and are possible until we reach the setY .) So if we had strict inequality,
and soX � Y , we have ¸

i PX

ai ¡
¸

i PY

ai ¡ 1;

contradicting X beingpai q-minimising. Otherwise, we always have equality, meaning that X � Y . But
now considerZ � Y Y t n � 1u z tnu. Sincen ¥ 3, we have

¸

i PY

ai ¡
¸

i PZ

ai ¡
¸

i PY c

ai � 2 �
¸

i PY

ai ;

and soZ contradicts X being pai q-minimising.
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A4. Let n ¥ 2 be a positive integer anda1, a2, . . . , an be real numbers such that

a1 � a2 � � � � � an � 0:

De�ne the set A by
A �

 
pi; j q

�
� 1 ¤ i   j ¤ n; |ai � aj | ¥ 1

(
:

Prove that, if A is not empty, then ¸

pi;j qPA

ai aj   0:

(China)

Solution 1. De�ne sets B and C by

B �
 
pi; j q

�
� 1 ¤ i; j ¤ n; |ai � aj | ¥ 1

(
;

C �
 
pi; j q

�
� 1 ¤ i; j ¤ n; |ai � aj |   1

(
:

We have
¸

pi;j qPA

ai aj �
1
2

¸

pi;j qPB

ai aj

¸

pi;j qPB

ai aj �
¸

1¤ i;j ¤ n

ai aj �
¸

pi;j qRB

ai aj � 0 �
¸

pi;j qPC

ai aj :

So it su�ces to show that if A (and henceB) are nonempty, then
¸

pi;j qPC

ai aj ¡ 0:

Partition the indices into setsP, Q, R, and S such that

P �
 
i

�
� ai ¤ � 1

(
R �

 
i

�
� 0   ai   1

(

Q �
 
i

�
� � 1   ai ¤ 0

(
S �

 
i

�
� 1 ¤ ai

(
:

Then
¸

pi;j qPC

ai aj ¥
¸

i PP Y S

a2
i �

¸

i;j PQY R

ai aj �
¸

i PP Y S

a2
i �

�
¸

i PQY R

ai

� 2

¥ 0:

The �rst inequality holds because all of the positive terms in the RHS are also in the LHS,
and all of the negative terms in the LHS are also in the RHS. The�rst inequality attains
equality only if both sides have the same negative terms, which implies |ai � aj |   1 whenever
i; j P Q Y R; the second inequality attains equality only ifP � S � ? . But then we would
have A � ? . SoA nonempty implies that the inequality holds strictly, as required.

Solution 2. ConsiderP; Q; R; S as in Solution 1, set

p �
¸

i PP

ai ; q �
¸

i PQ

ai ; r �
¸

i PR

ai ; s �
¸

i PS

ai ;

and let
t � �

¸

pi;j qPA; a i aj ¥ 0

ai aj ; t � �
¸

pi;j qPA; a i aj ¤ 0

ai aj :

We know that p � q � r � s � 0, and we need to prove thatt � � t �   0.
Notice that t � ¤ p2{2� pq� rs � s2{2 (with equality only if p � s � 0), and t � ¤ pr � ps� qs

(with equality only if there do not exist i PQ and j PR with aj � ai ¡ 1). Therefore,

t � � t � ¤
p2 � s2

2
� pq� rs � pr � ps � qs �

pp � q � r � sq2

2
�

pq � r q2

2
� �

pq � r q2

2
¤ 0:

If A is not empty and p � s � 0, then there must exist i P Q; j P R with |ai � aj | ¡ 1, and
hence the earlier equality conditions cannot both occur.
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Comment. The RHS of the original inequality cannot be replaced with any constant c   0 (indepen-
dent of n). Indeed, take

a1 � �
n

n � 2
; a2 � � � � � an� 1 �

1
n � 2

; an �
2

n � 2
:

Then
¸

pi;j qPA

ai aj � �
2n

pn � 2q2 , which converges to zero asn Ñ 8 .
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A5. Let x1, x2, . . . , xn be di�erent real numbers. Prove that

¸

1¤ i ¤ n

¹

j � i

1 � x i x j

x i � x j
�

#
0; if n is even;

1; if n is odd.

(Kazakhstan)

Common remarks. Let Gpx1; x2; : : : ; xnqbe the function of then variablesx1; x2; : : : ; xn on
the LHS of the required identity.

Solution 1 (Lagrange interpolation). Since both sides of the identity are rational functions,
it su�ces to prove it when all x i R t� 1u. De�ne

f ptq �
n¹

i � 1

p1 � x i tq;

and note that

f px i q � p 1 � x2
i q

¹

j � i

1 � x i x j :

Using the nodes� 1; � 1; x1; : : : ; xn , the Lagrange interpolation formula gives us the following
expression forf :

n¸

i � 1

f px i q
px � 1qpx � 1q

px i � 1qpx i � 1q

¹

j � i

x � x j

x i � x j
� f p1q

x � 1
1 � 1

¹

1¤ i ¤ n

x � x i

1 � x i
� f p� 1q

x � 1
� 1 � 1

¹

1¤ i ¤ n

x � x i

1 � x i
:

The coe�cient of tn� 1 in f ptq is 0, sincef has degreen. The coe�cient of tn� 1 in the above
expression off is

0 �
¸

1¤ i ¤ n

f px i q¹

j � i

px i � x j q � px i � 1qpx i � 1q
�

f p1q
¹

1¤ j ¤ n

p1 � x j q � p1 � 1q
�

f p� 1q
¹

1¤ j ¤ n

p� 1 � x j q � p� 1 � 1q

� � Gpx1; : : : ; xnq �
1
2

�
p� 1qn� 1

2
:

Comment. The main di�culty is to think of including the two extra nodes � 1 and evaluating the
coe�cient tn� 1 in f when n � 1 is higher than the degree off .

It is possible to solve the problem using Lagrange interpolation on the nodesx1; : : : ; xn , but the
de�nition of the polynomial being interpolated should depend on the parity of n. For n even, consider
the polynomial

Ppxq �
¹

i

p1 � xx i q �
¹

i

px � x i q:

Lagrange interpolation shows thatG is the coe�cient of xn� 1 in the polynomial Ppxq{p1 � x2q, i.e. 0.
For n odd, consider the polynomial

Ppxq �
¹

i

p1 � xx i q � x
¹

i

px � x i q:

Now G is the coe�cient of xn� 1 in Ppxq{p1 � x2q, which is 1.
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Solution 2 (using symmetries). Observe that G is symmetric in the variablesx1; : : : ; xn .
De�ne V �

±
i   j px j � x i q and let F � G � V, which is a polynomial in x1; : : : ; xn . Since

V is alternating, F is also alternating (meaning that, if we exchange any two variables, then
F changes sign). Every alternating polynomial inn variablesx1; : : : ; xn vanishes when any two
variablesx i , x j (i � j ) are equal, and is therefore divisible byx i � x j for each pairi � j . Since
these linear factors are pairwise coprime,V divides F exactly as a polynomial. ThusG is in
fact a symmetric polynomial inx1; : : : ; xn .

Now observe that if allx i are nonzero and we setyi � 1{x i for i � 1; : : : ; n, then we have

1 � yi yj

yi � yj
�

1 � x i x j

x i � x j
;

so that

G
�

1
x1

; : : : ;
1
xn



� Gpx1; : : : ; xnq:

By continuity this is an identity of rational functions. Since G is a polynomial, it implies that
G is constant. (If G were not constant, we could choose a pointpc1; : : : ; cnq with all ci � 0,
such that Gpc1; : : : ; cnq � Gp0; : : : ; 0q; then gpxq :� Gpc1x; : : : ; cnxq would be a nonconstant

polynomial in the variable x, so |gpxq| Ñ 8 as x Ñ 8 , hence
�
�
�G

�
y
c1

; : : : ; y
cn

	 �
�
� Ñ 8 as y Ñ 0,

which is impossible sinceG is a polynomial.)
We may identify the constant by substituting x i � � i , where� is a primitive nth root of unity

in C. In the i th term in the sum in the original expression we have a factor1� � i � n� i � 0, unless
i � n or 2i � n. In the case wheren is odd, the only exceptional term isi � n, which gives
the value

±
j � n

1� � j

1� � j � 1. When n is even, we also have the term
±

j �
n
2

1� � j

� 1� � j � p� 1qn� 1 � � 1,

so the sum is0.

Comment. If we write out an explicit expression for F ,

F �
¸

1¤ i ¤ n

p� 1qn� i
¹

j   k
j;k � i

pxk � x j q
¹

j � i

p1 � x i x j q

then to prove directly that F vanishes whenx i � x j for some i � j , but no other pair of variables
coincide, we have to check carefully that the two nonzero terms in this sum cancel.

A di�erent and slightly less convenient way to identify the constant is to substitute x i � 1 � �� i ,
and throw away terms that are Op� q as � Ñ 0.

Solution 3 (breaking symmetry). ConsiderG as a rational function inxn with coe�cients
that are rational functions in the other variables. We can write

Gpx1; : : : ; xnq �
Ppxnq

±
j � n pxn � x j q

wherePpxnqis a polynomial inxn whose coe�cients are rational functions in the other variables.
We then have

Ppxnq �

�
¹

j � n

p1 � xnx j q

�

�
¸

1¤ i ¤ n� 1

px i xn � 1q

�
¹

j � i;n

pxn � x j q

� �
¹

j � i;n

1 � x i x j

x i � x j

�

:

For any k � n, substituting xn � xk (which is valid when manipulating the numeratorPpxnq
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on its own), we have (noting thatxn � x j vanishes whenj � k)

Ppxkq �

�
¹

j � n

p1 � xkx j q

�

�
¸

1¤ i ¤ n� 1

px i xk � 1q

�
¹

j � i;n

pxk � x j q

� �
¹

j � i;n

1 � x i x j

x i � x j

�

�

�
¹

j � n

p1 � xkx j q

�

�
�
x2

k � 1
�

�
¹

j � k;n

pxk � x j q

� �
¹

j � k;n

1 � xkx j

xk � x j

�

�

�
¹

j � n

p1 � xkx j q

�

�
�
x2

k � 1
�

�
¹

j � k;n

p1 � xkx j q

�

� 0:

Note that P is a polynomial in xn of degreen � 1. For any choice of distinct real numbers
x1, . . . , xn� 1, P has those real numbers as its roots, and the denominator has the same degree
and the same roots. This shows thatG is constant in xn , for any �xed choice of distinct
x1, : : :, xn� 1. Now, G is symmetric in all n variables, so it must be also be constant in each of
the other variables. G is therefore a constant that depends only onn. The constant may be
identi�ed as in the previous solution.

Comment. There is also a solution in which we recognise the expressionfor F in the comment after
Solution 2 as the �nal column expansion of a certain matrix obtained by modifying the �nal column
of the Vandermonde matrix. The task is then to show that the matrix can be modi�ed by column
operations either to make the �nal column identically zero (in the case wheren even) or to recover the
Vandermonde matrix (in the case wheren odd). The polynomial P{p1 � x2q is helpful for this task,
where P is the parity-dependent polynomial de�ned in the comment after Solution 1.
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A6. A polynomial Ppx; y; zqin three variables with real coe�cients satis�es the identities

Ppx; y; zq � Ppx; y; xy � zq � Ppx; zx � y; zq � Ppyz � x; y; zq: p�q

Prove that there exists a polynomialF ptq in one variable such that

Ppx; y; zq � F px2 � y2 � z2 � xyzq:

(Russia)

Common remarks. The polynomial x2 � y2 � z2 � xyz satis�es the condition (� ), so every
polynomial of the formF px2 � y2 � z2 � xyzqdoes satisfy (� ). We will use without comment the
fact that two polynomials have the same coe�cients if and only if they are equal as functions.

Solution 1. In the �rst two steps, we deal with any polynomialPpx; y; zqsatisfyingPpx; y; zq �
Ppx; y; xy � zq. Call such a polynomialweakly symmetric, and call a polynomial satisfying the
full conditions in the problem symmetric.

Step 1. We start with the description of weakly symmetric polynomials. We claim that they
are exactly the polynomials inx, y, and zpxy � zq. Clearly, all such polynomials are weakly
symmetric. For the converse statement, considerP1px; y; zq:� Ppx; y; z � 1

2xyq, which satis�es
P1px; y; zq � P1px; y; � zqand is therefore a polynomial inx; y, and z2. This means thatP is a
polynomial in x, y, and pz � 1

2xyq2 � � zpxy � zq � 1
4x2y2, and therefore a polynomial inx, y,

and zpxy � zq.

Step 2. Suppose thatP is weakly symmetric. Consider the monomials inPpx; y; zq of highest
total degree. Our aim is to show that in each such monomial�x aybzc we havea; b¥ c. Consider
the expansion

Ppx; y; zq �
¸

i;j;k

� ijk x i yj
�
zpxy � zq

� k
: p1:1q

The maximal total degree of a summand inp1:1q is m � maxi;j;k : � ijk � 0pi � j � 3kq. Now, for

any i; j; k satisfying i � j � 3k � m the summand� i;j;k x i yj
�
zpxy � zq

� k
has leading term of

the form �x i � kyj � kzk . No other nonzero summand inp1:1qmay have a term of this form in its
expansion, hence this term does not cancel in the whole sum. Therefore,degP � m, and the
leading component ofP is exactly

¸

i � j � 3k� m

� i;j;k x i � kyj � kzk ;

and each summand in this sum satis�es the condition claimed above.

Step 3. We now prove the problem statement by induction onm � degP. For m � 0 the
claim is trivial. Consider now a symmetric polynomialP with degP ¡ 0. By Step 2, each
of its monomials �x aybzc of the highest total degree satis�esa; b ¥ c. Applying other weak
symmetries, we obtaina; c ¥ b and b; c¥ a; therefore,P has a unique leading monomial of the
form � pxyzqc. The polynomial P0px; y; zq � Ppx; y; zq � �

�
xyz � x2 � y2 � z2

� c
has smaller total

degree. SinceP0 is symmetric, it is representable as a polynomial function of xyz � x2 � y2 � z2.
Then P is also of this form, completing the inductive step.

Comment. We could alternatively carry out Step 1 by an induction on n � degz P, in a manner
similar to Step 3. If n � 0, the statement holds. Assume thatn ¡ 0 and check the leading component
of P with respect to z:

Ppx; y; zq � Qnpx; yqzn � Rpx; y; zq;
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where degz R   n. After the change z ÞÑxy � z, the leading component becomesQnpx; yqp� zqn ; on
the other hand, it should remain the same. Hencen is even. Now consider the polynomial

P0px; y; zq � Ppx; y; zq � Qnpx; yq �
�
zpz � xyq

� n{2 :

It is also weakly symmetric, anddegz P0   n. By the inductive hypothesis, it has the form P0px; y; zq �
S

�
x; y; zpz � xyq

�
. Hence the polynomial

Ppx; y; zq � S
�
x; y; zpxy � zq

�
� Qnpx; yq

�
zpz � xyq

� n{2

also has this form. This completes the inductive step.

Solution 2. We will rely on the well-known identity

cos2 u � cos2 v � cos2 w � 2 cosu cosv cosw � 1 � 0 wheneveru � v � w � 0. p2:1q

Claim 1. The polynomial Ppx; y; zq is constant on the surface

S �
 
p2 cosu; 2 cosv;2 coswq: u � v � w � 0

(
:

Proof. Notice that for x � 2 cosu, y � 2 cosv, z � 2 cosw, the Vieta jumps x ÞÑyz � x,
y ÞÑzx� y, z ÞÑxy � z in p�qreplacepu; v; wqby pv� w; � v; wq, pu; w� u; � wqand p� u; v; u� vq,
respectively. For example, for the �rst type of jump we have

yz � x � 4 cosv cosw � 2 cosu � 2 cospv � wq � 2 cospv � wq � 2 cosu � 2 cospv � wq:

De�ne Gpu; v; wq � Pp2 cosu; 2 cosv;2 coswq. For u � v � w � 0, the jumps give

Gpu; v; wq � Gpv � w; � v; wq � Gpw � v; � v; pv � wq � p� vqq � Gp� u � 2v; � v; 2v � wq

� Gpu � 2v; v; w � 2vq:

By induction,
Gpu; v; wq � G

�
u � 2kv; v; w � 2kv

�
pk PZq: p2:2q

Similarly,
Gpu; v; wq � G

�
u; v � 2`u; w � 2`u

�
p̀ PZq: p2:3q

And, of course, we have

Gpu; v; wq � G
�
u � 2p�; v � 2q�; w � 2pp � qq�

�
pp; qPZq: p2:4q

Take two nonzero real numbersu; v such that u, v and � are linearly independent overQ. By
combining (2.2�2.4), we can see thatG is constant on a dense subset of the planeu� v � w � 0.
By continuity, G is constant on the entire plane and thereforeP is constant onS . l

Claim 2. The polynomial Tpx; y; zq � x2 � y2 � z2 � xyz � 4 divides Ppx; y; zq � Pp2; 2; 2q.
Proof. By dividing P by T with remainders, there exist some polynomialsRpx; y; zq, Apy; zq
and Bpy; zq such that

Ppx; y; zq � Pp2; 2; 2q � Tpx; y; zq �Rpx; y; zq � Apy; zqx � Bpy; zq: p2:5q

On the surfaceS the LHS of (2.5) is zero by Claim 1 (sincep2; 2; 2q PS ) and T � 0 by (2.1).
Hence,Apy; zqx � Bpy; zq vanishes onS .

Notice that for every y � 2 cosv and z � 2 cosw with �
3   v; w   2�

3 , there are two
distinct values of x such that px; y; zq PS , namely x1 � 2 cospv � wq (which is negative), and
x2 � 2 cospv � wq (which is positive). This can happen only ifApy; zq � Bpy; zq � 0. Hence,
Apy; zq � Bpy; zq � 0 for |y|   1, |z|   1. The polynomialsA and B vanish on an open set, so
A and B are both the zero polynomial. l
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The quotient pPpx; y; zq � Pp2; 2; 2qq{Tpx; y; zq is a polynomial of lower degree thanP and
it also satis�es (� ). The problem statement can now be proven by induction on thedegree ofP.

Comment. In the proof of p2:2q and p2:3q we used two consecutive Vieta jumps; in fact fromp�q we
used onlyPpx; y; xy � zq � Ppx; zx � y; zq � Ppyz � x; y; zq.

Solution 3 (using algebraic geometry, just for interest). Let Q � x2 � y2 � z2 � xyz
and let t P C. Checking whereQ � t; BQ

Bx ; BQ
By and BQ

Bz vanish simultaneously, we �nd that the
surfaceQ � t is smooth except for the casest � 0, when the only singular point isp0; 0; 0q,
and t � 4, when the four pointsp� 2; � 2; � 2q that satisfy xyz � 8 are the only singular points.
The singular points are the �xed points of the group� of polynomial automorphisms ofC3

generated by the threeVieta involutions

�1 : px; y; zq ÞÑ px; y; xy � zq; �2 : px; y; zq ÞÑ px; xz � y; zq; �3 : px; y; zq ÞÑ pyz � x; y; zq:

� acts on each surfaceVt : Q � t � 0. If Q � t were reducible then the surfaceQ � t would
contain a curve of singular points. ThereforeQ � t is irreducible in Crx; y; zs. (One can also
prove algebraically thatQ � t is irreducible, for example by checking that its discriminant as a
quadratic polynomial in x is not a square inCry; zs, and likewise for the other two variables.)
In the following solution we will only use the algebraic surfaceV0.

Let U be the � -orbit of p3; 3; 3q. Consider �3 � �2, which leavesz invariant. For each �xed
value of z, �3 � �2 acts linearly onpx; yq by the matrix

M z :�
�

z2 � 1 � z
z � 1



:

The reverse composition�2 � �3 acts byM � 1
z � M adj

z . Note det M z � 1 and tr M z � z2 � 2. When
z does not lie in the real intervalr� 2; 2s, the eigenvalues ofM z do not have absolute value1,
so every orbit of the group generated byM z on C2 z tp0; 0quis unbounded. For example, �xing
z � 3 we �nd p3F2k� 1; 3F2k� 1; 3q PU for every k P Z, wherepFnqnPZ is the Fibonacci sequence
with F0 � 0, F1 � 1.

Now we may start at any point p3F2k� 1; 3F2k� 1; 3q and iteratively apply �1 � �2 to generate
another in�nite sequence of distinct points ofU, Zariski dense in the hyperbola cut out ofV0 by
the planex � 3F2k� 1 � 0. (The plane x � a cuts out an irreducible conic whena R t� 2; 0; 2u.)
Thus the Zariski closureU of U contains in�nitely many distinct algebraic curves inV0. Since
V0 is an irreducible surface this implies thatU � V0.

For any polynomial P satisfying (� ), we haveP � Pp3; 3; 3q � 0 at each point ofU. Since
U � V0, P � Pp3; 3; 3q vanishes onV0. Then Hilbert's Nullstellensatz and the irreducibility
of Q imply that P � Pp3; 3; 3q is divisible by Q. Now pP � Pp3; 3; 3qq{Q is a polynomial also
satisfying (� ), so we may complete the proof by an induction on the total degree, as in the other
solutions.

Comment. We remark that Solution 2 used a trigonometric parametrisation of a real component of
V4; in contrast V0 is birationally equivalent to the projective spaceP2 under the maps

px; y; zq Ñ px : y : zq; pa : b : cq Ñ
�

a2 � b2 � c2

bc
;
a2 � b2 � c2

ac
;
a2 � b2 � c2

ab



:

The set U in Solution 3 is contained in Z3 so it is nowhere dense inV0 in the classical topology.

Comment (background to the problem). A triple pa; b; cq P Z3 is called a Markov triple if
a2 � b2 � c2 � 3abc, and an integer that occurs as a coordinate of some Markov triple is called a
Markov number. (The spelling Marko� is also frequent.) Markov triples arose in A. Markov's work
in the 1870s on the reduction theory of inde�nite binary quadratic forms. For every Markov triple,
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p3a;3b;3cq lies on Q � 0. It is well known that all nonzero Markov triples can be generated from
p1; 1; 1q by sequences of Vieta involutions, which are the substitutions described in equation (� ) in the
problem statement. There has been recent work by number theorists about the properties of Markov
numbers (see for example Jean Bourgain, Alex Gamburd and Peter Sarnak, Marko� triples and strong
approximation, Comptes Rendus Math. 345, no. 2, 131�135 (2016), arXiv:1505.06411). Each Markov
number occurs in in�nitely many triples, but a famous old open problem is the unicity conjecture,
which asserts that each Markov number occurs in only one Markov triple (up to permutations and sign
changes) as the largest coordinate in absolute value in thattriple. It is a standard fact in the modern
literature on Markov numbers that the Markov triples are Zariski dense in the Markov surface. Proving
this is the main work of Solution 3. Algebraic geometry is de�nitely o�-syllabus for the IMO, and one
still has to work a bit to prove the Zariski density. On the other hand the approaches of Solutions
1 and 2 are elementary and only use tools expected to be known by IMO contestants. Therefore we
do not think that the existence of a solution using algebraicgeometry necessarily makes this problem
unsuitable for the IMO.
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A7. Let Z be the set of integers. We consider functionsf : Z Ñ Z satisfying

f
�
f px � yq � y

�
� f

�
f pxq � y

�

for all integersx and y. For such a function, we say that an integerv is f -rare if the set

X v � t x PZ : f pxq � vu

is �nite and nonempty.

(a) Prove that there exists such a functionf for which there is anf -rare integer.

(b) Prove that no such function f can have more than onef -rare integer.

(Netherlands)

Solution 1. a) Let f be the function wheref p0q � 0 and f pxq is the largest power of2
dividing 2x for x � 0. The integer 0 is evidently f -rare, so it remains to verify the functional
equation.

Sincef p2xq � 2f pxq for all x, it su�ces to verify the functional equation when at least one
of x and y is odd (the casex � y � 0 being trivial). If y is odd, then we have

f pf px � yq � yq � 2 � f pf pxq � yq

since all the values attained byf are even. If, on the other hand,x is odd andy is even, then
we already have

f px � yq � 2 � f pxq

from which the functional equation follows immediately.

b) An easy inductive argument (substitutingx � ky for x) shows that

f pf px � kyq � yq � f pf pxq � yq (� )

for all integers x, y and k. If v is an f -rare integer anda is the least element ofX v, then by
substituting y � a � f pxq in the above, we see that

f px � k � pa � f pxqqq � f pxq � a PX v

for all integersx and k, so that in particular

f px � k � pa � f pxqqq ¥f pxq

for all integers x and k, by assumption ona. This says that on the (possibly degenerate)
arithmetic progression throughx with common di�erence a � f pxq, the function f attains its
minimal value at x.

