

2nd Iranian Geometry Olympiad September 2015

Problems of 2nd Iranian Geometry Olympiad (Advanced)

Two circles ω₁ and ω₂ (with center O₁ and O₂ respectively) intersect at A and B. The point X lies on ω₂. Let point Y be a point on ω₁ such that ∠XBY = 90°. The line O₁X intersects ω₂ at X' for second time. If X'Y intersects ω₂ at K, prove that X lie on the midpoint of arc AK.

Proposed by Davood Vakili

Suppose that ABC be the equilateral triangle with circumcircle ω and circumcenter O. Let P be the point on the arc BC (the arc witch A doesn't lie). Tangent to ω in P intersects extension of AB and AC at K and L respectively. Show that: ∠KOL > 90°.

Proposed by Iman Maghsoudi

3. In triangle ABC, H is the orthocenter of triangle. Let l₁ and l₂ be two lines such that pass through H and perpendicular to each other. The line l₁ intersects BC and extension of AB at D and Z respectively and the line l₂ intersects BC and extension of AC at E and X respectively. We draw the Line which passes through D and parallel to AC and we draw the Line which passes through E and parallel to AB. Suppose that intersection of these lines denote by Y. Prove that X, Y, Z are collinear.

Proposed by Ali Golmakani

4. In triangle ABC, we draw the circle with center A and radius AB. This circle intersects AC at two points. Also we draw the circle with center A and radius AC and this circle intersects AB at two points. Denote these four points by A₁, A₂, A₃, A₄. Find the points B₁, B₂, B₃, B₄ and C₁, C₂, C₃, C₄ similarly. Suppose that these 12 points lie on two circles. Prove that the triangle ABC is isosceles.

Proposed by Morteza Saghafian

Rectangles ABA₁B₂, BCB₁C₂, CAC₁A₂ lie otside triangle ABC. Let C' be such point that C'A₁ ⊥ A₁C₂ and C'B₂ ⊥ B₂C₁, points A', B' are defined similarly. Prove that lines AA', BB', CC' concur.

Proposed by Alexey Zaslavsky (Russia)

Solutions of 2nd Iranian Geometry Olympiad (Advanced)

Two circles ω₁ and ω₂ (with center O₁ and O₂ respectively) intersect at A and B.
 The point X lies on ω₂. Let point Y be a point on ω₁ such that ∠XBY = 90°. The
 line O₁X intersects ω₂ at X' for second time. If X'Y intersects ω₂ at K, prove that
 X lie on the midpoint of arc AK.

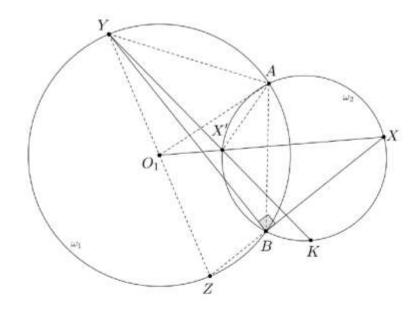
Proposed by Davood Vakili

Solution.

The center of circle ω_1 denote by O_1 . Suppose that the point Z be the intersection of BX and circle ω_1 . We know that $\angle YBZ = 90^{\circ}$, therefore the points Y, O_1, Z are collinear.

$$\angle O_1YA = \angle ABX = \angle AX'X \Rightarrow YAX'O_1 : cyclic$$

In the other hand, we know that $AO_1 = YO_1$ so $\angle AX'X = \angle YX'O_1 = \angle XX'K$. Therefore the point X lie on the midpoint of arc AK.



Suppose that ABC be the equilateral triangle with circumcircle ω and circumcenter O. Let P be the point on the arc BC (the arc witch A doesn't lie). Tangent to ω in P intersects extension of AB and AC at K and L respectively. Show that: ∠KOL > 90°.

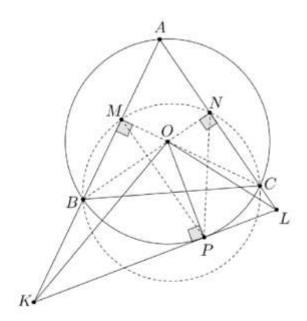
Proposed by Iman Maghsoudi

Solution-1.

Suppose that M and N be the midpoints of AB and AC respectively. We know that quadrilateral BMNC is cyclic. Also $\angle BPC = 120^{\circ} > 90^{\circ}$, so we can say the point P is in the circumcircle of quadrilateral BMNC. Therefore: $\angle MPN > \angle MBN = 30^{\circ}$

In the other hand, quadrilaterals TMOP and NOPC are cyclic. Therefore:

$$\angle MKO = \angle MPO$$
, $\angle NLO = \angle NPO \Rightarrow \angle AKO + \angle ALO = \angle MPN > 30^{\circ}$
 $\Rightarrow \angle KOL = \angle A + \angle AKO + \angle ALO > 90^{\circ}$



Solution-2.

