
The 15th Romanian Master of Mathematics Competition

Day 1: Wednesday, February 28th, 2024, Bucharest

Language: English

Problem 1. Let n be a positive integer. Initially, a bishop is placed in each square
of the top row of a 2n × 2n chessboard; those bishops are numbered from 1 to 2n,
from left to right. A jump is a simultaneous move made by all bishops such that
the following conditions are satisfied:

� each bishop moves diagonally, in a straight line, some number of squares, and

� at the end of the jump, the bishops all stand in different squares of the same
row.

Find the total number of permutations σ of the numbers 1, 2, . . . , 2n with the fol-
lowing property: There exists a sequence of jumps such that all bishops end up on
the bottom row arranged in the order σ(1), σ(2), . . . , σ(2n), from left to right.

Problem 2. Consider an odd prime p and a positive integer N < 50p. Let
a1, a2, . . . , aN be a list of positive integers less than p such that any specific value
occurs at most 51

100N times and a1 + a2 + · · ·+ aN is not divisible by p. Prove that
there exists a permutation b1, b2, . . . , bN of the ai such that, for all k = 1, 2, . . . , N ,
the sum b1 + b2 + · · ·+ bk is not divisible by p.

Problem 3. Given a positive integer n, a set S is n-admissible if

� each element of S is an unordered triple of integers in {1, 2, . . . , n},

� |S| = n− 2, and

� for each 1 ≤ k ≤ n− 2 and each choice of k distinct A1, A2, . . . , Ak ∈ S,

|A1 ∪A2 ∪ · · · ∪Ak| ≥ k + 2.

Is it true that, for all n > 3 and for each n-admissible set S, there exist pairwise
distinct points P1, . . . , Pn in the plane such that the angles of the triangle PiPjPk

are all less than 61◦ for any triple {i, j, k} in S?

Each problem is worth 7 marks.

Time allowed: 4 1
2 hours.



The 15th Romanian Master of Mathematics Competition

Day 2: Thursday, February 29th, 2024, Bucharest

Language: English

Problem 4. Fix integers a and b greater than 1. For any positive integer n, let rn
be the (non-negative) remainder that bn leaves upon division by an. Assume there
exists a positive integer N such that rn < 2n/n for all integers n ≥ N . Prove that a
divides b.

Problem 5. Let BC be a fixed segment in the plane, and let A be a variable
point in the plane not on the line BC. Distinct points X and Y are chosen on the

rays
−→
CA and

−−→
BA, respectively, such that ∠CBX = ∠Y CB = ∠BAC. Assume that

the tangents to the circumcircle of ABC at B and C meet line XY at P and Q,
respectively, such that the points X, P , Y , and Q are pairwise distinct and lie on the
same side of BC. Let Ω1 be the circle through X and P centred on BC. Similarly,
let Ω2 be the circle through Y and Q centred on BC. Prove that Ω1 and Ω2 intersect
at two fixed points as A varies.

Problem 6. A polynomial P with integer coefficients is square-free if it is not
expressible in the form P = Q2R, where Q and R are polynomials with integer
coefficients and Q is not constant. For a positive integer n, let Pn be the set of
polynomials of the form

1 + a1x+ a2x
2 + · · ·+ anx

n

with a1, a2, . . . , an ∈ {0, 1}. Prove that there exists an integer N so that, for all
integers n ≥ N , more than 99% of the polynomials in Pn are square-free.

Each problem is worth 7 marks.

Time allowed: 4 1
2 hours.



The 15th Romanian Master of Mathematics Competition

Day 1 — Solutions

Problem 1. Let n be a positive integer. Initially, in each square of the top row on the 2n × 2n

chessboard, a bishop is placed; those bishops are numbered from 1 to 2n, from left to right. A
jump is a simultaneous move made by all bishops such that the following conditions are satisfied:

Each bishop moves diagonally any number of squares; and

At the end of the jump, the bishops all stand in different squares of the same row.

Find the total number of permutations σ (of numbers 1, 2, . . . , 2n) with the following property:
There exists a sequence of jumps such that all bishops end up on the bottom row arranged in
the order σ(1), σ(2), . . . , σ(2n), from left to right.

Israel

Solution 1. The required number is 2n−1. On a jump, every bishop moves the same number of
rows up or down; call this number of rows the length of the jump.

Step 1. We show that the length of any jump is of the form 2d for some integer d ≤ n − 1.
Assign each bishop the number of the column it is situated on before the jump. Let k be the
length of the jump; then each bishop’s column number either increases by k, or decreases by k
in the jump.

Thus, bishops 1, 2, . . . , k should move to columns k + 1, k + 2, . . . , 2k, as they cannot move
leftwards. On the other hand, after the jump columns 1, 2, . . . , k should be filled by the bishops
k + 1, k + 2, . . . , 2k. So the leftmost 2k bishops still fill the columns 1, 2, . . . , 2k after the jump.