Repeating the same argument witha replaced by the greatest elementb of X v shows that

f px � k � pb� f pxqq ¤ f pxq

for all integersx and k. Combined with the above inequality, we therefore have

f px � k � pa � f pxqq � pb� f pxqqq � f pxq (: )

for all integersx and k.
Thus if f pxq � a; b, then the setX f pxq contains a nondegenerate arithmetic progression, so

is in�nite. So the only possiblef -rare integers area and b.
In particular, the f -rare integer v we started with must be one ofa or b, so that f pvq �

f paq � f pbq � v. This means that there cannot be any otherf -rare integersv1, as they would
on the one hand have to be eithera or b, and on the other would have to satisfyf pv1q � v1.
Thus v is the uniquef -rare integer.
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Comment 1. If f is a solution to the functional equation, then so too is any conjugate of f by a
translation, i.e. any function x ÞÑf px � nq � n for an integer n. Thus in proving part (b), one is free
to consider only functions f for which 0 is f -rare, as in the following solution.

Solution 2, part (b) only. Supposev is f -rare, and let a and b be the least and greatest
elements ofX v, respectively. Substitutingx � v and y � a � v into the equation shows that

f pvq � v � a PX v

and in particular f pvq ¥ v. Repeating the same argument withx � v and y � b� v shows that
f pvq ¤ v, and hencef pvq � v.

Suppose now thatv1 is a secondf -rare integer. We may assume thatv � 0 (see Comment 1).
We've seen thatf pv1q � v1; we claim that in fact f pkv1q � v1 for all positive integersk. This
gives a contradiction unlessv1 � v � 0.

This claim is proved by induction onk. Supposing it to be true fork, we substitutey � kv1

and x � 0 into the functional equation to yield

f ppk � 1qv1q � f pf p0q � kv1q � f pkv1q � v1

using that f p0q � 0. This completes the induction, and hence the proof.

Comment 2. There are many functionsf satisfying the functional equation for which there is an
f -rare integer. For instance, one may generalise the construction in part (a) of Solution 1 by taking
a sequence1 � a0; a1; a2; : : : of positive integers with eachai a proper divisor of ai � 1 and choosing
arbitrary functions f i : pZ{ai Zq z t0u Ñ ai Z z t0u from the nonzero residue classes moduloai to the
nonzero multiples ofai . One then de�nes a function f : Z Ñ Z by

f pxq:�

#
f i � 1px mod ai � 1q; if ai | x but ai � 1 - x;

0; if x � 0.

If one writes vpxq for the largest i such that ai | x (with vp0q � 8 ), then it is easy to verify the
functional equation for f separately in the two casesvpyq ¡ vpxq and vpxq ¥ vpyq. Hence this f
satis�es the functional equation and 0 is an f -rare integer.

Comment 3. In fact, if v is an f -rare integer for an f satisfying the functional equation, then its
�bre X v � t vu must be a singleton. We may assume without loss of generalitythat v � 0. We've
already seen in Solution 1 that0 is either the greatest or least element ofX 0; replacing f with the
function x ÞÑ � f p� xq if necessary, we may assume that0 is the least element ofX 0. We write b for
the largest element ofX 0, supposing for contradiction that b ¡ 0, and write N � p 2bq!.

It now follows from (� ) that we have

f pf pNbq � bq � f pf p0q � bq � f pbq � 0;

from which we see thatf pNbq � b PX 0 „ r 0; bs. It follows that f pNbq P r� b;0q, since by construction
Nb R X v . Now it follows that pf pNbq � 0q � pf pNbq � bq is a divisor of N , so from (: ) we see that
f pNbq � f p0q � 0. This yields the desired contradiction.
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Combinatorics

C1. The in�nite sequencea0, a1, a2, . . . of (not necessarily di�erent) integers has the
following properties: 0 ¤ ai ¤ i for all integers i ¥ 0, and

�
k
a0



�

�
k
a1



� � � � �

�
k
ak



� 2k

for all integersk ¥ 0.
Prove that all integersN ¥ 0 occur in the sequence (that is, for allN ¥ 0, there existsi ¥ 0

with ai � N ).
(Netherlands)

Solution. We prove by induction onk that every initial segment of the sequence,a0; a1; : : : ; ak ,
consists of the following elements (counted with multiplicity, and not necessarily in order), for
some` ¥ 0 with 2` ¤ k � 1:

0; 1; : : : ; ` � 1; 0; 1; : : : ; k � `:

For k � 0 we havea0 � 0, which is of this form. Now suppose that fork � m the elements
a0; a1; : : : ; am are 0; 0; 1; 1; 2; 2; : : : ; ` � 1; ` � 1; `; ` � 1; : : : ; m � ` � 1; m � ` for some` with
0 ¤ 2` ¤ m � 1. It is given that

�
m � 1

a0



�

�
m � 1

a1



� � � � �

�
m � 1

am



�

�
m � 1
am� 1



� 2m� 1;

which becomes
��

m � 1
0



�

�
m � 1

1



� � � � �

�
m � 1
` � 1





�
��

m � 1
0



�

�
m � 1

1



� � � � �

�
m � 1
m � `




�

�
m � 1
am� 1



� 2m� 1;

or, using
� m� 1

i

�
�

� m� 1
m� 1� i

�
, that

��
m � 1

0



�

�
m � 1

1



� � � � �

�
m � 1
` � 1





�
��

m � 1
m � 1



�

�
m � 1

m



� � � � �

�
m � 1
` � 1




�

�
m � 1
am� 1



� 2m� 1:

On the other hand, it is well known that
�

m � 1
0



�

�
m � 1

1



� � � � �

�
m � 1
m � 1



� 2m� 1;

and so, by subtracting, we get �
m � 1
am� 1



�

�
m � 1

`



:

From this, using the fact that the binomial coe�cients
� m� 1

i

�
are increasing fori ¤ m� 1

2 and
decreasing fori ¥ m� 1

2 , we conclude that eitheram� 1 � ` or am� 1 � m � 1 � `. In either case,
a0; a1; : : : ; am� 1 is again of the claimed form, which concludes the induction.

As a result of this description, any integerN ¥ 0 appears as a term of the sequenceai for
some0 ¤ i ¤ 2N .
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C2. You are given a set ofn blocks, each weighing at least1; their total weight is 2n.
Prove that for every real numberr with 0 ¤ r ¤ 2n � 2 you can choose a subset of the blocks
whose total weight is at leastr but at most r � 2.

(Thailand)

Solution 1. We prove the following more general statement by induction on n.

Claim. Suppose that you haven blocks, each of weight at least1, and of total weight s ¤ 2n.
Then for every r with � 2 ¤ r ¤ s, you can choose some of the blocks whose total weight is at
least r but at most r � 2.

Proof. The base casen � 1 is trivial. To prove the inductive step, let x be the largest
block weight. Clearly, x ¥ s{n, so s � x ¤ n� 1

n s ¤ 2pn � 1q. Hence, if we exclude a
block of weight x, we can apply the inductive hypothesis to show the claim holds (for this
smaller set) for any � 2 ¤ r ¤ s � x. Adding the excluded block to each of those combi-
nations, we see that the claim also holds whenx � 2 ¤ r ¤ s. So if x � 2 ¤ s � x, then
we have covered the whole intervalr� 2; ss. But each block weight is at least1, so we have
x � 2 ¤ ps � p n � 1qq � 2 � s � p 2n � p n � 1qq ¤s � p s � p n � 1qq ¤s � x, as desired. l

Comment. Instead of inducting on sets of blocks with total weights ¤ 2n, we could instead prove the
result only for s � 2n. We would then need to modify the inductive step to scale up the block weights
before applying the induction hypothesis.

Solution 2. Let x1; : : : ; xn be the weights of the blocks in weakly increasing order. Consider
the set S of sums of the form

°
j PJ x j for a subsetJ „ t 1; 2; : : : ; nu. We want to prove that the

meshof S � i.e. the largest distance between two adjacent elements � is at most 2.
For 0 ¤ k ¤ n, let Sk denote the set of sums of the form

°
i PJ x i for a subsetJ „ t 1; 2; : : : ; ku.

We will show by induction on k that the mesh ofSk is at most 2.
The base casek � 0 is trivial (as S0 � t 0u). For k ¡ 0 we have

Sk � Sk� 1 Y pxk � Sk� 1q

(where pxk � Sk� 1q denotest xk � s : s P Sk� 1u), so it su�ces to prove that xk ¤
°

j   k x j � 2.
But if this were not the case, we would havex l ¡

°
j   k x j � 2 ¥ k � 1 for all l ¥ k, and hence

2n �
n¸

j � 1

x j ¡ p n � 1 � kqpk � 1q � k � 1:

This rearranges ton ¡ kpn� 1� kq, which is false for1 ¤ k ¤ n, giving the desired contradiction.
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C3. Let n be a positive integer. Harry hasn coins lined up on his desk, each showing
heads or tails. He repeatedly does the following operation:if there are k coins showing heads
and k ¡ 0, then he �ips the kth coin over; otherwise he stops the process. (For example, the
process starting with T HT would be T HT Ñ HHT Ñ HT T Ñ T T T, which takes three
steps.)

Letting C denote the initial con�guration (a sequence ofn H 's and T's), write `pCqfor the
number of steps needed before all coins showT. Show that this number `pCq is �nite, and
determine its average value over all2n possible initial con�gurations C.

(USA)

Answer: The average is1
4npn � 1q.

Common remarks. Throughout all these solutions, we letEpnq denote the desired average
value.

Solution 1. We represent the problem using a directed graphGn whose vertices are the
length-n strings of H 's and T's. The graph features an edge from each string to its successor
(except for T T � � � T T, which has no successor). We will also write�H � T and �T � H .

The graph G0 consists of a single vertex: the empty string. The main claimis that Gn can
be described explicitly in terms ofGn� 1:

� We take two copies,X and Y, of Gn� 1.

� In X , we take each string ofn � 1 coins and just append aT to it. In symbols, we replace
s1 � � � sn� 1 with s1 � � � sn� 1T.

� In Y, we take each string ofn � 1 coins, �ip every coin, reverse the order, and append
an H to it. In symbols, we replaces1 � � � sn� 1 with �sn� 1�sn� 2 � � � �s1H .

� Finally, we add one new edge fromY to X , namely HH � � � HHH Ñ HH � � � HHT .

We depict G4 below, in a way which indicates this recursive construction:

Y

X

HHT H HT HH T HT H T T HH

HHHH HT T H T T T H T HHH

HT T T T HT T HT HT T HHT

T T T T HHT T HHHT T T HT

We prove the claim inductively. Firstly, X is correct as a subgraph ofGn , as the operation on
coins is unchanged by an extraT at the end: if s1 � � � sn� 1 is sent to t1 � � � tn� 1, then s1 � � � sn� 1T
is sent to t1 � � � tn� 1T.

Next, Y is also correct as a subgraph ofGn , as if s1 � � � sn� 1 has k occurrences ofH , then
�sn� 1 � � � �s1H has pn � 1 � kq � 1 � n � k occurrences ofH , and thus (provided that k ¡ 0), if
s1 � � � sn� 1 is sent to t1 � � � tn� 1, then �sn� 1 � � � �s1H is sent to �tn� 1 � � � �t1H .

Finally, the one edge fromY to X is correct, as the operation does sendHH � � � HHH to
HH � � � HHT .
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To �nish, note that the sequences inX take an average ofEpn � 1q steps to terminate,
whereas the sequences inY take an average ofEpn � 1q steps to reachHH � � � H and then an
additional n steps to terminate. Therefore, we have

Epnq �
1
2

pEpn � 1q � p Epn � 1q � nqq � Epn � 1q �
n
2

:

We haveEp0q � 0 from our description ofG0. Thus, by induction, we haveEpnq � 1
2p1� � � � �

nq � 1
4npn � 1q, which in particular is �nite.

Solution 2. We consider what happens with con�gurations depending on the coins they start
and end with.

� If a con�guration starts with H , the last n � 1 coins follow the given rules, as if they were
all the coins, until they are all T, then the �rst coin is turned over.

� If a con�guration ends with T, the last coin will never be turned over, and the �rst
n � 1 coins follow the given rules, as if they were all the coins.

� If a con�guration starts with T and ends withH , the middle n � 2 coins follow the given
rules, as if they were all the coins, until they are allT. After that, there are 2n � 1 more
steps: �rst coins 1, 2, . . . , n � 1 are turned over in that order, then coinsn, n � 1, . . . , 1
are turned over in that order.

As this covers all con�gurations, and the number of steps is clearly �nite for 0 or 1 coins, it
follows by induction onn that the number of steps is always �nite.

We de�ne EAB pnq, whereA and B are each one ofH , T or � , to be the average number of
steps over con�gurations of lengthn restricted to those that start with A, if A is not � , and
that end with B , if B is not � (so � represents �eitherH or T�). The above observations tell us
that, for n ¥ 2:

� EH � pnq � Epn � 1q � 1.

� E � T pnq � Epn � 1q.

� EHT pnq � Epn � 2q � 1 (by using both the observations forH � and for � T).

� ET H pnq � Epn � 2q � 2n � 1.

Now EH � pnq � 1
2pEHH pnq � EHT pnqq, so EHH pnq � 2Epn � 1q � Epn � 2q � 1. Similarly,

ET T pnq � 2Epn � 1q � Epn � 2q � 1. So

Epnq �
1
4

pEHT pnq � EHH pnq � ET T pnq � ET H pnqq � Epn � 1q �
n
2

:

We haveEp0q � 0 and Ep1q � 1
2, so by induction onn we haveEpnq � 1

4npn � 1q.

Solution 3. Let H i be the number of heads in positions1 to i inclusive (soHn is the total
number of heads), and letI i be 1 if the i th coin is a head,0 otherwise. Consider the function

tpiq � I i � 2pmint i; H nu � H i q:

We claim that tpiq is the total number of times coini is turned over (which implies that the
process terminates). Certainlytpiq � 0 when all coins are tails, andtpiqis always a nonnegative
integer, so it su�ces to show that when thekth coin is turned over (wherek � Hn ), tpkq goes
down by 1 and all the other tpiq are unchanged. We show this by splitting into cases:
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� If i   k, I i and H i are unchanged, andmint i; H nu � i both before and after the coin �ip,
so tpiq is unchanged.

� If i ¡ k, mint i; H nu � Hn both before and after the coin �ip, and bothHn and H i change
by the same amount, sotpiq is unchanged.

� If i � k and the coin is heads,I i goes down by1, as do bothmint i; H nu � Hn and H i ; so
tpiq goes down by1.

� If i � k and the coin is tails, I i goes up by1, mint i; H nu � i is unchanged andH i goes
up by 1; so tpiq goes down by1.

We now need to compute the average value of

n¸

i � 1

tpiq �
n¸

i � 1

I i � 2
n¸

i � 1

mint i; H nu � 2
n¸

i � 1

H i :

The average value of the �rst term is1
2n, and that of the third term is � 1

2npn � 1q. To compute
the second term, we sum over choices for the total number of heads, and then over the possible
values ofi , getting

21� n
n¸

j � 0

�
n
j


 n¸

i � 1

mint i; j u � 21� n
n¸

j � 0

�
n
j


 �
nj �

�
j
2




:

Now, in terms of trinomial coe�cients,

n¸

j � 0

j
�

n
j



�

n¸

j � 1

�
n

n � j; j � 1; 1



� n

n� 1¸

j � 0

�
n � 1

j



� 2n� 1n

and
n¸

j � 0

�
j
2


�
n
j



�

n¸

j � 2

�
n

n � j; j � 2; 2



�

�
n
2


 n� 2¸

j � 0

�
n � 2

j



� 2n� 2

�
n
2



:

So the second term above is

21� n

�
2n� 1n2 � 2n� 2

�
n
2




� n2 �

npn � 1q
4

;

and the required average is

Epnq �
1
2

n � n2 �
npn � 1q

4
�

1
2

npn � 1q �
npn � 1q

4
:

Solution 4. Harry has built a Turing machine to �ip the coins for him. The machine is
initially positioned at the kth coin, where there arek heads (and the position before the �rst
coin is considered to be the0th coin). The machine then moves according to the following rules,
stopping when it reaches the position before the �rst coin: if the coin at its current position
is H , it �ips the coin and moves to the previous coin, while if the coin at its current position
is T, it �ips the coin and moves to the next position.

Consider the maximal sequences of consecutive moves in the same direction. Suppose the
machine hasa consecutive moves to the next coin, before a move to the previous coin. After
those a moves, thea coins �ipped in those moves are all heads, as is the coin the machine
is now at, so at least the nexta � 1 moves will all be moves to the previous coin. Similarly,
a consecutive moves to the previous coin are followed by at least a � 1 consecutive moves to
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the next coin. There cannot be more thann consecutive moves in the same direction, so this
proves that the process terminates (with a move from the �rstcoin to the position before the
�rst coin).

Thus we have a (possibly empty) sequencea1   � � �   at ¤ n giving the lengths of maximal
sequences of consecutive moves in the same direction, wherethe �nal at moves must be moves
to the previous coin, ending before the �rst coin. We claim there is a bijection between initial
con�gurations of the coins and such sequences. This gives

Epnq �
1
2

p1 � 2 � � � � � nq �
npn � 1q

4

as required, since eachi with 1 ¤ i ¤ n will appear in half of the sequences, and will contributei
to the number of moves when it does.

To see the bijection, consider following the sequence of moves backwards, starting with the
machine just before the �rst coin and all coins showing tails. This certainly determines a unique
con�guration of coins that could possibly correspond to thegiven sequence. Furthermore, every
coin �ipped as part of the aj consecutive moves is also �ipped as part of all subsequent sequences
of ak consecutive moves, for allk ¡ j , meaning that, as we follow the moves backwards, each
coin is always in the correct state when �ipped to result in a move in the required direction.
(Alternatively, since there are2n possible con�gurations of coins and2n possible such ascending
sequences, the fact that the sequence of moves determines atmost one con�guration of coins,
and thus that there is an injection from con�gurations of coins to such ascending sequences, is
su�cient for it to be a bijection, without needing to show that coins are in the right state as
we move backwards.)

Solution 5. We explicitly describe what happens with an arbitrary sequence C of n coins.
Suppose thatC contain k heads at positions1 ¤ c1   c2   � � �   ck ¤ n.

Let i be the minimal index such thatci ¥ k. Then the �rst few steps will consist of turning
over the kth , pk � 1qth , . . . , ci

th , pci � 1qth , pci � 2qth , . . . , kth coins in this order. After that we
get a con�guration with k � 1 heads at the same positions as in the initial one, except forci .
This part of the process takes2pci � kq � 1 steps.

After that, the process acts similarly; by induction on the number of heads we deduce that
the process ends. Moreover, if theci disappear in orderci 1 ; : : : ; ci k , the whole process takes

`pCq �
k¸

j � 1

�
2pci j � p k � 1 � j qq � 1

�
� 2

k¸

j � 1

cj � 2
k¸

j � 1

pk � 1 � j q � k � 2
k¸

j � 1

cj � k2

steps.
Now let us �nd the total value Sk of `pCq over all

� n
k

�
con�gurations with exactly k heads.

To sum up the above expression over those, notice that each number 1 ¤ i ¤ n appears ascj

exactly
� n� 1

k� 1

�
times. Thus

Sk � 2
�

n � 1
k � 1


 n¸

i � 1

i �
�

n
k



k2 � 2

pn � 1q � � � pn � k � 1q
pk � 1q!

�
npn � 1q

2
�

n � � � pn � k � 1q
k!

k2

�
npn � 1q � � � pn � k � 1q

pk � 1q!

�
pn � 1q � k

�
� npn � 1q

�
n � 2
k � 1



� n

�
n � 1
k � 1



:

Therefore, the total value of`pCq over all con�gurations is

n¸

k� 1

Sk � npn � 1q
n¸

k� 1

�
n � 2
k � 1



� n

n¸

k� 1

�
n � 1
k � 1



� npn � 1q2n� 2 � n2n� 1 � 2n npn � 1q

4
:

Hence the required average isEpnq � npn� 1q
4 .
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C4. On a �at plane in Camelot, King Arthur builds a labyrinth L consisting ofn walls,
each of which is an in�nite straight line. No two walls are parallel, and no three walls have a
common point. Merlin then paints one side of each wall entirely red and the other side entirely
blue.

At the intersection of two walls there are four corners: two diagonally opposite corners
where a red side and a blue side meet, one corner where two red sides meet, and one corner
where two blue sides meet. At each such intersection, there is a two-way door connecting the
two diagonally opposite corners at which sides of di�erent colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The
knights can walk through doors, but cannot walk through walls.

Let kpLq be the largest numberk such that, no matter how Merlin paints the labyrinth L,
Morgana can always place at leastk knights such that no two of them can ever meet. For
eachn, what are all possible values forkpLq, whereL is a labyrinth with n walls?

(Canada)

Answer: The only possible value ofk is k � n � 1, no matter what shape the labyrinth is.

Solution 1. First we show by induction that the n walls divide the plane into
� n� 1

2

�
� 1 regions.

The claim is true for n � 0 as, when there are no walls, the plane forms a single region. When
placing thenth wall, it intersects each of then � 1 other walls exactly once and hence splits each
of n of the regions formed by those other walls into two regions. By the induction hypothesis,
this yields

�� n
2

�
� 1

�
� n �

� n� 1
2

�
� 1 regions, proving the claim.

Now let G be the graph with vertices given by the
� n� 1

2

�
� 1 regions, and with two regions

connected by an edge if there is a door between them.
We now show that no matter how Merlin paints then walls, Morgana can place at least

n � 1 knights. No matter how the walls are painted, there are exactly
� n

2

�
intersection points,

each of which corresponds to a single edge inG. Consider adding the edges ofG sequentially and
note that each edge reduces the number of connected components by at most one. Therefore
the number of connected components of G is at least

� n� 1
2

�
� 1�

� n
2

�
� n � 1. If Morgana places

a knight in regions corresponding to di�erent connected components ofG, then no two knights
can ever meet.

Now we give a construction showing that, no matter what shapethe labyrinth is, Merlin
can colour it such that there are exactlyn � 1 connected components, allowing Morgana to
place at mostn � 1 knights.

First, we choose a coordinate system on the labyrinth so thatnone of the walls run due
north-south, or due east-west. We then have Merlin paint thewest face of each wall red, and
the east face of each wall blue. We label the regions according to how many walls the region is
on the east side of: the labels are integers between0 and n.

We claim that, for eachi , the regions labelledi are connected by doors. First, we note that
for eachi with 0 ¤ i ¤ n there is a unique region labelledi which is unbounded to the north.

Now, consider a knight placed in some region with labeli , and ask them to walk north
(moving east or west by following the walls on the northern sides of regions, as needed). This
knight will never get stuck: each region is convex, and so, ifit is bounded to the north, it has
a single northernmost vertex with a door northwards to another region with label i .

Eventually it will reach a region which is unbounded to the north, which will be the unique
such region with labeli . Hence every region with labeli is connected to this particular region,
and so all regions with labeli are connected to each other.

As a result, there are exactlyn � 1 connected components, and Morgana can place at most
n � 1 knights.
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Comment. Variations on this argument exist: some of them capture moreinformation, and some of
them capture less information, about the connected components according to this system of numbering.

For example, it can be shown that the unbounded regions are numbered0; 1; : : : ; n� 1; n; n � 1; : : : ; 1
as one cycles around them, that the regions labelled0 and n are the only regions in their connected
components, and that each other connected component forms asingle chain running between the two
unbounded ones. It is also possible to argue that the regionsare acyclic without revealing much about
their structure.

Solution 2. We give another description of a strategy for Merlin to paintthe walls so that
Morgana can place no more thann � 1 knights.

Merlin starts by building a labyrinth of n walls of his own design. He places walls in turn
with increasing positive gradients, placing each so far to the right that all intersection points
of previously-placed lines lie to the left of it. He paints each in such a way that blue is on the
left and red is on the right.

For example, here is a possible sequence of four such lines`1; `2; `3; `4:

`1

`2

`3

`4

We say that a region is �on the right� if it hasx-coordinate unbounded above (note that if
we only have one wall, then both regions are on the right). We claim inductively that, after
placing n lines, there aren � 1 connected components in the resulting labyrinth, each of which
contains exactly one region on the right. This is certainly true after placing 0 lines, as then
there is only one region (and hence one connected component)and it is on the right.

When placing thenth line, it then cuts every one of then � 1 previously placed lines, and
since it is to the right of all intersection points, the regions it cuts are exactly then regions on
the right.

bl
ue

re
d

blue

red

blue

red

blue

red

1

2

3

4

2

3

4

5

The addition of this line leaves all previous connected components with exactly one region on
the right, and creates a new connected component containingexactly one region, and that
region is also on the right. As a result, by induction, this particular labyrinth will have n � 1
connected components.