Suppose that $\angle KOL \leq 90^{\circ}$, therfore $KL^2 \leq OK^2 + OL^2$. Assume that R is the radius of a circumcircle $\triangle ABC$. Let BK = x and LC = y and AB = AC = BC = a. According to law of cosine in triangle AKL, we have:

$$KL^2 = AK^2 + AL^2 - AK.AL.cos(\angle A) \Rightarrow KL^2 = (a+x)^2 + (a+y)^2 - (a+x)(a+y)$$

In the other hand:

$$KB.KA = OK^2 - R^2$$
 \Rightarrow $OK^2 = R^2 + x(a+x)$

$$LC.LA = OL^2 - R^2 \implies OL^2 = R^2 + y(a+y)$$

We know that $KL^2 \leq OK^2 + OL^2$ and $a = R\sqrt{3}$, therefore:

$$(a+x)^2 + (a+y)^2 - (a+x)(a+y) \le 2R^2 + x(a+x) + y(a+y)$$

$$\Rightarrow R^2 < xy \quad (1)$$

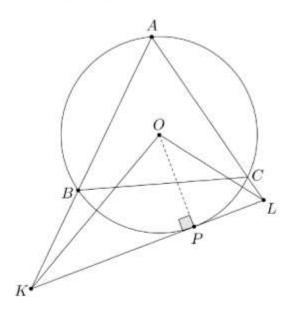
KL is tangent to circumcircle of $\triangle ABC$ at P. So we have:

$$KP^2 = KB.KA = x(a+x) > x^2 \Rightarrow KP > x$$
 (2)

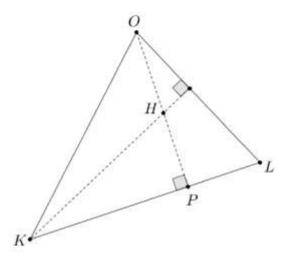
$$LP^2 = LC.LA = y(a+y) > y^2 \Rightarrow LP > y$$
 (3)

According to inequality 2, 3 we can say: xy < KP.LP (4)

Now According to inequality 1, 4 we have: $R^2 < KP.LP$ (5)



We know that $\angle KOL \le 90^{\circ}$, therefore KOL is acute-triangle. Suppose that H is orthocenter of $\triangle KOL$. So the point H lie on OP and we can say $HP \le OP$.



In other hand, $\angle HKP = \angle POL$ and $\angle KHP = \angle OLP$, therefore two triangles THP and OPL are similar. So we have:

$$\frac{KP}{HP} = \frac{OP}{LP} \quad \Rightarrow \quad KP.LP = HP.OP \leq OP^2 = R^2$$

But according to inequality 5, we have $R^2 < KP.LP$ and it's a contradiction. Therfore $\angle KOL > 90^{\circ}$.

3. In triangle ABC, H is the orthocenter of triangle. Let l_1 and l_2 be two lines such that pass through H and perpendicular to each other. The line l_1 intersects BC and extension of AB at D and Z respectively and the line l_2 intersects BC and extension of AC at E and X respectively. We draw the Line which passes through D and parallel to AC and we draw the Line which passes through E and parallel to E and E and parallel to E and E are collinear.

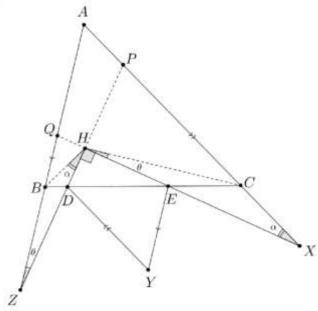
Proposed by Ali Golmakani

Solution.

Suppose that HZ intersects AC at P and HX intersects AB at Q. According to Menelaus theorem in two triangles AQX and APZ we can say:

$$\frac{CX}{AC}.\frac{AB}{BQ}.\frac{QE}{EX} = 1 \qquad (1) \quad and \quad \frac{BZ}{AB}.\frac{AC}{PC}.\frac{PD}{DZ} = 1 \qquad (2)$$

In the other hand, H is the orthocenter of $\triangle ABC$. So $BH \perp AC$ and we know that $\angle DHE = 90^{\circ}$, therefore $\angle HXA = \angle BHZ = \alpha$. Similarly we can say $\angle HZA = \angle CHX = \theta$.



According to law of sines in $\triangle HPC$, $\triangle HCX$ and $\triangle HPX$:

$$\frac{\sin(90-\theta)}{PC} = \frac{\sin(\angle HCP)}{HP} \quad , \quad \frac{\sin(\theta)}{CX} = \frac{\sin(\angle HCX)}{HX} \quad , \quad \frac{HP}{HX} = \frac{\sin(\alpha)}{\sin(90-\alpha)}$$

$$\Rightarrow \quad \frac{PC}{CX} = \frac{\tan(\alpha)}{\tan(\theta)}$$

Similarly, according to law of sines in $\triangle HBQ$, $\triangle HBZ$ and $\triangle HQZ$, we can show:

$$\Rightarrow \quad \frac{BZ}{BQ} = \frac{tan(\alpha)}{tan(\theta)} \quad \Rightarrow \quad \frac{BZ}{BQ} = \frac{PC}{CX} \quad \Rightarrow \quad \frac{PC}{BZ} = \frac{CX}{BQ} \quad (3)$$

According to equality 1, 2 and 3, we can say:

$$\frac{XE}{EQ} = \frac{PD}{ZD} \qquad (4)$$

Suppose that the Line witch passes through E and parallel to AB, intersects ZX at Y_1 and the Line witch passes through D and parallel to AC, intersects ZX at Y_2 . According to thales theorem we can say:

$$\frac{Y_1X}{ZY_1} = \frac{XE}{EQ} \quad , \quad \frac{Y_2X}{ZY_2} = \frac{PD}{ZD}$$

According to equality 4, we show that $Y_1 \equiv Y_2$, therefore the point Y lie on ZX.