Repeating the argument shows that the next k bishops move rightwards, and the next k bish-
ops beyond move leftwards, and so on and so forth. Finally, the bishops all split into contiguous
groups of length 2k, and in each group the leftmost k bishops move rightwards, whereas the
rightmost k bishops move leftwards. Hence 2k | 2n, so k is indeed of the form 2d with d ≤ n− 1.

Step 2. To make a more explicit description of the column change during the jump, assign each
column the n-digit binary expansion of less 1 its number, augmented with zeroes leftwards if
necessary. It is then easily seen that a jump of length 2d just switches the d-th digit from the
left, 0 to 1 and vice versa.

Thus, the resulting permutation also has the following form: For every d = 0, 1, . . . , n − 1,
the d-th digit is either swapped for all bishops, or it is preserved for them all.

Moreover, notice that the total length of all jumps is odd, so there will be an odd number of
jumps of length 1. Hence the 0-th (the rightmost) digit will be switched anyway. This leaves the
room for 2n−1 possible permutations.

Step 3. It remains to show that all 2n−1 permutations are indeed possible. Let us show how to
reach any of them.

Start by getting to the bottom row by downward jumps of lengths 1, 2, 4, . . . , 2n−1 that will
switch all n digits.

Now, if we want to switch the i-th digit back, 1 ≤ i ≤ n − 1, make two upward jumps
of length 2i−1, followed by a downward jump of length 2i. Combine such modifications for all
possible digit combinations to get all desired permutations.

Solution 2. Proceed until the end of Step 1 just like in the first solution. Then extend the board
to a vertical strip of width 2n, this will not affect the result, as it will be seen at the end of the
proof.
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We will show that any two jumps commute. Consider two jumps of length p and q with p < q,
and call them the p-jump and the q-jump. As described in the first step, the bishops will be split
in contiguous groups. For the p-jump, we look at groups of length p, call these p-groups; for the
q-jump, we look at groups of length q, call these q-groups.

Since 2p divides q, any p-group is fully contained in a single q-group, and a q-group contains
an even number of p-groups. First, let’s look at the first two q-groups, and denote by g1, . . . , g2k
the p−groups contained in the first q-group, and g′1, . . . , g

′
2k the p-groups contained in the second

q-group, where 2k = q/p. The p-jump will swap any g2i−1 with g2i, and same for their g′

counterparts, whereas a q-jump will swap gj with g′j . When putting these together, it follows
that applying both jumps in either order gives the same result: g2i−1 is swapped with g′2i and g2i
is swapped with g′2i−1.

Repeat now the same argument for the next two q-groups, and so on and so forth, until the
entire row will be accounted for.

We will now establish a bijection from the odd numbers between 1 and 2n − 1 to the desired
permutations. Let x =

∑
2kak be an odd number between 1 and 2n−1, where each ak is either 0

or 1, in particular a0 = 1. Perform ak jumps of length 2k in increasing order of k, then perform
2n − 1 − x additional jumps of length 1 in order to reach the final row. This will result in a
permutation σ, and set f(x) = σ. This provides a well defined function f .

To prove f injective, it suffices to look at bishop numbered 1 and show that it will end up in
position x + 1. For any of jump of length 2k, this bishop will move rightwards, as its position
just before the jump was 1 + a0 + 2a1 + . . . + 2k−1ak−1 ≤ 2k. Therefore, before the additional
jumps of length 1, this bishop will reach position x + 1. Any two jumps of same length cancel
each other out, and there is an even number of additional jumps of length 1, so the final position
will also be x+ 1. Consequently, f is injective.

To prove f surjective, consider a σ with the desired property, let bk be the number of jumps
of length 2k, and let ak be the remainder of bk modulo 2. Since the total length of all jumps
is odd, there has to be an odd number of jumps of length 1, so a0 = 1. Let x =

∑
2kak, and

note that this is an odd number between 1 and 2n − 1. From Step 2 in Solution 1, the order of
the jumps does not matter. Since two consecutive jumps of same length cancel each other out,
performing ak jumps of length 2k is the same as performing bk jumps of length 2k. So f(x) = σ,
as the 2n − 1− x additional jumps of length 1 at the end also cancel each other out.

Solution 3. Run again Step 1 through in Solution 1.
Look at the two halves 1, . . . , 2n−1 and 2n−1 + 1, . . . , 2n and let h(i) = i ± 2n−1 be the

counterpart of i in the other half, where the sign is chosen appropriately. A jump of length 2n−1

will swap the halves between themselves, so i will be swapped with h(i). From Step 1, it follows
that any shorter jump will only perform swaps inside a single half, and will act the same way on
the other half; specifically, if a jump swaps i with j, it will also swap h(i) with h(j).

Furthermore, applying two jumps of 2n−1 will just cancel each other out, regardless of any
other jumps in between, because we swapped i with h(i) twice, and the inner configuration of
each half is changed in the same way.