Having built this labyrinth, Merlin then moves the walls one-by-one (by a sequence of
continuous translations and rotations of lines) into the proper position of the given labyrinth,
in such a way that no two lines ever become parallel.
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The only time the con�guration is changed is when one wall is moved through an intersection
point of two others:

blue

red

red
blue

bl
ue

re
d

2

1 3

3

4

2
3

blue

red

red
blue

bl
ue
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d

2
3

1

2

2 4

3

Note that all moves really do switch between two con�gurations like this: all sets of three lines
have this colour con�guration initially, and the rules on rotations mean they are preserved (in
particular, we cannot create three lines creating a triangle with three red edges inwards, or
three blue edges inwards).

However, as can be seen, such a move preserves the number of connected components, so in
the painting this provides for Arthur's actual labyrinth, M organa can still only place at most
n � 1 knights.

Comment. While these constructions are super�cially distinct, they in fact result in the same colour-
ings for any particular labyrinth. In fact, using the methods of Solution 2, it is possible to show that
these are the only colourings that result in exactlyn � 1 connected components.
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C5. On a certain social network, there are2019users, some pairs of which are friends,
where friendship is a symmetric relation. Initially, thereare1010people with1009friends each
and 1009people with1010friends each. However, the friendships are rather unstable, so events
of the following kind may happen repeatedly, one at a time:

Let A, B , and C be people such thatA is friends with both B and C, but B and C
are not friends; thenB and C become friends, butA is no longer friends with them.

Prove that, regardless of the initial friendships, there exists a sequence of such events after
which each user is friends with at most one other user.

(Croatia)

Common remarks. The problem has an obvious rephrasing in terms of graph theory. One
is given a graphG with 2019vertices, 1010of which have degree1009and 1009of which have
degree1010. One is allowed to perform operations onG of the following kind:

Suppose that vertexA is adjacent to two distinct verticesB and C which are not
adjacent to each other. Then one may remove the edgesAB and AC from G and
add the edgeBC into G.

Call such an operation arefriending. One wants to prove that, via a sequence of such refriend-
ings, one can reach a graph which is a disjoint union of singleedges and vertices.

All of the solutions presented below will use this reformulation.

Solution 1. Note that the given graph is connected, since the total degree of any two vertices
is at least 2018and hence they are either adjacent or have at least one neighbour in common.
Hence the given graph satis�es the following condition:

Every connected component ofG with at least three vertices is not complete
and has a vertex of odd degree.

(1)

We will show that if a graph G satis�es condition (1) and has a vertex of degree at least2, then
there is a refriending onG that preserves condition (1). Since refriendings decrease the total
number of edges ofG, by using a sequence of such refriendings, we must reach a graph G with
maximal degree at most1, so we are done.

A
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Pick a vertex A of degree at least2 in a connected componentG1 of G. Since no component
of G with at least three vertices is complete we may assume that not all of the neighbours
of A are adjacent to one another. (For example, pick a maximal complete subgraphK of G1.
Some vertexA of K has a neighbour outsideK , and this neighbour is not adjacent to every
vertex of K by maximality.) Removing A from G splits G1 into smaller connected components
G1; : : : ; Gk (possibly with k � 1), to each of whichA is connected by at least one edge. We
divide into several cases.

Case 1: k ¥ 2 and A is connected to someGi by at least two edges.

Choose a vertexB of Gi adjacent to A, and a vertexC in another componentGj adjacent
to A. The vertices B and C are not adjacent, and hence removing edgesAB and AC and
adding in edgeBC does not disconnectG1. It is easy to see that this preserves the condition,
since the refriending does not change the parity of the degrees of vertices.

Case 2: k ¥ 2 and A is connected to eachGi by exactly one edge.

Consider the induced subgraph on anyGi and the vertex A. The vertex A has degree1 in
this subgraph; since the number of odd-degree vertices of a graph is always even, we see that
Gi has a vertex of odd degree (inG). Thus if we let B and C be any distinct neighbours ofA,
then removing edgesAB and AC and adding in edgeBC preserves the above condition: the
refriending creates two new components, and if either of these components has at least three
vertices, then it cannot be complete and must contain a vertex of odd degree (since eachGi

does).

Case 3: k � 1 and A is connected toG1 by at least three edges.

By assumption, A has two neighboursB and C which are not adjacent to one another.
Removing edgesAB and AC and adding in edgeBC does not disconnectG1. We are then done
as in Case 1.

Case 4: k � 1 and A is connected toG1 by exactly two edges.

Let B and C be the two neighbours ofA, which are not adjacent. Removing edgesAB
and AC and adding in edgeBC results in two new components: one consisting of a single
vertex; and the other containing a vertex of odd degree. We are done unless this second
component would be a complete graph on at least3 vertices. But in this case,G1 would be a
complete graph minus the single edgeBC, and hence has at least4 vertices sinceG1 is not a
4-cycle. If we let D be a third vertex of G1, then removing edgesBA and BD and adding in
edgeAD does not disconnectG1. We are then done as in Case 1.

A

B C

D

Comment. In fact, condition 1 aboveprecisely characterises those graphs which can be reduced to a
graph of maximal degree¤ 1 by a sequence of refriendings.
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Solution 2. As in the previous solution, note that a refriending preserves the property that a
graph has a vertex of odd degree and (trivially) the propertythat it is not complete; note also
that our initial graph is connected. We describe an algorithm to reduce our initial graph to a
graph of maximal degree at most1, proceeding in two steps.

Step 1: There exists a sequence of refriendings reducing thegraph to a tree.

Proof. Since the number of edges decreases with each refriending, it su�ces to prove the fol-
lowing: as long as the graph contains a cycle, there exists a refriending such that the resulting
graph is still connected. We will show that the graph in fact contains a cycleZ and vertices
A; B; C such that A and B are adjacent in the cycleZ , C is not in Z , and is adjacent toA but
not B . Removing edgesAB and AC and adding in edgeBC keeps the graph connected, so we
are done.

A

B C

To �nd this cycle Z and vertices A; B; C , we pursue one of two strategies. If the graph
contains a triangle, we consider a largest complete subgraph K , which thus contains at least
three vertices. Since the graph itself is not complete, there is a vertexC not in K connected
to a vertex A of K . By maximality of K , there is a vertexB of K not connected toC, and
hence we are done by choosing a cycleZ in K through the edgeAB .

A

B C

If the graph is triangle-free, we consider instead a smallest cycle Z . This cycle cannot
be Hamiltonian (i.e. it cannot pass through every vertex of the graph), since otherwise by
minimality the graph would then have no other edges, and hence would have even degree at
every vertex. We may thus choose a vertexC not in Z adjacent to a vertexA of Z . Since the
graph is triangle-free, it is not adjacent to any neighbourB of A in Z , and we are done. l

Step 2: Any tree may be reduced to a disjoint union of single edges and vertices by a sequence
of refriendings.

Proof. The refriending preserves the property of being acyclic. Hence, after applying a sequence
of refriendings, we arrive at an acyclic graph in which it is impossible to perform any further
refriendings. The maximal degree of any such graph is1: if it had a vertex A with two
neighboursB; C, then B and C would necessarily be nonadjacent since the graph is cycle-free,
and so a refriending would be possible. Thus we reach a graph with maximal degree at most1
as desired. l
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C6. Let n ¡ 1 be an integer. Suppose we are given2n points in a plane such that
no three of them are collinear. The points are to be labelledA1, A2, . . . , A2n in some order.
We then consider the2n angles= A1A2A3, = A2A3A4, . . . , = A2n� 2A2n� 1A2n , = A2n� 1A2nA1,
= A2nA1A2. We measure each angle in the way that gives the smallest positive value (i.e.
between0� and 180� ). Prove that there exists an ordering of the given points such that the
resulting 2n angles can be separated into two groups with the sum of one group of angles equal
to the sum of the other group.

(USA)

Comment. The �rst three solutions all use the same construction involving a line separating the
points into groups of n points each, but give di�erent proofs that this construction works. Although
Solution 1 is very short, the Problem Selection Committee does not believe any of the solutions is easy
to �nd and thus rates this as a problem of medium di�culty.

Solution 1. Let ` be a line separating the points into two groups (L and R) with n points in
each. Label the pointsA1, A2, . . . , A2n so that L � t A1; A3; : : : ; A2n� 1u. We claim that this
labelling works.

Take a line s � A2nA1.

(a) Rotate s around A1 until it passes through A2; the rotation is performed in a direction
such that s is never parallel to`.

(b) Then rotate the new s around A2 until it passes throughA3 in a similar manner.

(c) Perform 2n � 2 more such steps, after whichs returns to its initial position.

The total (directed) rotation angle � of s is clearly a multiple of 180� . On the other hand,
s was never parallel to`, which is possible only if� � 0. Now it remains to partition all the
2n angles into those wheres is rotated anticlockwise, and the others.

Solution 2. When tracing a cyclic path through theA i in order, with straight line segments
between consecutive points, let� i be the exterior angle atA i , with a sign convention that it
is positive if the path turns left and negative if the path turns right. Then

° 2n
i � 1 � i � 360k�

for some integerk. Let � i � = A i � 1A i A i � 1 (indices mod2n), de�ned as in the problem; thus
� i � 180� � | � i |.

Let L be the set ofi for which the path turns left at A i and let R be the set for which it
turns right. Then S �

°
i PL � i �

°
i PR � i � p 180p|L| � | R|q � 360kq� , which is a multiple of 360�

since the number of points is even. We will show that the points can be labelled such that
S � 0, in which caseL and R satisfy the required condition of the problem.

Note that the value of S is de�ned for a slightly larger class of con�gurations: it isOK
for two points to coincide, as long as they are not consecutive, and OK for three points to be
collinear, as long asA i , A i � 1 and A i � 2 do not appear on a linein that order. In what follows
it will be convenient, although not strictly necessary, to consider such con�gurations.

Consider howS changes if a single one of theA i is moved along some straight-line path
(not passing through anyA j and not lying on any lineA j Ak , but possibly crossing such lines).
BecauseS is a multiple of 360� , and the angles change continuously,S can only change when a
point moves betweenR and L. Furthermore, if � j � 0 when A j moves betweenR and L, S is
unchanged; it only changes if� j � 180� when A j moves between those sets.

For any starting choice of points, we will now construct a newcon�guration, with labels such
that S � 0, that can be perturbed into the original one without any� i passing through180� ,
so that S � 0 for the original con�guration with those labels as well.

Take some line such that there aren points on each side of that line. The new con�guration
has n copies of a single point on each side of the line, and a path that alternates between
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sides of the line; all angles are0, so this con�guration has S � 0. Perturbing the points into
their original positions, while keeping each point on its side of the line, no angle� i can pass
through 180� , because no straight line can go from one side of the line to the other and back.
So the perturbation process leavesS � 0.

Comment. More complicated variants of this solution are also possible; for example, a path de�ned
using four quadrants of the plane rather than just two half-planes.

Solution 3. First, let ` be a line in the plane such that there aren points on one side and the
other n points on the other side. For convenience, assume` is horizontal (otherwise, we can
rotate the plane). Then we can use the terms �above�, �below�, �left� and �right� in the usual
way. We denote then points above the line in an arbitrary order asP1, P2, . . . , Pn , and the
n points below the line asQ1, Q2, : : :, Qn .

If we connectPi and Qj with a line segment, the line segment will intersect with theline `.
Denote the intersection asI ij . If Pi is connected toQj and Qk , where j   k, then I ij and I ik

are two di�erent points, becausePi , Qj and Qk are not collinear.
Now we de�ne a �sign� for each angle= Qj Pi Qk . Assumej   k. We specify that the sign is

positive for the following two cases:

� if i is odd andI ij is to the left of I ik ,

� if i is even andI ij is to the right of I ik .

Otherwise the sign of the angle is negative. Ifj ¡ k, then the sign of= Qj Pi Qk is taken to be
the same as for= QkPi Qj .

Similarly, we can de�ne the sign of= Pj Qi Pk with j   k (or equivalently = PkQi Pj ). For
example, it is positive wheni is odd andI j i is to the left of I ki .

Henceforth, whenever we use the notation= Qj Pi Qk or = Pj Qi Pk for a numerical quantity,
it is understood to denote either the (geometric) measure ofthe angle or the negative of this
measure, depending on the sign as speci�ed above.

We now have the following important fact for signed angle measures:

= Qi 1 PkQi 3 � = Qi 1 PkQi 2 � = Qi 2 PkQi 3 p1q

for all points Pk , Qi 1 , Qi 2 and Qi 3 with i1   i2   i3. The following �gure shows a �natural�
arrangement of the points. Equation (1) still holds for any other arrangement, as can be easily
veri�ed.

Pk

Qi 1

Qi 2 Qi 3

Similarly, we have

= Pi 1 QkPi 3 � = Pi 1 QkPi 2 � = Pi 2 QkPi 3 ; p2q

for all points Qk , Pi 1 , Pi 2 and Pi 3 , with i1   i2   i3.
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We are now ready to specify the desired orderingA1, . . . , A2n of the points:

� if i ¤ n is odd, put A i � Pi and A2n� 1� i � Qi ;

� if i ¤ n is even, putA i � Qi and A2n� 1� i � Pi .

For example, forn � 3 this ordering isP1, Q2, P3, Q3, P2, Q1. This sequence alternates between
P's and Q's, so the above conventions specify a sign for each of the angles A i � 1A i A i � 1. We
claim that the sum of these2n signed angles equals 0. If we can show this, it would complete
the proof.

We prove the claim by induction. For brevity, we use the notation = Pi to denote whichever
of the 2n angles has its vertex atPi , and = Qi similarly.

First let n � 2. If the four points can be arranged to form a convex quadrilateral, then the
four line segmentsP1Q1, P1Q2, P2Q1 and P2Q2 constitute a self-intersecting quadrilateral. We
use several �gures to illustrate the possible cases.

The following �gure is one possible arrangement of the points.

P1

P2

Q1 Q2

I 11 I 21 I 12 I 22

Then = P1 and = Q1 are positive,= P2 and = Q2 are negative, and we have

|= P1| � | = Q1| � | = P2| � | = Q2|:

With signed measures, we have

= P1 � = Q1 � = P2 � = Q2 � 0: p3q

If we switch the labels ofP1 and P2, we have the following picture:

P2

P1

Q1 Q2

I 11I 21 I 12I 22

Switching labelsP1 andP2 has the e�ect of �ipping the sign of all four angles (as well asswap-
ping the magnitudes on the relabelled points); that is, the new values ofp= P1; = P2; = Q1; = Q2q
equal the old values ofp� = P2; � = P1; � = Q1; � = Q2q. Consequently, equation (3) still holds.
Similarly, when switching the labels ofQ1 and Q2, or both the P's and the Q's, equation (3)
still holds.
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The remaining subcase ofn � 2 is that one point lies inside the triangle formed by the other
three. We have the following picture.

P1

P2

Q1 Q2

I 11

I 21

I 12

I 22

We have
|= P1| � | = Q1| � | = Q2| � | = P2|:

and equation (3) holds.
Again, switching the labels forP's or the Q's will not a�ect the validity of equation (3).

Also, if the point lying inside the triangle of the other three is one of theQ's rather than
the P's, the result still holds, since our sign convention is preserved when we relabelQ's asP's
and vice-versa and re�ect across̀.

We have completed the proof of the claim forn � 2.
Assume the claim holds forn � k, and we wish to prove it forn � k � 1. Suppose we are

given our 2pk � 1q points. First ignore Pk� 1 and Qk� 1, and form 2k angles fromP1, . . . , Pk ,
Q1, : : :, Qk as in the n � k case. By the induction hypothesis we have

k¸

i � 1

p= Pi � = Qi q � 0:

When we add in the two pointsPk� 1 and Qk� 1, this changes our angles as follows:

� the angle atPk changes from= Qk� 1PkQk to = Qk� 1PkQk� 1;

� the angle atQk changes from= Pk� 1QkPk to = Pk� 1QkPk� 1;

� two new angles= QkPk� 1Qk� 1 and = PkQk� 1Pk� 1 are added.

We need to prove the changes have no impact on the total sum. Inother words, we need to
prove

p= Qk� 1PkQk� 1 � = Qk� 1PkQkq � p = Pk� 1QkPk� 1 � = Pk� 1QkPkq � p = Pk� 1 � = Qk� 1q � 0: p4q

In fact, from equations (1) and (2), we have

= Qk� 1PkQk� 1 � = Qk� 1PkQk � = QkPkQk� 1;

and
= Pk� 1QkPk� 1 � = Pk� 1QkPk � = PkQkPk� 1:

Therefore, the left hand side of equation (4) becomes= QkPkQk� 1� = PkQkPk� 1� = QkPk� 1Qk� 1�
= PkQk� 1Pk� 1, which equals0, simply by applying the n � 2 case of the claim. This completes
the induction.
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Solution 4. We shall think instead of the problem as asking us to assign a weight � 1 to each
angle, such that the weighted sum of all the angles is zero.

Given an orderingA1; : : : ; A2n of the points, we shall assign weights according to the fol-
lowing recipe: walk in order from point to point, and assign the left turns � 1 and the right
turns � 1. This is the same weighting as in Solution 3, and as in that solution, the weighted
sum is a multiple of360� .

We now aim to show the following:

Lemma. Transposing any two consecutive points in the ordering changes the weighted sum by
� 360� or 0.

Knowing that, we can conclude quickly: if the orderingA1, . . . , A2n has weighted angle
sum 360k� , then the ordering A2n , . . . , A1 has weighted angle sum� 360k� (since the angles
are the same, but left turns and right turns are exchanged). We can reverse the ordering ofA1,
. . . , A2n by a sequence of transpositions of consecutive points, and in doing so the weighted
angle sum must become zero somewhere along the way.

We now prove that lemma:

Proof. Transposing two points amounts to taking a sectionAkAk� 1Ak� 2Ak� 3 as depicted, re-
versing the central line segmentAk� 1Ak� 2, and replacing its two neighbours with the dotted
lines.

Ak

Ak� 1

Ak� 2

Ak� 3

Ak

Ak� 1

Ak� 2

Ak� 3

Figure 1: Transposing two consecutive vertices: before (left) and afterwards (right)

In each triangle, we alter the sum by� 180� . Indeed, using (anticlockwise) directed angles
modulo 360� , we either add or subtract all three angles of each triangle.

Hence both triangles together alter the sum by� 180� 180� , which is � 360� or 0. l
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C7. There are60 empty boxesB1, . . . , B60 in a row on a table and an unlimited supply
of pebbles. Given a positive integern, Alice and Bob play the following game.

In the �rst round, Alice takes n pebbles and distributes them into the60 boxes as she
wishes. Each subsequent round consists of two steps:

(a) Bob chooses an integerk with 1 ¤ k ¤ 59 and splits the boxes into the two groups
B1, . . . , Bk and Bk� 1, . . . , B60.

(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes
one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pebbles. Find the smallestn
such that Alice can prevent Bob from winning.

(Czech Republic)

Answer: n � 960. In general, if there areN ¡ 1 boxes, the answer isn �
X

N
2 � 1

\ P
N
2 � 1

T
� 1.

Common remarks. We present solutions for the general case ofN ¡ 1 boxes, and write
M �

X
N
2 � 1

\ P
N
2 � 1

T
� 1 for the claimed answer. For1 ¤ k   N , say that Bob makes a

k-move if he splits the boxes into a left groupt B1; : : : ; Bku and a right group t Bk� 1; : : : ; BN u.
Say that one con�guration dominates another if it has at least as many pebbles in each box,
and say that it strictly dominates the other con�guration if it also has more pebbles in at least
one box. (Thus, if Bob wins in some con�guration, he also winsin every con�guration that it
dominates.)

It is often convenient to consider `V-shaped' con�gurations; for 1 ¤ i ¤ N , let Vi be the
con�guration where B j contains 1 � | j � i | pebbles (i.e. where thei th box has a single pebble
and the numbers increase by one in both directions, so the �rst box has i pebbles and the last
box has N � 1 � i pebbles). Note that Vi contains 1

2 ipi � 1q � 1
2pN � 1 � iqpN � 2 � iq � 1

pebbles. If i �
P

N
2

T
, this number equalsM .

Solutions split naturally into a strategy for Alice (starting with M pebbles and showing she
can prevent Bob from winning) and a strategy for Bob (showinghe can win for any starting
con�guration with at most M � 1 pebbles). The following observation is also useful to simplify
the analysis of strategies for Bob.

Observation A. Consider two consecutive rounds. Suppose that in the �rst round Bob made
a k-move and Alice picked the left group, and then in the second round Bob makes aǹ -move,
with ` ¡ k. We may then assume, without loss of generality, that Alice again picks the left
group.

Proof. Suppose Alice picks the right group in the second round. Thenthe combined e�ect of
the two rounds is that each of the boxesBk� 1, . . . , B ` lost two pebbles (and the other boxes
are unchanged). Hence this con�guration is strictly dominated by that before the �rst round,
and it su�ces to consider only Alice's other response. l

Solution 1 (Alice). Alice initially distributes pebbles according toVr N
2 s. Suppose the current

con�guration of pebbles dominatesVi . If Bob makes ak-move with k ¥ i then Alice picks the
left group, which results in a con�guration that dominatesVi � 1. Likewise, if Bob makes a
k-move with k   i then Alice picks the right group, which results in a con�guration that
dominatesVi � 1. Since none ofV1, . . . , VN contains an empty box, Alice can prevent Bob from
ever winning.
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Solution 1 (Bob). The key idea in this solution is the following claim.

Claim. If there exist a positive integerk such that there are at least2k boxes that have at
most k pebbles each then Bob can force a win.

Proof. We ignore the other boxes. First, Bob makes ak-move (splits the 2k boxes into two
groups ofk boxes each). Without loss of generality, Alice picks the left group. Then Bob makes
a pk � 1q-move, . . . , ap2k � 1q-move. By Observation A, we may suppose Alice always picks
the left group. After Bob's p2k � 1q-move, the rightmost box becomes empty and Bob wins.

l

Now, we claim that if n   M then either there already exists an empty box, or there exist
a positive integerk and 2k boxes with at mostk pebbles each (and thus Bob can force a win).
Otherwise, assume each box contains at least1 pebble, and for each1 ¤ k ¤

X
N
2

\
, at least

N � p 2k � 1q � N � 1 � 2k boxes contain at leastk � 1 pebbles. Summing, there are at least
as many pebbles in total as inVr N

2 s; that is, at least M pebbles, as desired.

Solution 2 (Alice). Let K �
X

N
2 � 1

\
. Alice starts with the boxes in the con�guration VK .

For each of Bob'sN � 1 possible choices, consider the subset of rounds in which he makes that
choice. In that subset of rounds, Alice alternates between picking the left group and picking the
right group; the �rst time Bob makes that choice, Alice picksthe group containing theK th box.
Thus, at any time during the game, the number of pebbles in each box depends only on which
choices Bob has made an odd number of times. This means that the number of pebbles in a
box could decrease by at most the number of choices for which Alice would have started by
removing a pebble from the group containing that box. These numbers are, for each box,

X
N
2

\
;
X

N
2 � 1

\
; : : : ; 1; 0; 1; : : : ;

P
N
2 � 1

T
:

These are pointwise less than the numbers of pebbles the boxes started with, meaning that no
box ever becomes empty with this strategy.

Solution 2 (Bob). Let K �
X

N
2 � 1

\
. For Bob's strategy, we consider a con�gurationX with

at most M � 1 pebbles, and we make use of Observation A. Consider two con�gurations with
M pebbles: VK and VN � 1� K (if n is odd, they are the same con�guration; ifn is even, one is
the reverse of the other). The con�gurationX has fewer pebbles thanVK in at least one box,
and fewer pebbles thanVN � 1� K in at least one box.

Suppose �rst that, with respect to one of those con�gurations (without loss of generalityVK ),
X has fewer pebbles in one of the boxes in the half where they have 1, 2, . . . ,

P
N
2

T
pebbles (the

right half in VK if N is even; ifN is odd, we can take it to be the right half, without loss of
generality, as the con�guration is symmetric). Note that the number cannot be fewer in the
box with 1 pebble in VK , because then it would have0 pebbles. Bob then does aK -move.
If Alice picks the right group, the total number of pebbles goes down and we restart Bob's
strategy with a smaller number of pebbles. If Alice picks theleft group, Bob follows with a
pK � 1q-move, apK � 2q-move, and so on; by Observation A we may assume Alice always picks
the left group. But whichever box in the right half had fewer pebbles inX than in VK ends up
with 0 pebbles at some point in this sequence of moves.