4. In triangle ABC, we draw the circle with center A and radius AB. This circle intersects AC at two points. Also we draw the circle with center A and radius AC and this circle intersects AB at two points. Denote these four points by A₁, A₂, A₃, A₄. Find the points B₁, B₂, B₃, B₄ and C₁, C₂, C₃, C₄ similarly. Suppose that these 12 points lie on two circles. Prove that the triangle ABC is isosceles.

Proposed by Morteza Saghafian

Solution-1.

Suppose that triangle ABC isn't isosceles and a > b > c. In this case, there are four points (from these 12 points) on each side of $\triangle ABC$. Suppose that these 12 points lie on two circles ω_1 and ω_2 . Therefore each one of the circles ω_1 and ω_2 intersects each side of $\triangle ABC$ exactly at two points. Suppose that $P(A, \omega_1), P(A, \omega_2)$ are power of the point A with respect to circles ω_1 , ω_2 respectively. Now we know that:

$$P(A, \omega_1).P(A, \omega_2) = b.b.(a-c).(a+c) = c.c.(a-b)(a+b)$$

 $\Rightarrow b^2(a^2-c^2) = c^2(a^2-b^2) \Rightarrow a^2(b^2-c^2) = 0 \Rightarrow b = c$

But we know that b > c and it's a contradiction. Therefore the triangle ABC is isosceles.

Solution-2.

Suppose that triangle ABC isn't isosceles. In this case, there are four points (from these 12 points) on each side of $\triangle ABC$. Suppose that these 12 points lie on two circles ω_1 and ω_2 . Therefore each one of the circles ω_1 and ω_2 intersects each side of $\triangle ABC$ exactly at two points (and each one of the circles ω_1 and ω_2 doesn't pass through A, B, C). We know that the intersections of ω_1 and the sides of $\triangle ABC$ is even number. Also the intersections of ω_2 and the sides of $\triangle ABC$ is even number. But Among the these 12 points, just 3 points lie on the sides of $\triangle ABC$ and this is odd number. So it's a contradiction. Therefore the triangle ABC is isosceles.

5. Rectangles ABA_1B_2 , BCB_1C_2 , CAC_1A_2 lie otside triangle ABC. Let C' be such point that $C'A_1 \perp A_1C_2$ and $C'B_2 \perp B_2C_1$, points A', B' are defined similarly. Prove that lines AA', BB', CC' concur.

Proposed by Alexey Zaslavsky (Russia)

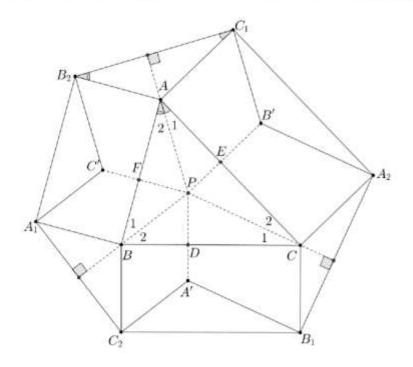
Solution.

Suppose that l_A is the line which passes through A and perpendicular to B_2C_1 . Let l_B and l_C similarly. Suppose that $CB_1 = BC_2 = x$ and $BA_1 = AB_2 = y$ and $AC_1 = CA_2 = z$. According to angles equality, we can say:

$$\frac{\sin(\angle A_1)}{\sin(\angle A_2)} = \frac{y}{z} \quad , \quad \frac{\sin(\angle B_1)}{\sin(\angle B_2)} = \frac{x}{y} \quad , \quad \frac{\sin(\angle C_1)}{\sin(\angle C_2)} = \frac{z}{x}$$

According to sine form of Ceva's theorem in $\triangle ABC$, l_A , l_B , l_C are concur. Suppose that l_A , l_B , l_C pass through the point P. We know that $\triangle PBC$ and $\triangle A'C_2B_1$ are equal. (because of $BP \parallel A'C_2$, $CP \parallel A'B_1$, $BC \parallel B_1C_2$ and $BC = B_1C_2$). So we have:

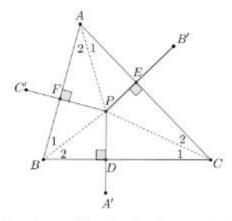
$$PA' = x$$
, $PC' = y$, $PB' = z$ $PA' \bot BC$, $PB' \bot AC$, $PC' \bot AB$



Suppose that PA', PB', PC' intersects BC, AC, AB at D, E, F respectively and PD = m, PE = n, PF = t. According to before picture, we have:

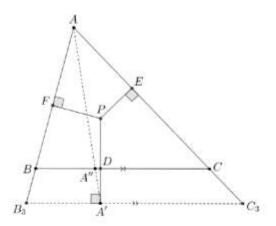
$$\frac{\sin(\angle A_1)}{\sin(\angle A_2)} = \frac{n}{t} = \frac{y}{z} \quad , \quad \frac{\sin(\angle B_1)}{\sin(\angle B_2)} = \frac{t}{m} = \frac{x}{y} \quad , \quad \frac{\sin(\angle C_1)}{\sin(\angle C_2)} = \frac{m}{n} = \frac{z}{x}$$

If n = ky, then: t = kz, $m = \frac{kyz}{x}$.



