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Problems

Algebra

Let Z be the set of integers. Determine all function$ : Z N Z such that, for all
integersa and b,

faqg 2fpg fpfpa boq
(South Africa)

Let uy, Uy, ..., Uxo19 be real numbers satisfying

Uy U Usoze O and u? u3 Usoe 1
Leta minpug;Up;::i;Uxpegandb maxpug; Uy UxieG Prove that
1
aba ——:
2019

Let n ¥ 3 be a positive integer and letpa;; ay;:::;a,q be a strictly increasing
sequence oh positive real numbers with sum equal t®2. Let X be a subset oft1;2;:::;nu
such that the value of

1~ a

iPX
is minimised. Prove that there exists a strictly increasingequence oh positive real numbers

p L
iPX
(New Zealand)
Let n ¥ 2 be a positive integer anda,, ay, ..., a, be real numbers such that
a @ a, O

De ne the set A by (
A pjglei janlay a|¥1:
Prove that, if A is not empty, then

ag O
pij gPA
(China)
Let X1, X2, ..., X, be di erent real numbers. Prove that
#
b1 xx 0, if nis even;
Xi X 1; if nis odd.

lojonj i

(Kazakhstan)
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A polynomial Px;y; zgin three variables with real coe cients satis es the identties

Ppy;zqg Ppgy;xy zq Ppzx y;zq Ppz Xy;zg
Prove that there exists a polynomialF ptqin one variable such that

2 2

Ppiy;zq Fp y? Z2 xyzq
(Russia)
Let Z be the set of integers. We consider functiorfs: Z N Z satisfying
ffxk yqg y ffxqg vy
for all integersx andy. For such a function, we say that an integew is f -rare if the set
Xy t XxXPZ:fmxg wvu
is nite and nonempty.
(&) Prove that there exists such a functiorf for which there is anf -rare integer.

(b) Prove that no such functionf can have more than oné -rare integer.

(Netherlands)
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Combinatorics

The in nite sequenceay, a;, a,, ... of (not necessarily di erent) integers has the
following properties: 0 & g o i for all integersi ¥ 0, and

k k k
Ao a1 ak

2k

for all integersk ¥ 0.
Prove that all integersN ¥ 0 occur in the sequence (that is, for alN ¥ O, there existsi ¥ 0
with & N).
(Netherlands)

You are given a set oh blocks, each weighing at least; their total weight is 2n.
Prove that for every real numberr with 0o r @ 2n 2 you can choose a subset of the blocks
whose total weight is at leastr but at mostr 2.

(Thailand)

Let n be a positive integer. Harry has coins lined up on his desk, each showing
heads or tails. He repeatedly does the following operatioif:there are k coins showing heads
and k j 0, then he ips the k™ coin over; otherwise he stops the process. (For example, the
process starting with THT would be THT N HHT N HTT N TTT, which takes three
steps.)

Letting C denote the initial con guration (a sequence oh H's and T's), write ~pCqfor the
number of steps needed before all coins shdw Show that this number "pCqis nite, and
determine its average value over aR" possible initial con gurations C.

(USA)

On a at plane in Camelot, King Arthur builds a labyrinth L consisting ofn walls,
each of which is an in nite straight line. No two walls are paallel, and no three walls have a
common point. Merlin then paints one side of each wall entikered and the other side entirely
blue.

At the intersection of two walls there are four corners: two idgonally opposite corners
where a red side and a blue side meet, one corner where two retes meet, and one corner
where two blue sides meet. At each such intersection, therg a two-way door connecting the
two diagonally opposite corners at which sides of di erentatours meet.

After Merlin paints the walls, Morgana then places some knigs in the labyrinth. The
knights can walk through doors, but cannot walk through was.

Let kpLgbe the largest numberk such that, no matter how Merlin paints the labyrinth L,
Morgana can always place at leask knights such that no two of them can ever meet. For
eachn, what are all possible values fokpLg wherelL is a labyrinth with n walls?

(Canada)

On a certain social network, there ar019users, some pairs of which are friends,
where friendship is a symmetric relation. Initially, thereare 1010people with 1009friends each
and 1009people with 1010friends each. However, the friendships are rather unstabkso events
of the following kind may happen repeatedly, one at a time:

Let A, B, and C be people such thatA is friends with bothB and C, but B and C
are not friends; thenB and C become friends, bufA is no longer friends with them.

Prove that, regardless of the initial friendships, there agts a sequence of such events after
which each user is friends with at most one other user.
(Croatia)
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Let n | 1 be an integer. Suppose we are givetn points in a plane such that
no three of them are collinear. The points are to be labelled,, A,, ..., Ay, in some order.
We then consider the2n angles=A1AAz, =AA3A4, ..., =Ao 2Ao 1A, =Ao 1ARAL,
=AonAA,. We measure each angle in the way that gives the smallest go& value (i.e.
between0 and 180). Prove that there exists an ordering of the given points siicthat the
resulting 2n angles can be separated into two groups with the sum of one gpmof angles equal
to the sum of the other group.

(USA)

There are60 empty boxesB4, ..., Bg in @ row on a table and an unlimited supply
of pebbles. Given a positive integen, Alice and Bob play the following game.

In the rst round, Alice takes n pebbles and distributes them into the60 boxes as she
wishes. Each subsequent round consists of two steps:

(a) Bob chooses an integek with 1 @ k & 59 and splits the boxes into the two groups
B4, ..., Bk andBk 1, ..., Bgo.

(b) Alice picks one of these two groups, adds one pebble to kdiox in that group, and removes
one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no peldd. Find the smallestn
such that Alice can prevent Bob from winning.
(Czech Republic)

Alice has a map of Wonderland, a country consisting af ¥ 2 towns. For every
pair of towns, there is a narrow road going from one town to thether. One day, all the roads
are declared to be one way only. Alice has no information otme direction of the roads, but
the King of Hearts has o ered to help her. She is allowed to adkim a number of questions.
For each question in turn, Alice chooses a pair of towns and &hKing of Hearts tells her the
direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wondtand with at most one
outgoing road. Prove that she can always nd out by asking at st 4n questions.

Comment. This problem could be posed with an explicit statement aboutpoints being awarded for
weaker boundscn for somec i 4, in the style of IMO 2014 Problem 6.
(Thailand)

For any two di erent real numbers x and y, we de ne Dx;yqto be the unique
integer d satisfying2? o [x y| 29 . Given a set of reals-, and an elementx PF, we say
that the scalesof x in F are the values oD px;yqfory PF with x .

Let k be a given positive integer. Suppose that each membef F has at mostk di erent
scales inF (note that these scales may depend of). What is the maximum possible size of ?

(Italy)
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Geometry

Let ABC be a triangle. Circle passes throughA, meets segmentAB and AC
again at pointsD and E respectively, and intersects segme®C at F and G such that F lies
betweenB and G. The tangent to circle BDF at F and the tangent to circleCEG at G meet
at point T. Suppose that pointsA and T are distinct. Prove that line AT is parallel to BC.
(Nigeria)

Let ABC be an acute-angled triangle and leD, E, and F be the feet of altitudes
from A, B, and C to sidesBC, CA, and AB, respectively. Denote byl g and! ¢ the incircles
of trianglesBDF and CDE, and let these circles be tangent to segmenBF and DE at M
and N, respectively. Let lineMN meet circles! g and ! ¢ again at P M and Q N,
respectively. Prove thatMP  NQ.

(Vietnam)

In triangle ABC, let A; and B, be two points on sideBC and AC, and letP and Q
be two points on segment®\A ; and BB 1, respectively, so that lineP Q is parallel to AB. On
ray PB,, beyond B,, let P, be a point so that=PP;,C =BAC. Similarly, on ray QAq,
beyond A4, let Q; be a point so that=CQ;Q =CBA. Show that points P, Q, P,, and Q;
are concyclic.

(Ukraine)

Let P be a point inside triangleABC . Let AP meetBC at Ay, let BP meetCA
at B1, and let CP meet AB at C;. Let A, be the point such thatA; is the midpoint of P A,,
let B, be the point such thatB; is the midpoint of PB,, and let C, be the point such that
C, is the midpoint of P C,. Prove that points A,, B, and C, cannot all lie strictly inside the
circumcircle of triangle ABC .

(Australia)

Let ABCDE be a convex pentagon withCD DE and =EDC 2 =ADB.
Suppose that a pointP is located in the interior of the pentagon such thatAP  AE and
BP  BC. Prove that P lies on the diagonalCE if and only if aregBCDq aregADE q
aregpABD q aregABP g

(Hungary)

Let | be the incentre of acute-angled triangl&BC . Let the incircle meetBC, CA,

and AB at D, E, and F, respectively. Let lineEF intersect the circumcircle of the triangle

at P and Q, such that F lies betweenE and P. Prove that =DPA =AQD =QIP.
(Slovakia)

The incircle! of acute-angled scalene triangleaBC has centrel and meets side8C,
CA, and AB at D, E, and F, respectively. The line throughD perpendicular toEF meets!
again atR. Line AR meets! again atP. The circumcircles of triangles® CE and PBF meet
again atQ P. Prove that linesDI and P Q meet on the external bisector of anglBAC.
(India)

Let L be the set of all lines in the plane and let be a function that assigns to each
line " PL a point f pgon ". Suppose that for any pointX, and for any three lines'1, "5, "3
passing throughX, the pointsfp g f p.q f psgand X lie on a circle.
Prove that there is a unique pointP such thatf pq P for any line * passing throughP.
(Australia)
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Number Theory

Find all pairs pm; ngof positive integers satisfying the equation
" 1g@" 22" 49 @ 2" ‘g m
(El Salvador)

Find all triples pa; b; @ of positive integers such thaia® b ¢ p abef.
(Nigeria)

We say that a setS of integers isrootiful if, for any positive integer n and any
ao; a1;:.:;a, PS, all integer roots of the polynomialag a;x a,x" are also inS. Find
all rootiful sets of integers that contain all numbers of thform 22 2° for positive integers
aandb

(Czech Republic)

Let Z; o be the set of positive integers. A positive integer constar@@ is given. Find
all functions f : Z, ¢ N Z, ¢ such that, for all positive integersa and b satisfyinga bj C,

a fpxla® bfpag
(Croatia)

Let a be a positive integer. We say that a positive integel is a-good if ag‘ lis
divisible by an 1 for all positive integersn with an ¥ b. Supposebis a positive integer such
that bis a-good, butb 2 is not a-good. Prove thatb 1 is prime.

(Netherlands)

] X2 o -
C etH i 2 1iPZ o t 12,457 ::u and letn be a positivg integer. Prove
that there exists a constantC such that, if A €t 1;2;:::;nusatises |A| ¥ C ' n, then there
exist a;bPA such thata bPH. (HereZ,  is the set of positive integers, andzudenotes the
greatest integer less than or equal ta.)

(Brazil)

Prove that there is a constantc j 0 and in nitely many positive integers n with the
following property: there are in nitely many positive integers that cannot be expressed as the
sum of fewer thancnlogmq pairwise coprimen™ powers.

(Canada)
Let a and b be two positive integers. Prove that the integer
R .,V
5 4a
a JE—
b

is not a square. (Herazs denotes the least integer greater than or equal to.)
(Russia)
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Solutions

Algebra

Let Z be the set of integers. Determine all function$ : Z N Z such that, for all
integersa and b,

fraq 2fpg fpfpa bog 1)
(South Africa)

Answer: The solutions arefnq@ Oandfpng 2n K for any constantK P Z.

Common remarks.  Most solutions to this problem rst prove that f must be linear, before
determining all linear functions satisfying ().

Solution 1. Substitutinga O;b n 1lgivesfgm 1gq fpog 2f | 1g Substituting
a 1,b ngivesfgm 1qqg fpRg 2fpg

In particular, fp0g 2fpn 1g fpRq 2fpg and sof i 1qg fpng %p‘ P2g fpEOqq
Thusfm 1g fmgmust be constant. Sincd is de ned only on Z, this tells us that f must
be a linear function; writef ng Mn K for arbitrary constants M and K, and we need only
determine which choices oM and K work.

Now, (1) becomes

2Ma K 2gMb Kq MpMm by Kg K

which we may rearrange to form

pM 2gMp@ bg K 0:

Thus, eitherM 2, orMpa bg K Oforall values ofa b. In particular, the only possible
solutions aref ng Oandfpng 2n K for any constantK P Z, and these are easily seen to
work.

Solution 2. LetK fpig
First, put a 0in (2); this gives
fpfpgg 2fpg K (2)
forall bPZ.
Now put b 0in (1); this gives
fraqg 2K fpfpagq 2fpag K

where the second equality follows from2). Consequently,

fpRag 2fpaq K (3)
forallaPZ.
Substituting (2) and (3) into (1), we obtain
fprag 2fpbg fpfpa  bag
2fppqg K 2fpg 2fpa bg K
fpeg fog fpa bg K
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Thus, if we setgmmg fpmg K we see thatg satis es the Cauchy equationgpa I
gpag gpg The solution to the Cauchy equation oveZ is well-known; indeed, it may be proven
by an easy induction thatgpng Mn for eachn PZ, whereM  gplqis a constant.

Therefore,f ng Mn K, and we may proceed as in Solution 1.

Comment 1. Instead of deriving (3) by substituting b 0 into (1), we could instead have observed
that the right hand side of (1) is symmetric in a and b, and thus

fraq 2fpbg fbg 2f pag

Thus, fpRRaq 2fpag fpRbq 2f pogfor any a;b P Z, and in particular f 2aq 2f paqis constant.
Setting a 0 shows that this constant is equal to K, and so we obtain @).

Comment 2. Some solutions initially prove that f of pnggis linear (sometimes via proving that
fof ;nggq 3K satis es the Cauchy equation). However, one can immediatgl prove that f is linear by
substituting something of the formfpgf ngg M K linto (2).
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Let ug, Uy, ..., Uyo1g be real numbers satisfying

Up Uy Uxpie O and ui uj Usoe Lt
Leta minpug;Up;::i;Uxpegandb maxpug; Uy :::; UxieG Prove that
1
aba  ——:
2019
(Germany)
2919

Solution 1. Notice rst that bj Oanda 0. Indeed, since u? 1, the variables u;
i1
019

cannot be all zero, and, since u; 0, the nonzero elements cannot be all positive or all
i1
negative.
LetP t i:ujj OuandN t i:u; @ Oube the indices of positive and nonpositive elements

in the sequence, and lep | P| andn | N| be the sizes of these sets; thgm n 2019 By
2019 2019 ° °

the condition ui O0we haveO U U |ui|, so
i1 i1 iPP iPN

w0 fuls plq
iPP iPN
After this preparation, estimate the sum of squares of the ive and nonpositive elements
as follows:

“ute’ by b u b |ujeb Ja nab (2)
iPP iPP iPP iPN iPN

ure - lal ful [a fwl |a u=la b pab: 3)
iPN iPN iPN iPP iPP

The sum of these estimates is

2019
1 u? u? ua pp nepb  201%hb
i1 iPP iPN
1
that proves abo 5.
o o o o
Comment 1. After observing u?=a b ujand u?o|al |ui, instead of @; 3gan alternative
) L iPP iPP iPN iPP
continuation is 0 0 o
u? u? u?
lalj ¥ %P EPN iPP 2y 1. 2
<]
Ui uil u 2iPN | Pien |
iPP iPN i

iPP

(by the AM-QM or the Cauchy Schwarz inequality) and similar ly |ab ¥ %_PP u?.
|

Solution 2. As in the previous solution we conclude thah Oandbj O.
For every indexi, the number u; is a convex combination ofa and b, so

ui  Xxja Yyjb with some weightsOa x;;y; @ 1, with x; y; 1
219 2919 2919 219
Let X x; and Y yi. From 0 u; pia yibg | alX by, we get
i1 i1 i1 i1

la)X  bY: Pq
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2019
From i vig 2019we have
1

X Y 2019 g

The system of linear equationg4; 5q has a unique solution:

2019 2019a|
laj b lal b’

Now apply the following estimate to everyu? in their sum:

u?  xfa® 2xyab ylrfo xia® vyl
we obtain that
2019 2019
s s 201D 201
1 e pga® ylPg Xa® Yp |a)? %l 2019ab  201%b:
i1 i1 la] b la] b
H S
ence,abno 5019

Comment 2. The idea behind Solution 2 is the following thought. Supposeve x a 0Oandbj O,
X Ui 0 and vary the u; to achieve the maximum valye of u?. Considering varying any two of
the u; while preserving their sum: the maximum value of u? is achieved when those two are as far
apart as possible, so all but at most one of the; are equal toa or b. Considering a weighted version of

the problem, we see the maximum (with fractional numbers ofy; having each value) is achieved when
201% 20194| e b

of them area and
In fact, this happens in the solution: the numberu; is replaced byx; copies ofa and y; copies ofb.

lal b A b o
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Let n ¥ 3 be a positive integer and letpa;; ay;:::;a,q be a strictly increasing
sequence oh positive real numbers with sum equal t®2. Let X be a subset ot1;2;:::;nu
such that the value of

1 q
iPX
is minimised. Prove that there exists a strictly increasingequence oh positive real numbers

" h L

i PX
(New Zealand)

Common remarks. In all solutions, we say an index seX is pagminimising if it has
the property in the problem for the given sequencpa;g Write X ¢ for the complement ofX,
and ra; ks for the interval of integersk such thata o k & b. Note that

1 a1 &
iPX iPxe
so we may exchang&X and X © where convenient. Let

T a a
iPxc¢ i PX o
and note that X is pa;g-minimising if and only if it minimises| |, and that . & 1ifand
only if 0.
In some solutions, a scaling process is used. If we have actlyi increasing sequence of

positive real numbersc (typically obtained by perturbing the a in some way) such that

BT ¥
o iPX iPxce
then we may puth 2c¢{ J” 1 G . So it su ces to construct such a sequence without needing
its sum to be2.

The solutions below show various possible approaches to theblem. Solutions 1 and 2
perturb a few of theg to form the b (with scaling in the case of Solution 1, without scaling in
the case of Solution 2). Solutions 3 and 4 look at propertie$ the index setX . Solution 3 then
perturbs many of thea to form the b, together with scaling. Rather than using such perturba-
tions, Solution 4 constructs a sequengd qdirectly from the set X with the required properties.
Solution 4 can be used to give a complete description of sefsthat are pa;gminimising for
someps; g

o

Solution 1.  Without loss of generality, assume ., & @ 1, and we may assume strict
inequality as otherwisehh & works. Also, X clearly cannat be empty.

If n PX,add to a,, producing a sequence af with . G ipx c G, and then scale
as described above to make the sum equal & Otherwise, there is some& with k P X and
k 1PXEC Let ax 1 .

If § ,add to ax and then scale.

If , then consideringX Ytk 1uztku contradicts X being pa;gminimising.

If , choose anyy  k;k 1 (possible sincen ¥ 3), and any less than the least
of a; and all the dierencesa, ; &. If j PX then add to a, and to &, then

scale; otherwise, add to a, and {2to a, 1, and subtract {2 from g, then scale.
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Solution 2.  This is simiar to Solution 1, but without scaling. As in that solution, without
loss of generality, assume ;, & 1.

Suppose there existd @ j @ n  1suchthatj PX butj 1PX°® Theng 1 & ¥
because otherwise considering Ytj 1uzt ucontradicts X being pggminimising.

Ifa 1 & i ,put $
&9 {2 ifi
b & {2 ifi j L
% _ . .
a; otherwise.
Ifa 1 g , choose any less than the least of {2, a; and all the di erencesa ; 4.

If |X|¥ 2, choosek PX with k |, and put

$ .
| {2 ; ifi j;
e P LA
I if i k;

Oa X otherwise.
Otherwise, | X €| ¥ 2, so choos&k PX°¢with k | 1, and put
$
8 {2 it
o Yaa g2 o
bae ifi  k;
%
a; otherwise.

If thereisnolo j & nsuchthatj PX butj 1P X¢ there must be somel k o n
such that X r k;ns (certainly X cannot be empty). We must havea; i , as otherwise
consideringX Y t 1u contradicts X being pa;gminimising. Now put

$

g a {2, ifi 1
b, a {2 ifi n
%_ . .

a; otherwise.

o

Solution 3.  Without loss of generality, assume & @ 1,so ¥ 0. If 0 we can take
h &, so now assume that j O.

Suppose that there is som& =& n such that |[X Xrk;ns| | X°¢Xrk;ns| If we choose the
largest suchk then |X Xrk;ns| | X¢Xrk;ns| 1. We can now nd the required sequencghq
by starting with ¢ a; fori k and ¢ a; for i ¥ Kk, and then scaling as described
above.

If no suchk exists, we will derive a contradiction. For each PX we can choosé j;j & n
in such a way thatj; P X°¢ and all the j; are dierent. (For instance, note that necessarily
n P X°¢ and now just work downwards; each time am P X is considered, letj; be the least
element ofX ¢ greater thani and not yet used.) LetY be the (possibly empty) subset of1; ns
consisting of those elements iX ¢ that are also not one of thg;. In any case

P aq g
iPX iPY

where each term in the sums is positive. Sinae ¥ 3 the total number of terms above is at
least two. Take a least such term and its corresponding indexand consider the seZ which
we form fromX by removingi and addingj; (if it is a term of the rst type) or just by adding |
if it is a term of the second type. The corresponding expressi of for Z has the sign of its
least term changed, meaning that the sum is still nonnegatvbut strictly less than , which
contradicts X being pa;¢minimising.
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Solution 4. This uses some similar ideas to Solution 3, but describes pssties of the index
setsX that are su cient to describe a corresponding sequengdy qthat is not derived from pa; g
Note that, for two subsetsX, Y of r1; ns the following are equivalent:

[X Xri;ns|a|Y Xri;ns|forall 1o i@ n;

Y is at least as large a¥X, and forall1a j o | Y], the ! largest element ofY is at least
as big as thej " largest element oiX ;

there is an injective functionf : X N Y such thatfpq¥i forall i PX.

If these equivalent conditions are satis ed, we writeX ™ Y. We write X Y if X 7 Y and
X Y. 0 °

Note thatif X Y, then . & ipy & (the second description above makes this clear).

We claim rst that, if n¥ 3and X X then there existsY with X Y X°. Indeed,
as|X| e | X€, we have|X°| ¥ 2. Dene Y to consist of the largest element oK ¢, together
with all but the largest element of X ; it is clear both that Y is distinct from X and X ¢, and
that X © Y X¢, which is what we need.

But, in this situation, we have

“a a & and 1 a 1 &
iPX iPY iPxe iPX iPxe
so|1 v al |1 ipx ail-
Hence if X is pa;gminimising, we do not haveX X ¢, and similarly we do not have
Xe¢ X.
Considering the rst description above, this immediately mplies the following Claim.

Claim. There exist1a k;" @ n such that|X Xrk;ns|j “%2 and X Xr’;ns| 2L

We now construct our sequenceh g using this claim. Letk and ~ be the greatest values

satisfying the claim, and without loss of generality suppesk n and - n (otherwise
replace X by its complement). As" is maximal, n " is even and|X Xr’;ns| "5-. For
su ciently small positive , we take
s
80 ifi :
h i , 3 iftoion 1
0
2. it .
Let M px 1. SO we require
noe
M — 1 1
2
and
n 1
M pn ‘q 2
2
These give
2
and for su ciently small positive , solving for and givesO (since 0 gives

1{p% lgand 2 ), so the sequence is strictly increasing and has positivelvas.
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Comment. This solution also shows that the claim gives a complete desption of sets X that are
pa; ¢minimising for some pa; g

Another approach to proving the claim is as follows. We provethe existence of with the claimed
property; the existence ofk follows by considering the complement ofX . T

Suppose, for a contradiction, that for all1 & * & n we have|X Xr’;ns| ¥ 0 L If we ever
have strict inequality, consider the setY t n;n 2;n 4;:::u. This set may be obtained fromX by
possibly removing some elements and reducing the values ahers. (To see this, consider the largest
k PX zY, if any; remove it, and replace it by the greatestj P X ¢ with | k, if any. Such steps
preserve the given inequality, and are possible until we radn the setY.) So if we had strict inequality,
and soX Y, we have

A oai L
iPX iPY
contradicting X being pa; ¢minimising. Otherwise, we always have equality, meaninghat X Y. But
now considerZ Y Ytn luztnu Sincen ¥ 3, we have
Caqi o oai a2 aq
iPY iPZ iPY¢ iPY

and soZ contradicts X being pa; gminimising.
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Let n ¥ 2 be a positive integer anda,, a,, ..., &, be real numbers such that
a @ a, O

De ne the set A by (
A pijg lei jonla al¥l:
Prove that, if A is not empty, then

T aa O
pij gPA
(China)
Solution 1. De ne setsB and C by (
B p@jg leijanla agl¥1l,;
C p@mjgleijanla gl 1:
We have

5 5

&
pij qPA pij afB
pj qfB leijan pij qR8 pij grC

ag

NI

So it su ces to show that if A (and henceB) are nonempty, then

5

ag i O
p;j qFC
Partition the indices into setsP, Q, R, and S such that
P i o 1 R i 0 g 1(
Q i 1 agno O( S i lo a(:

Then

’aiai-¥’a1-2 . aa @ e YO
pi;j qrFC iPPYS iij PQYR iPPYS iPQYR

The rst inequality holds because all of the positive termsn the RHS are also in the LHS,

and all of the negative terms in the LHS are also in the RHS. Thest inequality attains

equality only if both sides have the same negative terms, vahi implies|a; a| 1 whenever

i;j PQY R; the second inequality attains equality only ifP S ?. But then we would

have A ?. SoA nonempty implies that the inequality holds strictly, as reaired.