Otherwise, N is even, and for both of those con�gurations, there are fewerpebbles inX
only on the 2, 3, . . . , N

2 � 1 side. That is, the numbers of pebbles inX are at least

N
2 ; N

2 � 1; : : : ; 1; 1; : : : ; N
2 pCq

with equality occurring at least once on each side. Bob does an N
2 -move. Whichever group

Alice chooses, the total number of pebbles is unchanged, andthe side from which pebbles are
removed now has a box with fewer pebbles than in (C), so the previous case of Bob's strategy
can now be applied.
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Solution 3 (Bob). For any con�guration C, de�ne LpCqto be the greatest integer such that,
for all 0 ¤ i ¤ N � 1, the box B i � 1 contains at leastLpCq � i pebbles. Similarly, de�neRpCq
to be greatest integer such that, for all0 ¤ i ¤ N � 1, the box BN � i contains at least
RpCq � i pebbles. (Thus,C dominates the `left half' ofVL pCq and the `right half' of VN � 1� RpCq.)
Then C dominates a `V-shaped' con�guration if and only ifLpCq � RpCq ¥ N � 1. Note that
if C dominates a V-shaped con�guration, it has at leastM pebbles.

Now suppose that there are fewer thanM pebbles, so we haveLpCq � RpCq ¤ N . Then
Bob makes anLpCq-move (or more generally any move with at leastLpCqboxes on the left and
RpCq boxes on the right). LetC1 be the new con�guration, and suppose that no box becomes
empty (otherwise Bob has won). If Alice picks the left group,we haveLpC1q � LpCq � 1 and
RpC1q � RpCq � 1. Otherwise, we haveLpC1q � LpCq � 1 and RpC1q � RpCq � 1. In either
case, we haveLpC1q � RpC1q ¤ N .

Bob then repeats this strategy, until one of the boxes becomes empty. Since the condition
in Observation A holds, we may assume that Alice picks a groupon the same side each time.
Then one ofL and R is strictly decreasing; without loss of generality assume that L strictly
decreases. At some point we reachL � 1. If B2 is still nonempty, then B1 must contain a
single pebble. Bob makes a1-move, and by Observation A, Alice must (eventually) pick the
right group, making this box empty.
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C8. Alice has a map of Wonderland, a country consisting ofn ¥ 2 towns. For every
pair of towns, there is a narrow road going from one town to theother. One day, all the roads
are declared to be �one way� only. Alice has no information onthe direction of the roads, but
the King of Hearts has o�ered to help her. She is allowed to askhim a number of questions.
For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the
direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wonderland with at most one
outgoing road. Prove that she can always �nd out by asking at most 4n questions.

Comment. This problem could be posed with an explicit statement aboutpoints being awarded for
weaker boundscn for somec ¡ 4, in the style of IMO 2014 Problem 6.

(Thailand)

Solution. We will show Alice needs to ask at most4n � 7 questions. Her strategy has the
following phases. In what follows,S is the set of towns that Alice, so far, does not know to
have more than one outgoing road (so initially|S| � n).

Phase 1. Alice chooses any two towns, sayA and B. Without loss of generality, suppose
that the King of Hearts' answer is that the road goes fromA to B.

At the end of this phase, Alice has asked1 question.
Phase 2. During this phase there is a single (variable) townT that is known to have at

least one incoming road but not yet known to have any outgoingroads. Initially, T is B . Alice
does the followingn � 2 times: she picks a townX she has not asked about before, and asks
the direction of the road betweenT and X . If it is from X to T, T is unchanged; if it is
from T to X , X becomes the new choice of townT, as the previousT is now known to have
an outgoing road.

At the end of this phase, Alice has asked a total ofn � 1 questions. The �nal town T is not
yet known to have any outgoing roads, while every other town has exactly one outgoing road
known. The undirected graph of roads whose directions are known is a tree.

Phase 3. During this phase, Alice asks about the directions of all roads betweenT and
another town she has not previously asked about, stopping ifshe �nds two outgoing roads
from T. This phase involves at mostn � 2 questions. If she does not �nd two outgoing roads
from T, she has answered her original question with at most2n � 3 ¤ 4n � 7 questions, so in
what follows we suppose that she does �nd two outgoing roads,asking a total ofk questions in
this phase, where2 ¤ k ¤ n � 2 (and thus n ¥ 4 for what follows).

For every question where the road goes towardsT, the town at the other end is removed
from S (as it already had one outgoing road known), while the last question resulted inT being
removed fromS. So at the end of this phase,|S| � n � k � 1, while a total of n � k � 1 questions
have been asked. Furthermore, the undirected graph of roadswithin S whose directions are
known contains no cycles (asT is no longer a member ofS, all questions asked in this phase
involved T and the graph was a tree before this phase started). Every town in S has exactly
one outgoing road known (not necessarily to another town inS).

Phase 4. During this phase, Alice repeatedly picks any pair of towns in S for which she
does not know the direction of the road between them. Becauseevery town in S has exactly
one outgoing road known, this always results in the removal of one of those two towns fromS.
Because there are no cycles in the graph of roads of known direction within S, this can continue
until there are at most 2 towns left in S.

If it ends with t towns left, n � k � 1 � t questions were asked in this phase, so a total of
2n � t questions have been asked.

Phase 5. During this phase, Alice asks about all the roads from the remaining towns
in S that she has not previously asked about. She has de�nitely already asked about any road
between those towns (ift � 2). She must also have asked in one of the �rst two phases about
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at least one other road involving one of those towns (as thosephases resulted in a tree with
n ¡ 2 vertices). So she asks at mosttpn � tq � 1 questions in this phase.

At the end of this phase, Alice knows whether any town has at most one outgoing road.
If t � 1, at most 3n � 3 ¤ 4n � 7 questions were needed in total, while ift � 2, at most
4n � 7 questions were needed in total.

Comment 1. The version of this problem originally submitted asked only for an upper bound
of 5n, which is much simpler to prove. The Problem Selection Committee preferred a version with an
asymptotically optimal constant. In the following comment, we will show that the constant is optimal.

Comment 2. We will show that Alice cannot always �nd out by asking at most 4n � 3plog2 nq �
15 questions, if n ¥ 8.

To show this, we suppose the King of Hearts is choosing the directions as he goes along, only
picking the direction of a road when Alice asks about it for the �rst time. We provide a strategy for
the King of Hearts that ensures that, after the given number of questions, the map is still consistent
both with the existence of a town with at most one outgoing road, and with the nonexistence of such
a town. His strategy has the following phases. When describing how the King of Hearts' answer to
a question is determined below, we always assume he is being asked about a road for the �rst time
(otherwise, he just repeats his previous answer for that road). This strategy is described throughout
in graph-theoretic terms (vertices and edges rather than towns and roads).

Phase 1. In this phase, we consider the undirected graph formed by edges whose directions are
known. The phase terminates when there are exactly8 connected components whose undirected graphs
are trees. The following invariant is maintained: in a component with k vertices whose undirected graph
is a tree, every vertex has at mosttlog2 kuedges into it.

� If the King of Hearts is asked about an edge between two vertices in the same component, or
about an edge between two components at least one of which is not a tree, he chooses any
direction for that edge arbitrarily.

� If he is asked about an edge between a vertex in componentA that has a vertices and is a tree
and a vertex in componentB that has b vertices and is a tree, suppose without loss of generality
that a ¥ b. He then chooses the edge to go fromA to B . In this case, the new number of edges
into any vertex is at most maxt tlog2 au; tlog2 bu� 1u ¤ tlog2pa � bqu.

In all cases, the invariant is preserved, and the number of tree components either remains unchanged
or goes down by1. Assuming Alice does not repeat questions, the process musteventually terminate
with 8 tree components, and at leastn � 8 questions having been asked.

Note that each tree component contains at least one vertex with no outgoing edges. Colour one
such vertex in each tree component red.

Phase 2. Let V1, V2 and V3 be the three of the red vertices whose components are smallest (so their
components together have at most

X
3
8n

\
vertices, with each component having at most

X
3
8n � 2

\
ver-

tices). Let sets C1, C2, . . . be the connected components after removing theVj . By construction,
there are no edges with known direction betweenCi and Cj for i � j , and there are at least �ve such
components.

If at any point during this phase, the King of Hearts is asked about an edge within one of theCi ,
he chooses an arbitrary direction. If he is asked about an edge betweenCi and Cj for i � j , he answers
so that all edges go fromCi to Ci � 1 and Ci � 2, with indices taken modulo the number of components,
and chooses arbitrarily for other pairs. This ensures that all vertices other than the Vj will have more
than one outgoing edge.

For edges involving one of theVj he answers as follows, so as to remain consistent for as long
as possible with both possibilities for whether one of thosevertices has at most one outgoing edge.
Note that as they were red vertices, they have no outgoing edges at the start of this phase. For edges
between two of theVj , he answers that the edges go fromV1 to V2, from V2 to V3 and from V3 to V1.
For edges betweenVj and some other vertex, he always answers that the edge goes into Vj , except for
the last such edge for which he is asked the question for any given Vj , for which he answers that the
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edge goes out ofVj . Thus, as long as at least one of theVj has not had the question answered for all
the vertices that are not among theVj , his answers are still compatible both with all vertices having
more than one outgoing edge, and with thatVj having only one outgoing edge.

At the start of this phase, each of the Vj has at most
X
log2

X
3
8n � 2

\\
  p log2 nq � 1 incoming

edges. Thus, Alice cannot determine whether some vertex hasonly one outgoing edge within3pn �
3 � pp log2 nq � 1qq � 1 questions in this phase; that is,4n � 3plog2 nq � 15 questions total.

Comment 3. We can also improve the upper bound slightly, to4n � 2plog2 nq � 1. (We do not know
where the precise minimum number of questions lies between4n � 3plog2 nq� Op1qand 4n � 2plog2 nq�
Op1q.) Supposen ¥ 5 (otherwise no questions are required at all).

To do this, we replace Phases 1 and 2 of the given solution witha di�erent strategy that also
results in a spanning tree where one vertexV is not known to have any outgoing edges, and all other
vertices have exactly one outgoing edge known, but where there is more control over the numbers of
incoming edges. In Phases 3 and 4 we then take more care about the order in which pairs of towns are
chosen, to ensure that each of the remaining towns has already had a question asked about at least
log2 n � Op1q edges.

De�ne trees Tm with 2m vertices, exactly one of which (theroot ) has no outgoing edges and the rest
of which have exactly one outgoing edge, as follows:T0 is a single vertex, whileTm is constructed by
joining the roots of two copies ofTm� 1 with an edge in either direction. If n � 2m we can readily ask
n � 1 questions, resulting in a treeTm for the edges with known direction: �rst ask about 2m� 1 disjoint
pairs of vertices, then about2m� 2 disjoint pairs of the roots of the resulting T1 trees, and so on. For
the general case, wheren is not a power of2, after k stages of this process we have

X
n{2k

\
trees, each

of which is like Tk but may have some extra vertices (but, however, a unique root). If there are an
even number of trees, then ask about pairs of their roots. If there are an odd number (greater than1)
of trees, when a singleTk is left over, ask about its root together with that of one of the Tk� 1 trees.

Say m � tlog2 nu. The result of that process is a singleTm tree, possibly with some extra vertices
but still a unique root V . That root has at least m incoming edges, and we may list verticesV0,
. . . , Vm� 1 with edges to V , such that, for all 0 ¤ i   m, vertex Vi itself has at least i incoming edges.

Now divide the vertices other than V into two parts: A has all vertices at an odd distance fromV
and B has all the vertices at an even distance fromB . Both A and B are nonempty;A contains the Vi ,
while B contains a sequence of vertices with at least0, 1, . . . , m � 2 incoming edges respectively,
similar to the Vi . There are no edges with known direction withinA or within B .

In Phase 3, then ask about edges betweenV and other vertices: �rst those in B , in order of
increasing number of incoming edges to the other vertex, then those in A, again in order of increasing
number of incoming edges, which involves asking at mostn � 1 � m questions in this phase. If two
outgoing edges are not found fromV, at most 2n � 2 � m ¤ 4n � 2plog2 nq � 1 questions needed
to be asked in total, so we suppose that two outgoing edges were found, with k questions asked in
this phase, where2 ¤ k ¤ n � 1 � m. The state of S is as described in the solution above, with
the additional property that, since S must still contain all vertices with edges to V , it contains the
vertices Vi described above.

In Phase 4, consider the vertices left inB , in increasing order of number of edges incoming to a
vertex. If s is the least number of incoming edges to such a vertex, then, for any s ¤ t ¤ m � 2, there
are at least m � t � 2 vertices with more than t incoming edges. Repeatedly asking about the pair of
vertices left in B with the least numbers of incoming edges results in a single vertex left over (if any
were in B at all at the start of this phase) with at least m � 2 incoming edges. Doing the same withA
(which must be nonempty) leaves a vertex with at leastm � 1 incoming edges.

Thus if only A is nonempty we ask at mostn � m questions in Phase 5, so in total at most
3n � m � 1 questions, while if both are nonempty we ask at most2n � 2m � 1 questions in Phase 5,
so in total at most 4n � 2m � 1   4n � 2plog2 nq � 1 questions.
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C9. For any two di�erent real numbers x and y, we de�ne Dpx; yq to be the unique
integer d satisfying 2d ¤ | x � y|   2d� 1. Given a set of realsF , and an elementx P F , we say
that the scalesof x in F are the values ofDpx; yq for y PF with x � y.

Let k be a given positive integer. Suppose that each memberx of F has at mostk di�erent
scales inF (note that these scales may depend onx). What is the maximum possible size ofF ?

(Italy)

Answer: The maximum possible size ofF is 2k .

Common remarks. For convenience, we extend the use of the wordscale: we say that the
scale between two realsx and y is Dpx; yq.

Solution. We �rst construct a set F with 2k members, each member having at mostk di�erent
scales inF . Take F � t 0; 1; 2; : : : ; 2k � 1u. The scale between any two members ofF is in the
set t 0; 1; : : : ; k � 1u.

We now show that 2k is an upper bound on the size ofF . For every �nite set S of real
numbers, and every realx, let rSpxq denote the number of di�erent scales ofx in S. That
is, rSpxq � |t Dpx; yq: x � y P Su|. Thus, for every elementx of the set F in the problem
statement, we haverF pxq ¤ k. The condition |F | ¤ 2k is an immediate consequence of the
following lemma.

Lemma. Let S be a �nite set of real numbers, and de�ne

wpSq �
¸

xPS

2� r S pxq :

Then wpSq ¤ 1.

Proof. Induction on n � | S|. If S � t xu, then rSpxq � 0, so wpSq � 1.
Assume nown ¥ 2, and let x1   � � �   xn list the members ofS. Let d be the minimal scale

between two distinct elements ofS; then there exist neighboursxt andxt � 1 with Dpxt ; xt � 1q � d.
Notice that for any two indices i and j with j � i ¡ 1 we haveDpx i ; x j q ¡ d, since

|x i � x j | � | x i � 1 � x i | � | x j � x i � 1| ¥ 2d � 2d � 2d� 1:

Now choose the minimali ¤ t and the maximal j ¥ t � 1 such that Dpx i ; x i � 1q �
Dpx i � 1; x i � 2q � � � � � Dpx j � 1; x j q � d.

Let E be the set of all thexs with even indicesi ¤ s ¤ j , O be the set of those with
odd indicesi ¤ s ¤ j , and R be the rest of the elements (so thatS is the disjoint union of
E, O and R). Set SO � R Y O and SE � R Y E; we have|SO |   | S| and |SE |   | S|, so
wpSOq; wpSE q ¤ 1 by the inductive hypothesis.

Clearly, rSO pxq ¤ rSpxq and rSE pxq ¤ rSpxq for any x PR, and thus

¸

xPR

2� r S pxq �
1
2

¸

xPR

p2� r S pxq � 2� r S pxqq

¤
1
2

¸

xPR

p2� r SO pxq � 2� r SE pxqq:

On the other hand, for everyx P O, there is no y P SO such that DSO px; yq � d (as all
candidates fromS were in E). Hence, we haverSO pxq ¤ rSpxq � 1, and thus

¸

xPO

2� r S pxq ¤
1
2

¸

xPO

2� r SO
pxq :
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Similarly, for every x PE, we have

¸

xPE

2� r S pxq ¤
1
2

¸

xPE

2� r SE pxq :

We can then combine these to give

wpSq �
¸

xPR

2� r S pxq �
¸

xPO

2� r S pxq �
¸

xPE

2� r S pxq

¤
1
2

¸

xPR

p2� r SO
pxq � 2� r SE

pxqq �
1
2

¸

xPO

2� r SO
pxq �

1
2

¸

xPE

2� r SE
pxq

�
1
2

�
¸

xPSO

2� r SO pxq �
¸

xPSE

2� r SE pxq

�

(sinceSO � O Y R and SE � E Y R)

�
1
2

pwpSOq � wpSE qqq (by de�nition of wp�q)

¤ 1 (by the inductive hypothesis)

which completes the induction. l

Comment 1. The setsO and E above are not the only ones we could have chosen. Indeed, we could
instead have used the following de�nitions:

Let d be the maximal scale between two distinct elements ofS; that is, d � Dpx1; xnq. Let
O � t x P S : Dpx; x nq � du (a `left' part of the set) and let E � t x P S : Dpx1; xq � du (a `right'
part of the set). Note that these two sets are disjoint, and nonempty (since they contain x1 and xn

respectively). The rest of the proof is then the same as in Solution 1.

Comment 2. Another possible setF containing 2k members could arise from considering a binary
tree of height k, allocating a real number to each leaf, and trying to make thescale between the values
of two leaves dependent only on the (graph) distance betweenthem. The following construction makes
this more precise.

We build up sets Fk recursively. Let F0 � t 0u, and then let Fk� 1 � Fk Y t x � 3 � 4k : x PFku (i.e.
each half ofFk� 1 is a copy of Fk ). We have that Fk is contained in the interval r0; 4k� 1q, and so it
follows by induction on k that every member ofFk� 1 has k di�erent scales in its own half of Fk� 1 (by
the inductive hypothesis), and only the single scale2k � 1 in the other half of Fk� 1.

Both of the constructions presented here have the property that every member ofF has exactly k
di�erent scales in F . Indeed, it can be seen that this must hold (up to a slight perturbation) for any
such maximal set. Suppose there were some elementx with only k � 1 di�erent scales in F (and every
other element had at mostk di�erent scales). Then we take some positive real� , and construct a new
set F 1 � t y : y P F ; y ¤ xu Y t y � � : y P F ; y ¥ xu. We have |F 1| � | F | � 1, and if � is su�ciently
small then F 1 will also satisfy the property that no member has more thank di�erent scales in F 1.

This observation might be used to motivate the idea of weighting members of an arbitrary setS
of reals according to how many di�erent scales they have inS.
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Geometry

G1. Let ABC be a triangle. Circle � passes throughA, meets segmentsAB and AC
again at pointsD and E respectively, and intersects segmentBC at F and G such that F lies
betweenB and G. The tangent to circleBDF at F and the tangent to circleCEG at G meet
at point T. Suppose that pointsA and T are distinct. Prove that line AT is parallel to BC.

(Nigeria)

Solution. Notice that = T F B � = F DA becauseF T is tangent to circleBDF , and moreover
= F DA � = CGA because quadrilateralADF G is cyclic. Similarly, = T GB � = GEC because
GT is tangent to circleCEG, and = GEC � = CF A. Hence,

= T F B � = CGA and = T GB � = CF A: p1q

B F G C

E

AT

D

�

Triangles F GA and GF T have a common sideF G, and by p1q their angles atF; G are the
same. So, these triangles are congruent. So, their altitudes starting from A and T, respectively,
are equal and henceAT is parallel to line BF GC .

Comment. Alternatively, we can prove �rst that T lies on � . For example, this can be done by
showing that = AFT � = AGT using p1q. Then the statement follows as= T AF � = T GF � = GFA.



Shortlisted problems � solutions 57

G2. Let ABC be an acute-angled triangle and letD, E, and F be the feet of altitudes
from A, B, and C to sidesBC, CA, and AB , respectively. Denote by! B and ! C the incircles
of triangles BDF and CDE , and let these circles be tangent to segmentsDF and DE at M
and N , respectively. Let line MN meet circles! B and ! C again at P � M and Q � N ,
respectively. Prove thatMP � NQ.

(Vietnam)

Solution. Denote the centres of! B and ! C by OB and OC , let their radii be rB and rC , and
let BC be tangent to the two circles atT and U, respectively.

A

! B

B T D U C

'  

OB
OC

'

'
 

M
N

Q

! C

E

F

rC

rB

P

 

From the cyclic quadrilateralsAF DC and ABDE we have

= MDO B �
1
2

= F DB �
1
2

= BAC �
1
2

= CDE � = OCDN;

so the right-angled trianglesDMO B and DNO C are similar. The ratio of similarity between
the two triangles is

DN
DM

�
OCN
OB M

�
rC

rB
:

Let ' � = DMN and  � = MND . The lines F M and EN are tangent to ! B and ! C ,
respectively, so

= MT P � = F MP � = DMN � ' and = QUN � = QNE � = MND �  :

(It is possible that P or Q coincides with T or U, or lie inside trianglesDMT or DUN ,
respectively. To reduce case-sensitivity, we may use directed angles or simply ignore angles
MT P and QUN.)

In the circles ! B and ! C the lengths of chordsMP and NQ are

MP � 2rB � sin= MT P � 2rB � sin' and NQ � 2rC � sin= QUN � 2rC � sin :

By applying the sine rule to triangleDNM we get

DN
DM

�
sin= DMN
sin= MND

�
sin '
sin 

:

Finally, putting the above observations together, we get

MP
NQ

�
2rB sin'
2rC sin 

�
rB

rC
�

sin'
sin 

�
DM
DN

�
sin'
sin 

�
sin 
sin'

�
sin'
sin 

� 1;

so MP � NQ as required.
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G3. In triangle ABC , let A1 and B1 be two points on sidesBC and AC, and let P and Q
be two points on segmentsAA 1 and BB 1, respectively, so that lineP Q is parallel to AB . On
ray P B1, beyond B1, let P1 be a point so that = P P1C � = BAC . Similarly, on ray QA1,
beyond A1, let Q1 be a point so that = CQ1Q � = CBA. Show that points P, Q, P1, and Q1

are concyclic.
(Ukraine)

Solution 1. Throughout the solution we use oriented angles.
Let rays AA 1 and BB 1 intersect the circumcircle of4 ACB at A2 and B2, respectively. By

= QP A2 � = BAA 2 � = BB 2A2 � = QB2A2;

points P; Q; A2; B2 are concyclic; denote the circle passing through these points by ! . We shall
prove that P1 and Q1 also lie on! .

QP

P1

Q1

A2

BA

B2

B1 A1

C

!

By
= CA2A1 � = CA2A � = CBA � = CQ1Q � = CQ1A1;

points C; Q1; A2; A1 are also concyclic. From that we get

= QQ1A2 � = A1Q1A2 � = A1CA2 � = BCA 2 � = BAA 2 � = QP A2;

so Q1 lies on! .
It follows similarly that P1 lies on! .

Solution 2. First consider the case when linesP P1 and QQ1 intersect each other at some
point R.

Let line P Q meet the sidesAC and BC at E and F , respectively. Then

= P P1C � = BAC � = P EC;

so pointsC; E; P; P1 lie on a circle; denote that circle by! P . It follows analogously that points
C; F; Q; Q1 lie on another circle; denote it by! Q .

Let AQ and BP intersect at T. Applying Pappus' theorem to the linesAA 1P and BB 1Q
provides that points C � AB 1 X BA 1, R � A1Q X B1P and T � AQ X BP are collinear.

Let line RCT meet P Q and AB at S and U, respectively. FromAB k P Q we obtain

SP
SQ

�
UB
UA

�
SF
SE

;

so
SP � SE � SQ � SF:
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R

Q1

C

BUA

P
S

Q
F

B1

A1

E

T

P1

! Q

! P

So, point S has equal powers with respect to! P and ! Q , hence lineRCS is their radical
axis; then R also has equal powers to the circles, soRP � RP1 � RQ � RQ1, proving that points
P; P1; Q; Q1 are indeed concyclic.

Now consider the case whenP P1 and QQ1 are parallel. Like in the previous case, letAQ
and BP intersect at T. Applying Pappus' theorem again to the linesAA 1P and BB 1Q, in this
limit case it shows that lineCT is parallel to P P1 and QQ1.

Let line CT meet P Q and AB at S and U, as before. The same calculation as in the
previous case shows thatSP � SE � SQ� SF, soS lies on the radical axis between! P and ! Q.