Induct now on n. There are 2n−2 possible permutations for the 2n−1×2n−1 board. Performing
jumps of the same length on a 2n × 2n board gives the same configuration in each of the two
halves. Now we can either apply a jump of length 2n−1, which will swap the halves, or we can
apply two jumps of length 2n−2, which will cancel each other. This provides a construction
for 2n−1 permutations in the 2n × 2n board.

To show that these are the only ones, consider now a valid permutation for the 2n× 2n board
which is obtained from some jumps. First, discard the jumps of length 2n−1, then attempt to
apply the rest on the 2n−1 × 2n−1 board. If a jump would exit the board, then make the jump
of the same length in the opposite direction instead, which will stay on the board because its
length is at most 2n−2. Since the length is the same, the resulting bishop configuration is also
the same. Since the total length of the moves executed so far is odd, we can make an even

2
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number of moves of length 1 in order to reach the final row of the 2n−1 × 2n−1 board, and this
will not change the configuration in the end. Therefore, we obtain a corresponding permutation
for the n− 1 case which describes the configuration in each of the halves. From there, the only
variations are whether the halves are swapped or not, depending on whether the number of jumps
of length 2n−1 was odd or even. So this valid permutation corresponds to one constructed in the
earlier paragraph, which completes the induction.

3
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Problem 2. Consider an odd prime p and an integer N < 50p. Let a1, a2, . . . , aN be a
list of positive integers less than p such that any specific value occurs at most 51

100N times and
a1 + a2 + · · ·+ aN is not divisible by p. Prove that there exists a permutation b1, b2, . . . , bN of
the ai such that b1 + b2 + · · ·+ bk is not divisible by p for all k = 1, 2, . . . , N .

United Kingdom, Will Steinberg

Solution 1. The argument hinges on the lemma below.

Lemma. Let n be a positive integer and let c1, c2, . . . , cn be a list of positive integers less than p
such that each specific value occurs at most 1

2(n+ 1) times. Fix a residue r 6≡ c1 + c2 + · · ·+ cn
(mod p). Then there exists a permutation d1, d2, . . . , dn of the ci such that r 6≡ d1 +d2 + · · ·+dk
(mod p) for all k = 1, 2, . . . , n.

Proof. Induct on n. The base case, n = 1, is clear, so let n ≥ 2. Consider the residue a that
occurs the most times amongst the ci.

If a 6≡ r (mod p), set d1 = a and complete the rest of the list using the inductive hypothesis
with r replaced by r−a, as any residue will occur amongst the remaining ci at most 1

2

(
(n−1)+1

)
times. Indeed, if no other residue occurs as many times as a, then the number of occurrences
of any residue amongst the remaining ci is at most 1

2(n + 1) − 1 = 1
2(n − 1) < 1

2

(
(n − 1) + 1

)
.

Otherwise, if there is another residue that occurs as many times as a, their number of occurrences
has to be at most 1

2n = 1
2

(
(n− 1) + 1

)
.

If a ≡ r (mod p), choose a residue b 6≡ a (mod p) amongst the ci; the choice is possible, as
1
2(n + 1) < n. Set d1 = b and d2 = a, noting that d1 + d2 = b + a ≡ r + b 6≡ r (mod p). If no
other residue occurs as many times as a, then each residue occurs amongst the remaining ci at
most 1

2(n + 1)− 1 = 1
2(n− 1) = 1

2

(
(n− 2) + 1

)
times. If a occurs at most 1

2(n− 1) times, then
clearly the same will hold for any residue in the remaining ci. The remaining possibility is that
a and another residue both occur 1

2n times and n is even, meaning that that the other residue
has to be b, and there are no other residues; it is clear that the occurrences in the remaining ci
are precisely 1

2(n − 2) < 1
2

(
(n − 2) + 1

)
. The inductive hypothesis then applies with r replaced

by −b to complete the list. This establishes the lemma.

Back to the problem, if each residue occurs at most 1
2(N + 1) times, the conclusion follows

by the Lemma.
Otherwise, there is exactly one residue a that occurs M > 1

2(N + 1) times amongst the ai.
Note that 2M − N > (N + 1) − N = 1, to set bi = a, i = 1, 2, . . . , 2M − N . Letting α = 50,
note also that 2M −N ≤ 2 · α+1

2α N −N = 1
αN < p, so none of the first 2M −N partial sums is

divisible by p, as p is prime.
To complete the proof, apply the Lemma with r = (N −2M)a to the remaining ai. There are

left N − (2M −N) = 2(N −M) such, a occurs M − (2M −N) = N −M times amongst these and
any other residue occurs at most N −M times, both of which do not exceed 1

2

(
2(N −M) + 1

)
.

Solution 2. The permutation will be constructed step by step, first choosing b1, then b2, and so
on. At every step, sort the remaining values by their number of appearances from most frequent
to least frequent, and from largest to smallest for the situations where the number of appearances
is the same. After that, attempt to select the first value from the sorted list; if this results in a
partial sum that is divisible by p, then attempt to select the second value from the list, which
will result in a partial sum that is not divisible by p as the first and second values are different
modulo p. Label the step as type (I) if the first value has been selected and as type (II) if the
second value has been selected.