Solution 2. ConsiderP; Q; R; S as in Solution 1, set
P a; 9 a; r a; s &

iPP iPQ iPR iPS
and let

t ’ ag; t ’ aa:
pij aPA; aja ¥ 0 pij gPA; aja = 0

We know thatp q r s 0, and we need to prove that t 0.

Noticethatt © p?{2 pg rs s?{2(with equalityonlyif p s 0),andt © pr ps qs
(with equality only if there do not existi PQ andj PR with & & j 1). Therefore,
s P qr s @ ¢ @

> pg rs pr ps Qs > > > a O
If Ais notempty andp s 0, then there must existi PQ;j PR with |aa & 1, and
hence the earlier equality conditions cannot both occur.

t t o
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Comment. The RHS of the original inequality cannot be replaced with aly constant ¢ 0 (indepen-
dent of n). Indeed, take

2n

2¢¢

Then = aa , which converges to zero as N 8 .

pij aPA
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Let X1, X2, ..., X, be di erent real numbers. Prove that

#
ot 1 xx 0; if nis even;
wionj i XX 1; if nis odd.

(Kazakhstan)
Common remarks. Let Gpy; Xo;:::;X,qbe the function of then variablesxi; X,;:::; X, 0N
the LHS of the required identity.
Solution 1 (Lagrange interpolation). Since both sides of the identity are rational functions,
it su ces to prove it when all x; Rt 1u De ne

1n
frtq pl - Xxitq;
i1
and note that 1
fig pl x’g 1 XX :
joi
Using the nodes 1; 1;Xi;:::;Xn, the Lagrange interpolation formula gives us the following
expression forf :
n 1 1 1
s X Ilgx 1g° X X x 1 X X x 1 X X
f px; f plo—— — fp 1 :

P I 19, x P11k PTOIL T x,

The coe cient of t" 1in f pqgis 0, sincef has degreen. The coe cient of t" ! in the above
expression of is

0 1 f xiq 1 f plg 1 fp 1q
wion X X0 i 1lgx; 19 Pl x;g A 1q Pl xqgpl 1q
joi lmjaon lajan
1 1d 1
GpX1;:::5%nq > P ZCP ;

Comment. The main di culty is to think of including the two extra nodes 1 and evaluating the
coecient t" 1inf whenn 1 is higher than the degree of .

de nition of the polynomial being interpolated should depend on the parity of n. For n even, consider

the polynomial 1 1

Pmxq pL - xxiq X Xig
i i
Lagrange interpolation shows thatG is the coe cient of x" 1 in the polynomial Ppxg{dl. x2q i.e. 0.
For n odd, consider the polynomial

1 1

Ppxq pL xxig X X Xg

Now G is the coe cient of x" 1in Ppxa{pl x2g which is 1.
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Solution 2 (using symmetries). Observe that G is symmetric in the variablesxy;:::; X,.
Dene V o (P xiqand let F G V, which is a polynomial inx4;:::;X,. Since
V is alternating, F is also alternating (meaning that, if we exchange any two vables, then

variablesx;, x; (i ) are equal, and is therefore divisible by; x; for each pairi j. Since
these linear factors are pairwise coprime/ divides F exactly as a polynomial. ThusG is in

Now observe that if allx; are nonzero and we sef; 1{x; fori 1;:::;n, then we have

1 yiyj 1 Xin

Yi Y Xi X

so that

1

G it —  GmyiiiiiXaq

X1 n
By continuity this is an identity of rational functions. Since G is a polynomial, it implies that
G is constant. (If G were not constant, we could choose a poimt,;:::;cqwith all ¢ 0,
such that Gpcy;:::;6q  GpO;:::;0g then gpxg: Gpex;:::; chxgwould be a nonconstant
polynomial in the variablex, so|gpxg| N8 asx N8 ,hence G %;:::;L N8 asyN 0,
which is impossible sincés is a polynomial.)

We may identify the constant by substituting X; ' where is a primitive n' root of unity
in C. In the i"" term in the sum in the original expression we have afactdr ' " ' 0, unless
i nor2 n.Inthe case wheren is odd, the only exceptiopal term is  n, which gives
the value i n 1—1 1. When n is even, we also have the term j 1 11 Jj p 1q ? 1,

so the sum is0.

Comment. If we write out an explicit expression forF,
) 1 1
F p1d "  px xq ploxixq

lojan ik joi
ki

then to prove directly that F vanishes whenx;  x; for somei j, but no other pair of variables
coincide, we have to check carefully that the two nonzero tens in this sum cancel.

A di erent and slightly less convenient way to identify the constant is to substitute x; 1 '
and throw away terms that are Opgas N 0.

Solution 3 (breaking symmetry). ConsiderG as a rational function inx, with coe cients
that are rational functions in the other variables. We can wite

Ppxnq
i nXno XjQ

Gpxy; i Xpq %

whereP px,,qis a polynomial inx,, whose coe cients are rational functions in the other variakes.
We then have

1 1 1

P Xq( Pl XnX;q T opixe 19 Xn X Q

jn lojon 1 j in j in

1 XiXj
Xi X;

For any k n, substituting x, Xy (which is valid when manipulating the numeratorP px,q
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on its own), we have (noting thatx, X; vanishes wherj k)

1 1 1
Ppxkq AL XkXjq T paxe 1q Xk Xjq Loxx
in lajon 1 j in i in Xi X
1 1 1 1 XX
Al XkXq xg 1 Xc  XjQ VIR
j n j kn i kin Xk XJ
1 1
il XX q xz2 1 pl XX q
j n j kn
0:
Note that P is a polynomial in x, of degreen 1. For any choice of distinct real numbers
X1, ..., Xn 1, P has those real numbers as its roots, and the denominator hdstsame degree
and the same roots. This shows thaG is constant in x,, for any xed choice of distinct
X1, ::5 Xn 1. Now, G is symmetric in all n variables, so it must be also be constant in each of

the other variables. G is therefore a constant that depends only on. The constant may be
identi ed as in the previous solution.

Comment. There is also a solution in which we recognise the expressidar F in the comment after
Solution 2 as the nal column expansion of a certain matrix otiained by modifying the nal column

of the Vandermonde matrix. The task is then to show that the marix can be modi ed by column

operations either to make the nal column identically zero (in the case wheren even) or to recover the
Vandermonde matrix (in the case wheren odd). The polynomial P{pl x?qis helpful for this task,

where P is the parity-dependent polynomial de ned in the comment ater Solution 1.
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A polynomial Px;y; zgin three variables with real coe cients satis es the identties

Ppiy;zq Ppyixy zq Ppgzx y;zq Ppyz Xy;zq Pq
Prove that there exists a polynomialF ptqin one variable such that

2 2

Ppy;zq Fp® y? 2% xyzg
(Russia)

Common remarks.  The polynomial x2 y? 2z? xyz satis es the condition (), so every
polynomial of the formFm? y? z? xyzqdoes satisfy (). We will use without comment the
fact that two polynomials have the same coe cients if and ony if they are equal as functions.

Solution 1. Inthe rsttwo steps, we deal with any polynomialP px; y; zgsatisfying P px; y; zq
Pp«y;xy zg Call such a polynomialweakly symmetri¢ and call a polynomial satisfying the
full conditions in the problem symmetric.

Step 1. We start with the description of weakly symmetric polynomigs. We claim that they
are exactly the polynomials inx, y, and zpxy zg Clearly, all such polynomials are weakly
symmetric. For the converse statement, considétpc;y; zq: Ppx;y;z  3xyq which satis es
Pipx;y;zq Pipx;y; zqand is therefore a polynomial inx;y, and z?. This means thatP is a
polynomial in X, y, and g Zxyqf zy zq 3x?y? and therefore a polynomial inx, y,
and zxy  zg

Step 2. Suppose thatP is weakly symmetric. Consider the monomials iR px;y; zq of highest
total degree. Our aim is to show that in each such monomiat 2y°z¢ we havea; b¥ c. Consider
the expansion

5 P k

PpGy;zq ik X'y zpy zq pl:1q

ik
The maximal total degree of a summand ipl:lgis m  maxgx . , od | 3kg Now, for
any i;j;k satisfyingi j 3k m the summand i« X'y zpxy  zq “ has leading term of
the form x ' Kyl kzX. No other nonzero summand impl:1qg may have a term of this form in its
expansion, hence this term does not cancel in the whole sumhéFefore,degP  m, and the
leading component ofP is exactly

5 X Ryl kzks
i j 3k m

and each summand in this sum satis es the condition claimedave.

Step 3. We now prove the problem statement by induction oom  degP. For m O the
claim is trivial. Consider now a symmetric polynomialP with degP | 0. By Step 2, each
of its monomials x 2yz¢ of the highest total degree satis esa;b¥ c. Applying other weak
symmetries, we obtaina; c¥ band b;c¥ a; therefore,P has a unique leading monomial of the
form pxyzdf. The polynomial Popx;y;zq Ppcy;zq  xyz x2 y?2 z2 © has smaller total
degree. Sincd, is symmetric, it is representable as a polynomial functionfxyz x?> y? Zz2.
Then P is also of this form, completing the inductive step.

Comment. We could alternatively carry out Step 1 by an induction onn  deg, P, in a manner
similar to Step 3. If n 0, the statement holds. Assume thatn j 0 and check the leading component
of P with respect to z:

Pp;y;zq Qnpy®" RpKy;zq;
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wheredeg, R n. After the change z PNxy  z, the leading component become®,px;ygp zd'; on
the other hand, it should remain the same. Hence is even. Now consider the polynomial

PopX;yizq PpGy;zq Qupiyq zm xyq "

It is also weakly symmetric, anddeg, P  n. By the inductive hypothesis, it has the form Pgopx; y; zq
S X;y;z Xyq . Hence the polynomial

PPGYizq S xyizpy 24 Qupcyqzm xyq"t
also has this form. This completes the inductive step.
Solution 2. We will rely on the well-known identity
cogu cogv co$w 2cosucosvcosw 1 O wheneveru v w O. R:1q

Claim 1. The polynomial Ppx;y; zqis constant on the surface

(

S 2 cosu;2cosv;2coswq:u v.ow O

Proof. Notice that for x ~ 2cosu, y 2cosv, z  2cosw, the Vieta jumps x PNyz x,
y bRzx y,zbRxy zin pqgreplacepu;v;wgby pv w; vi;wg pu;w u; wgandp u;viu vg
respectively. For example, for the rst type of jump we have

yz X 4cosvcosw 2cosu 2Co§y WwW(g 2C0§¥ WwWQg 2cOoU  2COo§V W(Q
De ne Gpu;v;wq Pp2cosu;2cosv;2cosvg Foru v w0, the jumps give

Gpu;v;wg Gpv w; vswg Gpv v, vipr o wg p vgg Gp u 2v; v;2v w(q
Gpu  2v;v;w 2vq:

By induction,

Gpu;v;iwg G u  2kv;v;w 2kv (K PZg 2:2q
Similarly,

Gpu;v;wg G u;v 2u;w 2u p PZg 2:3q

And, of course, we have

Gpui;viwg Gu 2p;v 29;w 2 o p;qPZg p2:4q

Take two nonzero real numbersi; v such thatu, vand are linearly independent oveQ. By
combining (2.2 2.4), we can see thaG is constant on a dense subset of the plane v w 0.
By continuity, G is constant on the entire plane and therefor® is constant onS. I

Claim 2. The polynomial Tpx;y;zq x? y? z? xyz A4dividesP;y;zq PRR;2;2q

Proof. By dividing P by T with remainders, there exist some polynomial®px;y; zg Apy;zq
and B py; zqsuch that

Ppy,;zq Pp22,29 Tpxy;zq Rpiy;zq Apy;zok Bpy;zg 2:5q

On the surfaceS the LHS of (2.5) is zero by Claim 1 (sincg?; 2;2q PS)and T 0 by (2.1).
Hence,Apy;zogx  Bpy; zqvanishes onS.

Notice that for everyy  2cosv and z 2cosw with 3 VW % there are two
distinct values of x such that px;y;zq PS, namelyx, 2cogv wqg(which is negative), and
Xy 2cogv wq(which is positive). This can happen only ifApy;zq Bpy;zqg 0. Hence,
Apy;zqg Bpy;zg Oforly| 1,|z] 1. The polynomialsA and B vanish on an open set, so
A and B are both the zero polynomial. I
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The quotient pPpx;y;zq P2; 2;2q9{T px; y; zqis a polynomial of lower degree tha® and
it also satis es (). The problem statement can now be proven by induction on thdegree ofP.

Comment. In the proof of p2:2g and p2:3qwe used two consecutive Vieta jumps; in fact fronp g we
used onlyPpx;y;xy zq Pm;zx vVv;zq Ppz Xy;zq

Solution 3 (using algebraic geometry, just for interest). Let Q x?> y? 7% «xyz
and lett P C. Checking whereQ t; £; % and £ vanish simultaneously, we nd that the

surfaceQ t is smooth except for the cases 0, when the only singular point isg0O; 0; Og
andt 4, when the four pointsp 2; 2; 2qthat satisfy xyz 8 are the only singular points.
The singular points are the xed points of the group of polynomial automorphisms ofC3
generated by the threeVieta involutions

1 - PX Y, ZQg DN)py;Xy Zq 2 - PX7Y;ZQ DN)p XZ Y,;ZG 3. PXiY:ZQ DN){Z XyY, ZQ:

acts on each surfacé/, : Q t 0. If Q t were reducible then the surfac€® t would
contain a curve of singular points. Therefor&® t is irreducible in Crx;y;zs (One can also
prove algebraically thatQ t is irreducible, for example by checking that its discriminat as a
guadratic polynomial in x is not a square inCry; zs and likewise for the other two variables.)
In the following solution we will only use the algebraic susice V.
Let U be the -orbit of p3;3;3g Consider 3 ,, which leavesz invariant. For each xed
value ofz, 3 , acts linearly onpx; yqby the matrix

2 1 z
M, : . 1
The reverse composition, sactsbyM,? M2, NotedetM, landtrM, 2z?> 2. When
z does not lie in the real intervalr 2;2s the eigenvalues oM, do not have absolute valuel,
so every orbit of the group generated b, on C? z tp0; Oquis unbounded. For example, xing
z 3we nd pFy 1;3Fx 1;3q PU for everyk PZ, wherepF,q,5, is the Fibonacci sequence
with Fo 0, F, 1.

Now we may start at any point @83F, 1; 3F. 1;3gqand iteratively apply 1 » to generate
another in nite sequence of distinct points olJ, Zariski dense in the hyperbola cut out o¥/, by
the planex 3F, 1 0. (The planex a cuts out an irreducible conic whera Rt 2;0;2u.)
Thus the Zariski closureU of U contains in nitely many distinct algebraic curves inV,. Since
Vj is an irreducible surface this implies thal V.

For any polynomial P satisfying ( ), we haveP Pp3;3;3q 0 at each point ofU. Since
U Vo, P Pp3;3;3qvanishes onV,. Then Hilbert's Nullstellensatz and the irreducibility
of Q imply that P P3; 3;3qgis divisible by Q. Now pP P3; 3; 3qg{fQ is a polynomial also
satisfying ( ), so we may complete the proof by an induction on the total dege, as in the other
solutions.

Comment. We remark that Solution 2 used a trigonometric parametrisaton of a real component of
V,; in contrast Vg is birationally equivalent to the projective spaceP? under the maps

2 R a2 P 2a B

bc ac ab

p;y;zqNpx:y:zg pa:b:cgN
The setU in Solution 3 is contained inZ® so it is nowhere dense inVy in the classical topology.

Comment (background to the problem). A triple pa;b;aq PZ3 is called a Markov triple if
a® B ¢ 3abg and an integer that occurs as a coordinate of some Markov foie is called a
Markov number. (The spelling Marko is also frequent.) Markov triples arose in A. Markov's work
in the 1870s on the reduction theory of inde nite binary quadratic forms. For every Markov triple,
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p3a; 3b;3cqg lies on Q 0. It is well known that all nonzero Markov triples can be geneated from
pl; 1; 1q by sequences of Vieta involutions, which are the substitutins described in equation () in the
problem statement. There has been recent work by number theists about the properties of Markov
numbers (see for example Jean Bourgain, Alex Gamburd and Pat&arnak, Marko triples and strong
approximation, Comptes Rendus Math. 345, no. 2, 131 135 (2016), arXiv:1505.06411). Each Markov
number occurs in in nitely many triples, but a famous old open problem is the unicity conjecture,
which asserts that each Markov number occurs in only one Mady triple (up to permutations and sign
changes) as the largest coordinate in absolute value in thatiple. It is a standard fact in the modern
literature on Markov numbers that the Markov triples are Zariski dense in the Markov surface. Proving
this is the main work of Solution 3. Algebraic geometry is denitely o -syllabus for the IMO, and one
still has to work a bit to prove the Zariski density. On the other hand the approaches of Solutions
1 and 2 are elementary and only use tools expected to be knowry BMO contestants. Therefore we
do not think that the existence of a solution using algebraicgeometry necessarily makes this problem
unsuitable for the IMO.
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Let Z be the set of integers. We consider functiorfs: Z N Z satisfying

ffxk yq vy ffxg y
for all integersx andy. For such a function, we say that an integew is f -rare if the set

Xy t XPZ:fmxqg wvu
is nite and nonempty.
(a) Prove that there exists such a functiorf for which there is anf -rare integer.
(b) Prove that no such functionf can have more than oné -rare integer.

(Netherlands)

Solution 1. a) Let f be the function wheref @g 0 and f pxqg is the largest power of2
dividing 2x for x 0. The integer O is evidently f -rare, so it remains to verify the functional
equation.

Sincef @2xq 2f xqgfor all x, it su ces to verify the functional equation when at least ore
of x andy is odd (the casex y 0 being trivial). If y is odd, then we have

ffx yg yg 2 fgmxqg yq

since all the values attained byf are even. If, on the other handx is odd andy is even, then
we already have

fpc yg 2 fxq
from which the functional equation follows immediately.

b) An easy inductive argument (substitutingx Ky for x) shows that

ffpx kyq yqg fgdmg yq ()

for all integersx, y and k. If v is anf -rare integer anda is the least element oiX,, then by
substituting y a f xqin the above, we see that

fx k pa fpxqaq fxq aPX,
for all integersx and k, so that in particular

fx  k pa fxqqq ¥ xq

for all integers x and k, by assumption ona. This says that on the (possibly degenerate)
arithmetic progression throughx with common di erencea f pxg the function f attains its
minimal value at Xx.

Repeating the same argument witha replaced by the greatest elemenr of X, shows that

fp< k pb fpxqqefmxq
for all integersx and k. Combined with the above inequality, we therefore have

fox k pa fxaqq p fxqaq fxq ()

for all integersx and k.

Thus if f xq a; b then the setX; 4 contains a nondegenerate arithmetic progression, so
is in nite. So the only possiblef -rare integers area and h.

In particular, the f -rare integerv we started with must be one ofa or b, so that f pvq
fpag fpbg v. This means that there cannot be any othef -rare integersv?, as they would
on the one hand have to be eithea or b, and on the other would have to satisfyf pv’q Vi
Thus v is the uniquef -rare integer.
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Comment 1. If f is a solution to the functional equation, then so too is any cojugate of f by a
translation, i.e. any function x PNf i« ng n for an integer n. Thus in proving part (b), one is free
to consider only functionsf for which 0 is f -rare, as in the following solution.

Solution 2, part (b) only. Supposeyv is f -rare, and leta and b be the least and greatest
elements ofX,, respectively. Substitutingx v andy a v into the equation shows that

fpvg v aPX,

and in particular f pvg ¥ v. Repeating the same argument witx v andy b v shows that
f pvq & v, and hencef pvq V.

Suppose now thatlis a second -rare integer. We may assume that 0 (see Comment 1).
We've seen thatf pvlg  v% we claim that in fact f gkvlqg v for all positive integersk. This
gives a contradiction unless* v 0.

This claim is proved by induction onk. Supposing it to be true fork, we substitutey  kv?
and x 0into the functional equation to yield

fpk la'qg fpfpog kvig fekvig v
using that f g 0. This completes the induction, and hence the proof.

Comment 2.  There are many functionsf satisfying the functional equation for which there is an
f -rare integer. For instance, one may generalise the constction in part (a) of Solution 1 by taking

a sequencel ag;ag;ap;::: of positive integers with eacha; a proper divisor of a; 1 and choosing
arbitrary functions f;: pz{a;Zqztu N &Z z tOu from the nonzero residue classes modula to the
nonzero multiples ofa;. One then de nes a functionf : Z N Z by

#
fxq: fi- 1X mod & 1G ?fai|xbut a 1-X;
0; if x O.

If one writes vpxq for the largesti such that a | x (with vj0gq 8 ), then it is easy to verify the
functional equation for f separately in the two casesvpyq | vpxq and vixq ¥ vpyg Hence thisf
satis es the functional equation and 0 is an f -rare integer.

Comment 3. In fact, if v is an f -rare integer for anf satisfying the functional equation, then its
bre X, t vumust be a singleton. We may assume without loss of generalithat v 0. We've
already seen in Solution 1 thatO is either the greatest or least element oX; replacing f with the
function x PN f p xqif necessary, we may assume thad is the least element ofX,. We write b for
the largest element ofX o, supposing for contradiction that bj 0, and write N p 2bd.

It now follows from ( ) that we have

fdpNbg bg fpddg bg fpbg O

from which we see thatf p]Nbgq bP X, r O;bs It follows that f pNbg P r b;0qg since by construction
Nb R Xy. Now it follows that f pNbg 0Og @dpNbg bgis a divisor of N, so from () we see that
fpNbg f g 0. This yields the desired contradiction.
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Combinatorics

The in nite sequenceay, a;, a,, ... of (not necessarily di erent) integers has the
following properties: 0@ g = i for all integersi ¥ 0, and

k k k
Ao a1 ak

2k

for all integersk ¥ 0.
Prove that all integersN ¥ 0 occur in the sequence (that is, for alN ¥ O, there existsi ¥ 0
with & N).
(Netherlands)

Solution. We prove by induction onk that every initial segment of the sequencey; as;: : :; &,
consists of the following elements (counted with multiplity, and not necessarily in order), for
some ¥ Owith 2 = k 1

0;1:::; 1, 01;:::;k
For k Owe haveay 0, which is of this form. Now suppose that fok m the elements

ag;ay; . l;am are0;0;1;1;2;2;:::;0 1,7 L1 L::::m 1 m ° for some  with
Os 22am 1 Itis given that

m 1 m 1 m 1 m 1 om 1.
do a1 am adm 1 ,
which becomes
m 1 m 1 m 1
0 1 1
m 1 m 1 m 1 m 1 om 1.
0 1 m am 1 ’
or, using ™ * mobo that
m 1 m 1 m 1
0 1 1
m 1 m 1 m 1 m 1 om 1
m 1 m 1 am 1

On the other hand, it is well known that

m 1 m 1 m 1

2m l,
0 1 m 1

and so, by subtracting, we get

m 1 m 1

am 1

From this, using the fact that the binomial coe cients ™. ! are increasing foii @ "‘Tl and

decreasing fori ¥ ™1 we conclude that eithera,, 1 ~ora, 1+ m 1 . In either case,
ao; a1;:::;am 1 is again of the claimed form, which concludes the induction.