Now draw the line from A' such that be parallel to BC. The intersection of this line and extension AB and AC denote by B_3 and C_3 respectively. Let the point A' be the intersection of AA' and BC. According to Thales theorem, we have:

$$\frac{BA''}{CA''} = \frac{B_3A'}{C_3A'}$$



Let $\angle B_3PA' = \alpha$ and $\angle C_3PA' = \theta$. We know that the quadrilaterals PFB_3A and PEC_3A' are cyclic. Therefore $\angle B_3FA' = \alpha$ and $\angle C_3EA' = \theta$.

According to law of sines in $\triangle PB_3A'$ and $\triangle PC_3A'$ and $\triangle PC_3B_3$:

$$\frac{B_3A'}{C_3A'} = \frac{tan(\alpha)}{tan(\theta)}$$

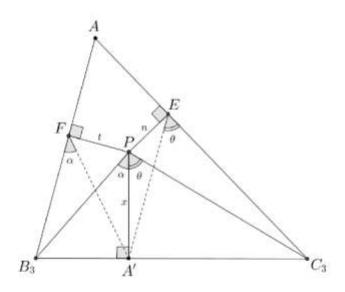
Also according to law of sines in $\triangle PFA'$:

$$\frac{t}{x} = \frac{\sin(\angle B + \alpha - 90)}{\cos(\alpha)} = \frac{\cos(\angle B + \alpha)}{\cos(\alpha)} = \cos(\angle B) - \tan(\alpha).\sin(\angle B)$$

$$\Rightarrow \tan(\alpha) = \frac{\cos(\angle B) - \frac{t}{x}}{\sin(\angle B)}$$

Similarly we can say:

$$tan(\theta) = \frac{\cos(\angle C) - \frac{n}{x}}{\sin(\angle C)} \quad \Rightarrow \quad \frac{B_3 A'}{C_3 A'} = \frac{BA''}{CA''} = \frac{x.\cos(\angle B) - t}{x.\cos(\angle C) - n} \cdot \frac{\sin(\angle C)}{\sin(\angle B)}$$



Similarly, two other fractions can be calculated. According to Ceva's theorem in $\triangle ABC$, we have to that:

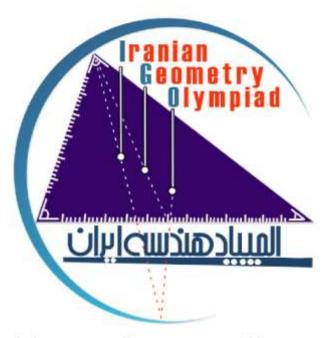
$$\frac{x.\cos(\angle B) - t}{x.\cos(\angle C) - n} \cdot \frac{\sin(\angle C)}{\sin(\angle B)} \cdot \frac{z.\cos(\angle C) - m}{z.\cos(\angle A) - t} \cdot \frac{\sin(\angle A)}{\sin(\angle C)} \cdot \frac{y.\cos(\angle A) - n}{y.\cos(\angle B) - m} \cdot \frac{\sin(\angle B)}{\sin(\angle A)} = 1$$

$$\iff \frac{x.\cos(\angle B) - t}{x.\cos(\angle C) - n} \cdot \frac{z.\cos(\angle C) - m}{z.\cos(\angle A) - t} \cdot \frac{y.\cos(\angle A) - n}{y.\cos(\angle B) - m} = 1$$

In other hand, we know that:

$$\begin{split} n = ky \quad , \quad t = kz \quad , \quad m = \frac{kyz}{x} \\ \iff \frac{x.cos(\angle B) - kz}{x.cos(\angle C) - ky}.\frac{x.cos(\angle C) - ky}{x.cos(\angle A) - kx}.\frac{x.cos(\angle A) - kx}{x.cos(\angle B) - kz} = 1 \end{split}$$

Therfore, we show that AA', BB', CC' are concur.



2nd Iranian Geometry Olympiad September 2015

Problems of 2nd Iranian Geometry Olympiad (Elementary)

 We have four wooden triangles with sides 3, 4, 5 centimeters. How many convex polygons we can make by all of these triangles? (Just draw the polygons without any proof)

A convex polygon is a polygon which all of the angles of it are less than 180° and there isn't any hole in it. For example:

This polygon isn't convex

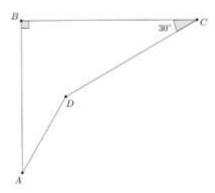
This polygon is convex

Proposed by Mahdi Etesami Fard

2. Let ABC be a triangle with $\angle A = 60^{\circ}$. The points M, N, K lie on BC, AC, AB respectively such that BK = KM = MN = NC. If AN = 2AK, find the values of $\angle B$ and $\angle C$.

Proposed by Mahdi Etesami Fard

 In the picture below, we know that AB = CD and BC = 2AD. Prove that ∠BAD = 30°.



Proposed by Morteza Saghafian

 In rectangle ABCD, the points M, N, P, Q lie on AB, BC, CD, A 	AD respe	ectively
such that the area of triangles AQM, BMN, CNP, DPQ are equal.	Prove t	hat the
quadrilateral $MNPQ$ is parallelogram.		