Lemma. Any step of type (II) is followed by a step of type (I).

Proof. Suppose that step j is of type (II). Denote the first two values according to the sorting
order with a and b, and let s be the partial sum until this step. Since step j is type (II), s+a ≡ 0

4
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(mod p). At step j + 1, the first value according to the sorting order will still be a. Since
s+ b+ a 6≡ 0 (mod p), a can be selected for step j + 1, so step j + 1 is of type (I).

Now suppose, for the sake of contradiction, that this procedure fails. Let k + 1 < N be the
first step when neither (I) nor (II) is possible. In particular, this means that there is a single
value a remaining, and it occurs N − k times. Let j be the smallest number with the following
property: at every step between j and k+ 1, the value a is the first one according to the sorting
order; in particular, a is the most frequently occurring one. Such a j exists because k+1 satisfies
this property.

If j > 1, then at step j − 1 there is another value b that comes before a in the sorted order.
Suppose that at step j − 1 there are q values of a remaining; then there are at least q values
of b remaining. According to the lemma, at least half of the steps j, j + 1, . . . , k are of type (I),
which means that a is selected in them. Denote ` = k − j + 1, then a has been selected at least
b`/2c steps between j and k. Since at step k + 1, there are N − k ≥ 2 values of a remaining, it
means that q ≥ b`/2c + 2. At the same time, at step k + 1 there are no values of b remaining,
so between steps j and k all the remaining b values have been selected, and this can happen at
most `−b`/2c times. Combining these two leads to `−b`/2c ≥ q ≥ b`/2c+ 2, or ` ≥ 2b`/2c+ 2,
a contradiction.

If j = 1, then a is always the first in the sorted order. Therefore, the first p− 1 steps are of
type (I), and step p is of type (II). If k ≥ p, from steps p+ 1 to k, at least every other step is of
type (I), meaning that a is selected. Once step k is done, there are N − k remaining values of a.
Therefore, in the beginning, there were at least

(p− 1) +
k − p

2
+N − k = N − k

2
+
p

2
− 1 > N − N − 2

2
+
N

2α
− 1 =

α+ 1

2α
N

values of a, contradiction. In the situation when k < p, there are at least N − 1 values of a,
which is also a contradiction.

5
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Problem 3. Fix an integer n > 3 and let N = {1, 2, . . . , n}. Let S be a set of n − 2 pairwise
distinct 3-element subsets of N such that |A1 ∪A2 ∪ · · · ∪Ak| ≥ k+ 2 for any A1, A2, . . . , Ak in S
and any k = 1, 2, . . . , n− 2. Are there n pairwise distinct points p1, p2, . . . , pn in the plane such
that the angles of the triangle pipjpk are all less than 61◦ for any set {i, j, k} in S?

Russia, Ivan Frolov

Solution. The answer is in the affirmative. Note that the condition on S may be rephrased as
follows: For any subset M of N of size |M | ≥ 2, there are at most |M | − 2 sets in S ∩ P3(M),
where P3(M) is the set of 3-element subsets of M .

Extend the problem to n ≥ 1 and proceed by induction on n; for formal correctness, assume
that |S| ≤ max(0, n− 2). The cases n = 1, 2 are both trivial.

Look upon points in the plane as complex numbers. Begin by considering a collection of
points q1, q2, . . . , qn, not necessarily distinct, yet not all identical. Fix qn = 0 and associate with
each {i, j, k} in S an equation qj − qi = ω · (qk − qi), where ω = ei2π/3. This equation ensures
that qi,, qj , qk either are the vertices of a clockwise oriented non-degenerate equilateral triangle
or they all coincide.

We then get a system of n− 2 linear equations with n− 1 complex variables q1, q2, . . . , qn−1.
It is well-known that such a system has a non-trivial solution (q1, q2, . . . , qn−1, qn = 0). However,
some of the qi may coincide. So N splits into some classes, N = N1 t · · · t Nm, such that the
points qi and qj coincide if and only if i and j share the same class and the size of each class is
less than n. Note that the elements of any triple in S either all lie in the same class or no two
lie in the same class.

Clearly, each Si = S∩P3(Ni) satisfies the conditions in the statement relative to Ni of size less
than n. By the inductive hypothesis, for each i = 1, 2, . . . ,m, there exists a point-configuration
{rij : j ∈ Ni} satisfying the corresponding requirements. For each j = 1, 2, . . . , n, choose the
index i of the class Ni containing j, and let pj = qj + εrij , where ε is small enough.

If the elements of a triple {i, j, k} in S lie in three different classes, then the angles of triangle
pipjpk are close to those of triangle qiqjqk, provided that ε is small enough, so the triangle
satisfies the required angle-condition. Otherwise, the three elements all lie in some class N`, and
the angles of pipjpk equal those of r`ir`jr`k, so they satisfy the requirements by the inductive
hypothesis.