P1

Q1

A1

B1

E F

QP
S

T

UA B

C

! P

! Q

`

Line CST, that is the radical axis between! P and ! Q, is perpendicular to the linè of centres
of ! P and ! Q . Hence, the chordsP P1 and QQ1 are perpendicular to`. So the quadrilateral
P P1Q1Q is an isosceles trapezium with symmetry axis̀, and hence is cyclic.

Comment. There are several ways of solving the problem involving Pappus' theorem. For example,
one may consider the pointsK � PB1 X BC and L � QA1 X AC . Applying Pappus' theorem to the
lines AA 1P and QB1B we get that K , L , and PQ X AB are collinear, i.e. that KL k AB . Therefore,
cyclicity of P, Q, P1, and Q1 is equivalent to that of K , L , P1, and Q1. The latter is easy after noticing
that C also lies on that circle. Indeed, e.g.= pLK; LC q � = pAB; AC q � = pP1K; P 1Cq shows that K
lies on circleKLC .

This approach also has some possible degeneracy, as the points K and L may happen to be ideal.
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G4. Let P be a point inside triangleABC . Let AP meet BC at A1, let BP meet CA
at B1, and let CP meet AB at C1. Let A2 be the point such that A1 is the midpoint of P A2,
let B2 be the point such that B1 is the midpoint of P B2, and let C2 be the point such that
C1 is the midpoint of P C2. Prove that points A2, B2, and C2 cannot all lie strictly inside the
circumcircle of triangleABC .

(Australia)

A

B

C

P

A 3

B 3

C3

A 1

B 1

C1
A 2

C2

B 2

Solution 1. Since

= AP B � = BP C � = CP A � 2� � p � � = ACB q � p � � = BAC q � p � � = CBAq;

at least one of the following inequalities holds:

= AP B ¥ � � = ACB; = BP C ¥ � � = BAC; = CP A ¥ � � = CBA :

Without loss of generality, we assume that= BP C ¥ � � = BAC . We have= BP C ¡ = BAC
becauseP is inside4 ABC . So= BP C ¥ maxp= BAC; � � = BAC q and hence

sin= BP C ¤ sin= BAC : p�q

Let the raysAP , BP , and CP cross the circumcircle
 again atA3, B3, and C3, respectively.
We will prove that at least one of the ratios P B 1

B 1B 3
and P C1

C1C3
is at least 1, which yields that one

of the points B2 and C2 does not lie strictly inside
 .
BecauseA; B; C; B 3 lie on a circle, the trianglesCB1B3 and BB 1A are similar, so

CB1

B1B3
�

BB 1

B1A
:

Applying the sine rule we obtain

P B1

B1B3
�

P B1

CB1
�

CB1

B1B3
�

P B1

CB1
�

BB 1

B1A
�

sin= ACP
sin= BP C

�
sin= BAC
sin= P BA

:

Similarly,
P C1

C1C3
�

sin= P BA
sin= BP C

�
sin= BAC
sin= ACP

:

Multiplying these two equations we get

P B1

B1B3
�

P C1

C1C3
�

sin2 = BAC
sin2 = BP C

¥ 1

using p�q, which yields the desired conclusion.
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Comment. It also cannot happen that all three points A2, B2, and C2 lie strictly outside 
 . The same
proof works almost literally, starting by assuming without loss of generality that = BPC ¤ � � = BAC
and using = BPC ¡ = BAC to deduce that sin= BPC ¥ sin= BAC . It is possible for A2, B2, and C2

all to lie on the circumcircle; from the above solution we mayderive that this happens if and only if P
is the orthocentre of the triangle ABC , (which lies strictly inside ABC if and only if ABC is acute).

Solution 2. De�ne points A3, B3, andC3 as in Solution 1. Assume for the sake of contradiction
that A2, B2, and C2 all lie strictly inside circle ABC . It follows that P A1   A1A3, P B1   B1B3,
and P C1   C1C3.

Observe that 4 P BC3 � 4 P CB3. Let X be the point on sideP B3 that corresponds to
point C1 on sideP C3 under this similarity. In other words, X lies on segmentP B3 and satis�es
P X : XB 3 � P C1 : C1C3. It follows that

= XCP � = P BC1 � = B3BA � = B3CB1 :

Hence linesCX and CB1 are isogonal conjugates in4 P CB3.

A

B C

P

A 1

A 3

C3

B 3

C1

B 1

x y
xy

y

�

�

�Y

X

Let Y be the foot of the bisector of= B3CP in 4 P CB3. Since P C1   C1C3, we have
P X   XB 3. Also, we haveP Y   Y B3 becauseP B1   B1B3 and Y lies betweenX and B1.
By the angle bisector theorem in4 P CB3, we haveP Y : Y B3 � P C : CB3. So P C   CB3

and it follows that = P B3C   = CP B3. Now since= P B3C � = BB 3C � = BAC , we have

= BAC   = CP B3 :

Similarly, we have

= CBA   = AP C3 and = ACB   = BP A3 � = B3P A :

Adding these three inequalities yields�   � , and this contradiction concludes the proof.
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Solution 3. Choose coordinates such that the circumcentre of4 ABC is at the origin and
the circumradius is1. Then we may think of A, B , and C as vectors inR2 such that

|A|2 � | B |2 � | C|2 � 1 :

P may be represented as a convex combination�A � �B � C where�; �;  ¡ 0 and � � � �  � 1.
Then

A1 �
�B � C

� � 
�

1
1 � �

P �
�

1 � �
A;

so
A2 � 2A1 � P �

1 � �
1 � �

P �
2�

1 � �
A :

Hence

|A2|2 �
�

1 � �
1 � �


 2

|P|2 �
�

2�
1 � �


 2

|A|2 �
4� p1 � � q
p1 � � q2

A � P :

Using |A|2 � 1 we obtain

p1 � � q2

2p1 � � q
|A2|2 �

1 � �
2

|P|2 �
2� 2

1 � �
� 2�A � P: (1)

Likewise
p1 � � q2

2p1 � � q
|B2|2 �

1 � �
2

|P|2 �
2� 2

1 � �
� 2�B � P (2)

and
p1 �  q2

2p1 �  q
|C2|2 �

1 � 
2

|P|2 �
2 2

1 � 
� 2C � P: (3)

Summing (1), (2) and (3) we obtain on the LHS the positive linear combination

LHS �
p1 � � q2

2p1 � � q
|A2|2 �

p1 � � q2

2p1 � � q
|B2|2 �

p1 �  q2

2p1 �  q
|C2|2

and on the RHS the quantity
�

1 � �
2

�
1 � �

2
�

1 � 
2



|P|2 �

�
2� 2

1 � �
�

2� 2

1 � �
�

2 2

1 � 



� 2p�A � P � �B � P � C � Pq:

The �rst term is 2|P|2 and the last term is � 2P � P, so

RHS �
�

2� 2

1 � �
�

2� 2

1 � �
�

2 2

1 � 




�
3� � 1

2
�

p1 � � q2

2p1 � � q
�

3� � 1
2

�
p1 � � q2

2p1 � � q
�

3 � 1
2

�
p1 �  q2

2p1 �  q

�
p1 � � q2

2p1 � � q
�

p1 � � q2

2p1 � � q
�

p1 �  q2

2p1 �  q
:

Here we used the fact that

3� � 1
2

�
3� � 1

2
�

3 � 1
2

� 0:

We have shown that a linear combination of|A1|2, |B1|2, and |C1|2 with positive coe�cients is
equal to the sum of the coe�cients. Therefore at least one of|A1|2, |B1|2, and |C1|2 must be at
least 1, as required.

Comment. This proof also works whenP is any point for which �; �;  ¡ � 1, � � � �  � 1, and
�; �;  � 1. (In any cases where� � 1 or � � 1 or  � 1, some points in the construction are not
de�ned.)



Shortlisted problems � solutions 63

This page is intentionally left blank



64 Bath � UK, 11th�22nd July 2019

G5. Let ABCDE be a convex pentagon withCD � DE and = EDC � 2 � = ADB .
Suppose that a pointP is located in the interior of the pentagon such thatAP � AE and
BP � BC. Prove that P lies on the diagonalCE if and only if areapBCD q � areapADE q �
areapABD q � areapABP q.

(Hungary)

Solution 1. Let P1be the re�ection of P across lineAB , and let M and N be the midpoints of
P1E and P1C respectively. Convexity ensures thatP1 is distinct from both E and C, and hence
from both M and N . We claim that both the area condition and the collinearity condition in
the problem are equivalent to the condition that the (possibly degenerate) right-angled triangles
AP 1M and BP 1N are directly similar (equivalently, AP 1E and BP 1C are directly similar).

C

DE

P1

M

N
A

B

For the equivalence with the collinearity condition, letF denote the foot of the perpendicular
from P1 to AB , so that F is the midpoint of P P1. We have thatP lies onCE if and only if F lies
on MN , which occurs if and only if we have the equality= AF M � = BF N of signed angles
modulo � . By concyclicity of AP 1F M and BF P 1N , this is equivalent to = AP 1M � = BP 1N ,
which occurs if and only ifAP 1M and BP 1N are directly similar.

P1

M

N
A B

F

For the other equivalence with the area condition, we have the equality of signed areas
areapABD q � areapABP q � areapAP 1BD q � areapAP 1Dq � areapBDP 1q. Using the identity
areapADE q � areapAP 1Dq � areapADE q � areapADP 1q � 2 areapADM q, and similarly for B ,
we �nd that the area condition is equivalent to the equality

areapDAM q � areapDBN q:

Now note that A and B lie on the perpendicular bisectors ofP1E and P1C, respectively. If
we write G and H for the feet of the perpendiculars fromD to these perpendicular bisectors
respectively, then this area condition can be rewritten as

MA � GD � NB � HD:

(In this condition, we interpret all lengths as signed lengths according to suitable conventions:
for instance, we orientP1E from P1 to E, orient the parallel line DH in the same direction, and
orient the perpendicular bisector ofP1E at an angle� {2 clockwise from the oriented segment
P1E � we adopt the analogous conventions atB .)
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C

DE

P1

M

N
A B

G
H

To relate the signed lengthsGD and HD to the triangles AP 1M and BP 1N , we use the
following calculation.

Claim. Let � denote the circle centred onD with both E and C on the circumference, and
h the power ofP1 with respect to � . Then we have the equality

GD � P1M � HD � P1N �
1
4

h � 0:

Proof. Firstly, we have h � 0, since otherwiseP1 would lie on � , and hence the internal angle
bisectors of= EDP 1 and = P1DC would pass throughA and B respectively. This would violate
the angle inequality= EDC � 2 � = ADB given in the question.

Next, let E 1 denote the second point of intersection ofP1E with � , and let E 2 denote the
point on � diametrically oppositeE 1, so that E 2E is perpendicular toP1E. The point G lies
on the perpendicular bisectors of the sidesP1E and EE 2 of the right-angled triangle P1EE 2;
it follows that G is the midpoint of P1E 2. Since D is the midpoint of E 1E 2, we have that
GD � 1

2P1E 1. SinceP1M � 1
2P1E, we haveGD � P1M � 1

4P1E 1� P1E � 1
4h. The other equality

HD � P1N follows by exactly the same argument.

D

E

P1

M

G

�

E 1

E 2

l

From this claim, we see that the area condition is equivalentto the equality

pMA : P1M q � p NB : P1N q

of ratios of signed lengths, which is equivalent to direct similarity of AP 1M and BP 1N , as
desired.
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Solution 2. Along the perpendicular bisector ofCE, de�ne the linear function

f pX q � areapBCX q � areapAXE q � areapABX q � areapABP q;

where, from now on, we always use signed areas. Thus, we want to show that C; P; E are
collinear if and only if f pDq � 0.

A

P

E

D C

B

Let P1 be the re�ection of P across lineAB . The point P1 does not lie on the lineCE.
To see this, we letA2 and B 2 be the points obtained fromA and B by dilating with scale
factor 2 about P1, so that P is the orthogonal projection ofP1 onto A2B 2. SinceA lies on the
perpendicular bisector ofP1E, the triangle A2EP 1 is right-angled at E (and B 2CP1 similarly).
If P1 were to lie onCE, then the lines A2E and B 2C would be perpendicular toCE and A2

and B 2 would lie on the opposite side ofCE to D. It follows that the line A2B 2 does not meet
triangle CDE , and hence pointP does not lie insideCDE . But then P must lie insideABCE ,
and it is clear that such a point cannot re�ect to a pointP1 on CE.

We thus let O be the centre of the circleCEP 1. The linesAO and BO are the perpendicular
bisectors ofEP 1 and CP1, respectively, so

areapBCOq � areapAOE q � areapOP1Bq � areapP1OAq � areapP1BOAq

� areapABO q � areapBAP 1q � areapABO q � areapABP q;

and hencef pOq � 0.
Notice that if point O coincides with D then points A; B lie in angle domainCDE and

= EOC � 2� = AOB , which is not allowed. So,O and D must be distinct. Sincef is linear and
vanishes atO, it follows that f pDq � 0 if and only if f is constant zero � we want to show this
occurs if and only ifC; P; E are collinear.

P0

B

C

E
O

A

P

C

P

T

E

A B

In the one direction, suppose �rstly that C; P; E are not collinear, and letT be the centre
of the circle CEP . The same calculation as above provides

areapBCT q � areapAT E q � areapP BT Aq � areapABT q � areapABP q

so
f pTq � � 2 areapABP q � 0:



Shortlisted problems � solutions 67

Hence, the linear functionf is nonconstant with its zero is atO, so that f pDq � 0.

In the other direction, suppose that the pointsC; P; E are collinear. We will show thatf is
constant zero by �nding a second point (other thanO) at which it vanishes.

P

C

B 0
Q

A B

E

A0

Let Q be the re�ection of P across the midpoint ofAB , so P AQB is a parallelogram. It
is easy to see thatQ is on the perpendicular bisector ofCE; for instance if A1 and B 1 are the
points produced fromA and B by dilating about P with scale factor 2, then the projection
of Q to CE is the midpoint of the projections ofA1 and B 1, which are E and C respectively.
The triangles BCQ and AQE are indirectly congruent, so

f pQq �
�
areapBCQq � areapAQE q

�
�

�
areapABQq � areapBAP q

�
� 0 � 0 � 0:

The points O and Q are distinct. To see this, consider the circle! centred onQ with P1 on
the circumference; since triangleP P1Q is right-angled at P1, it follows that P lies outside! .
On the other hand,P lies betweenC and E on the line CP E. It follows that C and E cannot
both lie on ! , so that ! is not the circle CEP 1 and Q � O.

SinceO and Q are distinct zeroes of the linear functionf , we havef pDq � 0 as desired.

Comment 1. The condition = EDC � 2�= ADB cannot be omitted. If D is the centre of circleCEP 1,
then the condition on triangle areas is satis�ed automatically, without having P on line CE.

Comment 2. The �only if� part of this problem is easier than the �if� part . For example, in
the second part of Solution 2, the trianglesEAQ and QBC are indirectly congruent, so the sum
of their areas is 0, and DCQE is a kite. Now one can easily see that= pAQ; DE q � = pCD; CB q
and = pBQ; DC q � = pED; EA q, whenceareapBCD q � areapAQD q � areapEQA q and areapADE q �
areapBDQ q � areapBQC q, which yields the result.
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Comment 3. The origin of the problem is the following observation. LetABDH be a tetrahedron
and consider the sphereS that is tangent to the four face planes, internally to planesADH and BDH
and externally to ABD and ABH (or vice versa). It is known that the sphere S exists if and only
if areapADH q � areapBDH q � areapABH q � areapABD q; this relation comes from the usual formula
for the volume of the tetrahedron.

Let T; Ta; Tb; Td be the points of tangency between the sphere and the four planes, as shown in the
picture. Rotate the triangle ABH inward, the triangles BDH and ADH outward, into the triangles
ABP , BDC and ADE , respectively, in the planeABD . Notice that the points Td; Ta; Tb are rotated
to T, so we haveHTa � HTb � HTd � PT � CT � ET . Therefore, the point T is the centre of the
circle CEP . Hence, if the sphere exists thenC; E; P cannot be collinear.

If the condition = EDC � 2 � = ADB is replaced by the constraint that the angles= EDA , = ADB
and = BDC satisfy the triangle inequality, it enables reconstructing the argument with the tetrahedron
and the tangent sphere.

H

D

T

Tb

Ta

P

A

E

C

B

Td
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G6. Let I be the incentre of acute-angled triangleABC . Let the incircle meetBC, CA,
and AB at D, E, and F , respectively. Let lineEF intersect the circumcircle of the triangle
at P and Q, such that F lies betweenE and P. Prove that = DP A � = AQD � = QIP .

(Slovakia)

Solution 1. Let N and M be the midpoints of the arcs•BC of the circumcircle, containing
and opposite vertexA, respectively. By = F AE � = BAC � = BNC , the right-angled kites
AF IE and NBMC are similar. Consider the spiral similarity' (dilation in case ofAB � AC)
that movesAF IE to NBMC . The directed angle in which' changes directions is= pAF; NB q,
same as= pAP; NP q and = pAQ; NQq; so linesAP and AQ are mapped to linesNP and NQ,
respectively. LineEF is mapped toBC; we can see that the intersection pointsP � EF X AP
and Q � EF X AQ are mapped to pointsBC X NP and BC X NQ, respectively. Denote these
points by P1 and Q1, respectively.

ZP0 B

M

C Q0L D

I

P

F

E

A
N

�

Q

Let L be the midpoint of BC. We claim that points P; Q; D; L are concyclic (if D � L
then line BC is tangent to circle P QD). Let P Q and BC meet at Z . By applying Menelaus'
theorem to triangle ABC and line EF Z , we have

BD
DC

�
BF
F A

�
AE
EC

� �
BZ
ZC

;

so the pairsB; C and D; Z are harmonic. It is well-known that this impliesZB �ZC � ZD �ZL .
(The inversion with pole Z that swaps B and C sendsZ to in�nity and D to the midpoint
of BC, because the cross-ratio is preserved.) Hence,ZD � ZL � ZB � ZC � ZP � ZQ by the
power ofZ with respect to the circumcircle; this proves our claim.

By = MP P 1 � = MQQ1 � = MLP 1 � = MLQ 1 � 90� , the quadrilaterals MLP P 1 and
MLQQ 1 are cyclic. Then the problem statement follows by

= DP A � = AQD � 360� � = P AQ � = QDP � 360� � = P NQ � = QLP

� = LP N � = NQL � = P1ML � = LMQ 1 � = P1MQ1 � = P IQ:
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Solution 2. De�ne the point M and the same spiral similarity' as in the previous solution.
(The point N is not necessary.) It is well-known that the centre of the spiral similarity that
mapsF; E to B; C is the Miquel point of the linesF E , BC, BF and CE; that is, the second
intersection of circlesABC and AEF . Denote that point by S.

By ' pF q � B and ' pEq � C the triangles SBF and SCE are similar, so we have

SB
SC

�
BF
CE

�
BD
CD

:

By the converse of the angle bisector theorem, that indicates that line SD bisects= BSC and
hence passes throughM .

Let K be the intersection point of linesEF and SI . Notice that ' sends pointsS; F; E; I
to S; B; C; M , so ' pK q � ' pF E X SI q � BC X SM � D. By ' pI q � M , we haveKD k IM .

B

M
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P

A�

S
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Q

F

E
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L

We claim that triangles SP I and SDQ are similar, and so are trianglesSP D and SIQ.
Let ray SI meet the circumcircle again atL. Note that the segmentEF is perpendicular to
the angle bisectorAM . Then by = AML � = ASL � = ASI � 90� , we haveML k P Q. Hence,
ŒP L � •MQ and therefore= P SL � = MSQ � = DSQ. By = QP S � = QMS, the triangles
SP K and SMQ are similar. Finally,

SP
SI

�
SP
SK

�
SK
SI

�
SM
SQ

�
SD
SM

�
SD
SQ

shows that trianglesSP I and SDQ are similar. The second part of the claim can be proved
analogously.

Now the problem statement can be proved by

= DP A � = AQD � = DP S � = SQD � = QIS � = SIP � = QIP :
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Solution 3. Denote the circumcircle of triangleABC by � , and let raysP D and QD meet �
again at V and U, respectively. We will show thatAU K IP and AV K IQ . Then the problem
statement will follow as

= DP A � = AQD � = V UA � = AV U � 180� � = UAV � = QIP :

Let M be the midpoint of arc •BUV C and let N be the midpoint of arc ŽCAB ; the linesAIM
and AN being the internal and external bisectors of angleBAC , respectively, are perpendicular.
Let the tangents drawn to� at B and C meet at R; let line P Q meet AU, AI , AV and BC at
X , T, Y and Z , respectively.

As in Solution 1, we observe that the pairsB; C and D; Z are harmonic. Projecting these
points from Q onto the circumcircle, we can see thatB; C and U; P are also harmonic. Anal-
ogously, the pair V; Q is harmonic with B; C. Consider the inversion about the circle with
centre R, passing throughB and C. Points B and C are �xed points, so this inversion ex-
changes every point of� by its harmonic pair with respect toB; C. In particular, the inversion
maps pointsB; C; N; U; V to points B; C; M; P; Q, respectively.

Combine the inversion with projecting� from A to line P Q; the points B; C; M; P; Q are
projected to F; E; T; P; Q, respectively.

A
N

F
X

Y E
Q

D

R

MU

I

V

P

T

B C

�

Z

The combination of these two transformations is projectivemap from the linesAB , AC,
AN , AU, AV to IF , IE , IT , IP , IQ , respectively. On the other hand, we haveAB K IF ,
AC K IE and AN K AT , so the corresponding lines in these two pencils are perpendicular.
This provesAU K IP and AV K IQ , and hence completes the solution.
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G7. The incircle ! of acute-angled scalene triangleABC has centreI and meets sidesBC,
CA, and AB at D, E, and F , respectively. The line throughD perpendicular toEF meets!
again at R. Line AR meets! again at P. The circumcircles of trianglesP CE and P BF meet
again at Q � P. Prove that lines DI and P Q meet on the external bisector of angleBAC .

(India)

Common remarks. Throughout the solution, = pa; bq denotes the directed angle between
lines a and b, measured modulo� .

Solution 1.
Step 1. The external bisector of= BAC is the line through A perpendicular to IA . Let DI

meet this line at L and let DI meet ! at K . Let N be the midpoint of EF , which lies onIA
and is the pole of lineAL with respect to ! . SinceAN � AI � AE 2 � AR � AP , the points R,
N , I , and P are concyclic. AsIR � IP , the line NI is the external bisector of= P NR, soP N
meets! again at the point symmetric to R with respect to AN � i.e. at K .

Let DN cross! again at S. Opposite sides of any quadrilateral inscribed in the circle !
meet on the polar line of the intersection of the diagonals with respect to ! . SinceL lies on
the polar line AL of N with respect to ! , the line P S must pass throughL. Thus it su�ces to
prove that the points S, Q, and P are collinear.
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Step 2. Let � be the circumcircle of4 BIC . Notice that

= pBQ; QCq � = pBQ; QP q � = pP Q; QCq � = pBF; F P q � = pP E; ECq

� = pEF; EP q � = pF P; F Eq � = pF P; EP q � = pDF; DE q � = pBI; IC q;

so Q lies on � . Let QP meet � again at T. It will now su�ce to prove that S; P, and T
are collinear. Notice that = pBI; IT q � = pBQ; QT q � = pBF; F P q � = pF K; KP q. Note
F D K F K and F D K BI so F K k BI and henceIT is parallel to the line KNP . Since
DI � IK , the line IT crossesDN at its midpoint M .

Step 3. Let F 1and E 1be the midpoints ofDE and DF , respectively. SinceDE 1�E 1F � DE 12 �
BE 1�E 1I , the point E 1 lies on the radical axis of! and � ; the same holds forF 1. Therefore, this
radical axis isE 1F 1, and it passes throughM . Thus IM � MT � DM � MS, soS, I , D , and T
are concyclic. This shows= pDS; STq � = pDI; IT q � = pDK; KP q � = pDS; SPq, whence the
points S, P, and T are collinear, as desired.
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Comment. Here is a longer alternative proof in step 1 thatP, S, and L are collinear, using a circular
inversion instead of the fact that opposite sides of a quadrilateral inscribed in a circle ! meet on the
polar line with respect to ! of the intersection of the diagonals. LetG be the foot of the altitude from
N to the line DIKL . Observe that N; G; K; S are concyclic (opposite right angles) so

= DIP � 2= DKP � = GKN � = DSP � = GSN � = NSP � = GSP ;

henceI; G; S; P are concyclic. We haveIG � IL � IN � IA � r 2 since4 IGN � 4 IAL . Inverting the
circle IGSP in circle ! , points P and S are �xed and G is taken to L so we �nd that P; S, and L are
collinear.
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Solution 2. We start as in Solution 1. Namely, we introduce the same points K , L, N , and S,
and show that the triplespP; N; K qand pP; S; Lqare collinear. We conclude thatK and R are
symmetric in AI , and reduce the problem statement to showing thatP, Q, and S are collinear.