As a result of this description, any integeN ¥ 0 appears as a term of the sequeneg for
someQwa | o 2N.
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You are given a set oh blocks, each weighing at least; their total weight is 2n.
Prove that for every real numberr with Oo r @ 2n 2 you can choose a subset of the blocks
whose total weight is at leastr but at mostr 2.

(Thailand)

Solution 1. We prove the following more general statement by inductionron.

Claim. Suppose that you haven blocks, each of weight at leasi, and of total weight s & 2n.
Then for everyr with 2o r o s, you can choose some of the blocks whose total weight is at
leastr but at mostr 2.

Proof. The base casen 1 is trivial. To prove the inductive step, let x be the largest
block weight. Clearly, x ¥ s{n, sos x © ”Tls a 2m 1lg Hence, if we exclude a
block of weight x, we can apply the inductive hypothesis to show the claim hadd(for this
smaller set) for any 2 & r @ s x. Adding the excluded block to each of those combi-
nations, we see that the claim also holds when 2© r o s. Soifx 2& s x, then
we have covered the whole intervat 2;ss But each block weight is at leastl, so we have

X 28ps pn 1gg 2 s p2n pn lgges ps pn 1gges X, as desired. I

Comment. Instead of inducting on sets of blocks with total weights @ 2n, we could instead prove the
result only for s 2n. We would then need to modify the inductive step to scale up tle block weights
before applying the induction hypothesis.

Solution 2. Let X;;:::; X, he the weights of the blocks in weakly increasing order. Cader
the setS of sums of the form ;; x; for a subsetd , t 1;2;:::;nu. We want to prove that the
meshof S i.e. the largest distance between two adjaceat elements siat most 2.

ForOa k @ n, let S denote the set of sums of the form ,; x; forasubset] , t 1;2;:::;ku.
We will show by induction onk that the mesh of Sy is at most 2.

The base cas& Ois trivial (as So t Ou). For k j 0 we have

Sk Sk 1 YpXk Sk 14

(Wherepx Sk 1gdenotestxx s:s PS¢ 1U), so it suces to prove that xc 2 ; X 2
But if this were not the case, we would have; | ; ,x; 2¥ k 1foralll¥ k, and hence

n

2n  x;ipn 1 kgk 19 k 1
j 1

Thisrearrangeston j kjn 1 kg which is false forl & k =& n, giving the desired contradiction.
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Let n be a positive integer. Harry has coins lined up on his desk, each showing
heads or tails. He repeatedly does the following operatioif:there are k coins showing heads
andk j 0, then he ips the k™ coin over; otherwise he stops the process. (For example, the
process starting withTHT would be THT N HHT N HTT N TTT, which takes three
steps.)

Letting C denote the initial con guration (a sequence oh H's and T's), write ~pCqfor the
number of steps needed before all coins shdw Show that this number "pCqis nite, and
determine its average value over aR" possible initial con gurations C.

(USA)
Answer: The average is%nm 1g
Common remarks.
value.

Throughout all these solutions, we leE pngdenote the desired average

Solution 1.  We represent the problem using a directed grapfs, whose vertices are the
length-n strings of H's and T's. The graph features an edge from each string to its success
(except forTT  TT, which has no successor). We will also writd T andT H.

The graph Gy consists of a single vertex: the empty string. The main clains that G, can
be described explicitly in terms oiG,, ;:

We take two copies X and Y, of G, ;.

In X, we take each string oh 1 coins and just append & to it. In symbols, we replace
S1 Sh 1 with S1 Sy 1T.

In Y, we take each string olh 1 coins, ip every coin, reverse the order, and append
an H to it. In symbols, we replaces; s, ; with s, 1S, » SiH.

Finally, we add one new edge fronY to X, namely HH HHH N HH HHT .

We depict G, below, in a way which indicates this recursive construction

Y | HHTH HTHH THTH TTHH
| ™~ | ™~
HHHH HTTH «—TTTH THHH

X | HTTT THTT HTHT THHT
| ™~ | ™~

TTTT HHTT «—— HHHT TTHT

We prove the claim inductively. Firstly, X is correct as a subgraph d&,,, as the operation on
coins is unchanged by an extrd at the end: ifs;

is senttot; t, 1T.

Next, Y is also correct as a subgraph d&,, as ifs;

s;H hasm
S, 1is senttot;

1 kg 1 n
t, 1, thens, 1

Sn 1
S1

HH  HHT.

S, 1 IS sent tot;

thiH.

t, 1, thens;

S, 1 hask occurrences oH, then
k occurrences oH, and thus (provided thatk j 0), if
siH is sent tot, 1
Finally, the one edge fromY to X is correct, as the operation does sendH
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To nish, note that the sequences inX take an average oEm  1qg steps to terminate,
whereas the sequences M take an average oEm  1qsteps to reachHH H and then an
additional n steps to terminate. Therefore, we have

N S

1
Emg SEM 1g pEM 19 nqqg Em 1g

We haveEg 0 from our description ofGq. Thus, by induction, we haveE mq %pl
nq %nm 1g which in particular is nite.

Solution 2.  We consider what happens with con gurations depending on ¢hcoins they start
and end with.

If a con guration starts with H, the lastn 1 coins follow the given rules, as if they were
all the coins, until they are all T, then the rst coin is turned over.

If a con guration ends with T, the last coin will never be turned over, and the rst
n 1 coins follow the given rules, as if they were all the coins.

If a con guration starts with T and ends withH, the middlen 2 coins follow the given
rules, as if they were all the coins, until they are all. After that, there are 2n 1 more
steps: rstcoinsl, 2,...,n 1are turned over in that order, then coinsh,n  1,...,1
are turned over in that order.

As this covers all con gurations, and the number of steps islearly nite for 0 or 1 coins, it
follows by induction onn that the number of steps is always nite.

We de ne Exg ;ng where A and B are each one oH, T or , to be the average number of
steps over con gurations of lengthn restricted to those that start with A, if A is not , and
that end with B, if B isnot (so represents eitherH or T ). The above observations tell us
that, for n ¥ 2

Eh mg Epn 1g 1

Ermmg Em 1q

Enrpng Epn 29 1 (by using both the observations forH and for T).
Ertnpng Epm 29 2n 1L

Now Ey mg  3PEwnmg Enprmoqg soEwymg  2Emp 1g Em 29 1. Similarly,
Errpng 2Epn 1 Epn 29 1. So

N D

1
Emq ZFEHqu Ewnng Errpng Erppmgqg Em 1q

We haveEp0q Oand Eplg 3, so by induction onn we haveEpng  znpn  1q

Solution 3. Let H; be the number of heads in position4 to i inclusive (soH, is the total
number of heads), and let; be 1 if the i™ coin is a head,0 otherwise. Consider the function

tpg i 2mminti;H,u H;qg

We claim that tpqis the total number of times coini is turned over (which implies that the
process terminates). Certainlyfpgg O when all coins are tails, andpqis always a nonnegative
integer, so it su ces to show that when thek™ coin is turned over (wherek H,), tgkqgoes
down by 1 and all the othertpgare unchanged. We show this by splitting into cases:
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If ik, I; and H; are unchanged, andninti;H,u i both before and after the coin ip,
sotpqis unchanged.

If i j k, minti;H,u H, both before and after the coin ip, and bothH, and H; change
by the same amount, sdpqis unchanged.

If i k and the coin is heads|; goes down byl, as do bothminti;H,u H, and H;; so
tpggoes down byl.

If i Kk and the coin is tails,l; goes up byl, minti;H,u i is unchanged andH; goes
up by 1; sotpggoes down byl.

We now need to compute the average value of

n n n n
tpqg I, 2 mintiH,u 2 H;:

i1 i1 i1 i1

The average value of the rst term is%n, and that of the third term is %nm 1g To compute
the second term, we sum over choices for the total number ofdus, and then over the possible
values ofi, getting

n n n

s n - . s n . j
2t n ) minti;ju 2t " . nj 12
i o i1 i 0
Now, in terms of trinomial coe cients,
N n N n "Tnh o1
j o D 2" In
o J i1 bl ; i 0 J
and
S n . n n"?n 2 n2 N
i o 2 ] 2 Nl 2;2 2 i o J 2
So the second term above is
n nm 1q
21 n 2n 1n2 2n 2 n2 :
2 4
and the required average is
1 nmn 1q 1 nm 1q
E “n n? —— Ion 1 LA
g > 2 > M q 2

Solution 4.  Harry has built a Turing machine to ip the coins for him. The machine is
initially positioned at the k' coin, where there arek heads (and the position before the rst
coin is considered to be th€" coin). The machine then moves according to the following res,
stopping when it reaches the position before the rst coin:fithe coin at its current position
is H, it ips the coin and moves to the previous coin, while if the oin at its current position
is T, it ips the coin and moves to the next position.

Consider the maximal sequences of consecutive moves in thene direction. Suppose the
machine hasa consecutive moves to the next coin, before a move to the preus coin. After
those a moves, thea coins ipped in those moves are all heads, as is the coin the omne
iS now at, so at least the nexta 1 moves will all be moves to the previous coin. Similarly,
a consecutive moves to the previous coin are followed by at ##aa 1 consecutive moves to
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the next coin. There cannot be more tham consecutive moves in the same direction, so this
proves that the process terminates (with a move from the rstoin to the position before the
rst coin).

Thus we have a (possibly empty) sequenca a @ n giving the lengths of maximal
sequences of consecutive moves in the same direction, whblee nal a; moves must be moves
to the previous coin, ending before the rst coin. We claim thre is a bijection between initial
con gurations of the coins and such sequences. This gives

1 nm 1q
Emq Epl 2 nq —,—
as required, since eachwith 1 = i @ n will appear in half of the sequences, and will contribute
to the number of moves when it does.

To see the bijection, consider following the sequence of nesvbackwards, starting with the
machine just before the rst coin and all coins showing tailsThis certainly determines a unique
con guration of coins that could possibly correspond to thgiven sequence. Furthermore, every
coin ipped as part of the & consecutive moves is also ipped as part of all subsequentisences
of ax consecutive moves, for alk j j, meaning that, as we follow the moves backwards, each
coin is always in the correct state when ipped to result in a rave in the required direction.
(Alternatively, since there are2" possible con gurations of coins an@" possible such ascending
sequences, the fact that the sequence of moves determinesnaist one con guration of coins,
and thus that there is an injection from con gurations of camns to such ascending sequences, is
su cient for it to be a bijection, without needing to show that coins are in the right state as
we move backwards.)

Solution 5.  We explicitly describe what happens with an arbitrary sequee C of n coins.

Suppose thatC contain k heads at positionsla ¢; ¢, Ck @ n.
Let i be the minimal index such thatc ¥ k. Then the rst few steps will consist of turning
over thek™, .k 1d", ..., ¢™, p5 19", pc 24", ..., k" coins in this order. After that we

get a con guration with k 1 heads at the same positions as in the initial one, except for.
This part of the process takepc kg 1 steps.

After that, the process acts similarly; by induction on the mmber of heads we deduce that
the process ends. Moreover, if the disappear in orderc,;:::;G,, the whole process takes

k k k k

‘a2 pk 1 jgg 1 27 g 2 ko1 jg k 2 g K
i1 i1 i1 i1
steps.
Now let us nd the total value S, of “‘pCqover all | con gurations with exactly k heads.
To sum up the above expression over those, notice that eachniiber 1 @ | @ n appears as;

exactly | 1 times. Thus

n 1.". n , .m 1lg pm k 1gnm 1g n pn k 19,
o2 ok k= 2 &k 19 2 i K
nm 1g m k 1g n 2 n 1
& 1q m 1g k nm 19 K1 n K 1°
Therefore, the total value of pCqover all con gurations is
N Soon 2 Soon 1 - PR ]o (I Ko}
SK nm  1q K 1 n K 1 nm 1R n2 2N —

k 1 k 1 k 1 4

. . npn 1q
Hence the required average Bmjgq ——,—.
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On a at plane in Camelot, King Arthur builds a labyrinth L consisting ofn walls,
each of which is an in nite straight line. No two walls are paallel, and no three walls have a
common point. Merlin then paints one side of each wall entiigred and the other side entirely
blue.

At the intersection of two walls there are four corners: two idgonally opposite corners
where a red side and a blue side meet, one corner where two r&tes meet, and one corner
where two blue sides meet. At each such intersection, therg a two-way door connecting the
two diagonally opposite corners at which sides of di erentatours meet.

After Merlin paints the walls, Morgana then places some knigs in the labyrinth. The
knights can walk through doors, but cannot walk through wai.

Let kp_qbe the largest numberk such that, no matter how Merlin paints the labyrinth L,
Morgana can always place at leask knights such that no two of them can ever meet. For
eachn, what are all possible values fokpLg wherelL is a labyrinth with n walls?

(Canada)

Answer: The only possible value ok isk n 1, no matter what shape the labyrinth is.

Solution 1.  First we show by induction that the n walls divide the plane into ”21 1regions.

The claim is true forn 0 as, when there are no walls, the plane forms a single region.héwn
placing then™ wall, it intersects each of then 1 other walls exactly once and hence splits each
of n of the regions formed by those other walls into two regions.yBhe induction hypothesis,

thisyields 7 1 n "' 1regions, proving the claim.

Now let G be the graph with vertices given by the ”21 1 regions, and with two regions
connected by an edge if there is a door between them.

We now show that no matter how Merlin paints then walls, Morgana can place at least
n 1 knights. No matter how the walls are painted, there are exalgt !, intersection points,
each of which corresponds to a single edgeGn Consider adding the edges @ sequentially and
note that each edge reduces the number of connected compdedry at most one. Therefore
the number of connected components of G is at Iea§’[21 1 35 n 1. If Morgana places
a knight in regions corresponding to di erent connected coponents ofG, then no two knights
can ever meet.

Now we give a construction showing that, no matter what shapthe labyrinth is, Merlin
can colour it such that there are exactlyn 1 connected components, allowing Morgana to
place at mostn 1 knights.

First, we choose a coordinate system on the labyrinth so thatone of the walls run due
north-south, or due east-west. We then have Merlin paint thevest face of each wall red, and
the east face of each wall blue. We label the regions accoglito how many walls the region is
on the east side of: the labels are integers betweérand n.

We claim that, for eachi, the regions labelled are connected by doors. First, we note that
for eachi with Oz i @ n there is a unique region labelled which is unbounded to the north.

Now, consider a knight placed in some region with labe|] and ask them to walk north
(moving east or west by following the walls on the northern des of regions, as needed). This
knight will never get stuck: each region is convex, and so,itfis bounded to the north, it has
a single northernmost vertex with a door northwards to anotér region with labeli.

Eventually it will reach a region which is unbounded to the ndh, which will be the unique
such region with labeli. Hence every region with labei is connected to this particular region,
and so all regions with label are connected to each other.

As a result, there are exactlyn 1 connected components, and Morgana can place at most
n 1 knights.
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Comment. Variations on this argument exist: some of them capture moranformation, and some of
them capture less information, about the connected compomgs according to this system of numbering.

as one cycles around them, that the regions labelle@ and n are the only regions in their connected
components, and that each other connected component formssingle chain running between the two
unbounded ones. It is also possible to argue that the regiorare acyclic without revealing much about
their structure.

Solution 2. We give another description of a strategy for Merlin to painthe walls so that
Morgana can place no more tham 1 knights.

Merlin starts by building a labyrinth of n walls of his own design. He places walls in turn
with increasing positive gradients, placing each so far tdé right that all intersection points
of previously-placed lines lie to the left of it. He paints e in such a way that blue is on the
left and red is on the right.

For example, here is a possible sequence of four such lings;; “3; 4:

We say that a region is on the right if it hasx-coordinate unbounded above (note that if
we only have one wall, then both regions are on the right). Wdam inductively that, after
placing n lines, there aren 1 connected components in the resulting labyrinth, each of wth
contains exactly one region on the right. This is certainlyrue after placing O lines, as then
there is only one region (and hence one connected componeanty it is on the right.

When placing then™ line, it then cuts every one of then 1 previously placed lines, and
since it is to the right of all intersection points, the regios it cuts are exactly then regions on
the right.

The addition of this line leaves all previous connected coropents with exactly one region on
the right, and creates a new connected component containirexactly one region, and that
region is also on the right. As a result, by induction, this paicular labyrinth will have n 1
connected components.

Having built this labyrinth, Merlin then moves the walls oneby-one (by a sequence of
continuous translations and rotations of lines) into the poper position of the given labyrinth,
in such a way that no two lines ever become parallel.
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The only time the con guration is changed is when one wall is aved through an intersection
point of two others:

@
§
<

Q
3

/'@O,

Note that all moves really do switch between two con guratias like this: all sets of three lines
have this colour con guration initially, and the rules on rdations mean they are preserved (in
particular, we cannot create three lines creating a triangl with three red edges inwards, or
three blue edges inwards).

However, as can be seen, such a move preserves the numbermi@cted components, so in
the painting this provides for Arthur's actual labyrinth, M organa can still only place at most
n 1 knights.

Comment. While these constructions are super cially distinct, they in fact result in the same colour-
ings for any particular labyrinth. In fact, using the methods of Solution 2, it is possible to show that
these are the only colourings that result in exactlyn 1 connected components.



Shortlisted problems solutions 39

On a certain social network, there ar019users, some pairs of which are friends,
where friendship is a symmetric relation. Initially, thereare 1010people with 1009friends each
and 1009people with 1010friends each. However, the friendships are rather unstabkso events
of the following kind may happen repeatedly, one at a time:

Let A, B, and C be people such that is friends with both B and C, but B and C
are not friends; thenB and C become friends, butA is no longer friends with them.

Prove that, regardless of the initial friendships, there @gts a sequence of such events after
which each user is friends with at most one other user.
(Croatia)

Common remarks.  The problem has an obvious rephrasing in terms of graph thgorOne
is given a graphG with 2019vertices, 10100f which have degred009and 10090f which have
degreel01Q One is allowed to perform operations o of the following kind:

Suppose that vertexA is adjacent to two distinct verticesB and C which are not
adjacent to each other. Then one may remove the edgA8 and AC from G and
add the edgeBC into G.

Call such an operation aefriending. One wants to prove that, via a sequence of such refriend-
ings, one can reach a graph which is a disjoint union of singg¢elges and vertices.
All of the solutions presented below will use this reformutan.

Solution 1. Note that the given graph is connected, since the total degeeof any two vertices
is at least2018and hence they are either adjacent or have at least one neighly in common.
Hence the given graph satis es the following condition:

Every connected component o6 with at least three vertices is not complete
and has a vertex of odd degree.

(1)

We will show that if a graph G satis es condition (1) and has a vertex of degree at leag, then
there is a refriending onG that preserves condition {). Since refriendings decrease the total
number of edges 06, by using a sequence of such refriendings, we must reach apjr& with
maximal degree at mostl, so we are done.
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Pick a vertex A of degree at leas® in a connected componenG! of G. Since no component
of G with at least three vertices is complete we may assume that hall of the neighbours
of A are adjacent to one another. (For example, pick a maximal cqtete subgraphK of G
Some vertexA of K has a neighbour outsideK , and this neighbour is not adjacent to every
vertex of K by maximality.) Removing A from G splits G into smaller connected components
Gy1; 111, Gk (possibly with k 1), to each of whichA is connected by at least one edge. We
divide into several cases.

Case 1.k ¥ 2 and A is connected to somé&; by at least two edges.

Choose a vertexB of G; adjacent to A, and a vertexC in another componentG; adjacent
to A. The verticesB and C are not adjacent, and hence removing edgés8 and AC and
adding in edgeBC does not disconnecG? It is easy to see that this preserves the condition,
since the refriending does not change the parity of the deg® of vertices.

Case 2:k ¥ 2 and A is connected to eacl; by exactly one edge.

Consider the induced subgraph on ang; and the vertex A. The vertex A has degreel in
this subgraph; since the number of odd-degree vertices of mgh is always even, we see that
G has a vertex of odd degree (i). Thus if we let B and C be any distinct neighbours ofA,
then removing edgesAB and AC and adding in edgeBC preserves the above condition: the
refriending creates two new components, and if either of tee components has at least three
vertices, then it cannot be complete and must contain a verteof odd degree (since eacty;
does).

Case 3:k 1 andA is connected toG; by at least three edges.

By assumption, A has two neighboursB and C which are not adjacent to one another.
Removing edge#\B and AC and adding in edgeBC does not disconnecG We are then done
as in Case 1.

Case 4:k 1 andA is connected toG; by exactly two edges.

Let B and C be the two neighbours ofA, which are not adjacent. Removing edgeAB
and AC and adding in edgeBC results in two new components: one consisting of a single
vertex; and the other containing a vertex of odd degree. We @rdone unless this second
component would be a complete graph on at lea8tvertices. But in this case,G; would be a
complete graph minus the single edgeC, and hence has at leas# vertices sinceG!is not a
4-cycle. If we letD be a third vertex of G, then removing edges8BA and BD and adding in
edgeAD does not disconnecGL We are then done as in Case 1.

A

Comment. In fact, condition 1 above precisely characterises those graphs which can be reduced to a
graph of maximal degreea 1 by a sequence of refriendings.
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Solution 2.  As in the previous solution, note that a refriending presees the property that a
graph has a vertex of odd degree and (trivially) the propertghat it is not complete; note also
that our initial graph is connected. We describe an algoritim to reduce our initial graph to a
graph of maximal degree at most, proceeding in two steps.

Step 1: There exists a sequence of refriendings reducing tireph to a tree.

Proof. Since the number of edges decreases with each refriendingsuices to prove the fol-
lowing: as long as the graph contains a cycle, there exists efriending such that the resulting
graph is still connected. We will show that the graph in fact entains a cycleZ and vertices
A;B; C such that A and B are adjacent in the cycleZ, C is not in Z, and is adjacent toA but
not B. Removing edge#AB and AC and adding in edgeBC keeps the graph connected, so we
are done.

B C

To nd this cycle Z and verticesA;B; C, we pursue one of two strategies. If the graph
contains a triangle, we consider a largest complete subghalK , which thus contains at least
three vertices. Since the graph itself is not complete, theris a vertexC not in K connected
to a vertex A of K. By maximality of K, there is a vertexB of K not connected toC, and
hence we are done by choosing a cydein K through the edgeAB.

B C

If the graph is triangle-free, we consider instead a smaltesycle Z. This cycle cannot
be Hamiltonian (i.e. it cannot pass through every vertex oftte graph), since otherwise by
minimality the graph would then have no other edges, and heacwould have even degree at
every vertex. We may thus choose a verte€ not in Z adjacent to a vertexA of Z. Since the
graph is triangle-free, it is not adjacent to any neighbouB of A in Z, and we are done. |

Step 2: Any tree may be reduced to a disjoint union of singlegass and vertices by a sequence
of refriendings.

Proof. The refriending preserves the property of being acyclic. Hee, after applying a sequence
of refriendings, we arrive at an acyclic graph in which it ismpossible to perform any further
refriendings. The maximal degree of any such graph &k if it had a vertex A with two
neighboursB; C, then B and C would necessarily be nonadjacent since the graph is cydled,
and so a refriending would be possible. Thus we reach a graplthamaximal degree at mostl
as desired. I
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Let n | 1 be an integer. Suppose we are givetn points in a plane such that
no three of them are collinear. The points are to be labelled,, A,, ..., Ay, in some order.
We then consider the2n angles=A1AAz, =AA3A4, ..., =Ao 2Ao 1A, =Ao 1ARAL,
=AonAA,. We measure each angle in the way that gives the smallest go& value (i.e.
between0 and 180). Prove that there exists an ordering of the given points siicthat the
resulting 2n angles can be separated into two groups with the sum of one gpmof angles equal
to the sum of the other group.

(USA)

Comment. The rst three solutions all use the same construction involing a line separating the
points into groups of n points each, but give di erent proofs that this construction works. Although
Solution 1 is very short, the Problem Selection Committee des not believe any of the solutions is easy
to nd and thus rates this as a problem of medium di culty.