6
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The 15th Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. Fix integers a and b greater than 1. For any positive integer n, let rn be the (non-
negative) remainder bn leaves upon division by an. Assume that there exists a positive integer N
such that rn < 2n/n for all integers n ≥ N . Prove that a divides b.

Iran, Pouria Mahmoudkhan Shirazi

Solution 1. Arguing indirectly, assume that a - b, so rn 6= 0 for all n. Let M = max(b,N).
We now prove that rn+1 ≥ brn for all n ≥ M . Indeed, as rn < 2n/b ≤ an/b, it follows that

brn < an and bn+1 ≡ brn (mod an). Therefore, brn is the remainder bn+1 leaves upon division by
an, i.e., brn is the smallest non-negative integer r such that an | bn+1−r. This implies brn ≤ rn+1,
as an+1 | bn+1 − rn+1.

To complete the solution, note that rM ≥ 1, so rM+k ≥ bkrM ≥ 2k for all k ≥ 0. On the
other hand, rM+k < 2M+k/(M + k) < 2k for k sufficiently large. This is a contradiction.

Solution 2. The argument hinges on the lemma below:

Lemma. Consider two integers b > a > 1. If a does not divide b, then {bn/an} > 1/b for
infinitely many positive integers n ; as usual, {x} denotes the fractional part of the real number x.

Proof. For every positive integer n, write xn = bbn/anc and yn = {bn/an} and note that
byn − ayn+1 = axn+1 − bxn is an integer.

Suppose now, if possible, that yn ≤ 1/b for all n ≥ M . Consider any such n and note that
yn > 0, as a does not divide b, so −1 < −a/b < byn− b/a ≤ byn− ayn+1 ≤ 1− ayn+1 < 1. Hence
the integer byn − ayn+1 = 0, so yn+1 = (b/a)yn.

Consequently, yn = (b/a)n−MyM for all n ≥ M . As b > a, it then follows that yn ≥ 1 for all
large enough n, contradicting the fact that yn < 1 whatever n. This establishes the lemma.

Back to the problem, suppose a does not divide b. Then b > a ; otherwise 2n/n > rn = bn ≥ 2n

which is impossible. Note that an{bn/an} = rn < 2n/n for all large enough n. The lemma then
implies 1/b < {bn/an} < (1/n)(2/a)n ≤ 1/n for infinitely many n which is clearly a contradiction.

Remark. The conclusion holds under the more general assumption that rn < 2n/f(n), where f
is any given function satisfying limn→∞ f(n) =∞.

1
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Problem 5. Let BC be a fixed segment in the plane, and let A be a variable point in that
plane outside the line BC. Points X and Y are chosen on the rays CA (emanating from C)
and BA (emanating from B), respectively, such that ∠CBX = ∠Y CB = ∠BAC. Assume that
the tangents to the circumcircle of ABC at B and C cross XY atP and Q, respectively. Let Ω1

be the circle through X and P centred on BC. Similarly, let Ω2 be the circle through Y and Q
centred on BC. Prove that Ω1 and Ω2 intersect at two fixed points as A varies.

Denmark, Daniel Pham Nguyen

Solution 1. All angles in the solution are oriented. We will prove that the two intersection
points are points D and D′ such that the triangles BCD and BCD′ are equilateral.

Let X ′, Y ′, P ′, and Q′ be the reflections across BC of X, Y , P , and Q, respectively. Then Ω1

and Ω2 are just the circles PXX ′P ′ and QY Y ′Q′, respectively.
Denote α = ∠BAC = ∠CBX = ∠Y CB. Let XY cross BC at W ; the case XY ‖ BC may

be treated as a limit case. The symmetry yields that W also lies on the line X ′Y ′. The same
symmetry, along with tangency of PB and QC to the circle ABC, yields

α = ∠X ′BC = ∠PBW = ∠WCQ = ∠BCY ′. (∗)

This yields that each of the triples (P,B,X ′), (Q,C, Y ′), (P ′, B,X), and (Q′, C, Y ) is the collinear,
and, moreover, that PBX ′ ‖ Q′CY and P ′BX ‖ QCY ′. It follows now that quadrilater-
als PXX ′P ′ and Y QQ′Y ′ are homothetic at W . Therefore, so are Ω1 and Ω2.

Let now Ω1 nd Ω2 cross at D and D′. Let WD and WD′ meet Ω1 again at E and E′. Since
W = PX ∩ P ′X ′ and B = PX ′ ∩ P ′X, the point B lies on the polar of W with respect to Ω1.
In other words, W and B are inverse with respect to that circle. This yields that the lines DE′

and D′E also cross at B.