Step 1. Let AR meet the circumcircle 
 of ABC again at X . The lines AR and AK are
isogonal in the angleBAC ; it is well known that in this caseX is the tangency point of
 with
the A-mixtilinear circle. It is also well known that for this point X , the line XI crosses
 again
at the midpoint M 1 of arc BAC .

Step 2. Denote the circlesBF P and CEP by 
 B and 
 C , respectively. Let 
 B crossAR
and EF again at U and Y, respectively. We have

= pUB; BF q � = pUP; P Fq � = pRP; P Fq � = pRF; F Aq;

so UB k RF .
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Next, we show that the pointsB , I , U, and X are concyclic. Since

= pUB; UX q � = pRF; RX q � = pAF; AR q � = pF R; F Aq � = pM 1B; M 1X q � = pDR; DF q;

it su�ces to prove = pIB; IX q � = pM 1B; M 1X q � = pDR; DF q, or = pIB; M 1Bq � = pDR; DF q.
But both angles equal= pCI; CB q, as desired. (This is where we used the fact thatM 1 is the
midpoint of arc BAC of 
 .)

It follows now from circlesBUIX and BP UF Y that

= pIU; UB q � = pIX; BX q � = pM 1X; BX q �
� � = A

2
� = pEF; AF q � = pY F; BF q � = pY U; BUq;

so the pointsY , U, and I are collinear.
Let EF meet BC at W. We have

= pIY; Y Wq � = pUY; F Yq � = pUB; F B q � = pRF; AF q � = pCI; CW q;

so the pointsW, Y, I , and C are concyclic.
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Similarly, if V and Z are the second meeting points of
 C with AR and EF , we get that
the 4-tuplespC; V; I; X qand pB; I; Z; W qare both concyclic.

Step 3. Let Q1 � CY X BZ . We will show that Q1 � Q.
First of all, we have

= pQ1Y; Q1Bq � = pCY; ZBq � = pCY; ZYq � = pZY; BZ q

� = pCI; IW q � = pIW; IB q � = pCI; IB q �
� � = A

2
� = pF Y; F Bq;

so Q1 P 
 B . Similarly, Q1 P 
 C . Thus Q1 P 
 B X 
 C � t P; Qu and it remains to prove that
Q1 � P. If we had Q1 � P, we would have= pP Y; P Zq � = pQ1Y; Q1Zq � = pIC; IB q. This
would imply

= pP Y; Y Fq � = pEZ; ZP q � = pP Y; P Zq � = pIC; IB q � = pP E; P F q;

so circles
 B and 
 C would be tangent atP. That is excluded in the problem conditions, so
Q1 � Q.
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Step 4. Now we are ready to show thatP, Q, and S are collinear.
Notice that A and D are the poles ofEW and DW with respect to ! , so W is the pole

of AD . Hence,W I K AD . SinceCI K DE , this yields = pIC; W I q � = pDE; DA q. On the
other hand, DA is a symmedian in4 DEF , so = pDE; DA q � = pDN; DF q � = pDS; DF q.
Therefore,

= pP S; P Fq � = pDS; DF q � = pDE; DA q � = pIC; IW q

� = pY C; Y Wq � = pY Q; Y Fq � = pP Q; P Fq;

which yields the desired collinearity.
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G8. Let L be the set of all lines in the plane and letf be a function that assigns to each
line ` P L a point f p̀ q on `. Suppose that for any pointX , and for any three lines`1, `2, `3

passing throughX , the points f p̀ 1q, f p̀ 2q, f p̀ 3q and X lie on a circle.
Prove that there is a unique pointP such that f p̀ q � P for any line ` passing throughP.

(Australia)

Common remarks. The condition on f is equivalent to the following: There is some func-
tion g that assigns to each pointX a circle gpX q passing throughX such that for any line `
passing throughX , the point f p̀ q lies ongpX q. (The function g may not be uniquely de�ned
for all points, if some pointsX have at most one value off p̀ q other than X ; for such points,
an arbitrary choice is made.)

If there were two pointsP and Q with the given property, f pP Qq would have to be both
P and Q, so there is at most one such point, and it will su�ce to show that such a point exists.

Solution 1. We provide a complete characterisation of the functions satisfying the given
condition.

Write = p̀ 1; `2q for the directed angle modulo180� between the lines`1 and `2. Given a
point P and an angle� P p0; 180� q, for each line `, let `1 be the line through P satisfying
= p̀ 1; `q � � , and let hP;� p̀ q be the intersection point of` and `1. We will prove that there is
some pairpP; � q such that f and hP;� are the same function. ThenP is the unique point in
the problem statement.

Given an angle� and a point P, let a line ` be calledpP; � q-good if f p̀ q � hP;� p̀ q. Let
a point X � P be called pP; � q-good if the circle gpX q passes throughP and some point
Y � P; X on gpX qsatis�es = pP Y; Y Xq � � . It follows from this de�nition that if X is pP; � q-
good then every pointY � P; X of gpX q satis�es this angle condition, sohP;� pXY q � Y for
every Y P gpX q. Equivalently, f p̀ q P tX; h P;� p̀ qu for each line` passing throughX . This
shows the following lemma.

Lemma 1. If X is pP; � q-good and` is a line passing throughX then either f p̀ q � X or ` is
pP; � q-good.

Lemma 2. If X and Y are di�erent pP; � q-good points, then lineXY is pP; � q-good.

Proof. If XY is not pP; � q-good then by the previous Lemma,f pXY q � X and similarly
f pXY q � Y , but clearly this is impossible asX � Y. l

Lemma 3. If `1 and `2 are di�erent pP; � q-good lines which intersect atX � P, then either
f p̀ 1q � X or f p̀ 2q � X or X is pP; � q-good.

Proof. If f p̀ 1q; f p̀ 2q � X , then gpX q is the circumcircle ofX , f p̀ 1qand f p̀ 2q. Since`1 and `2

are pP; � q-good lines, the angles

= pP f p̀ 1q; f p̀ 1qX q � = pP f p̀ 2q; f p̀ 2qX q � �;

so P lies ongpX q. Hence,X is pP; � q-good. l

Lemma 4. If `1, `2 and `3 are di�erent pP; � q-good lines which intersect atX � P, then X is
pP; � q-good.

Proof. This follows from the previous Lemma since at most one of the three lines` i can satisfy
f p̀ i q � X as the three lines are allpP; � q-good. l

Lemma 5. If ABC is a triangle such thatA, B , C, f pAB q, f pACqand f pBCqare all di�erent
points, then there is some pointP and some angle� such that A, B and C are pP; � q-good
points and AB , BC and CA are pP; � q-good lines.
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A

B CD

E

F

gpAq

gpBq

gpCq

P

Proof. Let D, E, F denote the points f pBCq, f pACq, f pAB q, respectively. Then gpAq,
gpBq and gpCq are the circumcircles ofAEF , BDF and CDE , respectively. Let P � F
be the second intersection of circlesgpAq and gpBq (or, if these circles are tangent atF , then
P � F ). By Miquel's theorem (or an easy angle chase),gpCq also passes throughP. Then by
the cyclic quadrilaterals, the directed angles

= pP D; DC q � = pP F; F Bq � = pP E; EAq � �;

for some angle� . Hence, linesAB , BC and CA are all pP; � q-good, so by Lemma 3,A, B and C
are pP; � q-good. (In the case whereP � D, the line P D in the equation above denotes the line
which is tangent to gpBq at P � D. Similar de�nitions are used forP E and P F in the cases
whereP � E or P � F .) l

Consider the set
 of all points px; yqwith integer coordinates1 ¤ x; y ¤ 1000, and consider
the set L 
 of all horizontal, vertical and diagonal lines passing through at least one point in
 .
A simple counting argument shows that there are5998lines in L 
 . For each line` in L 
 we
colour the point f p̀ qred. Then there are at most5998red points. Now we partition the points
in 
 into 10000ten by ten squares. Since there are at most5998red points, at least one of
these squares
 10 contains no red points. Letpm; nqbe the bottom left point in 
 10. Then the
triangle with vertices pm; nq, pm � 1; nq and pm; n � 1q satis�es the condition of Lemma 5, so
these three vertices are allpP; � q-good for some pointP and angle� , as are the lines joining
them. From this point on, we will simply call a point or line good if it is pP; � q-good for this
particular pair pP; � q. Now by Lemma 1, the linex � m � 1 is good, as is the liney � n � 1.
Then Lemma 3 implies thatpm� 1; n� 1qis good. By applying these two lemmas repeatedly, we
can prove that the linex � y � m � n � 2 is good, then the pointspm; n � 2qand pm � 2; nqthen
the linesx � m� 2 and y � n � 2, then the pointspm� 2; n � 1q, pm� 1; n � 2qand pm� 2; n � 2q
and so on until we have prove that all points in
 10 are good.

Now we will use this to prove that every pointS � P is good. SincegpSq is a circle, it
passes through at most two points of
 10 on any vertical line, so at most20 points in total.
Moreover, any line` through S intersects at most10 points in 
 10. Hence, there are at least
eight lines ` through S which contain a point Q in 
 10 which is not on gpSq. SinceQ is not
on gpSq, the point f p̀ q � Q. Hence, by Lemma 1, the linè is good. Hence, at least eight good
lines pass throughS, so by Lemma 4, the pointS is good. Hence, every pointS � P is good,
so by Lemma 2, every line is good. In particular, every linè passing throughP is good, and
therefore satis�esf p̀ q � P, as required.

Solution 2. Note that for any distinct points X; Y , the circlesgpX q and gpYq meet onXY
at the point f pXY q PgpX q XgpYq X pXY q. We write spX; Y qfor the second intersection point
of circlesgpX qand gpYq.
Lemma 1. Suppose thatX , Y and Z are not collinear, and thatf pXY q R tX; Y u and similarly
for Y Z and ZX . Then spX; Y q � spY; Zq � spZ; X q.
Proof. The circlesgpX q, gpYqand gpZqthrough the vertices of triangleXY Z meet pairwise on
the corresponding edges (produced). By Miquel's theorem, the second points of intersection of
any two of the circles coincide. (See the diagram for Lemma 5 of Solution 1.) l



78 Bath � UK, 11th�22nd July 2019

Now pick any line ` and any six di�erent points Y1; : : : ; Y6 on ` z tf p̀ qu. Pick a point X
not on ` or any of the circlesgpYi q. Reordering the indices if necessary, we may suppose that
Y1; : : : ; Y4 do not lie on gpX q, so that f pXY i q R tX; Yi u for 1 ¤ i ¤ 4. By applying the above
lemma to trianglesXY i Yj for 1 ¤ i   j ¤ 4, we �nd that the points spYi ; Yj q and spX; Yi q are
all equal, to point O say. Note that either O does not lie on`, or O � f p̀ q, sinceO PgpYiq.

Now consider an arbitrary point X 1 not on ` or any of the circlesgpYi q for 1 ¤ i ¤ 4. As
above, we see that there are two indices1 ¤ i   j ¤ 4 such that Yi and Yj do not lie on gpX 1q.
By applying the above lemma to triangleX 1Yi Yj we see thatspX 1; Yi q � O, and in particular
gpX 1q passes throughO.

We will now show that f p̀ 1q � O for all lines `1 through O. By the above note, we may
assume that`1 � `. Consider a variable pointX 1 P`1z tOu not on ` or any of the circlesgpYi q
for 1 ¤ i ¤ 4. We know that f p̀ 1q PgpX 1q X `1 � t X 1; Ou. SinceX 1 was suitably arbitrary, we
have f p̀ 1q � O as desired.

Solution 3. Notice that, for any two di�erent points X and Y, the point f pXY q lies on both
gpX q and gpYq, so any two such circles meet in at least one point. We refer totwo circles as
cutting only in the case where they cross, and so meet at exactly two points, thus excluding
the cases where they are tangent or are the same circle.

Lemma 1. Suppose there is a pointP such that all circlesgpX qpass throughP. Then P has
the given property.

Proof. Consider some linè passing throughP, and suppose thatf p̀ q � P. Consider someX P`
with X � P and X � f p̀ q. Then gpX q passes through all ofP, f p̀ q and X , but those three
points are collinear, a contradiction. l

Lemma 2. Suppose that, for all� ¡ 0, there is a pointP� with gpP� qof radius at most� . Then
there is a point P with the given property.

Proof. Consider a sequence� i � 2� i and corresponding pointsP� i . Because the two circles
gpP� i q and gpP� j q meet, the distance betweenP� i and P� j is at most 21� i � 21� j . As

°
i � i con-

verges, these points converge to some pointP. For all � ¡ 0, the point P has distance at
most 2� from P� , and all circlesgpX q pass through a point with distance at most2� from P� ,
so distance at most4� from P. A circle that passes distance at most4� from P for all � ¡ 0
must pass throughP, so by Lemma 1 the pointP has the given property. l

Lemma 3. Suppose no two of the circlesgpX q cut. Then there is a point P with the given
property.

Proof. Consider a circlegpX qwith centre Y. The circle gpYq must meetgpX qwithout cutting
it, so has half the radius ofgpX q. Repeating this argument, there are circles with arbitrarily
small radius and the result follows by Lemma 2. l

Lemma 4. Suppose there are six di�erent pointsA, B1, B2, B3, B4, B5 such that no three
are collinear, no four are concyclic, and all the circlesgpB i q cut pairwise at A. Then there is a
point P with the given property.

Proof. Consider some linè through A that does not pass through any of theB i and is not
tangent to any of the gpB i q. Fix some direction along that line, and letX � be the point on `
that has distance� from A in that direction. In what follows we consider only those� for which
X � does not lie on anygpB i q (this restriction excludes only �nitely many possible values of� ).

Consider the circlegpX � q. Because no four of theB i are concyclic, at most three of them
lie on this circle, so at least two of them do not. There must besome sequence of� Ñ 0 such
that it is the same two of the B i for all � in that sequence, so now restrict attention to that
sequence, and suppose without loss of generality thatB1 and B2 do not lie on gpX � q for any �
in that sequence.
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Then f pX � B1q is not B1, so must be the other point of intersection ofX � B1 with gpB1q,
and the same applies withB2. Now consider the three pointsX � , f pX � B1q and f pX � B2q. As
� Ñ 0, the angle at X � tends to = B1AB 2 or 180� � = B1AB 2, which is not 0 or 180� because
no three of the points were collinear. All three distances between those points are bounded
above by constant multiples of� (in fact, if the triangle is scaled by a factor of1{� , it tends to
a �xed triangle). Thus the circumradius of those three points, which is the radius ofgpX � q, is
also bounded above by a constant multiple of� , and so the result follows by Lemma 2. l

Lemma 5. Suppose there are two pointsA and B such that gpAqand gpBqcut. Then there is
a point P with the given property.

Proof. Suppose thatgpAq and gpBq cut at C and D. One of those points, without loss of
generality C, must bef pAB q, and so lie on the lineAB . We now consider two cases, according
to whether D also lies on that line.

Case 1: D does not lie on that line.

In this case, consider a sequence ofX � at distance � from D, tending to D along some line
that is not a tangent to either circle, but perturbed slightly (by at most � 2) to ensure that no
three of the pointsA, B and X � are collinear and no four are concyclic.

Consider the points f pX � Aq and f pX � Bq, and the circlesgpX � q on which they lie. The
point f pX � Aq might be either A or the other intersection ofX � A with the circle gpAq, and the
same applies forB . If, for some sequence of� Ñ 0, both those points are the other point of
intersection, the same argument as in the proof of Lemma 4 applies to �nd arbitrarily small
circles. Otherwise, we have either in�nitely many of those circles passing throughA, or in�nitely
many passing throughB; without loss of generality, suppose in�nitely many through A.

We now show we can �nd �ve points B i satisfying the conditions of Lemma 4 (together
with A). Let B1 be any of theX � for which gpX � qpasses throughA. Then repeat the following
four times, for 2 ¤ i ¤ 5.

Consider some linè � X � A (di�erent from those considered for previousi ) that is not
tangent to any of the gpB j q for j   i , and is such that f p̀ q � A, so gpYq passes throughA
for all Y on that line. If there are arbitrarily small circles gpYq we are done by Lemma 2, so
the radii of such circles must be bounded below. But asY Ñ A, along any line not tangent
to gpB j q, the radius of a circle throughY and tangent to gpB j qat A tends to 0. So there must
be someY such that gpYq cuts gpB j q at A rather than being tangent to it there, for all of the
previous B j , and we may also pick it such that no three of theB i and A are collinear and no
four are concyclic. LetB i be this Y. Now the result follows by Lemma 4.

Case 2: D does lie on that line.

In this case, we follow a similar argument, but the sequence of X � needs to be slightly
di�erent. C and D both lie on the line AB , so one must beA and the other must beB.
Consider a sequence ofX � tending to B. Rather than tending to B along a straight line (with
small perturbations), let the sequence be such that all the points are inside the two circles, with
the angle betweenX � B and the tangent to gpBqat B tending to 0.

Again consider the pointsf pX � Aq and f pX � Bq. If, for some sequence of� Ñ 0, both those
points are the other point of intersection with the respective circles, we see that the angle atX �

tends to the angle betweenAB and the tangent togpBqat B , which is not 0 or 180� , while the
distances tend to0 (although possibly slower than any multiple of� ), so we have arbitrarily
small circumradii and the result follows by Lemma 2. Otherwise, we have either in�nitely many
of the circlesgpX � q passing throughA, or in�nitely many passing through B, and the same
argument as in the previous case enables us to reduce to Lemma4. l

Lemmas 3 and 5 together cover all cases, and so the required result is proved.
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Comment. From the property that all circles gpX q pass through the same pointP, it is possible to
deduce that the function f has the form given in Solution 1. For any line` not passing throughP we
may de�ne a corresponding angle� p̀ q, which we must show is the same for all such lines. For any
point X � P, with at least one line ` through X and not through P, such that f p̀ q � X , this angle
must be equal for all such lines throughX (by (directed) angles in the same segment ofgpX q).

Now consider all horizontal and all vertical lines not through P. For any pair consisting of a
horizontal line `1 and a vertical line `2, we have � p̀ 1q � � p̀ 2q unless f p̀ 1q or f p̀ 2q is the point of
intersection of those lines. Consider the bipartite graph whose vertices are those lines and where an
edge joins a horizontal and a vertical line with the same value of � . Considering a subgraph induced
by n horizontal and n vertical lines, it must have at least n2 � 2n edges, so some horizontal line has
edges to at leastn � 2 of the vertical lines. Thus, in the original graph, all but at most two of the
vertical lines have the same value of� , and likewise all but at most two of the horizontal lines have
the same value of� , and, restricting attention to suitable subsets of those lines, we see that this value
must be the same for the vertical lines and for the horizontallines.

But now we can extend this to all vertical and horizontal lines not through P (and thus to lines
in other directions as well, since the only requirement forv̀ertical' and `horizontal' above is that they
are any two nonparallel directions). Consider any horizontal line `1 not passing through P, and we
wish to show that � p̀ 1qhas the same value� it has for all but at most two lines not through P in any
direction. Indeed, we can deduce this by considering the intersection with any but at most �ve of the
vertical lines: the only ones to exclude are the one passing through P, the one passing throughf p̀ 1q,
at most two such that � p̀ q � � , and the one passing throughhP;� p̀ 1q (de�ned as in Solution 1). So
all lines ` not passing throughP have the same value of� p̀ q.

Solution 4. For any point X , denote by tpX q the line tangent to gpX q at X ; notice that
f ptpX qq � X , so f is surjective.

Step 1: We �nd a point P for which there are at least two di�erent linesp1 and p2 such that
f ppi q � P.

Choose any pointX . If X does not have this property, take anyY P gpX q z tX u; then
f pXY q � Y . If Y does not have the property,tpYq � XY , and the circlesgpX qand gpYqmeet
again at some pointZ . Then f pXZ q � Z � f pY Zq, soZ has the required property.

We will show that P is the desired point. From now on, we �x two di�erent lines p1

and p2 with f pp1q � f pp2q � P. Assume for contradiction that f p̀ q � Q � P for some line`
through P. We �x `, and note that Q PgpPq.

Step 2: We prove thatP PgpQq.

Take an arbitrary point X P ` z tP; Qu. Two cases are possible for the position oftpX q
in relation to the pi ; we will show that each case (and subcase) occurs for only �nitely many
positions ofX , yielding a contradiction.

Case 2.1: tpX q is parallel to one of thepi ; say, to p1.

Let tpX q crossp2 at R. Then gpRq is the circle pP RX q, as f pRPq � P and f pRX q � X .
Let RQ crossgpRq again at S. Then f pRQq P tR; Su X gpQq, so gpQq contains one of the
points R and S.

If R PgpQq, then R is one of �nitely many points in the intersectiongpQq Xp2, and each of
them corresponds to a unique position ofX , sinceRX is parallel to p1.

If S P gpQq, then = pQS; SPq � = pRS; SPq � = pRX; XP q � = pp1; `q, so = pQS; SPq is
constant for all such pointsX , and all points S obtained in such a way lie on one circle
passing throughP and Q. SincegpQq does not containP, it is di�erent from  , so there are
only �nitely many points S. Each of them uniquely determinesR and thus X .
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So, Case 2.1 can occur for only �nitely many pointsX .

Case 2.2: tpX q crossesp1 and p2 at R1 and R2, respectively.

Clearly, R1 � R2, astpX q is the tangent to gpX qat X , and gpX qmeets` only at X and Q.
Notice that gpRi q is the circlepP XR i q. Let Ri Q meet gpRi qagain at Si ; then Si � Q, asgpRi q
meets` only at P and X . Then f pRi Qq P tRi ; Si u, and we distinguish several subcases.

p1

p2

P

`

Q

R1

R2

X

tpX q

gpX q

gpR1q

gpR2q

S1

S2

Subcase 2.2.1:f pR1Qq � S1, f pR2Qq � S2; so S1; S2 PgpQq.

In this case we have0 � = pR1X; XP q � = pXP; R 2X q � = pR1S1; S1Pq � = pS2P; S2R2q �
= pQS1; S1Pq � = pS2P; S2Qq, which showsP PgpQq.

Subcase 2.2.2:f pR1Qq � R1, f pR2Qq � R2; so R1; R2 PgpQq.

This can happen for at most four positions ofX � namely, at the intersections of ` with a
line of the form K 1K 2, whereK i PgpQq X pi .
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Subcase 2.2.3:f pR1Qq � S1, f pR2Qq � R2 (the casef pR1Qq � R1, f pR2Qq � S2 is similar).
In this case, there are at most two possible positions forR2 � namely, the meeting points

of gpQqwith p2. Consider one of them. LetX vary on `. Then R1 is the projection ofX to p1

via R2, S1 is the projection of R1 to gpQq via Q. Finally, = pQS1; S1X q � = pR1S1; S1X q �
= pR1P; P X q � = pp1; `q � 0, soX is obtained by a �xed projective transformgpQq Ñ ` from S1.
So, if there were three pointsX satisfying the conditions of this subcase, the compositionof the
three projective transforms would be the identity. But, if we apply it to X � Q, we successively
get some pointR1

1, then R2, and then some point di�erent from Q, a contradiction.
Thus Case 2.2 also occurs for only �nitely many pointsX , as desired.

Step 3: We show thatf pP Qq � P, as desired.
The argument is similar to that in Step 2, with the roles ofQ and X swapped. Again, we

show that there are only �nitely many possible positions fora point X P ` z tP; Qu, which is
absurd.

Case 3.1: tpQq is parallel to one of thepi ; say, to p1.
Let tpQqcrossp2 at R; then gpRqis the circlepP RQq. Let RX crossgpRqagain at S. Then

f pRX q P tR; Su X gpX q, sogpX q contains one of the pointsR and S.

p1

p2

P

`

X
Q

tpQq

R

gpQq

gpRq

S

Subcase 3.1.1:S � f pRX q PgpX q.
We have = ptpX q; QX q � = pSX; SQq � = pSR; SQq � = pP R; P Qq � = pp2; `q. Hence

tpX qk p2. Now we recall Case 2.1: we lettpX qcrossp1 at R1, sogpR1q � p P R1X q, and let R1Q
meet gpR1qagain at S1; notice that S1 � Q. Excluding one position ofX , we may assume that
R1 RgpQq, so R1 � f pR1Qq. Therefore,S1 � f pR1Qq PgpQq. But then, as in Case 2.1, we get
= ptpQq; P Qq � = pQS1; S1Pq � = pR1X; XP q � = pp2; `q. This means that tpQq is parallel to p2,
which is impossible.