Proposed by Mahdi Etesami Fard

5. Do there exist 6 circles in the plane such that every circle passes through exactly 3 centers of other circles?

Proposed by Morteza Saghafian

Solutions of 2nd Iranian Geometry Olympiad (Elementary)

 We have four wooden triangles with sides 3, 4, 5 centimeters. How many convex polygons we can make by all of these triangles? (Just draw the polygons without any proof)

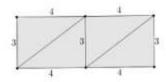
A convex polygon is a polygon which all of the angles of it are less than 180° and there isn't any hole in it. For example:

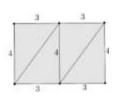
This polygon isn't convex

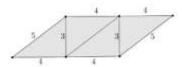
This polygon is convex

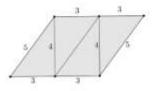
Proposed by Mahdi Etesami Fard

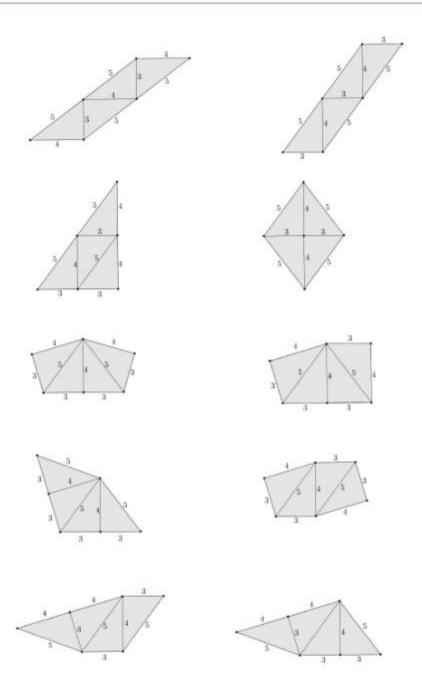
Solution.









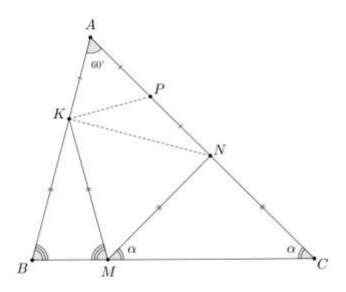


2. Let ABC be a triangle with $\angle A = 60^{\circ}$. The points M, N, K lie on BC, AC, AB respectively such that BK = KM = MN = NC. If AN = 2AK, find the values of $\angle B$ and $\angle C$.

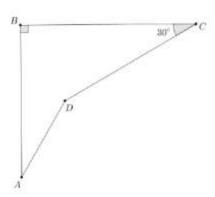
Proposed by Mahdi Etesami Fard

Solution.

Suppose the point P be the midpoint of AN. Therefore AK = AP = AN and so we can say $\triangle APK$ is the equilateral triangle. So $\angle ANK = \frac{\angle KPA}{2} = 30^\circ$ Let $\angle ACB = \angle NMC = \alpha$. Therfore $\angle ABC = \angle KMB = 120^\circ - \alpha$. So $\angle KMN = 60^\circ$. Therefore $\triangle KMN$ is the equilateral triangle. Now we know that $\angle MNA = 90^\circ$. Therefore $\alpha = 45^\circ$. So we have $\angle C = 45^\circ$ and $\angle B = 75^\circ$.



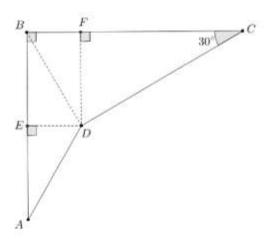
3. In the picture below, we know that AB = CD and BC = 2AD. Prove that $\angle BAD = 30^{\circ}$.



Proposed by Morteza Saghafian

Solution-1.

Let two points E and F on BC and AB respectively such that $DF \perp BC$ and $DE \perp AB$. We can say $DF = \frac{DC}{2} = \frac{AB}{2}$. (because of $\angle BCD = 30^{\circ}$ and $\angle DFC = 90^{\circ}$) Also we know that DF = BE, therfore DE is the perpendicular bisector of AB. So BD = AD.



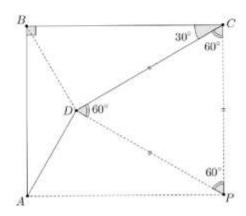
Let H be a point on CD such that $BH \perp CD$. therefore $BH = \frac{BC}{2} = BD$, so we can say $D \equiv H$ and $\angle BDC = 90^{\circ}$. Therefore $\angle ABD = \angle BAD = 30^{\circ}$.

Solution-2.

Suppose that P is the point such that triangle DCP is Equilateral. We know that $PC \perp BC$ and PC = CD = AB, therfore quadrilateral ABCP is Rectangular.

$$\Rightarrow$$
 $\angle APD = \angle APC - \angle DPC = 90^{\circ} - 60^{\circ} = 30^{\circ}$

In other hand, DP = DC and AP = BC. So $\triangle ADP$ and $\triangle BDC$ are congruent. Therfore AD = BD.



Let the point H on CD such that $BH \perp CD$, therefore $BH = \frac{BC}{2} = BD$, so we can say $D \equiv H$ and $\angle BDC = 90^{\circ}$. Therefore $\angle ABD = \angle BAD = 30^{\circ}$.

4. In rectangle ABCD, the points M, N, P, Q lie on AB, BC, CD, AD respectively such that the area of triangles AQM, BMN, CNP, DPQ are equal. Prove that the quadrilateral MNPQ is parallelogram.

Proposed by Mahdi Etesami Fard

Solution.