A

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB C

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

E

P

Q
X

Y

W

D′

E′

P ′

Q′
X ′

Y ′

Ω1

Ω2

Now, we have ∠BDX = ∠E′DX = ∠X ′D′E = ∠X ′PE = ∠BPE = ∠CY D (the last
equality holds by means of homothety). Similarly, we have ∠DXB = ∠DXP ′ = ∠PX ′D′ =
∠PED′ = ∠PEB = ∠Y DC. Therefore, the triangles BDX and CY D are similar. Firstly,
this yields that ∠DBC = ∠DBX + ∠XBC = ∠Y CD + ∠BCY = ∠BCD, whence BD = CD.
Secondly, this also implies that BD/BX = CY/CD, or BX · CY = BD · CD = BD2. But the
triangles BXC and CBY are also similar (as both are similar to ABC), so BX/BC = BC/CY ,
ot BX ·CY = BC2. Thus, BC = BD = CD, and the triangle BCD is equilateral. This finishes
the solution.

2
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Remark. The fact that B and W are inverse to each other with respect to Ω1 can be obtained
(and implemented) in different ways. Two useful conditions equivalent to this fact are: the points
P , B, and X are concyclic with the centre O1 of Ω1; and Ω1 is the Apollonius circle with respect
to the segment BW ; the details follow below.

In particular, one may argue as follows. If O1 is the centre of Ω1, then O1 lies on an (external
or internal) bisector of ∠PBX, as well as on the perpendicular bisector of XP . This yields
that O1 is the midpoint of one of the arcs PX of the circle PBX. That, in turn, implies that
the circle Ω1 contains two of the four points: the incentre, and the three excentres of 4PBX. It
follows that Ω1 is an Apollonius circle of the segment BW .

So, if D is a point such that the triangle BCD is equilateral, it suffices to show that
BD/DW = BX/XW (so D lies on the same Apollonius circle). This can be done by a compu-
tation using the cosine law, although not very quickly.

Solution 2. All angles in the solution are directed. All segment lengths on lines BX and CY

(and parallel to them) are also oriented; we assume that the directions
−−→
BX and

−−→
CY are positive.

As in the solution above, we prove that BP ‖ CY .
Assume that ABC is oriented anti-clockwise. Let D and D′ be the points such that the

triangles DBC and D′CB are equilateral, and oriented anti-clockwise. We will show that D
and D′ lie on the circle Ω1; similarly, they lie on Ω2.

Notice that α = ∠BAC = ∠CBX = ∠Y CB = π − ∠CBP ; moreover, each of the triangles
XBC and BCY is similar to BAC and oriented differently than BAC; hence those two triangles
are equi-oriented. Let Ω denote the circle (DD′X); clearly, its center lies on the perpendicular
bisector of DD′, i.e., on BC. We aim to prove that Ω passes through P ; that will yield that
Ω = Ω1, which establishes what we are aimed to prove.

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB C

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

P

X
Y

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

M

D′

P ′

Ω

Denote Z = XB ∩ Y C. Since ∠CBZ = ∠BAC = ∠ZCB, we have ZB = ZC, and hence Z
lies on the perpendicular bisector DD′ of BC. By similarity, we get BX/BC = BC/CY , or
BC2 = BX ·CY = BX · (ZY +CZ). Since CY ‖ BP , the triangles XZY and XBP are similar,
so BX · ZY = ZX ·BP . Therefore,

BD2 = BC2 = BX ·ZY +BX ·CZ = ZX ·BP + (BZ +ZX) ·BZ = ZX · (BP +BZ) +BZ2.

On the other hand, let M be the midpoint of BC, and let XB cross Ω again at P ′. Write
the power of point Z with respect to Ω as

XZ · (P ′B+BZ) = XZ ·P ′Z = ZD ·ZD′ = MZ2−DM2 = BZ2−MB2−DM2 = BZ2−BD2.

The two obtained relations yield

ZX · (BP +BZ) = BD2 −BZ2 = ZX · (P ′B +BZ),

3

klasirane.com


so BP = P ′B, and so P and P ′ are reflections of one another in the line BC. Thus, P lies on Ω,
as desired.

Remark. It is also possible to solve the problem via the moving points method. Introduce the
points D and D′ as in Solution 2, and introduce the reflections X ′, Y ′, P ′, and Q′ of X. Y , P ,
and Q in the line BC, respectively, as in Solution 1 to read Ω1 and Ω2 as the circles PXX ′P ′

and QY Y ′Q′, respectively.
We need to show that D lies on Ω2 (the other incidences are similar). To this end, it suffices

to check that ∠Y DQ = ∠Y Y ′Q = 90◦ − ∠Y ′CB = 90◦ − ∠BAC.
Fix B, C, and the circle ABC. As A varies over that circle, the lines BX, CY , BP , and CQ

remain constant, and X and Y depend projectively on A. Choosing Q1 on CQ such that
∠Y DQ1 = 90◦−∠BAC, we need to show that Q1 = Q, or that X, Y , and Q1 are collinear. The
point Q1 also depends projectively on A, so it suffices to check that the points Q1, X, and Y are
collinear for four specific positions of A.
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Problem 6. A polynomial P with integer coefficients is square-free if it is not expressible in the
form P = Q2R, where Q and R are polynomials with integer coefficients and Q is not constant.
A polynomial is suitable if its constant term and all other non-zero coefficients are equal to 1.
Prove that, for all but finitely many integers n ≥ 1, more than 99% of the suitable polynomials
of degree at most n are square-free.