Subcase 3.1.2:R � f pRX q PgpX q.
In this case, we have= ptpX q; `q � = pRX; RQ q � = pRX; p1q. Again, let R1 � tpX qXp1; this

point exists for all but at most one position ofX . Then gpR1q � p R1XP q; let R1Q meet gpR1q
again at S1. Due to = pR1X; XR q � = pQX; QR q � = p̀ ; p1q, R1 determinesX in at most two
ways, so for all but �nitely many positions of X we have R1 R gpQq. Therefore, for those
positions we haveS1 � f pR1Qq PgpQq. But then = pRX; p1q � = pR1X; XP q � = pR1S1; S1Pq �
= pQS1; S1Pq � = ptpQq; QPq is �xed, so this case can hold only for one speci�c position ofX
as well.

Thus, in Case 3.1, there are only �nitely many possible positions of X , yielding a contra-
diction.
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Case 3.2: tpQq crossesp1 and p2 at R1 and R2, respectively.

By Step 2, R1 � R2. Notice that gpRi q is the circle pP QRi q. Let Ri X meet gpRi q at Si ;
then Si � X . Then f pRi X q P tRi ; Si u, and we distinguish several subcases.

p1

p2

P

`

X

R1

R2

Q

tpQq

gpQq

gpR1q

gpR2q

S1

S2

Subcase 3.2.1:f pR1X q � S1 and f pR2X q � S2, so S1; S2 PgpX q.

As in Subcase 2.2.1, we have0 � = pR1Q; QPq� = pQP; R2Qq � = pXS1; S1Pq� = pS2P; S2X q,
which showsP P gpX q. But X; Q P gpX q as well, sogpX q meets ` at three distinct points,
which is absurd.

Subcase 3.2.2:f pR1X q � R1, f pR2X q � R2, so R1; R2 PgpX q.

Now three distinct collinear pointsR1, R2, and Q belong togpX q, which is impossible.

Subcase 3.2.3:f pR1X q � S1, f pR2X q � R2 (the casef pR1X q � R1, f pR2X q � S2 is similar).

We have= pXR 2; R2Qq � = pXS1; S1Qq � = pR1S1; S1Qq � = pR1P; P Qq � = pp1; `q, so this
case can occur for a unique position ofX .

Thus, in Case 3.2, there is only a unique position ofX , again yielding the required contra-
diction.
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Number Theory

N1. Find all pairs pm; nq of positive integers satisfying the equation

p2n � 1qp2n � 2qp2n � 4q � � � p2n � 2n� 1q � m! p1q

(El Salvador)

Answer: The only such pairs arep1; 1qand p3; 2q.

Common remarks. In all solutions, for any prime p and positive integerN , we will denote
by vppN q the exponent of the largest power ofp that divides N . The left-hand side ofp1q will
be denoted byLn ; that is, Ln � p 2n � 1qp2n � 2qp2n � 4q � � � p2n � 2n� 1q.

Solution 1. We will get an upper bound onn from the speed at whichv2pLnq grows.

From

Ln � p 2n � 1qp2n � 2q � � � p2n � 2n� 1q � 21� 2�����p n� 1qp2n � 1qp2n� 1 � 1q � � � p21 � 1q

we read

v2pLnq � 1 � 2 � � � � � p n � 1q �
npn � 1q

2
:

On the other hand,v2pm!q is expressed by the Legendre formula as

v2pm!q �
8̧

i � 1

Ym
2i

]
:

As usual, by omitting the �oor functions,

v2pm!q  
8̧

i � 1

m
2i

� m:

Thus, Ln � m! implies the inequality

npn � 1q
2

  m: p2q

In order to obtain an opposite estimate, observe that

Ln � p 2n � 1qp2n � 2q � � � p2n � 2n� 1q   p2nqn � 2n2
:

We claim that

2n2
 

�
npn � 1q

2



! for n ¥ 6. p3q

For n � 6 the estimatep3q is true because262
  6:9 � 1010 and

� npn� 1q
2

�
! � 15! ¡ 1:3 � 1012.

For n ¥ 7 we provep3q by the following inequalities:
�

npn � 1q
2



! � 15!� 16� 17� � �

npn � 1q
2

¡ 236 � 16
n pn � 1q

2 � 15

� 22npn� 1q� 24 � 2n2
� 2npn� 2q� 24 ¡ 2n2

:
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Putting together p2q and p3q, for n ¥ 6 we get a contradiction, since

Ln   2n2
 

�
npn � 1q

2



!   m! � Ln :

Hencen ¥ 6 is not possible.

Checking manually the casesn ¤ 5 we �nd

L1 � 1 � 1!; L2 � 6 � 3!; 5!   L3 � 168  6!;

7!   L4 � 20 160  8! and 10!   L5 � 9 999 360  11!:

So, there are two solutions:
pm; nq P

 
p1; 1q; p3; 2q

(
:

Solution 2. Like in the previous solution, the casesn � 1; 2; 3; 4 are checked manually. We
will exclude n ¥ 5 by considering the exponents of3 and 31 in p1q.

For odd primes p and distinct integers a; b, coprime to p, with p | a � b, the Lifting The
Exponent lemma asserts that

vppak � bkq � vppa � bq � vppkq:

Notice that 3 divides 2k � 1 if only if k is even; moreover, by the Lifting The Exponent lemma
we have

v3p22k � 1q � v3p4k � 1q � 1 � v3pkq � v3p3kq:

Hence,
v3pLnq �

¸

2k¤ n

v3p4k � 1q �
¸

k¤ t n
2 u

v3p3kq:

Notice that the last expression is precisely the exponent of3 in the prime factorisation of
�
3t n

2 u
�
!.

Therefore

v3pm!q � v3pLnq � v3

� �
3
X

n
2

\ 	
!



3
Z

n
2

^
¤ m ¤ 3

Z
n
2

^
� 2: (4)

Suppose thatn ¥ 5. Note that every �fth factor in Ln is divisible by 31 � 25 � 1, and hence
we havev31pLnq ¥ t n

5 u. Then

n
10

¤
Yn

5

]
¤ v31pLnq � v31pm!q �

8̧

k� 1

Y m
31k

]
 

8̧

k� 1

m
31k

�
m
30

: p5q

By combining p4q and p5q,

3n   m ¤
3n
2

� 2

so n   4
3 which is inconsistent with the inequalityn ¥ 5.

Comment 1. There are many combinations of the ideas above; for example combining p2q and p4q
also providesn   5. Obviously, considering the exponents of any two primes inp1q, or considering one
prime and the magnitude orders lead to an upper bound onn and m.
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Comment 2. This problem has a connection to group theory. Indeed, the left-hand side is the
order of the group GL n pF2q of invertible n-by-n matrices with entries modulo 2, while the right-hand
side is the order of the symmetric groupSm on m elements. The result thus shows that the only
possible isomorphisms between these groups areGL 1pF2q � S1 and GL 2pF2q � S3, and there are in
fact isomorphisms in both cases. In general,GL npF2q is a simple group forn ¥ 3, as it is isomorphic
to PSLnpF2q.

There is also a near-solution of interest: the left-hand side for n � 4 is half of the right-hand side
when m � 8; this turns out to correspond to an isomorphismGL 4pF2q � A8 with the alternating group
on eight elements.

However, while this indicates that the problem is a useful one, knowing group theory is of no use
in solving it!
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N2. Find all triples pa; b; cq of positive integers such thata3 � b3 � c3 � p abcq2.
(Nigeria)

Answer: The solutions arep1; 2; 3qand its permutations.

Common remarks. Note that the equation is symmetric. In all solutions, we will assume
without loss of generality that a ¥ b¥ c, and prove that the only solution ispa; b; cq � p 3; 2; 1q.

The �rst two solutions all start by proving that c � 1.

Solution 1. We will start by proving that c � 1. Note that

3a3 ¥ a3 � b3 � c3 ¡ a3 :

So 3a3 ¥ pabcq2 ¡ a3 and hence3a ¥ b2c2 ¡ a. Now b3 � c3 � a2pb2c2 � aq ¥ a2, and so

18b3 ¥ 9pb3 � c3q ¥ 9a2 ¥ b4c4 ¥ b3c5 ;

so 18 ¥ c5 which yields c � 1.
Now, note that we must havea ¡ b, as otherwise we would have2b3 � 1 � b4 which has no

positive integer solutions. So
a3 � b3 ¥ pb� 1q3 � b3 ¡ 1

and
2a3 ¡ 1 � a3 � b3 ¡ a3 ;

which implies 2a3 ¡ a2b2 ¡ a3 and so2a ¡ b2 ¡ a. Therefore

4p1 � b3q � 4a2pb2 � aq ¥ 4a2 ¡ b4 ;

so 4 ¡ b3pb� 4q; that is, b ¤ 4.
Now, for each possible value ofb with 2 ¤ b ¤ 4 we obtain a cubic equation fora with

constant coe�cients. These are as follows:

b � 2 : a3 � 4a2 � 9 � 0

b � 3 : a3 � 9a2 � 28 � 0

b � 4 : a3 � 16a2 � 65 � 0:

The only case with an integer solution fora with b¤ a is b � 2, leading topa; b; cq � p 3; 2; 1q.

Comment 1.1. Instead of writing down each cubic equation explicitly, we could have just observed
that a2 | b3 � 1, and for each choice ofb checked each square factor ofb3 � 1 for a2.

We could also have observed that, withc � 1, the relation 18b3 ¥ b4c4 becomesb ¤ 18, and we
can simply check all possibilities forb (instead of working to prove that b ¤ 4). This check becomes
easier after using the factorisationb3 � 1 � p b� 1qpb2 � b � 1q and observing that no prime besides3
can divide both of the factors.

Comment 1.2. Another approach to �nish the problem after establishing that c ¤ 1 is to set
k � b2c2 � a, which is clearly an integer and must be positive as it is equal to pb3 � c3q{a2. Then we
divide into cases based on whetherk � 1 or k ¥ 2; in the �rst case, we have b3 � 1 � a2 � p b2 � 1q2

whose only positive root isb � 2, and in the second case we haveb2 ¤ 3a, and so

b4 ¤ p3aq2 ¤
9
2

pka2q �
9
2

pb3 � 1q;

which implies that b ¤ 4.
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Solution 2. Again, we will start by proving that c � 1. Suppose otherwise thatc ¥ 2. We
have a3 � b3 � c3 ¤ 3a3, so b2c2 ¤ 3a. Since c ¥ 2, this tells us that b ¤

a
3a{4. As the

right-hand side of the original equation is a multiple ofa2, we havea2 ¤ 2b3 ¤ 2p3a{4q3{2. In
other words, a ¤ 27

16   2, which contradicts the assertion thata ¥ c ¥ 2. So there are no
solutions in this case, and so we must havec � 1.

Now, the original equation becomesa3 � b3 � 1 � a2b2. Observe thata ¥ 2, since otherwise
a � b � 1 as a ¥ b.

The right-hand side is a multiple ofa2, so the left-hand side must be as well. Thus,b3 � 1 ¥
a2. Sincea ¥ b, we also have

b2 � a �
b3 � 1

a2
¤ 2a �

1
a2

and sob2 ¤ 2a sinceb2 is an integer. Thusp2aq3{2 � 1 ¥ b3 � 1 ¥ a2, from which we deduce
a ¤ 8.

Now, for each possible value ofa with 2 ¤ a ¤ 8 we obtain a cubic equation forb with
constant coe�cients. These are as follows:

a � 2 : b3 � 4b2 � 9 � 0

a � 3 : b3 � 9b2 � 28 � 0

a � 4 : b3 � 16b2 � 65 � 0

a � 5 : b3 � 25b2 � 126� 0

a � 6 : b3 � 36b2 � 217� 0

a � 7 : b3 � 49b2 � 344� 0

a � 8 : b3 � 64b2 � 513� 0:

The only case with an integer solution forbwith a ¥ bis a � 3, leading topa; b; cq � p 3; 2; 1q.

Comment 2.1. As in Solution 1, instead of writing down each cubic equationexplicitly, we could
have just observed thatb2 | a3 � 1, and for each choice ofa checked each square factor ofa3 � 1 for b2.

Comment 2.2. This solution does not require initially proving that c � 1, in which case the bound
would becomea ¤ 108. The resulting cases could, in principle, be checked by a particularly industrious
student.

Solution 3. Set k � p b3 � c3q{a2 ¤ 2a, and rewrite the original equation asa � k � p bcq2.
Sinceb3 and c3 are positive integers, we havepbcq3 ¥ b3 � c3 � 1 � ka2 � 1, so

a � k ¥ pka2 � 1q2{3:

As in Comment 1.2,k is a positive integer; for each value ofk ¥ 1, this gives us a polynomial
inequality satis�ed by a:

k2a4 � a3 � 5ka2 � 3k2a � p k3 � 1q ¤ 0:

We now prove that a ¤ 3. Indeed,

0 ¥
k2a4 � a3 � 5ka2 � 3k2a � p k3 � 1q

k2
¥ a4 � a3 � 5a2 � 3a � k ¥ a4 � a3 � 5a2 � 5a;

which fails whena ¥ 4.
This leaves ten triples with 3 ¥ a ¥ b ¥ c ¥ 1, which may be checked manually to give

pa; b; cq � p 3; 2; 1q.
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Solution 4. Again, observe thatb3 � c3 � a2pb2c2 � aq, so b¤ a ¤ b2c2 � 1.
We consider the functionf pxq � x2pb2c2 � xq. It can be seen that that on the interval

r0; b2c2 � 1s the function f is increasing ifx   2
3b2c2 and decreasing ifx ¡ 2

3b2c2. Consequently,
it must be the case that

b3 � c3 � f paq ¥ min
�

f pbq; f pb2c2 � 1q
	

:

First, suppose thatb3 � c3 ¥ f pb2c2 � 1q. This may be written b3 � c3 ¥ pb2c2 � 1q2, and so

2b3 ¥ b3 � c3 ¥ pb2c2 � 1q2 ¡ b4c4 � 2b2c2 ¥ b4c4 � 2b3c4:

Thus, pb� 2qc4   2, and the only solutions to this inequality havepb; cq � p 2; 2q or b ¤ 3 and
c � 1. It is easy to verify that the only case giving a solution fora ¥ b is pa; b; cq � p 3; 2; 1q.

Otherwise, suppose thatb3 � c3 � f paq ¥ f pbq. Then, we have

2b3 ¥ b3 � c3 � a2pb2c2 � aq ¥ b2pb2c2 � bq:

Consequentlybc2 ¤ 3, with strict inequality in the case that b � c. Hencec � 1 and b ¤ 2.
Both of these cases have been considered already, so we are done.

Comment 4.1. Instead of considering which off pbq and f pb2c2 � 1q is less thanf paq, we may also
proceed by explicitly dividing into cases based on whethera ¥ 2

3b2c2 or a   2
3b2c2. The �rst case may

now be dealt with as follows. We haveb3c3 � 1 ¥ b3 � c3 as b3 and c3 are positive integers, so we have

b3c3 � 1 ¥ b3 � c3 ¥ a2 ¥
4
9

b4c4:

This implies bc¤ 2, and hencec � 1 and b ¤ 2.
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N3. We say that a setS of integers isrootiful if, for any positive integer n and any
a0; a1; : : : ; an PS, all integer roots of the polynomiala0 � a1x � � � � � anxn are also inS. Find
all rootiful sets of integers that contain all numbers of theform 2a � 2b for positive integers
a and b.

(Czech Republic)

Answer: The set Z of all integers is the only such rootiful set.

Solution 1. The setZ of all integers is clearly rootiful. We shall prove that any rootiful set S
containing all the numbers of the form2a � 2b for a; bPZ¡ 0 must be all ofZ.

First, note that 0 � 21 � 21 P S and 2 � 22 � 21 P S. Now, � 1 P S, since it is a root of
2x � 2, and 1 PS, since it is a root of2x2 � x � 1. Also, if n PS then � n is a root of x � n, so
it su�ces to prove that all positive integers must be in S.

Now, we claim that any positive integern has a multiple inS. Indeed, suppose thatn � 2� �t
for � PZ¥ 0 and t odd. Then t | 2� ptq � 1, son | 2� � � ptq� 1 � 2� � 1. Moreover,2� � � ptq� 1 � 2� � 1 PS,
and soS contains a multiple of every positive integern.

We will now prove by induction that all positive integers arein S. Suppose that0; 1; : : : ; n�
1 P S; furthermore, let N be a multiple of n in S. Consider the base-n expansion ofN , say
N � aknk � ak� 1nk� 1�� � �� a1n� a0. Since0 ¤ ai   n for eachai , we have that all theai are inS.
Furthermore, a0 � 0 sinceN is a multiple of n. Therefore,aknk � ak� 1nk� 1 � � � � � a1n � N � 0,
so n is a root of a polynomial with coe�cients in S. This tells us that n P S, completing the
induction.

Solution 2. As in the previous solution, we can prove that0; 1 and � 1 must all be in any
rootiful set S containing all numbers of the form2a � 2b for a; bPZ¡ 0.

We show that, in fact, every integerk with |k| ¡ 2 can be expressed as a root of a polynomial
whose coe�cients are of the form2a � 2b. Observe that it su�ces to consider the case wherek
is positive, as ifk is a root ofanxn � � � � � a1x � a0 � 0, then � k is a root of p� 1qnanxn � � � � �
a1x � a0 � 0.

Note that
p2an � 2bn qkn � � � � � p 2a0 � 2b0 q � 0

is equivalent to
2an kn � � � � � 2a0 � 2bn kn � � � � � 2b0 :

Hence our aim is to show that two numbers of the form2an kn � � � � � 2a0 are equal, for a
�xed value of n. We consider such polynomials where every term2ai ki is at most 2kn ; in other
words, where2 ¤ 2ai ¤ 2kn� i , or, equivalently, 1 ¤ ai ¤ 1 � p n � iqlog2 k. Therefore, there
must be 1 � tpn � iqlog2 kupossible choices forai satisfying these constraints.

The number of possible polynomials is then

n¹

i � 0

p1 � tpn � iqlog2 kuq ¥
n� 1¹

i � 0

pn � iqlog2 k � n!plog2 kqn

where the inequality holds as1 � txu¥ x.
As there arepn � 1q such terms in the polynomial, each at most2kn , such a polynomial

must have value at most2knpn � 1q. However, for largen, we haven!plog2 kqn ¡ 2knpn � 1q.
Therefore there are more polynomials than possible values,so some two must be equal, as
required.
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N4. Let Z¡ 0 be the set of positive integers. A positive integer constantC is given. Find
all functions f : Z¡ 0 Ñ Z¡ 0 such that, for all positive integersa and b satisfying a � b ¡ C,

a � f pbq |a2 � b f paq: (� )

(Croatia)

Answer: The functions satisfying (� ) are exactly the functionsf paq � ka for some constant
k PZ¡ 0 (irrespective of the value ofC).

Common remarks. It is easy to verify that the functions f paq � ka satisfy (� ). Thus, in the
proofs below, we will only focus on the converse implication: that condition ( � ) implies that
f � ka.

A common minor part of these solutions is the derivation of some relatively easy bounds on
the function f . An upper bound is easily obtained by settinga � 1 in (� ), giving the inequality

f pbq ¤ b� f p1q

for all su�ciently large b. The corresponding lower bound is only marginally more di�cult to
obtain: substituting b � 1 in the original equation shows that

a � f p1q | pa2 � f paqq � pa � f p1qq � pa � f p1qq � f p1q2 � f paq

for all su�ciently large a. It follows from this that one has the lower bound

f paq ¥ a � f p1q � p1 � f p1qq;

again for all su�ciently large a.
Each of the following proofs makes use of at least one of thesebounds.

Solution 1. First, we show that b | f pbq2 for all b. To do this, we choose a large positive
integer n so that nb� f pbq ¥ C. Setting a � nb� f pbq in (� ) then shows that

nb | pnb� f pbqq2 � bf pnb� f pbqq

so that b | f pbq2 as claimed.
Now in particular we have that p | f ppq for every primep. If we write f ppq � kppq �p, then

the bound f ppq ¤ f p1q �p (valid for p su�ciently large) shows that some valuek of kppq must
be attained for in�nitely many p. We will show that f paq � ka for all positive integersa. To
do this, we substituteb � p in (� ), where p is any su�ciently large prime for which kppq � k,
obtaining

a � kp | pa2 � pf paqq � apa � kpq � pf paq � pka:

For suitably large p we havegcdpa � kp; pq � 1, and hence we have

a � kp | f paq � ka:

But the only way this can hold for arbitrarily large p is if f paq � ka � 0. This concludes the
proof.

Comment. There are other ways to obtain the divisibility p | f ppq for primes p, which is all that
is needed in this proof. For instance, iff ppq were not divisible by p then the arithmetic progression
p2 � bf ppq would attain prime values for in�nitely many b by Dirichlet's Theorem: hence, for these
pairs p, b, we would havep � f pbq � p2 � bf ppq. Substituting a ÞÑb and b ÞÑp in ( � ) then shows that
pf ppq2 � p2qpp � 1q is divisible by b� f ppq and hence vanishes, which is impossible sincep - f ppq by
assumption.
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Solution 2. First, we substitute b � 1 in (� ) and rearrange to �nd that

f paq � f p1q2

a � f p1q
� f p1q � a �

a2 � f paq
a � f p1q

is a positive integer for su�ciently large a. Sincef paq ¤ af p1q, for all su�ciently large a, it
follows that f paq� f p1q2

a� f p1q ¤ f p1qalso and hence there is a positive integerk such that f paq� f p1q2

a� f p1q � k
for in�nitely many values of a. In other words,

f paq � ka � f p1q � pk � f p1qq

for in�nitely many a.
Fixing an arbitrary choice of a in (� ), we have that

a2 � bf paq
a � kb� f p1q � pk � f p1qq

is an integer for in�nitely many b (the sameb as above, maybe with �nitely many exceptions).
On the other hand, forb taken su�ciently large, this quantity becomes arbitrarily close to f paq

k ;
this is only possible if f paq

k is an integer and

a2 � bf paq
a � kb� f p1q � pk � f p1qq

�
f paq

k

for in�nitely many b. This rearranges to

f paq
k

�
�
a � f p1q � pk � f p1qq

�
� a2: (�� )

Hencea2 is divisible by a � f p1q � pk � f p1qq, and hence so isf p1q2pk � f p1qq2. The only way
this can occur for alla is if k � f p1q, in which case (�� ) provides that f paq � ka for all a, as
desired.

Solution 3. Fix any two distinct positive integers a and b. From (� ) it follows that the two
integers

pa2 � cf paqq � pb� f pcqqand pb2 � cf pbqq � pa � f pcqq

are both multiples of pa � f pcqq � pb� f pcqqfor all su�ciently large c. Taking an appropriate
linear combination to eliminate thecf pcq term, we �nd after expanding out that the integer

�
a2f pbq � b2f paq

�
� f pcq �

�
pb� aqf paqf pbq

�
� c �

�
abpaf pbq � bf paqq

�
(: )

is also a multiple ofpa � f pcqq � pb� f pcqq.
But as c varies, (: ) is bounded above by a positive multiple ofc while pa � f pcqq � pb� f pcqq

is bounded below by a positive multiple ofc2. The only way that such a divisibility can hold
is if in fact

�
a2f pbq � b2f paq

�
� f pcq �

�
pb� aqf paqf pbq

�
� c �

�
abpaf pbq � bf paqq

�
� 0 (:: )

for su�ciently large c. Since the coe�cient of c in this linear relation is nonzero, it follows that
there are constantsk; ` such that f pcq � kc� ` for all su�ciently large c; the constantsk and `
are necessarily integers.

The value of` satis�es
�
a2f pbq � b2f paq

�
� ` �

�
abpaf pbq � bf paqq

�
� 0 (::: )

and henceb | `a2f pbq for all a and b. Taking b su�ciently large so that f pbq � kb� `, we thus
have that b | `2a2 for all su�ciently large b; this implies that ` � 0. From (::: ) it then follows
that f paq

a � f pbq
b for all a � b, so that there is a constantk such that f paq � ka for all a (k is

equal to the constant de�ned earlier).
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Solution 4. Let � denote the set of all pointspa; f paqq, so that � is an in�nite subset of
the upper-right quadrant of the plane. For a point A � p a; f paqqin � , we de�ne a point
A1 � p� f paq; � f paq2{aq in the lower-left quadrant of the plane, and let� 1 denote the set of all
such pointsA1.