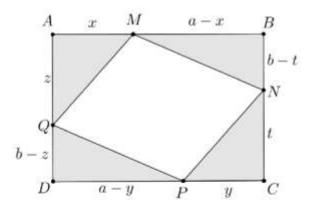
Let AB = CD = a, AD = BC = b and AM = x, AQ = z, PC = y, NC = t. If $x \neq y$, we can assume that x > y. We know that:

$$y < x \Rightarrow a - x < a - y$$
 (1)
 $S_{AQM} = S_{CNP} \Rightarrow zx = yt \Rightarrow z < t \Rightarrow b - t < b - z$ (2)

According to inequality 1, 2:

$$(a-x)(b-t) < (a-y)(b-z) \Rightarrow S_{BMN} < S_{DPO}$$

it's a contradiction. Therfore x = y, so z = t Now we can say two triangles AMQ and CPN are congruent. Therefore MQ = NP and similarly MN = PQ. So the quadrilateral MNPQ is parallelogram.



Comment.

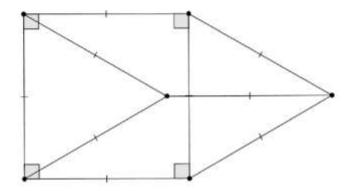
If quadrilateral ABCD be the parallelogram, similarly we can show that quadrilateral MNPQ is parallelogram.

5. Do there exist 6 circles in the plane such that every circle passes through exactly 3 centers of other circles?

Proposed by Morteza Saghafian

Solution.

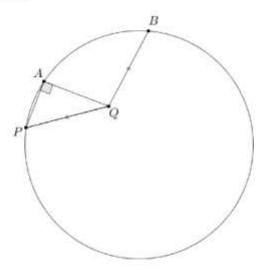
in the picture below, we have 6 points in the plane such that for every point there exists exactly 3 other points on a circle with radius 1 centimeter.



2nd Iranian Geometry Olympiad September 2015

Problems of 2nd Iranian Geometry Olympiad (Medium)

1. In picture below, the points P, A, B lie on a circle. The point Q lie inside the circle such that $\angle PAQ = 90^{\circ}$ and PQ = BQ. Prove that the subtract $\angle AQB$ from $\angle PQA$ is equal to arc AB.



Proposed by Davood Vakili

2. In acute-angle triangle ABC, BH is the altitude of the vertex B. The points D and E are midpoints of AB and AC respectively. Suppose that F be the reflection of H to ED. Prove that the line BF passes through circumcenter of △ABC.

Proposed by Davood Vakili

3. In triangle ABC, the points M, N, K are the midpoints of BC, AC, AB respectively. Let ω_B and ω_C be two semicirculars with diameter AC and AB outside the triangle respectively. Suppose that MK and MN intersect ω_C and ω_B at X and Y respectively. If the point Z be the intersection of the tangent to ω_C and ω_B in X and Y respectively, prove that: AZ⊥BC

Proposed by Mahdi Etesami Fard

4. Suppose that ABC be the equilateral triangle with circumcircle ω and circumcenter O. Let P be the point on the arc BC (the arc witch A doesn't lie). Tangent to ω in P intersects extension of AB and AC at K and L respectively. Show that: ∠KOL > 90°

Proposed by Iman Maghsoudi

- 5. a) Do there exist 5 circles in the plane such that every circle passes through exactly 3 center of other circles?
- b) Do there exist 6 circles in the plane such that every circle passes through exactly 3 center of other circles?

Proposed by Morteza Saghafian

Solutions of 2nd Iranian Geometry Olympiad (Medium)

1. In picture below, the points P, A, B lie on a circle. The point Q lie inside the circle such that $\angle PAQ = 90^{\circ}$ and PQ = BQ. Prove that the subtract $\angle AQB$ from $\angle PQA$ is equal to arc AB.

Proposed by Davood Vakili

Solution-1.

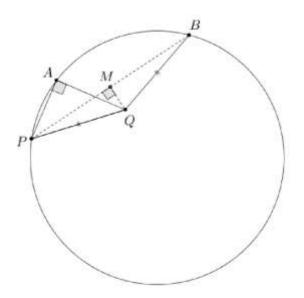
Let point M be the midpoint of PB. So we can say $\angle PMQ = 90^{\circ}$ and we know that $\angle PAQ = 90^{\circ}$, therefore quadrilateral PAMQ is cyclic. Therefore:

$$\angle APM = \angle AQM$$

In the other hand:

$$\angle AQB - \angle AQP = \angle PQM + \angle AQM - \angle AQP = 2\angle AQM$$

So we can say that the subtract $\angle AQB$ from $\angle PQA$ is equal to arc AB.



Solution-2.

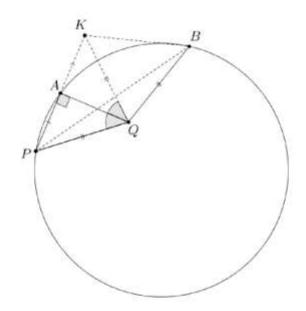
Let the point K be the reflection of P to AQ. We have to show:

$$2\angle APB = \angle AQB - \angle AQP$$

Now we know that AQ is the perpendicular bisector of PK. So $\angle AQP = \angle AQK$ and PQ = KQ = BQ, therefore the point Q is the circumcenter of triangle PKB. We know that:

$$2\angle APB = \angle KQB = \angle AQB - \angle AQK = \angle AQB - \angle AQP$$

Therefore the subtract $\angle AQB$ from $\angle PQA$ is equal to arc AB.