Iran, Navid Safaei

Solution 1. Let Pn be the set of all suitable polynomials of degree at most n. Clearly, |Pn| = 2n.
Alternatively, but equivalently, we prove that less than 1

100 · 2
n of the polynomials in Pn are not

square-free for all but finitely many n. Throughout the solution n is always assumed to be
sufficiently large to allow room for as large integers r ≤ n as the different stages of the argument
require. Also, all polynomials have integer coefficients and divisibility is always understood
in Z[X]. The proof consists of three parts:

(1) Upper bounding the number of polynomials in Pn divisible by the square of a non-constant
polynomial of degree at most r ;

(2) Upper bounding the number of polynomials in Pn divisible by the square of a polynomial of
degree greater than r ; and

(3) Choosing a suitable r.

Before dealing with the three parts above, we prove a useful lemma.

Lemma. The zeroes of any polynomial in Pn all lie in the open disc |z| < 2 and their real parts
are all less than C = 1

2(1 +
√

5).

Proof. Let P be a degree m polynomial in Pn. Leaving aside the trivial case m = 0, let m ≥ 1.
Write P =

∑m
k=0 akX

k and consider a complex number z of absolute value |z| ≥ 2. Then

|P (z)| ≥ |z|m −
m−1∑
k=0

|z|k =
(|z| − 2)||z|m + 1

|z| − 1
≥ 1

|z| − 1
> 0,

and the first part follows.
To prove the second part, let z have a real part <z ≥ C > 1. Clearly, |z| ≥ <z ≥ C > 1.

Leaving aside the trivial cases m = 0 and m = 1, let m ≥ 2 to write∣∣∣∣P (z)

zm

∣∣∣∣ ≥ ∣∣∣am +
am−1
z

∣∣∣− 1

|z|2
− · · · − 1

|z|m
≥
∣∣∣am +

am−1
z

∣∣∣− 1

|z|2

>
∣∣∣am +

am−1
z

∣∣∣− 1

|z|2 − |z|
≥
∣∣∣am +

am−1
z

∣∣∣− 1, as |z| ≥ C,

≥ <
(
am +

am−1
z

)
− 1 ≥ am − 1 ≥ 0.

This establishes the second part and completes the proof. (The argument in the second part
shows in fact that, if <z > 0 and |z| ≥ C, then P (z) 6= 0. Hence the zeroes of P with a positive
real part all lie in the open disc |z| < C.)

To deal with (1), consider a polynomial P in Pn divisible by the square of a non-constant
polynomial Q of degree q ≤ r. We first show that there are at most (22r+1 − 1)r+1 such Q’s.

Clearly, the leading coefficient of Q is ±1. The zeroes z1, . . ., zq of Q are amongst those
of P , so |zk| < 2, by the lemma. The absolute value of the coefficient of Xq−k in Q is then
|
∑
zi1 · · · zik | <

(
q
k

)
· 2k < 2q+k ≤ 22q ≤ 22r. Hence each coefficient of Q takes on at most

2 · 22r − 1 = 22r+1 − 1 values, so there are at most (22r+1 − 1)r+1 such Q’s, as stated.
Next, upper bound the number of P ’s in Pn that are divisible by the same Q2. Consider such

a P = a0 + · · ·+anX
n and let Sn(P ) be the set of all polynomials R = b0 + · · ·+ bnX

n in Pn such
that bk 6= ak for exactly one k ; note that k ≥ 1, as b0 = a0 = 1. Alternatively, but equivalently,
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there exists a k ≥ 1 such that b` = a` for ` 6= k and bk +ak = 1. Hence |Sn(P )| = n. Note further
that P − R = ±Xk vanishes at 0, whereas Q does not, as Q(0)2 divides P (0) 6= 0. Hence R is
not divisible by Q2, showing that none of the n polynomials in Sn(P ) is.

Consider now distinct P1 and P2 in Pn, both divisible by Q2, to show that Sn(P1) and Sn(P2)
are disjoint: If they shared some R, then P1 −R = ±Xk1 and P2 −R = ±Xk2 for some distinct
k1, k2 ≥ 1, so P1 − P2 = ±Xk1 ±Xk2 would be divisible by Q2, which is clearly not the case.

By the two paragraphs above, there are then at most 2n/(n+ 1) polynomials in Pn that are
divisible by the same Q2.