Solution 1. Let ~ be a line separating the points into two groupsl{ and R) with n points in
each. Label the pointsAq, Ay, ..., Ay sothat Lt A Az Ay iU We claim that this
labelling works.

Take a lines Aj A;.

(a) Rotate s around A; until it passes through A,; the rotation is performed in a direction
such that s is never parallel to".

(b) Then rotate the news around A, until it passes throughAs in a similar manner.

(c) Perform 2n 2 more such steps, after whicls returns to its initial position.

The total (directed) rotation angle of s is clearly a multiple of 180. On the other hand,
s was never parallel to’, which is possible only if 0. Now it remains to partition all the
2n angles into those wheres is rotated anticlockwise, and the others.

Solution 2. When tracing a cyclic path through theA; in order, with straight line segments
between consecutive points, let; be the exterior angle atA;, with a sign canvention that it
is positive if the path turns left and negative if the path tums right. Then iZ”l i 36k

for some integerk. Let ; =A; 1AjA; 1 (indices mod2n), de ned as in the problem; thus
i 180 | il.

Let L be the set ofi for which the path turns left at A; and let R be the set for which it

turns right. Then S oL e i P18QL| | Rlg 360kq, which is a multiple of 360

since the number of points is even. We will show that the poistcan be labelled such that
S 0, in which caselL and R satisfy the required condition of the problem.

Note that the value of S is de ned for a slightly larger class of con gurations: it isOK
for two points to coincide, as long as they are not consecutivand OK for three points to be
collinear, as long asA;, Aj ;1 and A; , do not appear on a linein that order. In what follows
it will be convenient, although not strictly necessary, to onsider such con gurations.

Consider howS changes if a single one of thd; is moved along some straight-line path
(not passing through anyA; and not lying on any line A; Ay, but possibly crossing such lines).
BecauseS is a multiple of 360, and the angles change continuouslg can only change when a
point moves betweerR and L. Furthermore, if ; 0 whenA; moves betweerR andL, Sis
unchanged; it only changes if; 180 whenA; moves between those sets.

For any starting choice of points, we will now construct a newon guration, with labels such
that S 0, that can be perturbed into the original one without any ; passing through180,
so that S O for the original con guration with those labels as well.

Take some line such that there ar@a points on each side of that line. The new con guration
has n copies of a single point on each side of the line, and a path thalternates between
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sides of the line; all angles ar®, so this con guration hasS 0. Perturbing the points into
their original positions, while keeping each point on its de of the line, no angle ; can pass
through 180, because no straight line can go from one side of the line toettother and back.
So the perturbation process leaveS 0.

Comment. More complicated variants of this solution are also possile; for example, a path de ned
using four quadrants of the plane rather than just two half-pganes.

Solution 3. First, let * be a line in the plane such that there ar@ points on one side and the
other n points on the other side. For convenience, assumes horizontal (otherwise, we can
rotate the plane). Then we can use the terms above, belowleft and right in the usual
way. We denote then points above the line in an arbitrary order asP,, Py, ..., Py, and the
n points below the line asQi, Qo, :::, Qn.

If we connectP; and Q; with a line segment, the line segment will intersect with thdine ".
Denote the intersection ad . If P; is connected toQ; and Qk, wherej K, then |; and I
are two di erent points, becauseP;, Q; and Qy are not collinear.

Now we de ne a sign for each angle Q; PiQx. Assumej k. We specify that the sign is
positive for the following two cases:

if i is odd andlj is to the left of Iy,
if i is even andl; is to the right of Ij.

Otherwise the sign of the angle is negative. |fi k, then the sign of=Q;P;Qy is taken to be
the same as for= QP Q;.

Similarly, we can de ne the sign of=P; Q;P, with j  k (or equivalently =P,Q;P;). For
example, it is positive wheni is odd andl;j; is to the left of I;.

Henceforth, whenever we use the notation Q; PiQ or =P; Q; P for a numerical quantity,
it is understood to denote either the (geometric) measure tifie angle or the negative of this
measure, depending on the sign as speci ed above.

We now have the following important fact for signed angle meares:

=Qi,PQi, =Qi,PQi, =Q;,PcQj, plq
for all points Py, Qi,, Qi, and Q;, with i; i, i3 The following gure shows a natural

arrangement of the points. Equation (1) still holds for any ther arrangement, as can be easily
veri ed.

Px

T

Qil Qiz Qi3

Similarly, we have
=P, QkPi; =P, QcPi, =Pi,Q«Piy; q

for all points Qg, Pi,, P, and P, with i1 i, 3.
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We are now ready to specify the desired orderindyy, ..., A, of the points:
ifianisodd, putA; PiandAy 1 Qi
if i @ niseven, putAi QandA,, 1 i P;.

For example, forn  3this ordering isP,, Q2, P3, Q3, P2, Q;. This sequence alternates between
P's and Q's, so the above conventions specify a sign for each of the sgA; AjA; 1. We
claim that the sum of these2n signed angles equals 0. If we can show this, it would complete
the proof.

We prove the claim by induction. For brevity, we use the notabn = P; to denote whichever
of the 2n angles has its vertex aP;, and = Q; similarly.

First let n 2. If the four points can be arranged to form a convex quadrilatal, then the
four line segmentsP;Qq, P1Q2, P,Q; and P,Q; constitute a self-intersecting quadrilateral. We
use several gures to illustrate the possible cases.

The following gure is one possible arrangement of the poist

Py
P>

Q1 Q2

Then =P; and =Q; are positive,=P, and =Q, are negative, and we have
=P | =Qu| | =P2| | =Q2l:
With signed measures, we have
=P; =Q: =P, =Q» O q

If we switch the labels ofP; and P,, we have the following picture:

P,
P1

Q1 Q2

Switching labelsP; and P, has the e ect of ipping the sign of all four angles (as well aswap-
ping the magnitudes on the relabelled points); that is, the ew values ofo=P1;=P,;=Q1;=Q2q
equal the old values oip =P,; =P;; =Q;; =Q.g Consequently, equation (3) still holds.
Similarly, when switching the labels 0fQ; and Q,, or both the P's and the Q's, equation (3)
still holds.
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The remaining subcase afi 2 is that one point lies inside the triangle formed by the other
three. We have the following picture.

Py

P2

We have
|=P1| | =Q1] | =Q2| | =P2]:

and equation (3) holds.

Again, switching the labels forP's or the Q's will not a ect the validity of equation (3).
Also, if the point lying inside the triangle of the other three is one of theQ's rather than
the P's, the result still holds, since our sign convention is presved when we relabeQ's asP's
and vice-versa and re ect across.

We have completed the proof of the claim fon 2.

Assume the claim holds fon k, and we wish to prove it forn k 1. Suppose we are

given our 2k 1qpoints. First ignore Py ; and Qx 1, and form 2k angles fromPy, ..., Py,
Q1,:::, Qc asinthen k case. By the induction hypothesis we have
k
=P =Qq O

When we add in the two pointsPy ; and Qx 1, this changes our angles as follows:
the angle atPy changes from= Qy 1PxQx to =Qx 1PxQxk 1;
the angle atQy changes from= P, 1QyPx to =Py 1Q«Px 1;
two new angles= QxPyx 1Qx 1 and =PyQx 1Px 1 are added.

We need to prove the changes have no impact on the total sum. @ther words, we need to
prove

P=Qx 1PkQx 1 =Qk 1PkQxq p=Px 1QxPx 1 =P« 1QkPkg p=Px 1 =Q« 19 O: pdq

In fact, from equations (1) and (2), we have

=Qx 1PkQx 1 =Q« 1PkQx =QxPxQx 1;

and
=Py 1QkPk 1 =Pk 1QxPx  =PxQxPx 1:

Therefore, the left hand side of equation (4) becomeQQPcQx 1 =PxQ«Px 1 =Q«Px 1Q« 1
=PxQx 1P« 1, which equals0, simply by applying then 2 case of the claim. This completes
the induction.
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Solution 4. We shall think instead of the problem as asking us to assign aight 1to each
angle, such that the weighted sum of all the angles is zero.

lowing recipe: walk in order from point to point, and assigntie left turns 1 and the right
turns 1. This is the same weighting as in Solution 3, and as in that sgion, the weighted
sum is a multiple of360 .

We now aim to show the following:

Lemma. Transposing any two consecutive points in the ordering chges the weighted sum by
360 or 0.

Knowing that, we can conclude quickly: if the orderingA,, ..., Ay, has weighted angle
sum 36 , then the ordering Az, ..., A1 has weighted angle sum 36k (since the angles
are the same, but left turns and right turns are exchanged). Wcan reverse the ordering ok,
..., Ao, by a sequence of transpositions of consecutive points, amddoing so the weighted
angle sum must become zero somewhere along the way.

We now prove that lemma:

Proof. Transposing two points amounts to taking a sectiol¢Ax 1Ax Ak 3 as depicted, re-
versing the central line segmenfA, 1Ax », and replacing its two neighbours with the dotted
lines.

Ax

Figure 1. Transposing two consecutive vertices: before ffleand afterwards (right)

In each triangle, we alter the sum by 180. Indeed, using (anticlockwise) directed angles
modulo 360, we either add or subtract all three angles of each triangle.
Hence both triangles together alter the sum by 180 180, which is 360 or O. I
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There are60 empty boxesB4, ..., Bg in @ row on a table and an unlimited supply
of pebbles. Given a positive integen, Alice and Bob play the following game.

In the rst round, Alice takes n pebbles and distributes them into the60 boxes as she
wishes. Each subsequent round consists of two steps:

(a) Bob chooses an integek with 1 & k & 59 and splits the boxes into the two groups
By, ..., Bk andBk 1y ..., Beo.

(b) Alice picks one of these two groups, adds one pebble to kdmwx in that group, and removes
one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pelgs. Find the smallestn
such that Alice can prevent Bob from winning.
(Czech Republic)

) ] X \P T
Answer: n 96Q In general, if there areN | 1 boxes, the answer i > 1 '\'7 1
Comn'bg\‘n rerngrks. T We present solutions for the general case df | 1 boxes, and write
M N 1 N

2

1 1 for the claimed answer. Forl @ k N, say that Bob makes a

Say that one con guration dominates another if it has at least as many pebbles in each box,
and say that it strictly dominates the other con guration if it also has more pebbles in at least
one box. (Thus, if Bob wins in some con guration, he also wing every con guration that it
dominates.)

It is often convenient to consider "V-shaped' con guratiog; for1 o i & N, let V; be the
con guration where B; contains1 | j i| pebbles (i.e. where the™ box has a single pebble
and the numbers increase by one in both directions, so the trbox hasi pebbles and the last
box hasN  1p irpebbles). Note thatVi contains 3ig  1g 30N 1 igN 2 iq 1
pebbles. Ifi X, this number equalsM .

Solutions split naturally into a strategy for Alice (starting with M pebbles and showing she
can prevent Bob from winning) and a strategy for Bob (showindpe can win for any starting
con guration with at most M 1 pebbles). The following observation is also useful to simiyl
the analysis of strategies for Bob.

Observation A. Consider two consecutive rounds. Suppose that in the rst ttmd Bob made
a k-move and Alice picked the left group, and then in the secondund Bob makes an-move,
with ~ j k. We may then assume, without loss of generality, that Alicegain picks the left

group.
Proof. Suppose Alice picks the right group in the second round. Thehe combined e ect of
the two rounds is that each of the boxe8¢ 1, ..., B- lost two pebbles (and the other boxes

are unchanged). Hence this con guration is strictly dominted by that before the rst round,
and it su ces to consider only Alice's other response. I

Solution 1 (Alice).  Alice initially distributes pebbles according toV,y .. Suppose the current
2

con guration of pebbles dominatesv,. If Bob makes ak-move with k ¥ i then Alice picks the
left group, which results in a con guration that dominatesV; ;. Likewise, if Bob makes a
k-move with k i then Alice picks the right group, which results in a con guraion that
dominatesV, ;. Since none oly, ..., Vy contains an empty box, Alice can prevent Bob from
ever winning.
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Solution 1 (Bob).  The key idea in this solution is the following claim.

Claim. If there exist a positive integerk such that there are at least2k boxes that have at
most k pebbles each then Bob can force a win.

Proof. We ignore the other boxes. First, Bob makes &-move (splits the 2k boxes into two

groups ofk boxes each). Without loss of generality, Alice picks the le§roup. Then Bob makes

apk Ilgmove, ..., a2k lgmove. By Observation A, we may suppose Alice always picks

the left group. After Bob's @2k  1gmove, the rightmost box becomes empty and Bob wins.
I

Now, we claim that ifn M then either there already exists an empty box, or there exist
a positive integerk and 2k boxes with at mostk pebbles each (and thus Bob cz;glV force a win).
Otherwise, assume each box contains at leastpebble, and for eachl = k = =, at least
N p2k 1g N 1 2k boxes contain at leaskk 1 pebbles. Summing, there are at least
as many pebbles in total as in/r%s; that is, at least M pebbles, as desired.

Solution 2 (Alice). Let K X% 1\. Alice starts with the boxes in the con guration V.
For each of Bob'sN 1 possible choices, consider the subset of rounds in which hakes that
choice. In that subset of rounds, Alice alternates betweenqghing the left group and picking the
right group; the rst time Bob makes that choice, Alice picksthe group containing theK ™ box.
Thus, at any time during the game, the number of pebbles in eladox depends only on which
choices Bob has made an odd number of times. This means thaethumber of pebbles in a
box could decrease by at most the number of choices for whichic® would have started by

removing a pebble from the group containing that box. Theseumbers are, for each box,
\ \ P T
>ﬁ%;X% 1;:::;1;0;1;:::;'\'5 1:

These are pointwise less than the numbers of pebbles the b&wtarted with, meaning that no
box ever becomes empty with this strategy.

Solution 2 (Bob). LetK X% 1\. For Bob's strategy, we consider a con gurationX with
at most M 1 pebbles, and we make use of Observation A. Consider two conrgtions with
M pebbles:Vx and Vy 1 « (if nis odd, they are the same con guration; ifn is even, one is
the reverse of the other). The con gurationX has fewer pebbles thay in at least one box,
and fewer pebbles tharvy 1 g In at least one box.

Suppose rst that, with respect to one of those con guratios (without loss gf generalityVy ),
X has fewer pebbles in one of the boxes in the half where they bdy 2, ..., '\'7 pebbles (the
right half in Vi if N is even; ifN is odd, we can take it to be the right half, without loss of
generality, as the con guration is symmetric). Note that thre number cannot be fewer in the
box with 1 pebble inVx, because then it would haved pebbles. Bob then does & -move.
If Alice picks the right group, the total number of pebbles ges down and we restart Bob's
strategy with a smaller number of pebbles. If Alice picks théeft group, Bob follows with a
K 1gmove, apgK 2gmove, and so on; by Observation A we may assume Alice alwayisks
the left group. But whichever box in the right half had fewer gbbles inX than in Vk ends up
with O pebbles at some point in this sequence of moves.

Otherwise, N is even, and for both of those con gurations, there are fewgrebbles inX
onlyonthe2 3,..., % 1side. Thatis, the numbers of pebbles iX are at least

N 11N pCq

12 2

N2

with equality occurring at least once on each side. Bob does é\'g-move. Whichever group

Alice chooses, the total number of pebbles is unchanged, atie side from which pebbles are
removed now has a box with fewer pebbles than irC{), so the previous case of Bob's strategy
can now be applied.
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Solution 3 (Bob).  For any con guration C, de ne LpCqto be the greatest integer such that,
forall 0o ia N 1, the boxB; ; contains at leastLpCqg i pebbles. Similarly, de neRpCq

to be greatest integer such that, for all0 @ i @ N 1, the box By ; contains at least
RpCq i pebbles. (Thus,C dominates the “left half' ofV, 4 and the ‘right half' of Vy 1 rpcq.)

Then C dominates a "V-shaped' con guration if and only iLpCqg RpCg¥ N 1. Note that

if C dominates a V-shaped con guration, it has at leasM pebbles.

Now suppose that there are fewer thatM pebbles, so we havepCq RpCq @ N. Then
Bob makes anLpCgmove (or more generally any move with at leadt pCqboxes on the left and
RpCqboxes on the right). LetC?! be the new con guration, and suppose that no box becomes
empty (otherwise Bob has won). If Alice picks the left groupwe haveLpClq LpCqg 1 and
RpCly RpCqg 1. Otherwise, we haveLpCly LpCq 1and RpCly RpCqg 1. In either
case, we have.pClg RpC'ga N.

Bob then repeats this strategy, until one of the boxes becomempty. Since the condition
in Observation A holds, we may assume that Alice picks a groupn the same side each time.
Then one ofL and R is strictly decreasing; without loss of generality assumehat L strictly
decreases. At some point we readh 1. If B, is still nonempty, then B; must contain a
single pebble. Bob makes 4-move, and by Observation A, Alice must (eventually) pick tle
right group, making this box empty.



50 Bath UK, 11th 22nd July 2019

Alice has a map of Wonderland, a country consisting af ¥ 2 towns. For every
pair of towns, there is a narrow road going from one town to thether. One day, all the roads
are declared to be one way only. Alice has no information atlie direction of the roads, but
the King of Hearts has o ered to help her. She is allowed to agkim a number of questions.
For each question in turn, Alice chooses a pair of towns and &hKing of Hearts tells her the
direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wondtand with at most one
outgoing road. Prove that she can always nd out by asking at st 4n questions.

Comment. This problem could be posed with an explicit statement aboutpoints being awarded for
weaker boundscn for somec i 4, in the style of IMO 2014 Problem 6.
(Thailand)

Solution. We will show Alice needs to ask at mostin 7 questions. Her strategy has the
following phases. In what followsS is the set of towns that Alice, so far, does not know to
have more than one outgoing road (so initiallyS| n).

Phase 1. Alice chooses any two towns, sap and B. Without loss of generality, suppose
that the King of Hearts' answer is that the road goes fronA to B.

At the end of this phase, Alice has asked question.

Phase 2. During this phase there is a single (variable) towd that is known to have at
least one incoming road but not yet known to have any outgoingpads. Initially, T is B. Alice
does the followingn 2 times: she picks a townX she has not asked about before, and asks
the direction of the road betweenT and X. If it is from X to T, T is unchanged; if it is
from T to X, X becomes the new choice of towh, as the previousT is now known to have
an outgoing road.

At the end of this phase, Alice has asked a total af 1 questions. The nal town T is not
yet known to have any outgoing roads, while every other townds exactly one outgoing road
known. The undirected graph of roads whose directions are dwun is a tree.

Phase 3. During this phase, Alice asks about the directions of all ras betweenT and
another town she has not previously asked about, stopping she nds two outgoing roads
from T. This phase involves at mosh 2 questions. If she does not nd two outgoing roads
from T, she has answered her original question with at mo&h 3@ 4n 7 questions, so in
what follows we suppose that she does nd two outgoing roadssking a total ofk questions in
this phase, where2a ko n 2 (and thus n ¥ 4 for what follows).

For every question where the road goes towards, the town at the other end is removed
from S (as it already had one outgoing road known), while the last agstion resulted inT being
removed fromS. So at the end of this phaselS| n k 1, while atotal ofn k 1 questions
have been asked. Furthermore, the undirected graph of roadsthin S whose directions are
known contains no cycles (a3 is no longer a member o8, all questions asked in this phase
involved T and the graph was a tree before this phase started). Every town S has exactly
one outgoing road known (not necessarily to another town i8).

Phase 4. During this phase, Alice repeatedly picks any pair of townsniS for which she
does not know the direction of the road between them. Becausgery town in S has exactly
one outgoing road known, this always results in the removaf one of those two towns frons.
Because there are no cycles in the graph of roads of known dtren within S, this can continue
until there are at most 2 towns left in S.

If it ends with t towns left, n k1 t questions were asked in this phase, so a total of
2n t questions have been asked.

Phase 5. During this phase, Alice asks about all the roads from the reaming towns
in S that she has not previously asked about. She has de nitelyralady asked about any road
between those towns (it 2). She must also have asked in one of the rst two phases about
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at least one other road involving one of those towns (as thogphases resulted in a tree with
nj 2vertices). So she asks at mostn tgq 1 questions in this phase.

At the end of this phase, Alice knows whether any town has at nsb one outgoing road.
Ift 1, atmost3n 3o 4n 7 questions were needed in total, while if 2, at most
4n 7 questions were needed in total.

Comment 1. The version of this problem originally submitted asked only for an upper bound
of 5n, which is much simpler to prove. The Problem Selection Comntiee preferred a version with an
asymptotically optimal constant. In the following comment, we will show that the constant is optimal.

Comment 2.  We will show that Alice cannot always nd out by asking at most 4n  3gog, nq
15 questions, ifn ¥ 8.

To show this, we suppose the King of Hearts is choosing the dictions as he goes along, only
picking the direction of a road when Alice asks about it for the rst time. We provide a strategy for
the King of Hearts that ensures that, after the given number & questions, the map is still consistent
both with the existence of a town with at most one outgoing roal, and with the nonexistence of such
a town. His strategy has the following phases. When describg how the King of Hearts' answer to
a question is determined below, we always assume he is beingkad about a road for the rst time
(otherwise, he just repeats his previous answer for that rad). This strategy is described throughout
in graph-theoretic terms (vertices and edges rather than tans and roads).

Phase 1. In this phase, we consider the undirected graph formed by eds whose directions are
known. The phase terminates when there are exactl§ connected components whose undirected graphs
are trees. The following invariant is maintained: in a compment with k vertices whose undirected graph
is a tree, every vertex has at mostlog, kuedges into it.

If the King of Hearts is asked about an edge between two vert&s in the same component, or
about an edge between two components at least one of which ina tree, he chooses any
direction for that edge arbitrarily.

If he is asked about an edge between a vertex in componeAt that has a vertices and is a tree
and a vertex in componentB that has b vertices and is a tree, suppose without loss of generality
that a ¥ b. He then chooses the edge to go frolA to B. In this case, the new number of edges
into any vertex is at most maxttlog, au tlog, bu 1u = tlog,pa  bou

In all cases, the invariant is preserved, and the number of e components either remains unchanged
or goes down byl. Assuming Alice does not repeat questions, the process mustventually terminate
with 8 tree components, and at leash 8 questions having been asked.

Note that each tree component contains at least one vertex wh no outgoing edges. Colour one
such vertex in each tree component red.

Phase 2. Let V4, Vo and V3 be't t{wree of the red vertices whose components are alhéso\their
components together have at most gn vertices, with each component having at most gn 2 ver-

tices). Let setsCy, Cp, ... be the connected components after removing th&/j. By construction,
there are no edges with known direction betweel€; and C; fori j, and there are at least ve such
components.

If at any point during this phase, the King of Hearts is asked d&out an edge within one of theC;,
he chooses an arbitrary direction. If he is asked about an edgoetweenC; and C; fori  j, he answers
so that all edges go fromC; to C;j ; and C; », with indices taken modulo the number of components,
and chooses arbitrarily for other pairs. This ensures that i vertices other than the V; will have more
than one outgoing edge.

For edges involving one of theV, he answers as follows, so as to remain consistent for as long
as possible with both possibilities for whether one of thoseertices has at most one outgoing edge.
Note that as they were red vertices, they have no outgoing edss at the start of this phase. For edges
between two of theV;, he answers that the edges go fronv; to V,, from V, to V3 and from V3 to V;.
For edges betweerV, and some other vertex, he always answers that the edge goesarV;, except for
the last such edge for which he is asked the question for anygin V;, for which he answers that the
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edge goes out oWj. Thus, as long as at least one of th&/; has not had the question answered for all
the vertices that are not among theV,, his answers are still compatible both with all vertices haing
more than one outgoing edge, and with thatVj having only ghe oytgoing,edge.

At the start of this phase, each of theV; has at most log, gn 2 p log,ng 1 incoming
edges. Thus, Alice cannot determine whether some vertex hamly one outgoing edge within3m
3 pplogong 1qg 1 questions in this phase; that is,4n  3pgog,ng 15 questions total.

Comment 3. We can also improve the upper bound slightly, to4n  2pog,ng 1. (We do not know
where the precise minimum number of questions lies betweetm 3dog, nq Oplgand 4n 2dog, nq
Oplg) Supposen ¥ 5 (otherwise no questions are required at all).

