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�1. Prove that there are at least 100! ways to partition the number 100! into summands from the set
{1!, 2!, 3!, . . . , 99!}. (Partitions di�ering in the order of summands are considered the same; any summand
can be taken multiple times. We remind that n! = 1 · 2 · . . . · n.)

Solution. Let us prove by induction on n > 4 that there are at least n! ways to partition the number
n! into summands from {1!, 2!, . . . , (n− 1)!}.

For n = 4, if we use only the summands 1!, 2! there are 13 ways to partition 4! as 2! can be used from
0 to 12 times. If 3! is used 1 time, then 4!− 3! = 18 can be partitioned using 1!, 2! in 10 ways. We get at
least one more partition if we use 3! two times. So, there are at least 24 such partitions as needed.

Suppose now the statement holds for n and let us prove it for n+1. To partition (n+1)!, the summand
n! can be used i times for 0 6 i 6 n. By the hypothesis, for every such i, the remaining number (n+1)!−
− i · n! = (n + 1 − i) · n! can be partitioned into the summands {1!, . . . , (n − 1)!} in at least n! ways as
follows. For any partition of n! take each summand appearing say k times and write it (n+ 1− i)k times.
Hence we obtain at least (n + 1) · n! = (n + 1)! ways to partition the number (n + 1)! as desired. The
original problem follows for n = 100 then.

�2. Find the largest real C such that for all pairwise distinct positive real a1, a2, . . . , a2019 the following
inequality holds

a1
|a2 − a3|

+
a2

|a3 − a4|
+ . . .+

a2018
|a2019 − a1|

+
a2019
|a1 − a2|

> C.

2. The answer is 1010.
Solution. Without loss of generality we assume that min(a1, a2, . . . , a2019) = a1. Note that if a, b, c

(b 6= c) are positive, then a
|b−c| > min(a

b
, a
c
). Hence

S =
a1

|a2 − a3|
+ · · ·+ a2019

|a1 − a2|
> 0 + min

(
a2
a3

,
a2
a4

)
+ · · ·+min

(
a2017
a2018

,
a2017
a2019

)
+

a2018
a2019

+
a2019
a2

= T.

Take i0 = 2 and for each ` > 0 let i`+1 = i` + 1 if ai`+1 > ai`+2 and i`+1 = i` + 2 otherwise. There is an
integral k such that ik < 2018 and ik+1 > 2018. Then

T >
a2
ai1

+
ai1
ai2

+ · · ·+ aik
aik+1

+
a2018
a2019

+
a2019
a2

= A. (1)

We have 1 6 i`+1 − i` 6 2, therefore ik+1 ∈ {2018, 2019}.
Since

2018 6 ik+1 = i0 + (i1 − i0) + · · ·+ (ik+1 − ik) 6 2(k + 2), (2)

it follows that k > 1007. Consider two cases.
(i) k = 1007. Then in the inequality (2) we have equalities everywhere, in particular ik+1 = 2018.

Applying AM�GM inequality for k + 3 numbers to (1) we obtain A > k + 3 > 1010.
(ii) k > 1008. If ik+1 = 2018 then we get A > k + 3 > 1011 by the same argument as in the case (i).

If ik+1 = 2019 then applying AM�GM inequality to k + 2 summands in (1) (that is, to all the summands
except a2018

a2019
) we get A > k + 2 > 1010.

So we have S > T > A > 1010. For a1 = 1+ ε, a2 = ε, a3 = 1+2ε, a4 = 2ε, . . . , a2016 = 1008ε, a2017 =
= 1 + 1009ε, a2018 = ε2, a2019 = 1 we obtain S = 1009 + 1008ε+ 1008ε

1+1009ε−ε2 +
1+1009ε
1−ε2 . Then lim

ε→0
S = 1010,

which means that the constant 1010 cannot be increased.

�3. The extension of median CM of the triangle ABC intersects its circumcircle ω at N . Let P and Q
be the points on the rays CA and CB respectively such that PM ‖ BN and QM ‖ AN . Let X and Y
be the points on the segments PM and QM respectively such that PY and QX are tangent to ω. The
segments PY and QX intersect at Z. Prove that the quadrilateral MXZY is circumscribed.

Solution.



Lemma. The points K and L lie on the sides BC and AC of a triangle ABC. The segments AK and
BL intersect at D. Then the quadrilateral CKDL is circumscribed if and only if AC −BC = AD−BD.

Proof. Let CKDL be circumscribed and its incircle touches LC, CK, KD, DL at X, Y , Z, T
respectively (see Fig. 1). Then

AC −BC = AX −BY = AZ −BT = AD −BD.
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Now suppose that AC − BC = AD − BD. Let the tangent to the incircle of BLC di�erent from
AC meets the segments BL and BC at D1 and K1 respectively. If K = K1 then the lemma is proved.
Otherwise AD1−BD1 = AC −BC = AD−BD or AD1−BD1 = AD−BD. In the case when D lies on
the segment BD1 (see Fig. 2) we have

AD1 −BD1 = AD −BD ⇒ AD1 − AD = BD1 −BD ⇒ AD1 − AD = DD1.

But the last equation contradicts the triangle inequality, since AD1 − AD < DD1. The case when D is
outside the segment BD1 is similar.