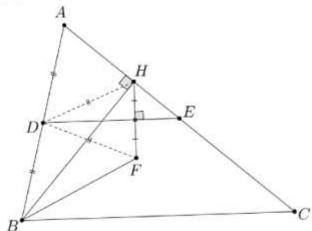


2. In acute-angle triangle ABC, BH is the altitude of the vertex B. The points D and E are midpoints of AB and AC respectively. Suppose that F be the reflection of H to ED. Prove that the line BF passes through circumcenter of △ABC.

Proposed by Davood Vakili

Solution-1.

The circumcenter of $\triangle ABC$ denote by O. We know that $\angle OBA = 90^{\circ} - \angle C$, therfore we have to show that $\angle FBA = 90^{\circ} - \angle C$. We know that AD = BD = DH, also DH = DF.



Therfore quadrilateral AHFB is cyclic (with circumcenter D)

$$\Rightarrow \angle FBA = \angle FHE = 90^{\circ} - \angle DEH \quad , \quad DE \parallel BC \quad \Rightarrow \quad \angle DEH = \angle C$$

$$\Rightarrow \quad \angle FBA = 90^{\circ} - \angle C$$

Solution-2.

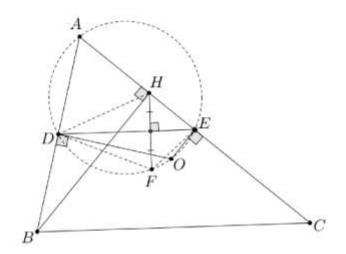
The circumcenter of $\triangle ABC$ denote by O. We know that quadrilateral ADOE is cyclic. Also we know that AD = HD = DB, therefore:

$$\angle A = \angle DHA = 180^{\circ} - \angle DHE = 180^{\circ} - \angle DFE \implies ADFE : cyclic$$

So we can say ADFOE is cyclic, therefore quadrilateral DFOE is cyclic.

$$\angle C = \angle DEA = \angle DEF = \angle DOF$$

In the other hand: $\angle C = \angle DOB$ so $\angle DOF = \angle DOB$, therefore B, F, O are collinear.



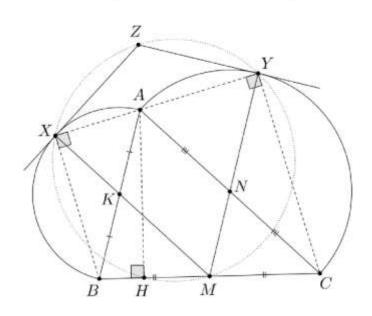
3. In triangle ABC, the points M, N, K are the midpoints of BC, AC, AB respectively. Let ω_B and ω_C be two semicirculars with diameter AC and AB outside the triangle respectively. Suppose that MK and MN intersect ω_C and ω_B at X and Y respectively. If the point Z be the intersection of the tangent to ω_C and ω_B in X and Y respectively, prove that: $AZ \perp BC$

Proposed by Mahdi Etesami Fard

Solution-1.

Let point H on BC such that $AH \perp BC$. Therefore quadrilaterals AXBH and AYCH are cyclic. We know that KM and MN are parallel to AC and AB respectively. So we can say $\angle AKX = \angle ANY = \angle A$, therefore $\angle ABX = \angle ACY = \frac{\angle A}{2}$ and $\angle XAB = \angle YAC = 90^{\circ} - \frac{\angle A}{2}$. So X, A, Y are collinear.

$$\angle AHX = \angle ABX = \frac{\angle A}{2}$$
, $\angle AHY = \angle ACY = \frac{\angle A}{2}$ \Rightarrow $\angle XHY = \angle XMY = \angle ACY = \frac{\angle A}{2}$



Therefore quadrilateral XHMY is cyclic. Also we know that $\angle MXZ = \angle MYZ = 90^{\circ}$, therefore quadrilateral MXZY is cyclic. So we can say ZXHMY is cyclic. therefore quadrilateral HXZY is cyclic.

In the other hand: $\angle ZYX = \angle ACY = \frac{\angle A}{2}$

$$\angle ZHX = \angle ZYX = \frac{\angle A}{2}$$
, $\angle AHX = \frac{\angle A}{2}$ \Rightarrow $\angle ZHX = \angle AHX$

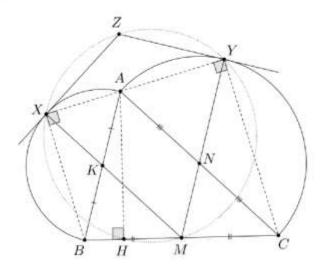
So the points Z, A, H are collinear, therefore $AZ \perp BC$.

Solution-2.

Let point H on BC such that $AH \perp BC$. We know that KM and MN are parallel to AC and AB respectively. So we can say $\angle AKX = \angle ANY = \angle A$, therefore $\angle ABX = \angle ACY = \frac{\angle A}{2}$ and $\angle XAB = \angle YAC = 90^{\circ} - \frac{\angle A}{2}$. So X, A, Y are collinear.

$$\Rightarrow$$
 $\angle ZXY = \angle ZYX = \frac{\angle A}{2} \Rightarrow ZX = ZY$

So the point Z lie on the radical axis of two these semicirculars. Also we know that the line AH is the radical axis of two these semicirculars. Therefore the points Z, A, H are collinear, therefore $AZ \perp BC$.