To do this, we replace Phases 1 and 2 of the given solution witla di erent strategy that also
results in a spanning tree where one verteX is not known to have any outgoing edges, and all other
vertices have exactly one outgoing edge known, but where the is more control over the numbers of
incoming edges. In Phases 3 and 4 we then take more care abobgtorder in which pairs of towns are
chosen, to ensure that each of the remaining towns has alrepchad a question asked about at least
log,n  Oplgedges.

De ne trees Ty, with 2™ vertices, exactly one of which (theroot) has no outgoing edges and the rest
of which have exactly one outgoing edge, as followsky is a single vertex, whileTy, is constructed by
joining the roots of two copies of T, 1 with an edge in either direction. If n 2™ we can readily ask
n 1 questions, resulting in a treeT,, for the edges with known direction: rst ask about 2™ * disjoint
pairs of vertices, then about2™ 2 disjoint pairs of the roots of the resulting T, tregg, and so on. For
the general case, whera is not a power of2, after k stages of this process we haven{2* trees, each
of which is like Tx but may have some extra vertices (but, however, a unique rodt If there are an
even number of trees, then ask about pairs of their roots. Iftiere are an odd number (greater tharil)
of trees, when a singlerly is left over, ask about its root together with that of one of the T 1 trees.

Saym tlog, nu The result of that process is a singleTy, tree, possibly with some extra vertices
but still a unique root V. That root has at least m incoming edges, and we may list verticed/y,
..., Vm 1 with edges toV, such that, for all 0= i m, vertex V; itself has at leasti incoming edges.

Now divide the vertices other thanV into two parts: A has all vertices at an odd distance fronV
and B has all the vertices at an even distance fronB. Both A and B are nonempty; A contains the V;,
while B contains a sequence of vertices with at leasd, 1, ..., m 2 incoming edges respectively,
similar to the V;. There are no edges with known direction withinA or within B.

In Phase 3, then ask about edges betweeX and other vertices: rst those in B, in order of
increasing number of incoming edges to the other vertex, threthose in A, again in order of increasing
number of incoming edges, which involves asking at most 1 m questions in this phase. If two
outgoing edges are not found fromV, at most 2n 2 m = 4n 2dog,ng 1 questions needed
to be asked in total, so we suppose that two outgoing edges werffound, with k questions asked in
this phase, where2 @ k@ n 1 m. The state of S is as described in the solution above, with
the additional property that, since S must still contain all vertices with edges to V, it contains the
vertices V; described above.

In Phase 4, consider the vertices left inB, in increasing order of number of edges incoming to a
vertex. If sis the least number of incoming edges to such a vertex, thenpfany sa t o m 2, there
are at leastm t 2 vertices with more than t incoming edges. Repeatedly asking about the pair of
vertices left in B with the least numbers of incoming edges results in a singleevtex left over (if any
were in B at all at the start of this phase) with at least m 2 incoming edges. Doing the same witiA
(which must be nonempty) leaves a vertex with at leastm 1 incoming edges.

Thus if only A is nonempty we ask at mostn m questions in Phase 5, so in total at most
3n  m 1 questions, while if both are nonempty we ask at mosn 2m 1 questions in Phase 5,
soin totalatmost4n 2m 1 4n 2pog,ng 1 questions.
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For any two di erent real numbers x and y, we de ne Dx;yqto be the unique
integer d satisfying2? @ |x y| 29 1. Given a set of reals, and an elementx PF, we say
that the scalesof x in F are the values oD px;yqfory PF with x .

Let k be a given positive integer. Suppose that each membenf F has at mostk di erent
scales inF (note that these scales may depend of). What is the maximum possible size of ?

(Italy)

Answer: The maximum possible size of is 2.

Common remarks.  For convenience, we extend the use of the worstale we say that the
scale between two realg andy is Dx;yg

Solution. We rst construct a set F with 2 members, each member having at moktdi erent
scales inF. Take F t 0;1;2;::::2¢ 1u The scale between any two members &f is in the
sett0;1;:::;k  1u

We now show that2* is an upper bound on the size oF . For every nite set S of real
numbers, and every reak, let rspxg denote the number of di erent scales ok in S. That
is, rspxq |t Dp;yq: x  y P Su|. Thus, for every elementx of the setF in the problem
statement, we haverrxq @ k. The condition [F| @ 2% is an immediate consequence of the
following lemma.

Lemma. Let S be a nite set of real numbers, and de ne

WFSq * 2 rSp(q:

xPS

Then wpSq = 1.
Proof. Inductiononn | S|. If S t xu, thenrspxq 0, sowpSq 1.

Assume nown ¥ 2, and let x4 X list the members ofS. Let d be the minimal scale
between two distinct elements 08; then there exist neighbourx; andx; 1 with Dpx¢; X 1q d.
Notice that for any two indicesi andj with j i 1we haveD;;x;qj d, since

i x| I xi1o x| [ x xioql¥29 29 20 h:

Now choose the minimali @ t and the maximalj ¥ t 1 such that Dpx;; X 1q
D 1;% 2 D 1;x,9 d.

Let E be the set of all thexs with even indicesi @ s & j, O be the set of those with
odd indicesi @ s @ j, and R be the rest of the elements (so that is the disjoint union of
E,OandR). SetSo RY O and S RY E; we have|So| | S| and |[Sg| | S|, so
WpPSo G WPSe g & 1 by the inductive hypothesis.

Clearly, rs,pxq @ rspxgand rs, xq @ rspxqfor any x PR, and thus

5

2 rspxq

v

FQ rsmq 2 fSFKQq

XPR

FQ rso™a 2 Tsg DXQq:
XPR

XPR

v

o]

Nl NI

On the other hand, for everyx P O, there is noy P Sp such that Ds,px;yq d (as all
candidates fromS were inE). Hence, we haves,pxq @ rspxq 1, and thus

P9 Isag 1 2 TsoXq-

xPO xPO
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Similarly, for every x PE, we have

1

2 sXdg —° 9 rsgXq.
xXPE 2xPE
We can then combine these to give
wpsq 2 TsPa T 2 rsea T o rsiq
xPR xPO xPE
a 1 @ "So™d 2 sg Moy 1 2 fsoXg 1 2 fsgXq
2xPR xPO xPE
1 5 :
> 2 "soPd 2 "sePd (sinceSo OYRandSe EYR)
XPSo xPSg
1

5PVESoq  wpSeqaq  (by de nition of wpq
a1 (by the inductive hypothesis)

which completes the induction. I

Comment 1. The setsO and E above are not the only ones we could have chosen. Indeed, weaulth
instead have used the following de nitions:

Let d be the maximal scale between two distinct elements of5; that is, d Dmx1;xn0 Let
O t xPS:Dpxng du(a left part of the set) andlet E t x PS: Dpxy;xq du (a ‘right'
part of the set). Note that these two sets are disjoint, and nmempty (since they contain x; and Xp
respectively). The rest of the proof is then the same as in Safion 1.

Comment 2.  Another possible setF containing 2 members could arise from considering a binary
tree of height k, allocating a real number to each leaf, and trying to make thescale between the values
of two leaves dependent only on the (graph) distance betweetiem. The following construction makes
this more precise.

We build up setsFy recursively. LetFy t Ou, andthenletF, ;1 FYtx 3 4<:x PFpu(i.e.
each half of Fy 1 is a copy of Fx). We have that Fy is contained in the interval r0;4% g and so it
follows by induction on k that every member of Fx ; hask di erent scales in its own half of F, 1 (by
the inductive hypothesis), and only the single scal&k 1 in the other half of Fy ;.

Both of the constructions presented here have the property tht every member ofF has exactly k
di erent scales in F. Indeed, it can be seen that this must hold (up to a slight pertrbation) for any
such maximal set. Suppose there were some elementvith only k 1 di erent scales in F (and every
other element had at mostk di erent scales). Then we take some positive real, and construct a new
setF! t y:yPF;ya xuYty Yy PF;y¥ xu We have|Fy | F| 1, andif is suciently
small then F L will also satisfy the property that no member has more thank di erent scales in F L

This observation might be used to motivate the idea of weighihg members of an arbitrary setS
of reals according to how many di erent scales they have irS.
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Geometry

Let ABC be a triangle. Circle passes throughA, meets segmentAB and AC
again at pointsD and E respectively, and intersects segme®C at F and G such that F lies
betweenB and G. The tangent to circleBDF at F and the tangent to circleCEG at G meet
at point T. Suppose that pointsA and T are distinct. Prove that line AT is parallel to BC.
(Nigeria)

Solution. Notice that =TFB =FDA becauseFT is tangent to circleBDF , and moreover
=FDA =CGA because quadrilateraADF G is cyclic. Similarly, =TGB =GEC because
GT is tangent to circleCEG, and=GEC =CFA. Hence,

=TFB =CGA and =TGB =CFA:; plq

Triangles FGA and GFT have a common sidé- G, and by plqtheir angles atF; G are the
same. So, these triangles are congruent. So, their altituglstarting from A and T, respectively,
are equal and hencdT is parallel to line BFGC.

Comment. Alternatively, we can prove rst that T lies on . For example, this can be done by
showing that =AFT =AGT using plg Then the statement follows as=TAF =TGF =GFA.
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Let ABC be an acute-angled triangle and leD, E, and F be the feet of altitudes
from A, B, and C to sidesBC, CA, and AB, respectively. Denote byl g and! ¢ the incircles
of trianglesBDF and CDE, and let these circles be tangent to segmenBF and DE at M

and N, respectively. Let lineMN meet circles! g and ! ¢ again at P M and Q N,
respectively. Prove thatMP  NQ.

(Vietnam)

Solution. Denote the centres of g and ! ¢ by Og and Oc, let their radii be rg and rc, and

let BC be tangent to the two circles atT and U, respectively.
A

B T D U C
From the cyclic quadrilateralsAFDC and ABDE we have
1 1 1
=MDOg §=FDB EZBAC §=CDE =0OcDN;

so the right-angled trianglesDMO g and DNO are similar. The ratio of similarity between

the two triangles is
DN OcN lc.

DM Og M rB.

Let ' =DMN and =MND . The linesFM and EN are tangent to! g and! ¢,
respectively, so
=MTP =FMP =DMN " and =QUN =QNE =MND

(It is possible that P or Q coincides with T or U, or lie inside trianglesDMT or DUN,
respectively. To reduce case-sensitivity, we may use dited angles or simply ignore angles
MTP and QUN.)

In the circles! g and! ¢ the lengths of chordsMP and NQ are

MP  2rg sin=MTP 2rg sin® and NQ 2rc sin=QUN 2rc sin:
By applying the sine rule to triangleDNM we get
DN sin=DMN sin'
DM sin=MND sin
Finally, putting the above observations together, we get

MP 2rg sin' rg sin' DM sin' sin sin'
NQ 2rcsin e sin DN sin sin'  sin
soMP  NQ as required.
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In triangle ABC, let A; and B; be two points on sideBC and AC, and letP and Q
be two points on segment®A; and BB ,, respectively, so that lineP Q is parallel to AB. On
ray PB,, beyond B4, let P; be a point so that=PP,C =BAC. Similarly, on ray QA;,
beyond A4, let Q; be a point so that=CQ;Q =CBA. Show that points P, Q, P;, and Q;
are concyclic.

(Ukraine)

Solution 1. Throughout the solution we use oriented angles.
Let rays AA; and BB ; intersect the circumcircle of4 ACB at A, and B, respectively. By

:QPA2 =BAA2 ZBBzAz ZQBzAZ;

points P; Q; A,; B, are concyclic; denote the circle passing through these ptsibby ! . We shall
prove that P, and Q; also lie on! .
Qy - -—---

By
=CA,A;, =CA,A =CBA =CQ,Q =CQA;;

points C; Qq; A; A; are also concyclic. From that we get
=QQ:A, =A:1Q:A> =A;CA, =BCA; =BAA; =QPAy

s0Q, lies on! .
It follows similarly that P, lies on! .

Solution 2.  First consider the case when lineP P; and QQ; intersect each other at some
point R.
Let line P Q meet the sidesAC and BC at E and F, respectively. Then

=PP,C =BAC =PEC;

so pointsC; E; P; P, lie on a circle; denote that circle by p. It follows analogously that points
C; F; Q; Q. lie on another circle; denote it by! .

Let AQ and BP intersect at T. Applying Pappus' theorem to the linesAA ;P and BB 1Q
provides that pointsC AB; XBA;,R A;QXB;P andT AQ X BP are collinear.

Let line RCT meetPQ and AB at S and U, respectively. FromAB k P Q we obtain

spUB SF,

SQ UA SE’
SO

SP SE SQ SF:
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So, point S has equal powers with respect tdp and ! o, hence lineRCS is their radical
axis; thenR also has equal powers to the circles, & RP; RQ RQq, proving that points
P; P;; Q; Q; are indeed concyclic.

Now consider the case wheR P; and QQ; are parallel. Like in the previous case, lefAQ
and BP intersect at T. Applying Pappus' theorem again to the linesAA ;P and BB ;Q, in this
limit case it shows that lineCT is parallel to PP; and QQ);.

Let line CT meet PQ and AB at S and U, as before. The same calculation as in the
previous case shows thasP SE SQ SF, soS lies on the radical axis betweerh p and! .

Line CST, that is the radical axis betweerl p and! o, is perpendicular to the line" of centres
of ! p and! 5. Hence, the chordsP? P, and QQ; are perpendicular to". So the quadrilateral
PP;Q:Q is an isosceles trapezium with symmetry axis and hence is cyclic.

Comment. There are several ways of solving the problem involving Papys' theorem. For example,
one may consider the pointsk PB1:XBC andL QA; X AC. Applying Pappus' theorem to the
lines AA;P and QBB we getthat K, L, and PQ X AB are collinear, i.e. that KL k AB. Therefore,
cyclicity of P, Q, Py, and Q; is equivalent to that of K, L, P1, and Q1. The latter is easy after noticing
that C also lies on that circle. Indeed, e.g=pLK;LC q =pAB;ACq =pP1K;P1Cqgshows thatK
lies on circleKLC .

This approach also has some possible degeneracy, as the p®iK and L may happen to be ideal.
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Let P be a point inside triangleABC . Let AP meetBC at A, let BP meetCA
at B,, and let CP meet AB at C;. Let A, be the point such thatA; is the midpoint of P A,,
let B, be the point such that B; is the midpoint of PB,, and let C, be the point such that
C, is the midpoint of P C,. Prove that points A,, B,, and C, cannot all lie strictly inside the
circumcircle of triangle ABC .

(Australia)
Solution 1.  Since
=APB =BPC =CPA 2 p =ACBqg p =BACqg p =CBAg
at least one of the following inequalities holds:
=APB ¥ =ACB; =BPC¥ =BAC; =CPA¥ =CBA:

Without loss of generality, we assume that BP C ¥ =BAC. We have=BPC j =BAC
becauseP is inside4 ABC. So=BP C ¥ maxp=BAC; =BAC gand hence

sin=BPC & sin=BAC: pq

Let the rays AP, BP, and CP cross the circumcircle again atAs, B3, and Cs, respectively.
We will prove that at least one of the ratiosg-2- and £2- is at least 1, which yields that one
of the points B, and C, does not lie strictly inside

BecauseA; B; C; B3 lie on a circle, the trianglesCB,B3; and BB ;A are similar, so
CB; BB
B:Bs BjA

Applying the sine rule we obtain
PB, PB; CB; PB; BB; sin=ACP sin=BAC
B;Bs CB; B;B; CB; B;A sin=BPC sin=PBA

Similarly,
PC; sin=PBA sin=BAC

C:C; sin=BPC sin=ACP
Multiplying these two equations we get

PB; PC, sin’=BAC

B;B; C;C;3 sin’=BPC
using p g which yields the desired conclusion.

¥1
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Comment. It also cannot happen that all three points A,, B,, and C, lie strictly outside . The same
proof works almost literally, starting by assuming without loss of generality that=BPC =© =BAC
and using=BPC j =BAC to deduce thatsin=BPC ¥ sin=BAC. It is possible for A, B,, and C,
all to lie on the circumcircle; from the above solution we mayderive that this happens if and only if P
is the orthocentre of the triangle ABC , (which lies strictly inside ABC if and only if ABC is acute).

Solution 2. De ne points Az, B3, andCs as in Solution 1. Assume for the sake of contradiction
that A,, B,, and C, all lie strictly inside circle ABC. Itfollowsthat PA; A;A3 PB; B;Bsj,
and PC; C.Ca,.

Observe that4 PBC3; 4 PCBj;. Let X be the point on sideP B3 that corresponds to
point C; on sideP Cs under this similarity. In other words, X lies on segmenP B3 and satis es
PX :XBs PC;:C;Cs. It follows that

=XCP =PBC; =B3BA =B3CB;:

Hence linesCX and CB; are isogonal conjugates id P CBs.

B3

Let Y be the foot of the bisector o=B3CP in 4 PCB3;. SincePC; C,C3, we have
PX XBj3. Also, we havePY Y B; becausePB; BBz and Y lies betweenX and B;.
By the angle bisector theorem i4 PCB3, we havePY : YB; PC :CBj;. SoPC CBs;
and it follows that =PB3C =CPBs;. Now since=PB3;C =BB3;C =BAC, we have

=BAC =CPBas:
Similarly, we have
=CBA =APC; and =ACB =BPA3; =B3PA:

Adding these three inequalities yields , and this contradiction concludes the proof.
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Solution 3. Choose coordinates such that the circumcentre d@f ABC is at the origin and
the circumradius is1. Then we may think of A, B, and C as vectors inR? such that

AP | BI* | CI* 1

P may be represented as a convex combinatioh B C where; ; | Oand 1
Then B c 1
A P A;
1 1 1 ’
SO 1 5
A P P A
2 2A1 1 1
Hence X X
a2 — pp 2 jap AR _Oap
1 1 pL o
Using |A|> 1 we obtain
m L, 1, 22
A —|P 2A P: 1
o gl TP g (1)
Likewise ¢ 1 5 2
P__Dp,p 2 jpp 28 P @
2pl q 2 1
and o ¢ L 5 2
SE— | 2C P:
oo M L c 3)
Summing (1), (2) and (3) we obtain on the LHS the positive lingr combination
LHS u|A2|2 u|32|2 LCF|C2|2

2l g 2l g 2l ¢
and on the RHS the quantity

1 1 1
2 2 2

2 2 2 2 2 2
1 1 1

|P|? 2pA P B P C Paq:

The rst termis 2|P|? and the last termis 2P P, so

2 2 22 2 2
RHS

1 1 1
3 1 p ¢ 3 1 p ¢ 3 1 p ¢
2 20 g 2 2 q 2 20 q
L ¢ p ¢ p ¢
20l g 201 g 200 g

Here we used the fact that
3 1 3 1 3 1
2 2 2
We have shown that a linear combination ofA;|?, |B1|?, and |C,|? with positive coe cients is

equal to the sum of the coe cients. Therefore at least one dA\,|?, |B1|?, and |C,|?> must be at
least 1, as required.

0:

Comment. This proof also works whenP is any point for which ; ; i 1, 1, and
- 1. (In any cases where 1or 1or 1, some points in the construction are not
de ned.)
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Let ABCDE be a convex pentagon withCD DE and =EDC 2 =ADB.
Suppose that a pointP is located in the interior of the pentagon such thatAP  AE and
BP  BC. Prove that P lies on the diagonalCE if and only if aregBCDq aregADE q
aregpABD q aregABP g

(Hungary)

Solution 1. Let P'be the re ection of P across lineAB, and letM and N be the midpoints of
P'E and PC respectively. Convexity ensures thaP!is distinct from both E and C, and hence
from both M and N. We claim that both the area condition and the collinearity ondition in
the problem are equivalent to the condition that the (possily degenerate) right-angled triangles
AP M and BP N are directly similar (equivalently, AP 'E and BP 'C are directly similar).

E D

For the equivalence with the collinearity condition, let- denote the foot of the perpendicular
from P1to AB, so thatF is the midpoint of PP We have thatP lies onCE if and only if F lies
on MN , which occurs if and only if we have the equalit- AFM =BFN of signed angles
modulo . By concyclicity of AP'M and BFP N, this is equivalent to=AP™M =BP N,
which occurs if and only ifAP M and BP N are directly similar.

For the other equivalence with the area condition, we have #éhequality of signed areas
aregpABD q aregpABP g aregAPBDq aregAPDq aregBDP g Using the identity
aregADE q aregAPDqg aregADE q aregADP g 2aregADM g and similarly for B,
we nd that the area condition is equivalent to the equality

aregDAM q aregDBN g

Now note that A and B lie on the perpendicular bisectors oP 'E and P'C, respectively. If
we write G and H for the feet of the perpendiculars fronD to these perpendicular bisectors
respectively, then this area condition can be rewritten as

MA GD NB HD:

(In this condition, we interpret all lengths as signed lendts according to suitable conventions:
for instance, we orientP 'E from P1to E, orient the parallel line DH in the same direction, and

orient the perpendicular bisector ofP'E at an angle {2 clockwise from the oriented segment
P¥E we adopt the analogous conventions aB.)
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To relate the signed lengthsGD and HD to the triangles AP*M and BP N, we use the
following calculation.
Claim. Let denote the circle centred orD with both E and C on the circumference, and
h the power of P! with respect to . Then we have the equality

GD P™M HD PN %h o:

Proof. Firstly, we haveh 0, since otherwiseP*would lie on , and hence the internal angle
bisectors of= EDP *and =PDC would pass throughA and B respectively. This would violate
the angle inequality=EDC 2 =ADB given in the question.

Next, let E* denote the second point of intersection d?'E with , and let E? denote the
point on  diametrically opposite E%, so that E2E is perpendicular toP*E. The point G lies
on the perpendicular bisectors of the sideBE and EE ? of the right-angled triangle P'EE ?;
it follows that G is the midpoint of PE2. Since D is the midpoint of EE2?, we have that
GD 2PE! SincePM 1P¥E,we haveGD P™M iPE! PE  ih. The other equality
HD PN follows by exactly the same argument.

From this claim, we see that the area condition is equivalerib the equality
PMA :P™Mqg pNB :P'Ng

of ratios of signed lengths, which is equivalent to direct wiilarity of AP and BP N, as
desired.
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Solution 2. Along the perpendicular bisector ofCE, de ne the linear function

fpXg aregBCX g aregAXE q aregpABX q aregpABP g

where, from now on, we always use signed areas. Thus, we wamtshow that C;P; E are
collinear if and only iff pDgq O.

A B

Let P! be the re ection of P across lineAB. The point P! does not lie on the lineCE.
To see this, we letA2 and B? be the points obtained fromA and B by dilating with scale
factor 2 about P, so that P is the orthogonal projection ofP!onto A2B?2. SinceA lies on the
perpendicular bisector ofP 'E, the triangle A2EP tis right-angled atE (and B2CP!similarly).
If P1were to lie onCE, then the lines A?E and B2C would be perpendicular toCE and A?
and B2 would lie on the opposite side o€ E to D. It follows that the line A2B? does not meet
triangle CDE , and hence pointP does not lie insideCDE . But then P must lie inside ABCE ,
and it is clear that such a point cannot re ect to a pointP*on CE.

We thus let O be the centre of the circleCEP L The linesAO and BO are the perpendicular
bisectors ofEP *and CPY respectively, so

aregBCOq aregAOEq aregOPBq aregP'OAq aregPBOA(
aregABOq aregBAP 'y aregpABO(Qq aregpABP g

and hencef pOg 0.

Notice that if point O coincides withD then points A;B lie in angle domainCDE and
=EOC 2 =AOB, which is not allowed. SoO and D must be distinct. Sincef is linear and
vanishes atO, it follows that fpDq O0if and only if f is constant zero we want to show this
occurs if and only ifC; P; E are collinear.

In the one direction, suppose rstly that C; P; E are not collinear, and letT be the centre
of the circle CEP. The same calculation as above provides

aregBCTq aregpATEq aregPBTAQ aregpABTq aregpABPq

o)
fprq 2arepABP g O:
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Hence, the linear functionf is nonconstant with its zero is atO, so thatf pDg 0.