O

A

A1

B

B 1

C

C1

Claim. For any point A P� , the set � is contained in �nitely many lines through the point A1.

Proof. Let A � p a; f paqq. The functional equation (with a and b interchanged) can be rewritten
asb� f paq |af pbq � bf paq, so that all but �nitely many points in � are contained in one of the
lines with equation

ay � f paqx � mpx � f paqq

for m an integer. Geometrically, these are the lines throughA1 � p� f paq; � f paq2{aq with
gradient f paq� m

a . Since � is contained, with �nitely many exceptions, in the region0 ¤ y ¤
f p1q �x and the point A1 lies strictly in the lower-left quadrant of the plane, thereare only
�nitely many values of m for which this line meets� . This concludes the proof of the claim.

l

Now consider any distinct pointsA; B P � . It is clear that A1 and B 1 are distinct. A line
through A1 and a line throughB 1 only meet in more than one point if these two lines are equal
to the line A1B 1. It then follows from the above claim that the lineA1B 1 must contain all but
�nitely many points of � . If C is another point of � , then the line A1C1 also passes through all
but �nitely many points of � , which is only possible ifA1C1 � A1B 1.

We have thus seen that there is a linè passing through all points of� 1 and through all
but �nitely many points of � . We claim that this line passes through the originO and passes
through every point of � . To see this, note that by constructionA; O; A1 are collinear for every
point A P � . Since` � AA 1 for all but �nitely many points A P � , it thus follows that O P `.
Thus any A P� lies on the line` � A1O.

Since � is contained in a line throughO, it follows that there is a real constantk (the
gradient of `) such that f paq � ka for all a. The number k is, of course, a positive integer.

Comment. Without the a � b ¡ C condition, this problem is approachable by much more naive
methods. For instance, using the given divisibility for a; b P t1; 2; 3u one can prove by a somewhat
tedious case-check thatf p2q � 2f p1q and f p3q � 3f p1q; this then forms the basis of an induction
establishing that f pnq � nf p1q for all n.
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N5. Let a be a positive integer. We say that a positive integerb is a-good if
� an

b

�
� 1 is

divisible by an � 1 for all positive integersn with an ¥ b. Supposeb is a positive integer such
that b is a-good, but b� 2 is not a-good. Prove thatb� 1 is prime.

(Netherlands)

Solution 1. For p a prime and n a nonzero integer, we writevppnq for the p-adic valuation
of n: the largest integert such that pt | n.

We �rst show that b is a-good if and only if b is even, andp | a for all primes p ¤ b.
To start with, the condition that an � 1 |

� an
b

�
� 1 can be rewritten as saying that

anpan � 1q � � � pan � b� 1q
b!

� 1 pmod an � 1q: (1)

Suppose, on the one hand, there is a primep ¤ b with p - a. Take t � vppb!q. Then there
exist positive integersc such that ac � 1 pmod pt � 1q. If we take c big enough, and then take
n � p p� 1qc, then an � app� 1qc � p� 1 pmod pt � 1qand an ¥ b. Sincep ¤ b, one of the terms
of the numerator anpan � 1q � � � pan � b � 1q is an � p � 1, which is divisible by pt � 1. Hence
the p-adic valuation of the numerator is at leastt � 1, but that of the denominator is exactly t.
This means that p |

� an
b

�
, so p -

� an
b

�
� 1. As p | an � 1, we get that an � 1 -

� an
b

�
, so b is not

a-good.
On the other hand, if for all primesp ¤ b we havep | a, then every factor ofb! is coprime

to an � 1, and hence invertible moduloan � 1: henceb! is also invertible moduloan � 1. Then
equation (1) reduces to:

anpan � 1q � � � pan � b� 1q � b! pmod an � 1q:

However, we can rewrite the left-hand side as follows:

anpan � 1q � � � pan � b� 1q � p� 1qp� 2q � � � p� bq � p� 1qbb! pmod an � 1q:

Provided that an ¡ 1, if b is even we deducep� 1qbb! � b! as needed. On the other hand, ifb is
odd, and we takean � 1 ¡ 2pb!q, then we will not have p� 1qbb! � b!, so b is not a-good. This
completes the claim.

To conclude from here, suppose thatb is a-good, but b� 2 is not. Then b is even, andp | a
for all primes p ¤ b, but there is a prime q ¤ b� 2 for which q - a: so q � b� 1 or q � b� 2.
We cannot haveq � b� 2, as that is even too, so we haveq � b� 1: in other words, b� 1 is
prime.

Solution 2. We show only half of the claim of the previous solution: we show that if b is
a-good, thenp | a for all primes p ¤ b. We do this with Lucas' theorem.

Suppose that we havep ¤ b with p - a. Then consider the expansion ofb in basep; there
will be some digit (not the �nal digit) which is nonzero, becausep ¤ b. Suppose it is thept digit
for t ¥ 1.

Now, as n varies over the integers,an � 1 runs over all residue classes modulopt � 1; in
particular, there is a choice ofn (with an ¡ b) such that the p0 digit of an is p � 1 (so
p | an � 1) and the pt digit of an is 0. Consequently,p | an � 1 but p |

� an
b

�
(by Lucas' theorem)

so p -
� an

b

�
� 1. Thus b is not a-good.

Now we show directly that if b is a-good but b� 2 fails to be so, then there must be a prime
dividing an � 1 for somen, which also dividespb� 1qpb� 2q. Indeed, the ratio between

� an
b� 2

�

and
� an

b

�
is pb� 1qpb� 2q{pan � bqpan � b� 1q. We know that there must be a choice ofan � 1

such that the former binomial coe�cient is 1 moduloan � 1 but the latter is not, which means
that the given ratio must not be 1 mod an� 1. If b� 1 and b� 2 are both coprime toan� 1 then
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the ratio is 1, so that must not be the case. In particular, as any prime less than b divides a,
it must be the case that eitherb� 1 or b� 2 is prime.

However, we can observe thatb must be even by insisting thatan � 1 is prime (which is
possible by Dirichlet's theorem) and hence

� an
b

�
� p� 1qb � 1. Thus b� 2 cannot be prime, so

b� 1 must be prime.
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N6. Let H �
 X

i
?

2
\

: i PZ¡ 0

(
� t 1; 2; 4; 5; 7; : : :u, and let n be a positive integer. Prove

that there exists a constantC such that, if A € t 1; 2; : : : ; nu satis�es |A| ¥ C
?

n, then there
exist a; bPA such that a � bPH . (Here Z¡ 0 is the set of positive integers, andtzudenotes the
greatest integer less than or equal toz.)

(Brazil)

Common remarks. In all solutions, we will assume thatA is a set such thatt a� b : a; bPAu
is disjoint from H , and prove that |A|   C

?
n.

Solution 1. First, observe that if n is a positive integer, thenn PH exactly when
"

n
?

2

*
¡ 1 �

1
?

2
: (1)

To see why, observe thatn PH if and only if 0   i
?

2� n   1 for somei PZ¡ 0. In other words,
0   i � n{

?
2   1{

?
2, which is equivalent to (1).

Now, write A � t a1   a2   � � �   aku, wherek � | A|. Observe that the set of di�erences is
not altered by shifting A, so we may assume thatA „ t 0; 1; : : : ; n � 1u with a1 � 0.

From (1), we learn that t ai {
?

2u   1 � 1{
?

2 for eachi ¡ 1 sinceai � a1 RH . Furthermore,
we must havet ai {

?
2u   t aj {

?
2u wheneveri   j ; otherwise, we would have

�
�

1 �
1

?
2



 

"
aj?

2

*
�

"
ai?

2

*
  0:

Since tpaj � ai q{
?

2u � t aj {
?

2u � t ai {
?

2u � 1, this implies that tpaj � ai q{
?

2u ¡ 1{
?

2 ¡
1 � 1{

?
2, contradicting (1).

Now, we have a sequence0 � a1   a2   � � �   ak   n, with

0 �
"

a1?
2

*
 

"
a2?

2

*
  � � �  

"
ak?

2

*
  1 �

1
?

2
:

We use the following fact: for anyd PZ, we have
"

d
?

2

*
¡

1

2d
?

2
: (2)

To see why this is the case, leth �
X
d{

?
2
\
, so

 
d{

?
2
(

� d{
?

2 � h. Then
"

d
?

2

* �
d

?
2

� h



�
d2 � 2h2

2
¥

1
2

;

since the numerator is a positive integer. Becaused{
?

2 � h   2d{
?

2, inequality (2) follows.
Let di � ai � 1 � ai , for 1 ¤ i   k. Then t ai � 1{

?
2u � t ai {

?
2u � t di {

?
2u, and we have

1 �
1

?
2

¡
¸

i

"
di?

2

*
¡

1

2
?

2

¸

i

1
di

¥
pk � 1q2

2
?

2

1
°

i di
¡

pk � 1q2

2
?

2
�

1
n

: (3)

Here, the �rst inequality holds becauset ak {
?

2u   1 � 1{
?

2, the second follows from (2), the
third follows from an easy application of the AM�HM inequality (or Cauchy�Schwarz), and the
fourth follows from the fact that

°
i di � ak   n.

Rearranging this, we obtain
b

2
?

2 � 2 �
?

n ¡ k � 1;

which provides the required bound onk.
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Solution 2. Let � � 2 �
?

2, so p1{� q � p 1{
?

2q � 1. Thus, J �
 
ti� u : i P Z¡ 0

(
is the

complementary Beatty sequence toH (in other words, H and J are disjoint with H Y J � Z¡ 0).
Write A � t a1   a2   � � �   aku. Suppose thatA has no di�erences inH , so all its di�erences
are in J and we can setai � a1 � t�b i ufor bi PZ¡ 0.

For any j ¡ i , we haveaj � ai � t�b j u� t�b i u. Becauseaj � ai PJ , we also haveaj � ai � t�t u
for some positive integert. Thus, t�t u� t�b j u� t�b i u. The right hand side must equal either
t� pbj � bi qu or t� pbj � bi qu� 1, the latter of which is not a member ofJ as � ¡ 2. Therefore,
t � bj � bi and so we havet�b j u� t�b i u� t� pbj � bi qu.

For 1 ¤ i   k we now put di � bi � 1 � bi , and we have
[

�
¸

i

di

_

� t�b ku�
¸

i

t�d i u;

that is,
°

i t �d i u   1. We also have

1 �

[

�
¸

i

di

_

� 1 � ak � a1 ¤ ak ¤ n

so
°

i di ¤ n{� .
With the above inequalities, an argument similar to (3) (which uses the fact that t �d u �

t d
?

2u ¡ 1{p2d
?

2q for positive integersd) proves that 1 ¡
�
pk � 1q2{p2

?
2q

�
p� {nq, which again

rearranges to give b
2
?

2 � 2 �
?

n ¡ k � 1:

Comment. The use of Beatty sequences in Solution 2 is essentially a way to bypass (1). Both Solutions
1 and 2 use the fact that

?
2   2; the statement in the question would still be true if

?
2 did not have

this property (for instance, if it were replaced with � ), but any argument along the lines of Solutions
1 or 2 would be more complicated.

Solution 3. Again, de�ne J � Z¡ 0 zH , so all di�erences between elements ofA are in J . We
start by making the following observation. Suppose we have aset B „ t 1; 2; : : : ; nu such that
all of the di�erences between elements ofB are in H . Then |A| � |B | ¤ 2n.

To see why, observe that any two sums of the forma � b with a P A; b P B are di�erent;
otherwise, we would havea1 � b1 � a2 � b2, and so|a1 � a2| � | b2 � b1|. However, then the left
hand side is inJ whereas the right hand side is inH . Thus, t a � b : a P A; b P Bu is a set of
size|A| � |B | all of whose elements are no greater than2n, yielding the claimed inequality.

With this in mind, it su�ces to construct a set B , all of whose di�erences are inH and
whose size is at leastC1? n for some constantC1 ¡ 0.

To do so, we will use well-known facts about the negative Pellequation X 2 � 2Y 2 � � 1;
in particular, that there are in�nitely many solutions and t he values ofX are given by the
recurrenceX 1 � 1; X 2 � 7 and X m � 6X m� 1 � X m� 2. Therefore, we may chooseX to be a
solution with

?
n{6   X ¤

?
n.

Now, we claim that we may chooseB � t X; 2X; : : : ; tp1{3q
?

nuX u. Indeed, we have
�

X
?

2
� Y


 �
X
?

2
� Y



�

� 1
2

and so

0 ¡
�

X
?

2
� Y



¥

� 3
?

2n
;

from which it follows that t X {
?

2u ¡ 1 � p 3{
?

2nq. Combined with (1), this shows that all
di�erences between elements ofB are in H .
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Comment. Some of the ideas behind Solution 3 may be used to prove that the constantC �
a

2
?

2 � 2
(from Solutions 1 and 2) is optimal, in the sense that there are arbitrarily large values of n and sets
An „ t 1; 2; : : : ; nu of size roughlyC

?
n, all of whose di�erences are contained inJ .

To see why, chooseX to come from a su�ciently large solution to the Pell equation X 2� 2Y 2 � 1, so
t X {

?
2u � 1{p2X

?
2q: In particular, t X u; t 2X u; : : : ; t t2X

?
2p1� 1{

?
2quX u are all less than1� 1{

?
2.

Thus, by (1) any positive integer of the form iX for 1 ¤ i ¤ t2X
?

2p1 � 1{
?

2qu lies in J .
Set n � 2X 2

?
2p1 � 1{

?
2q. We now have a setA � t iX : i ¤ t2X

?
2p1 � 1{

?
2quu containing

roughly 2X
?

2p1 � 1{
?

2q elements less than or equal ton such that all of the di�erences lie in J , and
we can see that|A| � C

?
n with C �

a
2
?

2 � 2.

Solution 4. As in Solution 3, we will provide a construction of a large setB „ t 1; 2; : : : ; nu,
all of whose di�erences are inH .

ChooseY to be a solution to the Pell-like equationX 2 � 2Y2 � � 1; such solutions are given
by the recurrenceY1 � 1; Y2 � 2 and Ym � 2Ym� 1 � Ym� 2, and so we can chooseY such that
n{p3

?
2q   Y ¤ n{

?
2. Furthermore, it is known that for such aY and for 1 ¤ x   Y ,

t x
?

2u � tp Y � xq
?

2u � t Y{
?

2u (4)

if X 2 � 2Y 2 � 1, and
t x

?
2u � tp Y � xq

?
2u � 1 � t Y {

?
2u (5)

if X 2 � 2Y 2 � � 1. Indeed, this is a statement of the fact thatX {Y is a best rational approxi-
mation to

?
2, from below in the �rst case and from above in the second.

Now, consider the sequencet
?

2u; t 2
?

2u; : : : ; tpY � 1q
?

2u. The Erd®s�Szekeres theorem
tells us that this sequence has a monotone subsequence with at least

?
Y � 2 � 1 ¡

?
Y

elements; if that subsequence is decreasing, we may re�ect (using (4) or (5)) to ensure that it
is increasing. Call the subsequencet y1

?
2u; t y2

?
2u; : : : ; t yt

?
2u for t ¡

?
Y.

Now, set B � t tyi

?
2u : 1 ¤ i ¤ tu. We have tyj

?
2u� tyi

?
2u � tpyj � yi q

?
2u for i   j

(because the corresponding inequality for the fractional parts holds by the ordering assumption
on the t yi

?
2u), which means that all di�erences between elements ofB are indeed inH . Since

|B | ¡
?

Y ¡
?

n{
a

3
?

2, this is the required set.

Comment. Any solution to this problem will need to use the fact that
?

2 cannot be approximated
well by rationals, either directly or implicitly (for examp le, by using facts about solutions to Pell-
like equations). If

?
2 were replaced by a value of� with very good rational approximations (from

below), then an argument along the lines of Solution 3 would give long arithmetic progressions in
t ti� u: 0 ¤ i   nu (with initial term 0) for certain values of n.
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N7. Prove that there is a constantc ¡ 0 and in�nitely many positive integers n with the
following property: there are in�nitely many positive integers that cannot be expressed as the
sum of fewer thancn logpnq pairwise coprimenth powers.

(Canada)

Solution 1. Suppose, for an integern, that we can �nd another integer N satisfying the
following property:

n is divisible by ' ppeq for every prime powerpe exactly dividing N . (: )

This property ensures that all nth powers are congruent to0 or 1 modulo each such prime
powerpe, and hence that any sum ofm pairwise coprimenth powers is congruent tom or m � 1
modulo pe, since at most one of thenth powers is divisible byp. Thus, if k denotes the number
of distinct prime factors ofN , we �nd by the Chinese Remainder Theorem at most2km residue
classes moduloN which are sums of at mostm pairwise coprimenth powers. In particular, if
N ¡ 2km then there are in�nitely many positive integers not expressible as a sum of at most
m pairwise coprimenth powers.

It thus su�ces to prove that there are arbitrarily large pair s pn; N qof integers satisfying (: )
such that

N ¡ c � 2kn logpnq

for some positive constantc.

We construct such pairs as follows. Fix a positive integert and choose (distinct) prime
numbers p | 22t � 1

� 1 and q | 22t
� 1; we setN � pq. It is well-known that 2t | p � 1 and

2t � 1 | q � 1, hence

n �
pp � 1qpq � 1q

2t

is an integer and the pairpn; N q satis�es (: ).
Estimating the size ofN and n is now straightforward. We have

log2pnq ¤ 2t � 1 � 2t � t   2t � 1   2 �
N
n

;

which rearranges to

N ¡
1
8

� 22n log2pnq

and so we are done if we choosec   1
8 logp2q � 0:18.

Comment 1. The trick in the above solution was to �nd prime numbers p and q congruent to 1
modulo somed � 2t and which are not too large. An alternative way to do this is via Linnik's Theorem,
which says that there are absolute constantsb and L ¡ 1 such that for any coprime integersa and d,
there is a prime congruent toa modulo d and of size¤ bdL . If we choose somed not divisible by 3 and
choose two distinct primesp; q ¤ b� p3dqL congruent to 1 modulo d (and, say, distinct modulo 3), then
we obtain a pair pn; N qsatisfying (: ) with N � pq and n � pp� 1qpq� 1q

d . A straightforward computation
shows that

N ¡ Cn1� 1
2L � 1

for some constantC, which is in particular larger than any c�22n logpnqfor p large. Thus, the statement
of the problem is true for any constant c. More strongly, the statement of the problem is still true
when cn logpnq is replaced byn1� � for a su�ciently small � ¡ 0.
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Solution 2, obtaining better bounds. As in the preceding solution, we seek arbitrarily
large pairs of integersn and N satisfying (: ) such that N ¡ c2kn logpnq.

This time, to construct such pairs, we �x an integerx ¥ 4, set N to be the lowest common
multiple of 1; 2; : : : ; 2x, and set n to be twice the lowest common multiple of1; 2; : : : ; x. The
pair pn; N q does indeed satisfy the condition, since ifpe is a prime power divisor ofN then
' ppeq

2 ¤ x is a factor of n
2 � lcmr ¤ xprq.

Now 2N {n is the product of all primes having a power lying in the interval px; 2xs, and
hence2N {n ¡ x � p2xq� � pxq. Thus for su�ciently large x we have

log
�

2N
2� p2xqn



¡ p � p2xq � � pxqqlogpxq � logp2q� p2xq � x;

using the Prime Number Theorem� ptq � t{ logptq.
On the other hand, n is a product of at most � pxq prime powers less than or equal tox,

and so we have the upper bound

logpnq ¤ � pxqlogpxq � x;

again by the Prime Number Theorem. Combined with the above inequality, we �nd that for
any � ¡ 0, the inequality

log
�

N
2� p2xqn



¡ p 1 � � qlogpnq

holds for su�ciently large x. Rearranging this shows that

N ¡ 2� p2xqn2� � ¡ 2� p2xqn logpnq

for all su�ciently large x and we are done.

Comment 2. The stronger bound N ¡ 2� p2xqn2� � obtained in the above proof of course shows
that in�nitely many positive integers cannot be written as a sum of at most n2� � pairwise coprime
nth powers.

By re�ning the method in Solution 2, these bounds can be improved further to show that in�nitely
many positive integers cannot be written as a sum of at mostn� pairwise coprimenth powers for any
positive � ¡ 0. To do this, one �xes a positive integer d, sets N equal to the product of the primes
at most dx which are congruent to1 modulo d, and n � d lcmr ¤ xpr q. It follows as in Solution 2 that
pn; N q satis�es (: ).

Now the Prime Number Theorem in arithmetic progressions provides the estimateslogpN q � d
' pdqx,

logpnq � x and � pdxq � dx
logpxq for any �xed d. Combining these provides a bound

N ¡ 2� pdxqnd{ ' pdq� �

for any positive � , valid for x su�ciently large. Since the ratio d
' pdq can be made arbitrarily large by a

judicious choice ofd, we obtain the n� bound claimed.

Comment 3. While big results from analytic number theory such as the Prime Number Theorem
or Linnik's Theorem certainly can be used in this problem, they do not seem to substantially simplify
matters: all known solutions involve �rst reducing to condition ( : ), and even then analytic results do
not make it clear how to proceed. For this reason, we regard this problem as suitable for the IMO.

Rather than simplifying the problem, what nonelementary results from analytic number theory
allow one to achieve is a strengthening of the main bound, typically replacing the n logpnqgrowth with
a power n1� � . However, we believe that such stronger bounds are unlikelyto be found by students in
the exam.

The strongest bound we know how to achieve using purely elementary methods is a bound of the
form N ¡ 2kn logpnqM for any positive integer M . This is achieved by a variant of the argument
in Solution 1, choosing primesp0; : : : ; pM with pi | 22t � i � 1

� 1 and setting N �
±

i pi and n �
2� tM ±

i ppi � 1q.
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N8. Let a and b be two positive integers. Prove that the integer

a2 �
R

4a2

b

V

is not a square. (Hererzs denotes the least integer greater than or equal toz.)
(Russia)

Solution 1. Arguing indirectly, assume that

a2 �
R

4a2

b

V
� p a � kq2; or

R
p2aq2

b

V
� p 2a � kqk:

Clearly, k ¥ 1. In other words, the equation
R

c2

b

V
� p c � kqk p1q

has a positive integer solutionpc; kq, with an even value ofc.
Choose a positive integer solution ofp1q with minimal possible value ofk, without regard

to the parity of c. From
c2

b
¡

R
c2

b

V
� 1 � ck � k2 � 1 ¥ ck

and
pc � kqpc � kq

b
 

c2

b
¤

R
c2

b

V
� p c � kqk

it can be seen thatc ¡ bk ¡ c � k, so

c � kb� r with some 0   r   k.

By substituting this in p1q we get
R

c2

b

V
�

R
pbk � r q2

b

V
� k2b� 2kr �

R
r 2

b

V

and
pc � kqk � p kb� r � kqk � k2b� 2kr � kpk � r q;

so R
r 2

b

V
� kpk � r q: p2q

Notice that relation p2q provides another positive integer solution ofp1q, namely c1 � r and
k1 � k � r , with c1 ¡ 0 and 0   k1   k. That contradicts the minimality of k, and hence �nishes
the solution.
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Solution 2. Suppose that

a2 �
R

4a2

b

V
� c2

with some positive integerc ¡ a, so

c2 � 1   a2 �
4a2

b
¤ c2;

0 ¤ c2b� a2pb� 4q   b: (3)

Let d � c2b� a2pb� 4q, x � c � a and y � c � a; then we havec �
x � y

2
and a �

x � y
2

, and

p3q can be re-written as follows:

� x � y
2

	 2

b�
� x � y

2

	 2

pb� 4q � d;

x2 � p b� 2qxy � y2 � d � 0; 0 ¤ d   b: (4)

So, by the indirect assumption, the equationp4q has some positive integer solutionpx; yq.

Fix b and d, and take a pair px; yq of positive integers, satisfyingp4q, such that x � y is
minimal. By the symmetry in p4q we may assume thatx ¥ y ¥ 1.

Now we perform a usual �Vieta jump�. Considerp4q as a quadratic equation in variablex,
and let z be its second root. By the Vieta formulas,

x � z � p b� 2qy; and zx � y2 � d;

so

z � p b� 2qy � x �
y2 � d

x
:

The �rst formula shows that z is an integer, and by the second formulaz is positive. Hence
pz; yq is another positive integer solution ofp4q. From

px � 1qpz � 1q � xz � p x � zq � 1 � p y2 � dq � p b� 2qy � 1

  p y2 � bq � p b� 2qy � 1 � p y � 1q2 � bpy � 1q ¤ py � 1q2 ¤ px � 1q2

we can see thatz   x and thereforez � y   x � y. But this contradicts the minimality of x � y
among the positive integer solutions ofp4q.
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