As there are at most (22r+1 − 1)r+1 such Q’s of degree at most r, there are at most

(22r+1 − 1)r+1

n+ 1
· 2n

polynomials in Pn divisible by the square of a non-constant polynomial of degree at most r. For
a fixed r this upper bound is clearly of order o(2n).

To deal with (2), consider a polynomial P in Pn divisible by the square of a non-constant
polynomial Q of degree q > r.

The zeroes z1, . . . , zq of Q are amongst those of P , so |zk| < 2 and <zk < C, by the lemma.
As the leading coefficient of Q is clearly ±1,

|Q(3)| = |(3− z1) · · · (3− zq)| ≥ (3−<z1) · · · (3−<zq) > (3− C)q > (3− C)r.

As 3− C > 1, letting r be large enough, P (3) is then divisible by d2 for some large enough d >
(3− C)r.

Consider the largest integer s = sd satisfying 3s < d2 ≤ 3s+1. Clearly, s ≥ 1. Write
P =

∑n
k=0 akX

k. Then 1 = a0 ≤
∑s−1

k=0 3kak ≤
∑s−1

k=0 3k = 1
2(3s − 1) < 1

2(d2 − 1) < d2. As for

distinct choices of a1, . . . , as−1 from {0, 1} the sums
∑s−1

k=0 3kak are pairwise distinct, they are
also pairwise distinct modulo d2. Noting that these sums are all positive, it follows that there
are at most 2n−s+1 polynomials P in Pn such that P (3) is divisible by d2.

If r is sufficiently large, then so is d > (3 − C)r. Thus, if d is large enough, then 2s > d5/4,
as d2 ≤ 3s+1 and log2 3 < 8

5 , so there are at most 2n−s+1 ≤ 2n+1d−5/4 polynomials P in Pn such
that P (3) is divisible by d2. Hence, if d0 is large enough, then the number of such P ’s is at most
2n+1

∑
d>d0

d−5/4.

Now, as
∑

d≥1 d
−5/4 converges, given any c > 0, the remainder

∑
d>d0

d−5/4 < c for some large
enough d0 depending on c, of course. For any such d0, the number of P ’s in Pn such that P (3)
is divisible by d2 is then less than 2c · 2n.

Consequently, so is the number of polynomials in Pn divisible by the square of a polynomial
of degree greater than r.

Finally, we deal with (3). Fix any c > 0. Then choose r large enough so that the remainder∑
d>(3−C)r d

−5/4 < c. At this stage n > r. Let further n > 1
c (22r+1 − 1)r+1. By (1) and (2), the

number of non-square-free polynomials in Pn is then less than 3c · 2n. Setting c = 1
300 provides

the answer to the problem at hand.

Solution 2. We present an alternative approach to parts (1) and (2).
To deal with (1), use the first part of the lemma to bound the number of possible polynomi-

als Q by some constant. For every such Q, we then prove that few polynomials in Pn are divisible
by Q. This follows from the clam below:

Claim. Given a non-constant polynomial Q, the number of polynomials in Pn that are divisible
by Q does not exceed

(
n
bn/2c

)
.

Proof. Let ζ be a non-zero complex root of Q (if there are no such, then no polynomial in Pn is
divisible by Q). Then each polynomial P = pnX

n + · · ·+ p1X + p0 in Pn divisible by Q satisfies
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∑n
i=0 pi · cζi = 0, for any complex c. Choose a suitable c so that the ai = Re cζi are all non-zero.

Then
∑n

i=0 aipi = 0.
Partially order the (binary) tuples of coefficients by letting (p1, p2, . . . , pn) � (p′1, p

′
2, . . . , p

′
n)

if and only if the non-zero ai(p
′
i − pi) are all positive. The tuples corresponding to polynomials

divisible by Q then form an independent set (anti-chain) in the �-partially ordered n-cube.
Assign each tuple (p1, p2, . . . , pn) the tuple (σp1, σp2, . . . , σpn), where σpi = pi, if ai > 0, and

σpi = 1− pi, otherwise. This assignment shows � isomorphic to the (index) set-inclusion partial
order on the binary n-cube, so the length of any �-anti-chain is at most

(
n
bn/2c

)
, by Sperner’s

theorem. This proves the claim.

The standard bound provided by Stirling’s formula (or any of its elementary relaxations)
establishes part (1).

To prove (2), deal more algebraically. Let P be a polynomial in Pn divisible by someQ2, where
degQ = d > r. Reduce modulo 2 to get the polynomials P and Q, where degQ = d, as the leading

coefficient of Q is ±1. Then P is divisible by Q
2

= Q(X2). Write P = P+(X2) + XP−(X2).
Then P+ and P− are both divisible by Q. So, for a fixed Q, the number of such polynomials does
not exceed 2n−2d. Hence for all degree d polynomials Q, the number of such P ’s does not exceed
2d−1 · 2n−2d = 2n−d−1, so their fraction in Pn is at most 2−d−1. Finally, sum over all d ≥ r, to
conclude that the fraction of P ’s in (2) does not exceed 2−r.
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