In the other direction, suppose that the pointsC; P; E are collinear. We will show thatf is

constant zero by nding a second point (other thanO) at which it vanishes.
E

A 0 *Bgo
Let Q be the re ection of P across the midpoint ofAB, so P AQB is a parallelogram. It
is easy to see thaf is on the perpendicular bisector oCE; for instance if At and B! are the
points produced fromA and B by dilating about P with scale factor 2, then the projection
of Q to CE is the midpoint of the projections ofAl and B, which are E and C respectively.
The trianglesBCQ and AQE are indirectly congruent, so

fpRg aregBCQq aregpAQE(q aregABQq aregBAPg O 0 O

The points O and Q are distinct. To see this, consider the circlé centred onQ with P! on
the circumference; since triangl® PQ is right-angled at PY it follows that P lies outside! .
On the other hand,P lies betweenC and E on the line CPE. It follows that C and E cannot
both lie on! , so that! is not the circleCEP'andQ O.

SinceO and Q are distinct zeroes of the linear functiorf , we havef pDq 0 as desired.

Comment 1. The conditon=EDC 2 =ADB cannot be omitted. If D is the centre of circleCEP 1
then the condition on triangle areas is satis ed automaticdly, without having P on line CE.

Comment 2. The only if part of this problem is easier than the if part. For example, in
the second part of Solution 2, the trianglesEAQ and QBC are indirectly congruent, so the sum
of their areas isO, and DCQE is a kite. Now one can easily see that pAQ;DEq =pCD;CBq
and =@BQ;DCq =pED;EA g whencearegBCDq aregpAQDq aregEQAqgand aregpADE q
aregBDQ g aregBQC g which yields the result.
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Comment 3. The origin of the problem is the following observation. LetABDH be a tetrahedron
and consider the spheres that is tangent to the four face planes, internally to planesADH and BDH
and externally to ABD and ABH (or vice versa). It is known that the sphere S exists if and only
if aregpADH q aregBDH q areg/ABH q aregoABD g this relation comes from the usual formula
for the volume of the tetrahedron.

Let T; Ta; Ty, Tq be the points of tangency between the sphere and the four plas, as shown in the
picture. Rotate the triangle ABH inward, the triangles BDH and ADH outward, into the triangles
ABP , BDC and ADE , respectively, in the plane ABD . Notice that the points Ty; T,; Ty are rotated
to T, sowe haveHT, HT, HTq PT CT ET. Therefore, the point T is the centre of the
circle CEP. Hence, if the sphere exists therC; E; P cannot be collinear.

If the condition =EDC 2 =ADB is replaced by the constraint that the angles= EDA , =ADB
and =BDC satisfy the triangle inequality, it enables reconstructing the argument with the tetrahedron
and the tangent sphere.
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Let I be the incentre of acute-angled triangl&BC . Let the incircle meetBC, CA,

and AB at D, E, and F, respectively. Let lineEF intersect the circumcircle of the triangle

at P and Q, such that F lies betweenE and P. Prove that =DPA =AQD =QIP.
(Slovakia)

Solution 1. Let N and M be the midpoints of the arcsBC of the circumcircle, containing
and opposite vertexA, respectively. By=FAE =BAC =BNC, the right-angled kites
AFIE and NBMC are similar. Consider the spiral similarity’ (dilation in case ofAB  AC)
that movesAFIE to NBMC . The directed angle in which' changes directions is pAF; NB g
same as= pAP; NP gand =pAQ; NQgq so linesAP and AQ are mapped to linesNP and NQ,
respectively. LineEF is mapped toBC; we can see that the intersection point® EF X AP
andQ EF X AQ are mapped to pointsBC X NP and BC X NQ, respectively. Denote these
points by P1and QY respectively.

N
/ A
P, j
\\ F //’
\ E ///
\ Q
| -
po B L %QO z
M

Let L be the midpoint of BC. We claim that points P;Q;D;L are concyclic (iftD L
then line BC is tangent to circleP QD). Let PQ and BC meet at Z. By applying Menelaus
theorem to triangle ABC and line EFZ, we have

BD BF AE BZ
DC FA EC ZC’

so the pairsB; C and D; Z are harmonic. Itis well-known that this impliesZzB ZC ZD ZL.
(The inversion with pole Z that swaps B and C sendsZ to innity and D to the midpoint
of BC, because the cross-ratio is preserved.) Hen&) ZL ZB ZC ZP ZQ by the
power ofZ with respect to the circumcircle; this proves our claim.

By =MPP! =MQQ! =MLP! =MLQ?! 90, the quadrilaterals MLPP ! and
MLQQ *are cyclic. Then the problem statement follows by

=DPA =AQD 360 =PAQ =QDP 360 =PNQ =QLP
=LPN =NOQL =PWML =LMQ! =PWMQ! =PIQ:
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Solution 2. De ne the point M and the same spiral similarity’ as in the previous solution.
(The point N is not necessary.) It is well-known that the centre of the spal similarity that
mapsF; E to B; C is the Miquel point of the linesFE, BC, BF and CE; that is, the second
intersection of circlesABC and AEF . Denote that point by S.

By 'pFg B and' pEq C the triangles SBF and SCE are similar, so we have

SB BF BD.
SC CE CD
By the converse of the angle bisector theorem, that indicagethat line SD bisects=BSC and
hence passes througv .

Let K be the intersection point of linesEF and SI. Notice that ' sends pointsS; F; E; |
to S;B;C;M,s0o' Kq 'pFEXSIg BCXSM D.By'pqg M, wehaveKD kIM .

We claim that triangles SP1 and SDQ are similar, and so are triangleSPD and SIQ.
Let ray S| meet the circumcircle again at.. Note that the segmentEF is perpendicular to
the angle bisectorAM . Then by =AML =ASL =ASI 90, we haveML k PQ. Hence,
B  ®™MQ and therefore=PSL =MSQ =DSQ. By =QPS =QMS, the triangles
SPK and SMQ are similar. Finally,

SP SP SK SM SD SD
SI SK SI SQ SM SQ

shows that trianglesSP1 and SDQ are similar. The second part of the claim can be proved
analogously.

Now the problem statement can be proved by

=DPA =AQD =DPS =SQD =QIS =SIP =QIP:
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Solution 3. Denote the circumcircle of triangleABC by , and let raysP D and QD meet
again atV and U, respectively. We will show thatAU K IP and AV K IQ. Then the problem
statement will follow as

=DPA =AQD =VUA =AVU 180 =UAV =QIP:

Let M be the midpoint of arcBUV C and let N be the midpoint of arc@AB ; the linesAIM
and AN being the internal and external bisectors of angIBAC , respectively, are perpendicular.
Let the tangents drawn to at B and C meet atR; let line PQ meetAU, Al , AV and BC at
X, T,Y and Z, respectively.

As in Solution 1, we observe that the pair8; C and D;Z are harmonic. Projecting these
points from Q onto the circumcircle, we can see thaB;C and U; P are also harmonic. Anal-
ogously, the pairV;Q is harmonic with B;C. Consider the inversion about the circle with
centre R, passing throughB and C. Points B and C are xed points, so this inversion ex-
changes every point of by its harmonic pair with respect toB; C. In particular, the inversion
maps pointsB; C; N; U;V to points B; C; M; P; Q, respectively.

Combine the inversion with projecting from A to line PQ; the points B; C; M; P;Q are
projected toF; E; T; P; Q, respectively.

N

R
The combination of these two transformations is projectivenap from the linesAB, AC,
AN, AU, AV to IF, IE, IT, IP, IQ, respectively. On the other hand, we havé&\B K IF ,
AC KIE and AN K AT, so the corresponding lines in these two pencils are perpendar.
This provesAU K IP and AV K IQ, and hence completes the solution.
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The incircle! of acute-angled scalene triangleaBC has centrel and meets side8C,
CA, and AB at D, E, and F, respectively. The line throughD perpendicular toEF meets!
again atR. Line AR meets! again atP. The circumcircles of triangles® CE and PBF meet
again atQ P. Prove that linesDI and P Q meet on the external bisector of anglBAC.
(India)

Common remarks. Throughout the solution, = pa; kg denotes the directed angle between
lines a and b, measured modulo .

Solution 1.

Step 1. The external bisector of=BAC is the line through A perpendicular tolA. Let DI
meet this line atL and let DI meet! at K. Let N be the midpoint of EF , which lies onlA
and is the pole of lineAL with respectto! . SinceAN Al AE? AR AP, the points R,
N, I, and P are concyclic. AsiIR IP, the line NI is the external bisector o=PNR, soPN
meets! again at the point symmetric toR with respect to AN i.e. at K.

Let DN cross! again atS. Opposite sides of any quadrilateral inscribed in the cirel!
meet on the polar line of the intersection of the diagonals thi respect to! . SincelL lies on
the polar line AL of N with respect to! , the line P S must pass throughL. Thus it su ces to
prove that the points S, Q, and P are collinear.

Step 2.Let be the circumcircle of4 BIC . Notice that

=BQ;QCq =pmBQ;QPq =pPQ;QCq =pPBFFPq =pPEECQ
=EF,EPq =pFP;FEq =pFP;EPq =pPF;DEq =pBl;IC g

soQ lieson . Let QP meet again atT. It will now suce to prove that S;P, and T
are collinear. Notice that=BI;IT q =BQ;QTq =mPBFFPg =pFK;KP g Note
FD K FK and FD K Bl soFK k Bl and hencelT is parallel to the line KNP . Since
DI IK, the line IT crossedDN at its midpoint M.

Step 3. Let Fand E'be the midpoints ofDE and DF , respectively. SincDE'E¥* DE?®
BE! EY, the point Ellies on the radical axis of and ; the same holds foFF 1 Therefore, this
radical axis isE % and it passes throughM. ThusIM MT DM MS,soS,1,D,andT
are concyclic. This shows DS;STq =pI;IT q =PK;KP q =pS;SPqg whence the
points S, P, and T are collinear, as desired.
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Comment. Here is a longer alternative proof in step 1 thatP, S, and L are collinear, using a circular
inversion instead of the fact that opposite sides of a quadiateral inscribed in a circle! meet on the
polar line with respect to! of the intersection of the diagonals. LetG be the foot of the altitude from
N to the line DIKL . Observe thatN;G;K;S are concyclic (opposite right angles) so

=DIP 2=DKP =GKN =DSP =GSN =NSP =GSP;

hencel; G;S;P are concyclic. We havelG IL IN 1A r2since4 IGN 4 1AL . Inverting the
circle IGSP incircle ! , points P and S are xed and G is taken to L so we nd that P;S, and L are
collinear.
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Solution 2.  We start as in Solution 1. Namely, we introduce the same po®sK, L, N, and S,
and show that the triplespP; N; K gand pP; S; Lgare collinear. We conclude thaK and R are
symmetric in Al , and reduce the problem statement to showing tha®, Q, and S are collinear.

Step 1. Let AR meet the circumcircle of ABC again at X. The lines AR and AK are
isogonal in the angleBAC ; it is well known that in this case X is the tangency point of with
the A-mixtilinear circle. It is also well known that for this point X, the line X1 crosses again
at the midpoint M * of arc BAC.

Step 2. Denote the circlesBFP and CEP by g and (, respectively. Let g crossAR
and EF again atU and Y, respectively. We have

=pUB;BFq =pUP;PFq =[RP;PFq =[RF FAq

soUB k RF.

Next, we show that the pointsB, I, U, and X are concyclic. Since
=pUB;UXqg =pRF;RXq =pAF;ARq =pFR;FAq =pMB;MXq =pR;DF g

itsucestoprove =pB;IX g =pMB;MXq =pOR;DF gor=pB;M Bq =pOR;DF g
But both angles equal=pCl; CB g as desired. (This is where we used the fact thadl *is the
midpoint of arc BAC of .)

It follows now from circlesBUIX and BPUFY that

=A
2
=EF;AFq =pYF;BFgq =pY U;BUqg;

=pU;UBq =pX;BX g =pvMX;BX q

so the pointsY, U, and | are collinear.
Let EF meetBC at W. We have

=pY;YWq =pJY;FYgq =pJB;FBg =mRF,AFgq =pCl;CWq

so the pointsW, Y, |, and C are concyclic.
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Similarly, if V and Z are the second meeting points of ¢ with AR and EF, we get that
the 4-tuplespC; V;I; X gand B;1; Z; W gare both concyclic.

Step 3.Let Q! CY X BZ. We will show that Q* Q.
First of all, we have

=m'Y;QBg =pCY;ZBq =pCY;ZYq =pZY;BZq
=pCl;IWq =pW;IBg =pCIl;IB q

2

soQ!P 5. Similarly, QP . Thus Q'P g X ¢ t P;Quand it remains to prove that
QY P. Ifwe hadQ' P, we would have=pPY;PZq =pQ¥;QZq =pdC;IB g This
would imply

=[FY;FBqg

=pPY;YFq =pEZ;ZPq =pPY;PZqg =pC;IBq =pPE;PFqg

so circles g and ¢ would be tangent atP. That is excluded in the problem conditions, so

Qt Q.

Step 4. Now we are ready to show thaf, Q, and S are collinear.

Notice that A and D are the poles ofEW and DW with respect to!, soW is the pole
of AD. Hence,WI K AD. SinceCl K DE, this yields=pgC;WIlq =pPE;DA g On the
other hand, DA is a symmedian in4 DEF , so=@PE;DAq =pPN;DFq =@S;DFg
Therefore,

=pPS;PFg =pS;DFq =pPE;DAq =pC;IW(q
=pYC;YWq =pYQ;YFq =pPQ;PFq

which yields the desired collinearity.
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Let L be the set of all lines in the plane and let be a function that assigns to each
line " PL a point f pgon ". Suppose that for any pointX, and for any three lines'1, "5, "3
passing throughX , the pointsf p1q f p.g f psgand X lie on a circle.
Prove that there is a unique pointP such thatf pq P for any line * passing throughP.
(Australia)

Common remarks.  The condition onf is equivalent to the following: There is some func-
tion g that assigns to each pointX a circle gpX q passing throughX such that for any line
passing throughX, the point f p qlies ongpX g (The function g may not be uniquely de ned
for all points, if some pointsX have at most one value of p gother than X ; for such points,
an arbitrary choice is made.)

If there were two pointsP and Q with the given property, f pP Qg would have to be both
P and Q, so there is at most one such point, and it will su ce to show tlat such a point exists.

Solution 1.  We provide a complete characterisation of the functions safying the given
condition.

Write =p4; »q for the directed angle modulo180 between the lines’; and *,. Given a
point P and an angle P [®;180q for each line", let *! be the line through P satisfying
=pi-q , and let hp. p qbe the intersection point of* and *% We will prove that there is
some pairpP; qgsuch thatf and hp. are the same function. ThenP is the unique point in
the problem statement.

Given an angle and a point P, let a line ~ be calledpP; ggoodif fpg hp. pg Let
a point X P be calledpP; ¢good if the circle gpX q passes throughP and some point
Y P;XongpXqgsatises=pPY;Y Xq . It follows from this de nition that if X ispP; «
good then every pointY  P;X of gpX g satis es this angle condition, sohp. pXY q Y for
every Y P gpXqg Equivalently, fpqg P X;hp. pqufor each line” passing throughX. This
shows the following lemma.

Lemma 1. If X ispP; ggood and is a line passing throughX then eitherfpqgq X or " is
pP; agood.

Lemma 2. If X andY are dierent pP; ¢ggood points, then lineXY is pP; qggood.

Proof. If XY is not pP; ggood then by the previous Lemmaf pXY q X and similarly
fpXY g Y, but clearly this is impossible asx Y. I

Lemma 3. If "y and ", are dierent pP; ggood lines which intersect atX P, then either
fpig Xorfp,g X orX ispP; ¢good.

Proof. If fp1gfp.g X, thengpX gis the circumcircle ofX, f p;qandf p,qg Since’; and *,
are pP; ¢ggood lines, the angles

=pPfp.gfp.Xq =pPfpgfp.oXq ;

soP lies ongpX g Hence,X is pP; ¢good. I

Lemma 4. If "1, , and 3 are di erent pgP; ¢good lines which intersect alX P, then X is
pP; agood.

Proof. This follows from the previous Lemma since at most one of théree lines’; can satisfy
fpig X as the three lines are alpP; ggood. I

Lemma 5. If ABC is a triangle such thatA, B, C, f pAB g f pACgand f pBCgare all di erent
points, then there is some pointP and some angle such that A, B and C are pP; ggood
points and AB, BC and CA arepP; ¢good lines.



Shortlisted problems solutions 77

Proof. Let D, E, F denote the pointsf BBCq f pACq f pABq respectively. ThengpAg
gmB g and gpCq are the circumcircles ofAEF , BDF and CDE, respectively. LetP F
be the second intersection of circlegpAgand gmBq(or, if these circles are tangent af, then
P F). By Miquel's theorem (or an easy angle chasegpCqalso passes througt?. Then by
the cyclic quadrilaterals, the directed angles

=pPD;DCq =pPF,FBq =pPE;EAq ;

for some angle . Hence, linesAB, BC and CA are allpP; ¢good, so by Lemma 3A, B andC
arepP; ggood. (In the case wher® D, the line PD in the equation above denotes the line
which is tangent togmBqgat P D. Similar de nitions are used forPE and PF in the cases
whereP EorP F) I

Consider the set of all points px; yqwith integer coordinatesl @ x;y & 100Q and consider
the setL of all horizontal, vertical and diagonal lines passing thnagh at least one point in .
A simple counting argument shows that there ar&998lines inL . For each line” in L we
colour the pointf p gred. Then there are at most998red points. Now we partition the points
in into 10000ten by ten squares. Since there are at mo&998red points, at least one of
these squares 1o contains no red points. Letpm; nqbe the bottom left point in ;9. Then the
triangle with vertices pm;ng pm 1;ngand pm;n  1qgsatis es the condition of Lemma 5, so
these three vertices are alpfP; ggood for some pointP and angle , as are the lines joining
them. From this point on, we will simply call a point or line good if it is pP; ¢good for this
particular pair pP; g Now by Lemma 1, the linex m 1lis good, asisthelinegy n 1
Then Lemma 3 implies thatpm 1;n 1qis good. By applying these two lemmas repeatedly, we
can prove thatthelinex y m n 2is good, then the pointsogm;n  2gand pm 2; ngthen
thelinesx m 2andy n 2 thenthepointspm 2;n 1lgpm 1;,n 2gandpm 2;n 2q
and so on until we have prove that all points in 1o are good.

Now we will use this to prove that every pointS P is good. SincegpSqis a circle, it
passes through at most two points of ;5 on any vertical line, so at most20 points in total.
Moreover, any line" through S intersects at most10 points in 5. Hence, there are at least
eight lines ~ through S which contain a point Q in 15 which is not ongpSq SinceQ is not
on gpSqg the point f pg Q. Hence, by Lemma 1, the lin€ is good. Hence, at least eight good
lines pass throughS, so by Lemma 4, the pointS is good. Hence, every poinE P is good,
so by Lemma 2, every line is good. In particular, every line passing throughP is good, and
therefore satisesf pg P, as required.

Solution 2. Note that for any distinct points X;Y , the circlesgpX gand gpY g meet on XY
at the point f pXY g PgpX g XgpY g X pXY g We write spX; Y gfor the second intersection point
of circlesgpX gand gpY g

Lemma 1. Suppose thatX, Y andZ are not collinear, and thatf pXY g R ;Y uand similarly
forYZand ZX. ThenspX;Yq spY;Zq SpZ;X¢g

Proof. The circlesgpX g gpY gand gpZ gthrough the vertices of triangleXY Z meet pairwise on
the corresponding edges (produced). By Miquel's theorenhd second points of intersection of
any two of the circles coincide. (See the diagram for Lemma 5 $olution 1.) I
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lemma to trianglesXY;Y; for 1o i j & 4, we nd that the points spY;;Y;qand spX; Y;qare
all equal, to point O say. Note that either O does not lie on’, or O f p g sinceO PgpYig

Now consider an arbitrary point X ! not on * or any of the circlesgpY;qfor 1o i o 4. As
above, we see that there are two indicea i j @ 4 such thatY; and Y, do not lie ongpX g
By applying the above lemma to triangleX Y;Y; we see thatspX % Y,q O, and in particular
gpX ‘g passes througlO.

We will now show thatfplg O for all lines " through O. By the above note, we may
assume that'? °. Consider a variable pointX 1P 1z tOunot on * or any of the circlesgpY;q
for 1o i o 4. We know that f pg PgpX g X! t X% Ou. SinceX *was suitably arbitrary, we
havef plg O as desired.

Solution 3. Notice that, for any two di erent points X and Y, the point f pXY qlies on both
gpX gand gpY g so any two such circles meet in at least one point. We refer two circles as
cutting only in the case where they cross, and so meet at exactly twoipis, thus excluding
the cases where they are tangent or are the same circle.

Lemma 1. Suppose there is a poinP such that all circlesgpX qpass throughP. Then P has
the given property.

Proof. Consider some liné passing throughP, and suppose that pgq P. Consider someX P°
with X P and X fpag Then gpX qpasses through all oP, f pgand X, but those three
points are collinear, a contradiction. I

Lemma 2. Suppose that, for all | O, there is a pointP with gpP gof radius at most . Then
there is a pointP with the given property.

Proof. Consider a sequence 2 ' and corresponding pointsP,. Because the fwo circles
grP  .gand gpP , gmeet, the distance betweef® , and P, is at most 2 211 As . con-
verges, these points converge to some poiRt. For all | O, the point P has distance at
most 2 from P, and all circlesgpX q pass through a point with distance at mos2 from P,
so distance at mos#d from P. A circle that passes distance at mos# from P forall j O
must pass throughP, so by Lemma 1 the pointP has the given property. I

Lemma 3. Suppose no two of the circlegpX qcut. Then there is a point P with the given
property.
Proof. Consider a circlegpX gwith centre Y. The circle gpY g must meetgpX gwithout cutting

it, so has half the radius ofgpX ¢ Repeating this argument, there are circles with arbitraty
small radius and the result follows by Lemma 2. I

Lemma 4. Suppose there are six dierent pointsA, B;, By, Bz, B4, Bs such that no three
are collinear, no four are concyclic, and all the circlegB;q cut pairwise atA. Then there is a
point P with the given property.

Proof. Consider some line through A that does not pass through any of theéB; and is not
tangent to any of thegpBig Fix some direction along that line, and letX be the point on"
that has distance from A in that direction. In what follows we consider only those for which
X does not lie on anygpBi( (this restriction excludes only nitely many possible vales of ).
Consider the circlegpX g Because no four of théB; are concyclic, at most three of them
lie on this circle, so at least two of them do not. There must beome sequence ofN 0 such
that it is the same two of the B; for all in that sequence, so now restrict attention to that
sequence, and suppose without loss of generality thAt and B, do not lie ongpX gfor any
in that sequence.



Shortlisted problems solutions 79

Then f pX B1qgis not B;, so must be the other point of intersection oX B; with gpB.q
and the same applies withB,. Now consider the three pointsX , f pX Bygand f pX B,g As
N 0, the angle atX tends to =B;AB, or 180 =B;AB,, which is not 0 or 180 because
no three of the points were collinear. All three distances beeen those points are bounded
above by constant multiples of (in fact, if the triangle is scaled by a factor ofl{ , it tends to
a xed triangle). Thus the circumradius of those three poins, which is the radius ofgpX q is
also bounded above by a constant multiple of, and so the result follows by Lemma 2. |

Lemma 5. Suppose there are two pointé& and B such that gpAgand gpB gcut. Then there is
a point P with the given property.

Proof. Suppose thatgpAq and gmBqcut at C and D. One of those points, without loss of
generality C, must bef pAB g and so lie on the lineAB . We now consider two cases, according
to whether D also lies on that line.

Case 1:D does not lie on that line.

In this case, consider a sequence ¥f at distance from D, tending to D along some line
that is not a tangent to either circle, but perturbed slightly (by at most ?2) to ensure that no
three of the pointsA, B and X are collinear and no four are concyclic.

Consider the pointsf pX Agand f pX Bg and the circlesgpX g on which they lie. The
point f pX Agmight be either A or the other intersection ofX A with the circle gpAg and the
same applies foB. If, for some sequence of N 0, both those points are the other point of
intersection, the same argument as in the proof of Lemma 4 dms to nd arbitrarily small
circles. Otherwise, we have either in nitely many of thoseircles passing throughA, or in nitely
many passing throughB ; without loss of generality, suppose in nitely many throudp A.