Back to the solution of the problem, let PY and QX touch ω at Y1 and X1 respectively. Since ACBN
is cyclic and PM ‖ BN we have ∠ACN = ∠ABN = ∠AMP , i. e. the circumcircle of 4AMC is tangent
to the line PM . Thus PM2 = PA ·PC. But PA ·PC = PY 2

1 , and therefore PM = PY1. In the same way
we have QM = QX1. Obviously ZX1 = ZY1. It remains to note that the desired result follows from the
Lemma because

PM −QM = PY1 −QX1 = (PZ + ZY1)− (QZ + ZX1) = PZ −QZ ⇒ PM −QM = PZ −QZ.
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Note. This solution does not use the comdition that M is the midpoint of AB.
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�4. An isosceles triangle ABC with AC = BC is given. Point D is chosen on the side AC. The circle
S1 of radius R with the center O1 touches the segment AD and the extensions of BA and BD over the
points A and D, respectively. The circle S2 of radius 2R with the center O2 touches the segment DC and
the extensions of BD and BC over the points D and C, respectively. Let the tangent to the circumcircle
of the triangle BO1O2 at the point O2 intersect the line BA at point F . Prove that O1F = O1O2.

Solution By condition, in the triangle ABC we have ∠A = ∠B. It is evident that ∠O1BO2 = ∠B/2.
Let ` be the straight line passing through O2 parallel to AC. By the problem condition ` touches S1 (say, at
a point N). Let also K be the tangency point of S1 and BA. Then the clockwise rotation about the point
O1 through the angle NO1K transposes ` to BA and thus transposes the point O2 to some point O ∈ BA.
Hence O1O = O1O2 and ∠OO1O2 = ∠NO1K = 180◦−∠A = 180◦−∠B, so ∠O1O2O = ∠B/2 = ∠O1BO2.
The latter does mean that the line O2O is the tangent to the circumcircle of 4BO1O2. Hence F = O, and
O1F = O1O2, as was to be proved.
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�5. Let n > 1 be a positive integer. A function f : I → Z is given, where I is the set of all integers coprime
with n. (Z is the set of integers). A positive integer k is called a period of the function f if f(a) = f(b) for
all a, b ∈ I such that a ≡ b (mod k). It is known that n is a period of f. Prove that the minimal period of
the function f divides all its periods.
Example. For n = 6, the function f with period 6 is de�ned entirely by its values f(1) and f(5). If
f(1) = f(5), then the function has minimal period Pmin = 1, and if f(1) 6= f(5), then Pmin = 3.



�6. On a polynomial of degree three it is allowed to perform the following two operations arbitrarily
many times:

(i) reverse the order of its coe�cients including zeroes (for instance, from the polynomial x3 − 2x2 − 3
we can obtain −3x3 − 2x+ 1);

(ii) change polynomial P (x) to the polynomial P (x+ 1).
Is it possible to obtain the polynomial x3 − 3x2 + 3x− 3 from the polynomial x3 − 2?
The answer is no.
Solution I. The original polynomial x3 − 2 has a unique real root. The two transformations clearly

preserve this property. If α is the only real root of P (x), then the �rst operation produces a polynomial
with root 1

α
, and the second operation gives a polynomial with root α − 1. Since the root of the original

polynomial is 3
√

2, and thar of the resulting polynomial is 1 + 3
√

2, the problem is reduced to the question
whether it is possible to obtain the latter number from the former by operations x 7→ 1

x
and x 7→ x − 1.

Let us apply one more operation x 7→ x−1 (so as to transform 3
√

2 to itself) and reverse all the operations.
It appears then that the number 3

√
2 is transformed to itself by several operations of the form x 7→ 1

x
and

x 7→ x + 1. It is easy to see that the composition of any number of such operations is a fractional-linear
function x 7→ ax+b

cx+d
, where a, b, c, d are non-negative integers and ad− bc = 1. Each operation x 7→ x + 1

increases a + b + c + d, and, since we started with this operation, the resulting function is not identical.
Thus 3

√
2 is transformed to itself by some such composition. This means however that 3

√
2 is a root of

non-zero polynomial x(cx+d)−ax− b with integral coe�cients and degree at most 2, which is impossible.
Solution II. The original polynomial has one real and two conjugate complex roots. We have seen

above that under the two operations these roots are subject to transforms x 7→ 1
x
and x 7→ x − 1. Note

that both imaginary roots of the original polynomial have negative real part. It is easy to check that this
property is preserved under the two operations. However the real parts of all the roots of the desired
polynomial are positive, a contradiction.

Solution III. For a polynomial P (x) = ax3 + bx2 + cx + d we de�ne ∆(P ) = 3ad − bc. The �rst
operation transforms P (x) to dx3 + cx2 + bx+ a and does not change ∆. The second operation transforms
P (x) to Q(x) = ax3 + (b+ 3a)x2 + (c+ 3a+ 2b)x+ (d+ a+ b+ c), for which ∆(Q) = 3(d+ a+ b+ c)a−
− (b+ 3a)(c+ 3a+ 2b) = ∆(P )− (2b2 + 6ab+ 6a2) < ∆(P ). Thus the permitted operation can not increase
∆. On the other hand, for the original polynomial ∆(P ) = −6, and for the resulting polynomial it must
be 0.
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