4. Suppose that ABC be the equilateral triangle with circumcircle ω and circumcenter O. Let P be the point on the arc BC (the arc witch A doesn't lie). Tangent to ω in P intersects extension of AB and AC at K and L respectively. Show that: ∠KOL > 90°

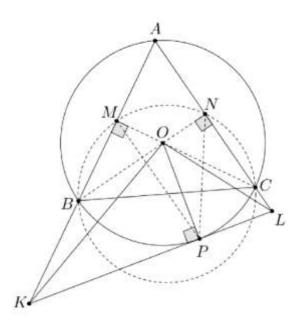
Proposed by Iman Maghsoudi

Solution-1.

Suppose that M and N be the midpoints of AB and AC respectively. We know that quadrilateral BMNC is cyclic. Also $\angle BPC = 120^{\circ} > 90^{\circ}$, so we can say the point P is in the circumcircle of quadrilateral BMNC. Therefore: $\angle MPN > \angle MBN = 30^{\circ}$

In the other hand, quadrilaterals TMOP and NOPC are cyclic. Therefore:

$$\angle MKO = \angle MPO$$
, $\angle NLO = \angle NPO \Rightarrow \angle AKO + \angle ALO = \angle MPN > 30^{\circ}$
 $\Rightarrow \angle KOL = \angle A + \angle AKO + \angle ALO > 90^{\circ}$



Solution-2.

Suppose that $\angle KOL \le 90^{\circ}$, therfore $KL^2 \le OK^2 + OL^2$. Assume that R is the radius of a circumcircle $\triangle ABC$. Let BK = x and LC = y and AB = AC = BC = a. According to law of cosines in triangle AKL, we have:

$$KL^2 = AK^2 + AL^2 - AK.AL.cos(\angle A) \implies KL^2 = (a+x)^2 + (a+y)^2 - (a+x)(a+y)$$

In the other hand:

$$KB.KA = OK^2 - R^2 \quad \Rightarrow \quad OK^2 = R^2 + x(a+x)$$

$$LC.LA = OL^2 - R^2 \implies OL^2 = R^2 + y(a+y)$$

We know that $KL^2 \leq OK^2 + OL^2$ and $a = R\sqrt{3}$, therefore:

$$(a+x)^{2} + (a+y)^{2} - (a+x)(a+y) \le 2R^{2} + x(a+x) + y(a+y)$$

$$\Rightarrow R^{2} \le xy \quad (1)$$

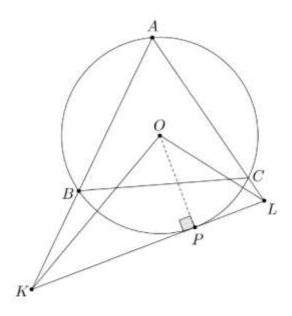
KL is tangent to circumcircle of $\triangle ABC$ at P. So we have:

$$KP^2 = KB.KA = x(a+x) > x^2 \implies KP > x$$
 (2)

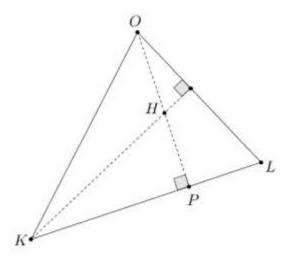
$$LP^2 = LC.LA = y(a+y) > y^2 \Rightarrow LP > y$$
 (3)

According to inequality 2, 3 we can say: xy < KP.LP (4)

Now According to inequality 1, 4 we have: $R^2 < KP.LP$ (5)



We know that $\angle KOL \le 90^{\circ}$, therefore KOL is acute-triangle. Suppose that H is orthocenter of $\triangle KOL$. So the point H lie on OP and we can say $HP \le OP$.



In other hand, $\angle HKP = \angle POL$ and $\angle KHP = \angle OLP$, therefore two triangles THP and OPL are similar. So we have:

$$\frac{KP}{HP} = \frac{OP}{LP} \quad \Rightarrow \quad KP.LP = HP.OP \le OP^2 = R^2$$

But according to inequality 5, we have $R^2 < KP.LP$ and it's a contradiction. Therfore $\angle KOL > 90^{\circ}$.

- 5. a) Do there exist 5 circles in the plane such that every circle passes through exactly 3 center of other circles?
- b) Do there exist 6 circles in the plane such that every circle passes through exactly 3 center of other circles?

Proposed by Morteza Saghafian

a) Solution.

There aren't such 5 circles. Suppose that these circles exists, therefore their centers are 5 points that each point has same distance from 3 other points and has diffrent distance from the remaining point. We draw an arrow from each point to it's diffrent distance point.

 lemma 1. We don't have two points such O_i, O_j that each one is the diffrent distance point of the other one.

proof. If we have such thing then O_i and O_j both have same distance to the remaining points, therefore both of them are circumcenter of the remaining points, which is wrong.

lemma 2. We don't have 4 points such O_i, O_j, O_k, O_l that O_i, O_j put their arrow in O_k and O_K puts it's arrow in O_l.

proof. If we name the remaining point O_m then the distances of O_i from O_j , O_l , O_m are equal and the distances of O_j from O_i , O_l , O_m are equal. Therefore each of O_l , O_m is the diffrent distance point of another which is wrong (according to lemma 1).

so each point sends an arrow and recives an arrow. Because of lemma 1 we don't have 3 or 4 points cycles. Therefore we only have one 5 points cycle. So each pair of these 5 points should have equal distance, which is impossible.

b) Solution.

in the picture below, we have 6 points in the plane such that for every point there exists exactly 3 other points on a circle with radius 1 centimeter.