We now show we can nd ve points B; satisfying the conditions of Lemma 4 (together
with A). Let B, be any of theX for which gpX qpasses throughA. Then repeat the following
four times, for2a i o 5.

Consider some line X A (di erent from those considered for previous) that is not
tangent to any of the gpB; qfor | i, and is such thatf pq A, sogpYqpasses throughA
for all Y on that line. If there are arbitrarily small circles gpY gwe are done by Lemma 2, so
the radii of such circles must be bounded below. But a6 N A, along any line not tangent
to gB; g the radius of a circle throughY and tangent to gpB; qat A tends to 0. So there must
be someY such that gpY g cuts gpB;gat A rather than being tangent to it there, for all of the
previous B, and we may also pick it such that no three of thé3; and A are collinear and no
four are concyclic. LetB; be this Y. Now the result follows by Lemma 4.

Case 2:D does lie on that line.

In this case, we follow a similar argument, but the sequencd X needs to be slightly
dierent. C and D both lie on the line AB, so one must beA and the other must beB.
Consider a sequence of tending to B. Rather than tending to B along a straight line (with
small perturbations), let the sequence be such that all thegints are inside the two circles, with
the angle betweenX B and the tangent togmB gat B tending to O.

Again consider the pointsf pX Agand f pX Bg If, for some sequence of N 0, both those
points are the other point of intersection with the respectie circles, we see that the angle a¢
tends to the angle betweerAB and the tangent togmB qat B, which is not 0 or 180, while the
distances tend toO (although possibly slower than any multiple of ), so we have arbitrarily
small circumradii and the result follows by Lemma 2. Othervgie, we have either in nitely many
of the circlesgpX q passing throughA, or in nitely many passing through B, and the same
argument as in the previous case enables us to reduce to Lem#na I

Lemmas 3 and 5 together cover all cases, and so the requiresuteis proved.
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Comment. From the property that all circles gpX g pass through the same pointP, it is possible to
deduce that the function f has the form given in Solution 1. For any line” not passing throughP we
may de ne a corresponding angle p g which we must show is the same for all such lines. For any
point X P, with at least one line * through X and not through P, such that f pgq X, this angle
must be equal for all such lines throughX (by (directed) angles in the same segment ofpX ¢).

Now consider all horizontal and all vertical lines not through P. For any pair consisting of a
horizontal line “; and a vertical line “», we have pi1q p 2g unlessf p 1qor f p »qis the point of
intersection of those lines. Consider the bipartite graph vaose vertices are those lines and where an
edge joins a horizontal and a vertical line with the same vala of . Considering a subgraph induced
by n horizontal and n vertical lines, it must have at leastn® 2n edges, so some horizontal line has
edges to at leastn 2 of the vertical lines. Thus, in the original graph, all but at most two of the
vertical lines have the same value of , and likewise all but at most two of the horizontal lines have
the same value of , and, restricting attention to suitable subsets of those Ihes, we see that this value
must be the same for the vertical lines and for the horizontalines.

But now we can extend this to all vertical and horizontal lines not through P (and thus to lines
in other directions as well, since the only requirement forvertical' and “horizontal' above is that they
are any two nonparallel directions). Consider any horizonal line “; not passing through P, and we
wish to show that p 1qhas the same value it has for all but at most two lines not through P in any
direction. Indeed, we can deduce this by considering the isrsection with any but at most ve of the
vertical lines: the only ones to exclude are the one passingitough P, the one passing throughf p 1q
at most two such that pq , and the one passing throughhp. p 1q(de ned as in Solution 1). So
all lines * not passing through P have the same value of p g

Solution 4.  For any point X, denote bytpX gthe line tangent to gpX g at X ; notice that
fppXggq X, sof is surjective.

Step 1: We nd a point P for which there are at least two di erent linesp; and p, such that
fpg P.
Choose any pointX. If X does not have this property, take anyy P gpX gz tX u; then

fpXY g Y. If Y does not have the propertytpYg XY, and the circlesgpX gand gpY gmeet
again at some pointZ. ThenfpXZq Z fpY Zg soZ has the required property.

We will show that P is the desired point. From now on, we x two dierent lines p;
and p, with fpp;g  fppqg P. Assume for contradiction thatf pg Q P for some line
through P. We x °, and note that Q PgpP g

Step 2: We prove thaf PgpQg

Take an arbitrary point X P~ ztP;Qu. Two cases are possible for the position opX q
in relation to the p;; we will show that each case (and subcase) occurs for only tely many
positions of X, yielding a contradiction.

Case 2.1:tpX qis parallel to one of thep;; say, to p;.

Let tpX gcrossp, at R. Then gpRqis the circlepPRX g asf i RPq P andfpRXq X.
Let RQ crossgpRg again at S. Then f RQg P R; Su X gpQg so gpQg contains one of the
points R and S.

If R PgpQg then R is one of nitely many points in the intersectiongpQq Xp,, and each of
them corresponds to a unique position ok, sinceRX is parallel to p;.

If S PgpQqg then =pQS;SPq  =pRS;SPq =RX;XP q =pp1; g so=pQS;SPqis
constant for all such pointsX, and all points S obtained in such a way lie on one circle
passing throughP and Q. SincegpQq does not containP, it is di erent from , so there are
only nitely many points S. Each of them uniquely determinefR and thus X .
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So, Case 2.1 can occur for only nitely many pointX .

Case 2.2:tpX gcrossesp; and p, at R; and R,, respectively.

Clearly, Ry Rj, astpX qis the tangent togpX gat X, and gpX gmeets™ only at X and Q.
Notice that gpR;qis the circlepP XR g Let RjQ meetgpRrigagain atS;; thenS; Q, asgmRiq
meets” only at P and X. Then f RjQqg P R;; Siu, and we distinguish several subcases.

gpR1q

Subcase 2.2.1f pR;Qq S, FR2Qq  S;; s0S;; S, PgpQg

In this case we havdd =R X;XP q =pXP;R,Xq =pR:S;;SiPg =pS:P; S;R2q
=pQS:; S1Pg =pS:P; S,Qqg which showsP P gpQg
Subcase 2.2.2f R1Qq R, fpR,Qq Ry; soRi; R, PgmQg

This can happen for at most four positions oK namely, at the intersections of  with a
line of the form KK, whereK; PgpQqg Xp;.
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Subcase 2.2.3f R1Qq S;, FpR2,Qq R; (the casef pR1Qq Ry, fpR,QQ S, is similar).

In this case, there are at most two possible positions fé&t, namely, the meeting points
of gpQgwith p,. Consider one of them. LeX vary on . Then R; is the projection of X to p;
via Ry, S; is the projection of R; to gpQqvia Q. Finally, =pQS;; $1Xq =pR1S:;S:1Xq
=pR.P;PXq =pi;’q 0, soX isobtained by a xed projective transformgpQqg N * from S;.
So, if there were three pointsX satisfying the conditions of this subcase, the compositiaf the
three projective transforms would be the identity. But, if we apply itto X  Q, we successively
get some pointR}, then R,, and then some point di erent from Q, a contradiction.

Thus Case 2.2 also occurs for only nitely many pointX , as desired.

Step 3: We show that ;°Qq P, as desired.

The argument is similar to that in Step 2, with the roles ofQ and X swapped. Again, we
show that there are only nitely many possible positions fom point X P~ z tP; Qu, which is
absurd.

Case 3.1:tpQqis parallel to one of thep;; say, to p;.

Let tpQgcrossp, at R; then gpRqis the circleg®? RQqg Let RX crossgpRgagain atS. Then
f RX g P R; SuXgpX g sogpX qcontains one of the pointR and S.

tQq

P1

Subcase 3.1.1S fpRX qPgpXqg

We have =pgpX g QXqgq =pSX;SQq =pSR;SQq =pPR;PQq =pm»; ¢ Hence
tpX gk p.. Now we recall Case 2.1: we lépX qcrossp; at RY, sogpRlg pPRXX g and let R'Q
meet gpRgagain at S, notice that S Q. Excluding one position ofX , we may assume that
RIRgmQg soR! fpRQqg Therefore,S! f pRQg PgpQa But then, as in Case 2.1, we get
=ppRGPQq =pQSiSPqg =pR™X;XP q =p; g This means thattpQqis parallel to p,,
which is impossible.

Subcase 3.1.2R fmRXqPgpX g

In this case, we havepgpX g q =pRX;RQQg =pRX;p:1g Again, letR! tpX gXpy; this
point exists for all but at most one position ofX. Then goRYg pRXP g let R'Q meet gpRYy
again at S® Due to =pRX;XRq =pQX;QRqg =p;p:6 R!determinesX in at most two
ways, so for all but nitely many positions of X we have R! R gpQq Therefore, for those
positions we haveS! f pR'Qqg PgpQqg But then =pRX;p1q =pPRX;XP q =pRS:S¥Pq
=pQStS’Pqg =ppQg QPgis xed, so this case can hold only for one speci ¢ position of
as well.

Thus, in Case 3.1, there are only nitely many possible posans of X, yielding a contra-
diction.
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Case 3.2:tpQqcrossesp; and p, at R; and R, respectively.

By Step 2,R; R,. Notice that gpRiqis the circle P QRig Let Ri{X meetgpR;gat S;;
thenS; X. ThenfpRXqP R;;Sju, and we distinguish several subcases.

gpR1q

Subcase 3.2.1f R1Xq S;andfpR,Xq S;,50S5;;S, PgpXg

Asin Subcase 2.2.1, we hav® =pR;Q;QPqg =pQP;RQq =pXS1;S3Pq =pS;P; S Xq
which showsP P gpXg But X;Q P gpXgas well, sogpX g meets ™ at three distinct points,
which is absurd.
Subcase 3.2.2f pPR;1Xq Ry, fPR2Xq Ry, soR;; R, PgpXg

Now three distinct collinear pointsR;, R,, and Q belong togpX g which is impossible.
Subcase 3.2.3f pR;Xq S;, fR2Xg R (the casef lR;Xq Ry, fpRXq S, is similar).

We have=pXR,;R,Qq =pXS1;S:Qq =pR:S:;S:1Qq =pR:P;PQg =m:; g so this
case can occur for a unique position of .

Thus, in Case 3.2, there is only a unique position of, again yielding the required contra-
diction.
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Number Theory

Find all pairs pm; nqof positive integers satisfying the equation
' 192" 292" 49 @' 2" 'g m! plq
(El Salvador)
Answer: The only such pairs arepl; 1gand @3; 2q

Common remarks. In all solutions, for any primep and positive integerN, we will denote
by vp,pN gthe exponent of the largest power op that divides N. The left-hand side ofplq will
be denoted byL ,; thatis, L, p2" 1g@" 2q@2" 49 " 2" g

Solution 1. We will get an upper bound onn from the speed at whichv,p_,qgrows.
From
I—n P on 1qF2n 2q mn on lq 21 2 pn 1qun 1(:”2” 1 1q pzl 1q

we read

wilag 1 2 pon o1g P70
On the other hand,v,pm!qis expressed by the Legendre formula as
2 Yl
Vomlq | o :
i1
As usual, by omitting the oor functions,
Em
Vomlq B m:
i1
Thus, L, m!implies the inequality
n 1
ma 2

2
In order to obtain an opposite estimate, observe that
L, p2° 1g@" 29 @" 2" g p2d 2":
We claim that

2 nm 1q!

2n
2

forn ¥ 6. P3q

Forn 6 the estimatepBqis true because?®  6:9 101 and "9 1 151; 1.3 102
For n ¥ 7 we prove3q by the following inequalities:

nm 1q!

l npn
15! 16 17 nmz 9. 2% 16" 15

2

2
22nm 1qg 24 2n 2nm 2q 24i 2n :



Shortlisted problems solutions 85

Putting together p2qg and p3g for n ¥ 6 we get a contradiction, since

n 1
L, 2" y! m L,

Hencen ¥ 6 is not possible.

Checking manually the cases @ 5we nd

L, 1 1 L, 6 3 5! Lz 168 6}
7 L; 20160 8! and 10! Ls 9999360 11t

So, there are two solutions: (
pm;ng P pl; 1g @3; 29 :

Solution 2.  Like in the previous solution, the cases 1;2;3;4 are checked manually. We
will exclude n ¥ 5 by considering the exponents 08 and 31in plg

For odd primesp and distinct integersa; hh coprime top, with p| a b the Lifting The
Exponent lemma asserts that

Vo g vppm bg vpikg

Notice that 3 divides 2 1 if only if k is even; moreover, by the Lifting The Exponent lemma
we have

Va2 1q wvepd 19 1 vapkq  vapBkg
Hence,
vaplng vapd< 1q VaBkag

2ka n ke tZu

Notice that the last expression is precisely the exponent 8in the prime factorisation of 3tZu !.
Therefore

X\
vspmlq  vapbng vz 35 !
Z " Z N
2: (4)

Suppose thatn ¥ 5. Note that every fth factor in L, is divisible by31 2° 1, and hence
we havevs;plhq ¥ tZu Then

n Ynl 8 Yl 8

0% & ° Vafnd vl PR == o= PBq

By combining p4g and bqg,

3n
3n mo — 2
2

son ‘5‘ which is inconsistent with the inequalityn ¥ 5.
Comment 1. There are many combinations of the ideas above; for exampleombining p2q and p4q

also providesn 5. Obviously, considering the exponents of any two primes iplg or considering one
prime and the magnitude orders lead to an upper bound om and m.
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Comment 2. This problem has a connection to group theory. Indeed, the l#&-hand side is the
order of the group GL ,,pF»q of invertible n-by-n matrices with entries modulo 2, while the right-hand
side is the order of the symmetric groupS,, on m elements. The result thus shows that the only
possible isomorphisms between these groups a 1p->q S; and GL,pF2q Sz, and there are in
fact isomorphisms in both cases. In generalGL,pF2qis a simple group forn ¥ 3, as it is isomorphic
to PSLypF20

There is also a near-solution of interest: the left-hand sid forn 4 is half of the right-hand side
whenm  8; this turns out to correspond to an isomorphismGL 4pF2q  Ag with the alternating group
on eight elements.

However, while this indicates that the problem is a useful or, knowing group theory is of no use
in solving it!
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Find all triples pa; b; @ of positive integers such thaia® b ¢ p abef.
(Nigeria)

Answer: The solutions arepl; 2; 3gand its permutations.

Common remarks. Note that the equation is symmetric. In all solutions, we wilassume
without loss of generality thata ¥ b¥ c, and prove that the only solution ispa; b; @ p3;2;1qg
The rst two solutions all start by proving that ¢ 1.

Solution 1.  We will start by proving that ¢ 1. Note that
¥ ad B & ad:
So3ad ¥ pabaf | a®and hence3a¥ Pc?j a. Nowb® & a2p?c® aq¥ a?, and so
180° ¥ 9 g ¥ 9a ¥ Bt ¥ b,

s018¥ ¢ which yieldsc 1.
Now, note that we must havea i b, as otherwise we would haveéb® 1 B which has no
positive integer solutions. So

a PP¥pb 1¢ P 1
and

2a%i 1 a® P a;
which implies2a® | a’t? | a® and so2ai b’ a. Therefore

40l BPg 4a’pd agq¥4da’i b

so4i P’ 4qthatis, ba 4.
Now, for each possible value db with 2 @ b o 4 we obtain a cubic equation fora with
constant coe cients. These are as follows:

a 4a®> 9 0
a® 9° 28 0
a® 16a° 65 O

O T T
A WN

The only case with an integer solution foa with ba aisb 2, leading topa; b; @ p3;2;1g

Comment 1.1. Instead of writing down each cubic equation explicitly, we ould have just observed
that a® | b® 1, and for each choice ob checked each square factor d# 1 for a.

We could also have observed that, withc 1, the relation 180° ¥ b*c* becomesb = 18, and we
can simply check all possibilities forb (instead of working to prove that b= 4). This check becomes
easier after using the factorisationt® 1 pb 1g@® b 1gand observing that no prime besides3
can divide both of the factors.

Comment 1.2. Another approach to nish the problem after establishing that ¢ & 1 is to set
k P’ a, which is clearly an integer and must be positive as it is equato po°  c3gfa?. Then we

divide into cases based on whethek 1 or k ¥ 2; in the rst case, we haveb® 1 a2 pb? 1
whose only positive root isb 2, and in the second case we haw? o 3a, and so

9 9
b* & p3adf @ Epkazq §m3 1g

which implies that ba 4.
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Solution 2. Again, we will start by proving that ¢ 1. Suppose otherwisg that ¥ 2. We
havea® b ¢ o 3a% sobPc® o 3a. Sincec ¥ 2, this tells us that ba  3a{4. As the

right-hand side of the original equation is a multiple o&?, we havea? & 20° o 2@3a{4g*2. In

other words, a o %Zs 2, which contradicts the assertion thata ¥ c ¥ 2. So there are no

solutions in this case, and so we must hawe 1.

Now, the original equation becomea® b 1 a?k’. Observe thata ¥ 2, since otherwise
a b lasa¥hb

The right-hand side is a multiple ofa?, so the left-hand side must be as well. Thus® 1¥
a’. Sincea ¥ b, we also have
b 1 o 1

a2 2a a2

i

and sob? & 2a sincel? is an integer. ThuspRag®> 1¥ B® 1¥ a2 from which we deduce
ao 8.

Now, for each possible value ci with 2 @ a @ 8 we obtain a cubic equation forb with
constant coe cients. These are as follows:

a 2: B 47 9 0
a 3: B 9 28 0
a 4: B 18’ 65 0
a 5: B 257 126 0
a 6: B 3&f 217 O
a 7: B 4% 344 0
a 8: B 647 513 O

The only case with an integer solution fobwith a¥ bisa 3, leadingtopa;b;@ p3;2;1qg

Comment 2.1.  As in Solution 1, instead of writing down each cubic equationexplicitly, we could
have just observed thatt? | a3 1, and for each choice of checked each square factor ai® 1 for k.

Comment 2.2.  This solution does not require initially proving that ¢ 1, in which case the bound
would becomea & 108 The resulting cases could, in principle, be checked by a ptcularly industrious
student.

Solution 3. Setk pb® cqg{a® o 2a, and rewrite the original equation asa k p baf.
Sinceb® and ¢ are positive integers, we havgbaf ¥ B ¢ 1 ka2 1, so

a k¥pka® 1q%:

As in Comment 1.2,k is a positive integer; for each value df ¥ 1, this gives us a polynomial
inequality satis ed by a:

k’a® a® b5ka® 3k’a pk® 1quO0:

We now prove thata e 3. Indeed,

2,74 3 2 2 3
¥ka a> bkas 3kca pk 1q¥614

7 a® 5a° 3a k¥a* a® 5a° b5a

0
which fails whena ¥ 4.
This leaves ten triples with3 ¥ a ¥ b¥ c¥ 1, which may be checked manually to give

pe;b;@ p3;21q
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Solution 4. Again, observe thatt® ¢ a?p’c® ag sobo an P® 1

We consider the functionf pxq  x?@?c2  xqg It can be seen that that on the interval
ro;k?c?  1sthe function f is increasing ifx ~ 2k?c? and decreasing ik | 4b*c?. Consequently,
it must be the case that

B ¢ fpg¥min fpgfpfd 1q:
First, suppose thatt® ¢ ¥ fg?c® 1g This may be written b ¢ ¥ pb’c®  1¢f, and so
P¥ B S¥prd 1 bt 20P ¥ bt 283t

Thus, b 2¢* 2, and the only solutions to this inequality havep; @ p2;2gor ba 3 and
c 1 ltis easy to verify that the only case giving a solution foa ¥ bispa;b;@ p3;2;1qg
Otherwise, suppose that® ¢ fpaq¥ f pog Then, we have

¥ B & PP ag¥ gt g

Consequentlyb@ o 3, with strict inequality in the case that b c. Hencec landbo 2.
Both of these cases have been considered already, so we areedo

Comment 4.1. Instead of considering which off pogand f p?c?  1qis less thanf pag we may also
proceed by explicitly dividing into cases based on whethea ¥ 2°c? ora  3b?c2. The rst case may
now be dealt with as follows. We have®c® 1¥ b ¢ asb® and ¢ are positive integers, so we have

4
BPc® 1¥ P ¥ a’¥ §b4c4:

This implies bca 2, and hencec l1andbo 2.
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We say that a setS of integers isrootiful if, for any positive integer n and any
ao;ay;:::;a, PS, all integer roots of the polynomialag a;x a,x" are also inS. Find
all rootiful sets of integers that contain all numbers of thform 22 2° for positive integers
aandb

(Czech Republic)

Answer: The setZ of all integers is the only such rootiful set.

Solution 1. The setZ of all integers is clearly rootiful. We shall prove that any ootiful set S
containing all the numbers of the form22 2 for a;bP Z,  must be all of Z.

First, notethat 0 2! 2'PSand2 22 2'!PS. Now, 1PS, since itis a root of
2x 2,and1PS, since itis aroot of2x> x 1. Also, if n PSthen nisarootofx n,so
it su ces to prove that all positive integers must be in S.

Now, we claim that any positive integem has a multiple inS. Indeed, suppose thah 2 t
for PZypandtodd. Thent|2™?4 1,son|2 P41 2 1 Moreover,2 PI1 2 1ps,
and soS contains a multiple of every positive integen.

We will now prove by induction that all positive integers aren S. Suppose that0; 1;:::;n
1 P S; furthermore, let N be a multiple of n in S. Consider the basat expansion ofN, say
N ank a nk? a;n ap. Since0r g n for eacha;, we have that all thea; are in S.
Furthermore, a, 0 sinceN is a multiple of n. Therefore,a.n* a, n* * ain N O,
son is a root of a polynomial with coe cients in S. This tells us that n P S, completing the
induction.

Solution 2.  As in the previous solution, we can prove thaD;1 and 1 must all be in any
rootiful set S containing all numbers of the form2*  2° for a;bP Z, .

We show that, in fact, every integeik with |k| j 2 can be expressed as a root of a polynomial
whose coe cients are of the form2®  2°. Observe that it su ces to consider the case wheré&
is positive, as ifk is a root ofa,x" aX a O,then kisarootofp 1d'a,x"
ax a O

Note that

R 2% k" p 2% 2% 0

is equivalent to
22 k" 20 2™k" 2%

Hence our aim is to show that two numbers of the forn2® k" 2% are equal, for a
xed value of n. We consider such polynomials where every ter@i k' is at most 2k"; in other
words, where2 @ 2% o 2k" ', or, equivalently, L @ a © 1 pn iglog,k. Therefore, there
must bel tpn iglog, kupossible choices fog satisfying these constraints.

The number of possible polynomials is then

1n ho1

pl  tm  iglogkig¥ m iglog,k n!dog, kd'

i 0 i 0

where the inequality holds asl  txu¥ Xx.

As there arepn 1g such terms in the polynomial, each at mosgk", such a polynomial
must have value at most2k"pn  1g However, for largen, we havenlgog, kd' i 2k"m;m  1g
Therefore there are more polynomials than possible valuesp some two must be equal, as
required.
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. et Z, o be the set of positive integers. A positive integer constar@ is given. Fin
Let Z, o be th t of itive int A itive int ta@ is gi Find
all functionsf : Z, o N Z, o such that, for all positive integersa and b satisfyinga bj C,

a fpgla® bfpag ()
(Croatia)

Answer: The functions satisfying () are exactly the functionsf ppg ka for some constant
k PZ, , (irrespective of the value ofC).

Common remarks. It is easy to verify that the functionsf paq ka satisfy ( ). Thus, in the
proofs below, we will only focus on the converse implicatiorthat condition ( ) implies that
f  ka

A common minor part of these solutions is the derivation of sve relatively easy bounds on
the function f . An upper bound is easily obtained by settinga  1in ( ), giving the inequality

fagab fplq

for all su ciently large b. The corresponding lower bound is only marginally more di clt to
obtain: substituting b 1 in the original equation shows that

a fplg|@® fpagq pa fplgg p fplgg fpld fpag

for all su ciently large a. It follows from this that one has the lower bound

frag¥a fplg @ fplgq

again for all su ciently large a.
Each of the following proofs makes use of at least one of thdsmunds.

Solution 1.  First, we show that b | f gocf for all b. To do this, we choose a large positive
integern so thatnb fpg ¥ C. Settinga nb fdxgin () then shows that

nbjmb fpgd bfmb g

so that b| f pof as claimed.

