2009 Balkan MO Shortlist

Algebra

- **A1** Let $N \in \mathbb{N}$ and $x_k \in [-1,1]$, $1 \le k \le N$ such that $\sum_{k=1}^N x_k = s$. Find all possible values of $\sum_{k=1}^N |x_k|$
- **A2** Let ABCD be a square and points $M \in BC$, $N \in CD$, $P \in DA$, such that $\angle BAM = x$, $\angle CMN = 2x$, $\angle DNP = 3x$
 - Show that, for any $x \in (0, \frac{\pi}{8})$, such a configuration exists
 - Determine the number of angles $x \in (0, \frac{\pi}{8})$ for which $\angle APB = 4x$
- A3 Denote by S(x) the sum of digits of positive integer x written in decimal notation. For k a fixed positive integer, define a sequence $(x_n)_{n\geq 1}$ by $x_1=1$ and $x_{n+1}=S(kx_n)$ for all positive integers n. Prove that $x_n<27\sqrt{k}$ for all positive integer n.
- A4 Denote by S the set of all positive integers. Find all functions $f: S \to S$ such that

$$f(f^2(m) + 2f^2(n)) = m^2 + 2n^2$$

for all $m, n \in S$.

Bulgaria

A5 Given the monic polynomial

$$P(x) = x^{N} + a_{N-1}x^{N-1} + \ldots + a_{1}x + a_{0} \in \mathbb{R}[x]$$

of even degree N=2n and having all real positive roots x_i , for $1 \le i \le N$. Prove, for any $c \in [0, \min_{1 \le i \le N} \{x_i\})$, the following inequality

$$c + \sqrt[N]{P(c)} \le \sqrt[N]{a_0}$$

We denote the set of nonzero integers and the set of non-negative integers with \mathbb{Z}^* and \mathbb{N}_0 , respectively. Find all functions $f: \mathbb{Z}^* \to \mathbb{N}_0$ such that: $a) \ f(a+b) \ge \min(f(a), f(b))$ for all a, b in \mathbb{Z}^* for which a+b is in \mathbb{Z}^* . $b) \ f(ab) = f(a) + f(b)$ for all a, b in \mathbb{Z}^* .

$$P(x) = c_0 X^n + c_1 X^{n-1} + \ldots + c_{n-1} X + c_n$$

be a polynomial with integer coefficients, such that $|c_n|$ is a prime number and

$$|c_0| + |c_1| + \ldots + |c_{n-1}| < |c_n|$$

Prove that the polynomial P(X) is irreducible in the $\mathbb{Z}[x]$

A8 For every positive integer m and for all non-negative real numbers x, y, z denote

$$K_m = x(x-y)^m (x-z)^m + y(y-x)^m (y-z)^m + z(z-x)^m (z-y)^m$$

- Prove that $K_m \geq 0$ for every odd positive integer m
- Let $M = \prod_{cuc} (x-y)^2$. Prove, $K_7 + M^2 K_1 \geq M K_4$
- Geometry
- In the triangle ABC, $\angle BAC$ is acute, the angle bisector of $\angle BAC$ meets BC at D,K is the foot of the perpendicular from B to AC, and $\angle ADB = 45^o$. Point P lies between K and C such that $\angle KDP = 30^o$. Point Q lies on the ray DP such that DQ = DK. The perpendicular at P to AC meets KD at L. Prove that $PL^2 = DQ \cdot PQ$.
- **G2** If ABCDEF is a convex cyclic hexagon, then its diagonals AD, BE, CF are concurrent if and only if $\frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{EA} = 1$.

Alternative version. Let ABCDEF be a hexagon inscribed in a circle. Then, the lines AD, BE, CF are concurrent if and only if $AB \cdot CD \cdot EF = BC \cdot DE \cdot FA$.

- **G3** Let ABCD be a convex quadrilateral, and P be a point in its interior. The projections of P on the sides of the quadrilateral lie on a circle with center O. Show that O lies on the line through the midpoints of AC and BD.
- **G4** Let MN be a line parallel to the side BC of a triangle ABC, with M on the side AB and N on the side AC. The lines BN and CM meet at point P. The circumcircles of triangles BMP and CNP meet at two distinct points P and Q. Prove that $\angle BAQ = \angle CAP$.

Liubomir Chiriac, Moldova

- Let ABCD be a convex quadrilateral and S an arbitrary point in its interior. Let also E be the symmetric point of S with respect to the midpoint K of the side AB and let E be the symmetric point of E with respect to the midpoint E of the side E. Prove that E point E point of E with respect to the midpoint E of the side E point of E prove that E point E point of E with respect to the midpoint E of the side E point of E prove that E point of E prove that E point of E po
- G6 Two circles O_1 and O_2 intersect each other at M and N. The common tangent to two circles nearer to M touch O_1 and O_2 at A and B respectively. Let C and D be the reflection of A and B respectively with respect to M. The circumcircle of the triangle DCM intersect circles O_1 and O_2 respectively at points E and F (both distinct from M). Show that the circumcircles of triangles MEF and NEF have same radius length.

Combinatorics

- C1 A 9×12 rectangle is partitioned into unit squares. The centers of all the unit squares, except for the four corner squares and eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres C_1, C_2, \ldots, C_{96} in such way that the following to conditions are both fulfilled
 - i) the distances $C_1C_2,\ldots,C_{95}C_{96},C_{96}C_1$ are all equal to $\sqrt{13}$,
 - ii) the closed broken line $C_1C_2 \dots C_{96}C_1$ has a centre of symmetry?

Bulgaria

C2 Let A_1, A_2, \ldots, A_m be subsets of the set $\{1, 2, \ldots, n\}$, such that the cardinal of each subset A_i , such $1 \le i \le m$ is not divisible by 30, while the cardinal of each of the subsets $A_i \cap A_j$ for $1 \le i, j \le m, i \ne j$ is divisible by 30. Prove

$$2m - \left\lfloor \frac{m}{30} \right\rfloor \le 3n$$

Number Theory

N1 Solve the given equation in integers

$$y^3 = 8x^6 + 2x^3y - y^2$$

N2 Solve the equation

$$3^x - 5^y = z^2$$
.

in positive integers.

Greece

N3 Determine all integers $1 \le m, 1 \le n \le 2009$, for which

$$\prod_{i=1}^{n} \left(i^3 + 1\right) = m^2$$