Now in particular we have thatp | f pogfor every primep. If we write f gppq  kppg p, then
the bound f pog = f plg p (valid for p su ciently large) shows that some valuek of kgpg must
be attained for in nitely many p. We will show that f paq ka for all positive integersa. To
do this, we substituteb pin ( ), wherep is any su ciently large prime for which kppg Kk,
obtaining

a kp|p® pfragq apa kpg pfpag pka:
For suitably large p we havegcde kp;pq 1, and hence we have

a kp|fpg ka:

But the only way this can hold for arbitrarily large pis if fpag ka 0. This concludes the
proof.

Comment. There are other ways to obtain the divisibility p | f pog for primes p, which is all that

is needed in this proof. For instance, iff ppqwere not divisible by p then the arithmetic progression
p?>  bf ppgwould attain prime values for in nitely many b by Dirichlet's Theorem: hence, for these
pairs p, b, we would havep fpbq p? bfpg Substituting a PNband bPNp in ( ) then shows that
dmd  p’qp 1qis divisible by b f ppgand hence vanishes, which is impossible singe- f ppq by

assumption.
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Solution 2. First, we substitute b 1in ( ) and rearrange to nd that

2
frg fplgf friqg a 2 f pag
a fplq a fplq

is a positive integer for su ciently large a. Sincef paq = af plg for all su ciently large a, it

follows that "B92% o f gqalso and hence there is a positive integérsuch that "29RE i

S fpiq a fplq
for in nitely many values of a. In other words,

fraq ka fplqg k fplog

for in nitely many a.
Fixing an arbitrary choice ofa in ( ), we have that

a? bfpaq
a kb fplg & fplgq
is an integer for in nitely many b (the sameb as above, maybe with nitely many exceptions).
On the other hand, forb taken su ciently large, this quantity becomes arbitrarily close to“%‘;
this is only possible if“%‘ is an integer and

a® bfpag f pq
a kb fplg & fplgg k
for in nitely many b. This rearranges to

f

= a fplg K fplgg  a ()
Hencea? is divisible bya fplg [ fplgq and hence so i plfgk  f plgd. The only way
this can occur for allais if k  f plg in which case ( ) provides that f paqg ka for all a, as
desired.

Solution 3. Fix any two distinct positive integersa and b. From () it follows that the two
integers
2

e’ cfpagg b fpoggand g cfpgg o fpegq

are both multiples ofpa  fpcgg p  f peggfor all su ciently large c¢. Taking an appropriate
linear combination to eliminate thecf pcgterm, we nd after expanding out that the integer

afrbg bfpag fpeg b afpadfpbg ¢ abafpbg  bfpagg ()

is also a multiple ofpa fpeqq p  f pegq
But as c varies, () is bounded above by a positive multiple o€ whilepa fpcqq p f pegq

is bounded below by a positive multiple of?. The only way that such a divisibility can hold
is if in fact

afog bfpag fpeg b afpadfpg ¢ abafpg bfpagg O (1)

for su ciently large c. Since the coe cient of ¢ in this linear relation is nonzero, it follows that
there are constantsk; " such thatfpcg kc ° for all su ciently large c; the constantsk and °
are necessarily integers.

The value of " satis es

a’fpbqg bfpag °  abafpg bfpagg O ()

and henceb| “a?f pog for all a and b. Taking b su ciently large so that f g kb °, we thus
have that b| “2a? for all su ciently large b this implies that © 0. From (::: ) it then follows
that “%‘ %q forall a b so that there is a constantk such that f ppq ka for all a (k is
equal to the constant de ned earlier).
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Solution 4. Let denote the set of all pointspa; f pagq so that is an in nite subset of
the upper-right quadrant of the plane. For a pointA p a;fpaqqin , we de ne a point
Al p fpag fpacf{agin the lower-left quadrant of the plane, and let !denote the set of all
such pointsAl

Claim. For any point A P , the set is contained in nitely many lines through the point A

Proof. Let A p a;f pagq The functional equation (with a and b interchanged) can be rewritten
asb fpaq|afpg bfpag so that all but nitely many points in  are contained in one of the
lines with equation

ay fpax mpx fpaqq
for m an integer. Geometrically, these are the lines througd® p fpag fpacf{aq with
gradient fpa%. Since is contained, with nitely many exceptions, in the region0 & y o
f plg x and the point A lies strictly in the lower-left quadrant of the plane, thereare only

nitely many values of m for which this line meets . This concludes the proof of the claim.
I

Now consider any distinct pointsA;B P . It is clear that A and B* are distinct. A line
through Al and a line throughB* only meet in more than one point if these two lines are equal
to the line ABL It then follows from the above claim that the lineA'™B! must contain all but
nitely many points of . If C is another point of , then the line A’Ctalso passes through all
but nitely many points of , which is only possible ifA’C! AB?

We have thus seen that there is a liné passing through all points of *and through all
but nitely many points of . We claim that this line passes through the origirO and passes
through every point of . To see this, note that by constructionA; O; Alare collinear for every
point AP . Since® AAfor all but nitely many points A P , it thus follows that O P".
Thus any A P lies on the line® A'O.

Since is contained in a line throughO, it follows that there is a real constantk (the
gradient of ) such that f pag ka for all a. The numberk is, of course, a positive integer.

Comment. Without the a b j C condition, this problem is approachable by much more naive
methods. For instance, using the given divisibility for a;b P t1;2;3u one can prove by a somewhat
tedious case-check thatf p2q 2f plgand fp3q  3f plg this then forms the basis of an induction
establishing that f pnq nf plgfor all n.
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Let a be a positive integer. We say that a positive integeb is a-goodif ' 1is
divisible by an 1 for all positive integersn with an ¥ b. Supposebis a positive integer such
that bis a-good, butb 2 is not a-good. Prove thatb 1 is prime.

(Netherlands)

Solution 1.  For p a prime andn a nonzero integer, we writev,png for the p-adic valuation
of n: the largest integert such that p' | n.

We rst show that bis a-good if and only ifbis even, andp | a for all primesp e b

To start with, the condition that an 1| %' 1 can be rewritten as saying that

anpan 1g @n b 1q
bl

1 pmodan I1g (2)

Suppose, on the one hand, there is a primea bwith p-a. Taket vy,@lg Then there
exist positive integersc such thatac 1 pmod p! g If we take c big enough, and then take
n pp loc,thenan ap 1 p 1 pmodp' gandan ¥ b Sincep & b, one of the terms
of the numeratoranpan  1g @n b 1gisan p 1, which is divisible by p* 1. Hence
the p-adic valuation of the numerator is at least 1, but that of the denominator is exactlyt.
This means thatp| 9' ,sop- 9 1. Asplan 1, wegetthatan 1- ', sobis not
a-good.

On the other hand, if for all primesp @ bwe havep | a, then every factor ofbl is coprime
to an 1, and hence invertible modulcan 1. hencebl is also invertible moduloan 1. Then
equation (1) reduces to:

anpan 1 @n b 1g B pmodan 1qg
However, we can rewrite the left-hand side as follows:

anpan 19 @n b 1g p 1gp29 pby p 1fH pnmodan 1g

Provided that an j 1, if bis even we deduce 1fb b as needed. On the other hand, i is
odd, and we takean 1 2pdg then we will not havep 1fbl b, sobis not a-good. This
completes the claim.

To conclude from here, suppose thdiis a-good, butb 2is not. Thenbis even, andp | a
for all primes p & b, but there is a primeqe b 2forwhichq-a:soq b l1lorg b 2
We cannot haveq b 2, as that is even too, so we havg b 1. in other words,b 1is
prime.

Solution 2. We show only half of the claim of the previous solution: we shothat if b is
a-good, thenp| a for all primes p & b. We do this with Lucas' theorem.

Suppose that we havep @ b with p - a. Then consider the expansion db in basep; there
will be some digit (not the nal digit) which is nonzero, becaisep @ b. Suppose it is thep! digit
fort ¥ 1.

Now, asn varies over the integers,an 1 runs over all residue classes moduld !; in
particular, there is a choice ofn (with an j b) such that the p° digit of anisp 1 (so
plan 1) and the p' digit of an is 0. Consequentlyp|an 1butp| % (by Lucas'theorem)
sop- ¢ 1 Thus bis not a-good.

Now we show directly that ifbis a-good butb 2 fails to be so, then there must be a prime
dividing an 1 for somen, which also dividespb 1qp 2q Indeed, the ratio between ",
and ' ispp 1gbp 2g9{mn bgmn b 1g We know that there must be a choice ofin 1
such that the former binomial coe cient is 1 moduloan 1 but the latter is not, which means
that the given ratio must notbel modan 1. Ifb landb 2 are both coprime toan 1 then
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the ratio is 1, so that must not be the case. In particular, as any prime Isghan b divides a,
it must be the case that eitherb 1orb 2is prime.

However, we can observe thalb must be even by insisting thatan 1 is prime (which is
possible by Dirichlet's theorem) and hence®) p 1P 1. Thus b 2 cannot be prime, so
b 1 must be prime.
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] I G -
c etH i 2 1iPZ o t 12,457 ::u and letn be a positivg integer. Prove
that there exists a constantC such that, if A €t 1;2;:::;nusatis es |A| ¥ C ' n, then there
exist a;bPA such thata bPH. (HereZ,  is the set of positive integers, andzudenotes the
greatest integer less than or equal ta.)

(Brazil)

Common remarks. In all solutions, we will assume thatA is a set such thatta b:a;bPAu
is disjoint from H, and prove that|[A| C’ n.

Solution 1. First, observe that if n is a positive integer, thenn PH exactly when
" *

L 1 A (1)
2 2
?_
To see why, obserye thah PH ifandonlyif 0 i 2 n 1for somei PZ; . In other words,
0 i n{ 2 1 2 whichis equivalent to ().
Now, write A t a; @& acu, wherek | A|. Observe that the set of di erences is

not altered by shifting A, so wey may assumg tha# , t 0;1;:::;n  luwith &y 0.
From (1), we learn that t ag{ 2u 1 1{ 2foreachi i 1S|ncea a; RH. Furthermore,
we must haveta{ 2u t a{ 2uwheneveri j; otherwise, we would have

* " *

1% ﬁ ﬂ 0.

2 2
? ?_ ?_ ? ?_
Sincetpy aqg{ 2u ta{ 2u ta{ 2u 1, this implies that tpay aq{ 2ui Y 2
1 1{ 2, contradicting (1).

Now, we have a sequendg@ a; ap ax N, with
0 il, iz, i 1 i
2 2 2 2
We use the following fact: for anyd P Z, we have
d
2= J—_ (2)
2 2d 2
? .\ ? ( ?_
To see why this is the case, lelh d{ 2,so0 d{ 2 d{ 2 h.Then
2 2
AoA o, AL
2 2 2 2’
2 2

since the numerator is a positive integer. Becags 2 hy  2d{ 2, mequality (2) follows.
Letd & 1 a&,forlei k. Thenta { 2u t a{ 2u t d{ 2u and we have

*

1 %I; ﬂ i’ i¥Fk91qzol . ka)lqz } (3)

2 2 &' 272 n

2 2 2 . d 2 2

i i i
?_ ?_
Here, the rst inequality holds becauseta,{ 2u 1 1{ 2, the second follows from %), the

third follows from an easy application of the AM HM inequality (or Cauchy Schwarz), and the
fourth follows from the fact that . di a n.
Rearranging this, we obtain
b o ?_
22 2 njk 1

which provides the required bound ork.
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?_ ?_
Solution 2. Let 2 2,sop{ g pY 29 1. Thus,J ti u:i PZ, 0( is the

complementary Beatty sequence tél (in other words, H and J are disjoint with HY J  Z, o).
Write A t a4 a acu. Suppose thatA has no di erences inH, so all its di erences
areinJ and we cansetlsy, & tbjuforbh PZ, .

Foranyj j i,wehavea; & tb;u tb;u Becausesy & PJ,wealsohaves; a ttu
for some positive integett. Thus,ttu tb;u tb;u The right hand side must equal either
t i3 hbauort gy bau 1, the latter of which is not a member of] as | 2. Therefore,
t b bandsowehavdb;u tb;u t @ ba

Forla i kwenowputd b ; hb,andwe have

d tbyu ’ tdu;

5

o

thatis, .td;u 1. We also have

| [ _

1 d 1 a a@aen

so ;dian{.
-With the aBove inequalities, an argument similar to 8) (which usgs the fact thatt d u
td 2uj 1p2d 2qfor positive integersd) proves that1j &k 1{p2 2qp {ng which again

rearranges to give b
g ?_

22 2 njk I

Comment. The use of Beatty sequences in Solution 2 is essentially a way bypass (L), Both Solutions
1 and 2 use the fact that 2 2; the statement in the question would still be true if " 2 did not have
this property (for instance, if it were replaced with ), but any argument along the lines of Solutions
1 or 2 would be more complicated.

Solution 3. Again,deneJ Z, ,zH, so all di erences between elements & are inJ. We
start by making the following observation. Suppose we havesetB ,t 1;2;:::;nusuch that
all of the di erences between elements @& are inH. Then |A| |B| & 2n.

To see why, observe that any two sums of the forrm b with a P A;b P B are di erent;
otherwise, we would havea; by a, by, andsola; a;] | b by|. However, then the left
hand side is inJ whereas the right hand side is irH. Thus,ta b:aPA;bPBuis a set of
size|A| |B| all of whose elements are no greater than, yielding the claimed inequality.

With this in mind, it,su ces to construct a set B, all of whose dierences are irH and
whose size is at least! n for some constantC!;j O.

To do so, we will use well-known facts about the negative Pedlquation X2  2Y?2 1;
in particular, that there are in nitely many solutions and the values ofX are given by the
recurrenceXi, 1;X, 74andX, 6Xy 1 Xy 2. Therefore, we may choosX to be a
solution with " n{6 X =& " n.

?
Now, we claim that we may choos® t X; 2X;:::;tpl{3q nuXu. Indeed, we have
£y £ v
2 2 2

and so

from which it follows that tX{ 2uj 1 p 3 2ng Combined with (1), this shows that all
di erences between elements @ are inH.
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a_?2_
Comment. Some of the ideas behind Solution 3 may be used to prove that éhconstantC 22 2

(from Solutions 1 and 2) is optimal, in the sense that there ag arbitrarily large values of n and sets
An ,t 1;2;::::nuof size roughlyC " n, all of whose di erences are contained inJ.

Tp see why, chposX to come from a su ciently large sglution to ¢he Pell equation X 2 2y? Ipso
tX{ 2u 1{p2X 2q In particular, tX ut2X u:::;tt2X 2pl 2 20X uare all less thanl  1{ 2.
Thus, by (1) any positive infeger of the formiX for 1= i o t2X 2pl 1{9 2aulies nJ.

Setn 52X 2 2p1;, 1{ 2g We now have a setA t iX :i o t2X 2pl 1{ 2qu containing
roughly 2X 2pl 1§ delements less than or equal to such that all of the di erences lie in J, and

we can see thajA| C  n with C 2 2 2

Solution 4. As in Solution 3, we will provide a construction of a large seB ,,t 1;2;:::;nu,
all of whose di erences are irH .

ChooseY to be a solution to the Pell-like equationX 2 2Y? 1; such solutions are given
by th;e recurrence¥; 1LY, 2 andYy, 2Ym 1 Yg 2, and so we can choos¥ such that
n{p3 2q Y = n{ 2. Furthermore, it is known that for such aY and forla x Y,

?_ ?_ ?_
tx 2utpY xg 2u tY{ 2u (4)
if X2 2Y?2 1, and 2 2 2
tx 2utpY xg 2u 1t Y{ 2u (5)

if X2 2Y2 1. Indeed, this is a statement of the fact thatX {Y is a best rational approxi-
mation to 2, from below in the ~rst case and from above in the second.

Now, consider the sequence 2u;t2 2u:::;tpY 1q 2u The Erd®s Szekeres theprem
tells us that this sequence has a monotone subsequence withleast Y 2 1 j Y
elements; if that subsequence is decrgasing,sve may reusing (4) os (5)) to ensure that it
is increasing. Call the,subsequends; 2uty, U o tyr 2ufort Y. "

Now, setB t ty; 2u:l®m i@ tu We havety; 2u ty, 2u tpy yiq 2ufori j
(because ¢he corresponding inequality for the fractionalgsts holds by the ordering assumption
on the,;yI 2;9 wgltitheans that all di erences between elements & are indeed inH. Since

Bli Yi n{ 3 2 thisis the required set.

?_
Comment. Any solution to this problem will need to use the fact that 2 cannot be approximated

well by rationals, eyther directly or implicitly (for examp le, by using facts about solutions to Pell-
like equations). 2 were replaced by a value of with very good rational approximations (from
below), then an argument along the lines of Solution 3 would ige long arithmetic progressions in
tti u: 0= i nu(with initial term 0) for certain values of n.
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Prove that there is a constantcj 0 and in nitely many positive integers n with the
following property: there are in nitely many positive integers that cannot be expressed as the
sum of fewer thancnlogpng pairwise coprimen® powers.

(Canada)

Solution 1.  Suppose, for an integen, that we can nd another integer N satisfying the
following property:

n is divisible by ' pp®qfor every prime powerp® exactly dividing N. )

This property ensures that alln" powers are congruent ta or 1 modulo each such prime
power p?, and hence that any sum ofn pairwise coprimen® powers is congruenttan orm 1
modulo p%, since at most one of thex" powers is divisible byp. Thus, if k denotes the number
of distinct prime factors of N, we nd by the Chinese Remainder Theorem at mos?m residue
classes moduldN which are sums of at mosmm pairwise coprimen™ powers. In particular, if
N i 2¥m then there are in nitely many positive integers not expresble as a sum of at most
m pairwise coprimen® powers.

It thus su ces to prove that there are arbitrarily large pair s pn; N qof integers satisfying ()
such that

N i ¢ 2nlogmq
for some positive constant.

We construct such pairs as follows. Fix a positive integer and choose (distinct) prime
numbersp | 22 landq|2® 1; we setN pg It is well-known that 2 | p 1 and
2t 1|q 1, hence
P 1lgm Iq

n o

is an integer and the pairmn; N g satis es (:).
Estimating the size ofN and n is now straightforward. We have

N
logmgqe2t 20 ¢ 201 ZF;

which rearranges to
1
N'i 3 2°nlogmq

and so we are done if we choose 0:18.

_1
8logn2q

Comment 1.  The trick in the above solution was to nd prime numbers p and g congruent to 1
modulo somed 2! and which are not too large. An alternative way to do this is via Linnik's Theorem,
which says that there are absolute constantd and L j 1 such that for any coprime integersa and d,
there is a prime congruent toa modulo d and of sizea bd-. If we choose somel not divisible by 3 and
choose two distinct primesp; ga b p3dd- congruent to 1 modulo d (and, say, distinct modulo 3), then
we obtain a pair m; N gsatisfying (:) with N pgand n W‘. A straightforward computation
shows that

1 -t
Nij Cn 21

for some constantC, which is in particular larger than any ¢ 22n logmgfor p large. Thus, the statement
of the problem is true for any constantc. More strongly, the statement of the problem is still true
when cnlogmaqis replaced byn!  for a su ciently small j 0.
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Solution 2, obtaining better bounds. As in the preceding solution, we seek arbitrarily
large pairs of integersn and N satisfying (:) such that N j c2¢nlogmg
This time, to construct such pairs, we x an integerx ¥ 4, setN to be the lowest common

pair ;; N q does indeed satisfy the condition, since € is a prime power divisor ofN then
%‘ o x is a factor of 3 lemayrg

Now 2N{n is the product of all primes having a power lying in the interal px; 2xs, and
hence2N{n j x P*9 ™4 Thus for su ciently large x we have

2N
09 S g 1P FXq  pqdogXq  logig @xq  X;

using the Prime Number Theorem ptq t{logpqg
On the other hand, n is a product of at most pxq prime powers less than or equal tx,
and so we have the upper bound

logmg & glogxg  x;

again by the Prime Number Theorem. Combined with the above éguality, we nd that for
any j 0, the inequality

log 227“%1 ipl glogmg
holds for su ciently large x. Rearranging this shows that

Nij 292 ; 2™%logmg
for all su ciently large x and we are done.

Comment 2. The stronger bound N | 2 PXdn2  obtained in the above proof of course shows
that in nitely many positive integers cannot be written as a sum of at mostn? pairwise coprime
n" powers.

By re ning the method in Solution 2, these bounds can be improed further to show that in nitely
many positive integers cannot be written as a sum of at mosh pairwise coprimen™ powers for any
positive | 0. To do this, one xes a positive integerd, setsN equal to the product of the primes
at most dx which are congruent tol modulod, andn  dlcm,»xprg It follows as in Solution 2 that
m; N g satis es (3).

Now the Prime Number Theorem in arithmetic progressions preides the estimatedoggNg ——X,

logng x and pdxq Iog’r‘xq for any xed d. Combining these provides a bound

N | 2 Fqund{' pdq
for any positive , valid for x su ciently large. Since the ratio %] can be made arbitrarily large by a
judicious choice ofd, we obtain the n bound claimed.

Comment 3.  While big results from analytic number theory such as the Prine Number Theorem
or Linnik's Theorem certainly can be used in this problem, ttrey do not seem to substantially simplify
matters: all known solutions involve rst reducing to condition (:), and even then analytic results do
not make it clear how to proceed. For this reason, we regard ik problem as suitable for the IMO.

Rather than simplifying the problem, what nonelementary results from analytic number theory
allow one to achieve is a strengthening of the main bound, tyjgally replacing the n logpnqgrowth with
a powern! . However, we believe that such stronger bounds are unlikelio be found by students in
the exam.

The strongest bound we know how to achieve using purely elemtary methods is a bound of the
form N i 2%nlogmd" for any positive integer M . This is achieved by a variant gf the argument
in Solution 1, choosing primespo;:::;pw with pj | 22 ' " 1 and setting N ~.pand n
2™ 7 im 19
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Let a and b be two positive integers. Prove that the integer

R .,V
2 4a
a JE—
b
is not a square. (Herazs denotes the least integer greater than or equal to.)
(Russia)
Solution 1. Arguing indirectly, assume that
R .V R Vv
4. 2
a’ % pa kd: or pz_z;q? p2a ko:
Clearly, k ¥ 1. In other words, the equation
R,V
¢
5 PC k& plq

has a positive integer solutiorpc; kg with an even value ofc.
Choose a positive integer solution gfilq with minimal possible value ofk, without regard

to the parity of c. From RV
¢, c 1 ck k® 1¥ck
b' b
and R,V
c kge kg ¢ c
b b” p PC KK

it can be seen thatcj bkj ¢ k, so
c kb r withsomeO r K.

By substituting this in plqwe get

R,V R \Y R.V
ok rE ey g &
b b b
and
c kok pkb r kk kb 2kr  kgk rg
SO R,V
r2
Iy kpk rg p2q

Notice that relation p2q provides another positive integer solution ofilg namely ¢t r and
k! k r,withcti Oand0 k' k. That contradicts the minimality of k, and hence nishes
the solution.



102 Bath UK, 11th 22nd July 2019

Solution 2. Suppose that R .V
4a2
a? —
b
with some positive integercj a, SO
2
¢ 1 a 4% o ¢
O b a’b 49 b: ()
letd b a’h 4gx c¢ aandy c a;then we havec > Y anda —y, and
[BBq can be re-written as follows:
X y? X y? :
5> b > M 4q d
x> pb 2y y?> d O; O d b (4)

So, by the indirect assumption, the equationpdq has some positive integer solutiopx; yg

Fix b and d, and take a pair px; yq of positive integers, satisfyingpdg such that x vy is
minimal. By the symmetry in pdgwe may assume tha ¥ y ¥ 1.

Now we perform a usual Vieta jump . Considepigas a quadratic equation in variablex,
and let z be its second root. By the Vieta formulas,

X z pb 2y; and zx Vy? d;

SO

z pb 2 x .

The rst formula shows that z is an integer, and by the second formula is positive. Hence
[z; yqis another positive integer solution of4g From
X logg 19 xz px zq 1 py> dq pb 2y 1
py> by pb 2y 1 py 1¢ by 1gep 1fepx I

we can see thaz x and thereforez y x y. But this contradicts the minimality of x vy
among the positive integer solutions odqg
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