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Problem 1. Prove that if A and B are n×n square matrices with complex entries satisfying

A = AB −BA+ A2B − 2ABA+BA2 + A2BA− ABA2

then det(A) = 0.

Problem 2. For the sequence

Sn =
1√

n2 + 12
+

1√
n2 + 22

+ . . .+
1√

n2 + n2
,

�nd

lim
n→∞

n

(
n(ln(1 +

√
2)− Sn)−

1

2
√
2(1 +

√
2)

)
.

Problem 3. Prove that: if A is n × n square matrix with complex entries such that

A + A∗ = A2 A∗, then A = A∗. (For any matrix M , denote by M∗ = M
t
the conjugate

transpose of M .)

Problem 4. Let f : R → R be a continuous, strictly decreasing function such that
f ([0, 1]) ⊆ [0, 1] .

(i) For all n ∈ N\{0}, prove that there exists a unique an ∈ (0, 1) , solution of the
equation

f (x) = xn.

Moreover, if (an) is the sequence de�ned as above, prove that lim
n→∞

an = 1.

(ii) Suppose f has a continuous derivative, with f (1) = 0 and f ′ (1) < 0. For any x ∈ R,
we de�ne

F (x) =

∫ 1

x

f (t) dt.

Study the convergence of the series
∑∞

n=1 (F (an))
α , with α ∈ R.



Problem 1. Prove that if A and B are n×n square matrices with complex entries satisfying

A = AB −BA+ A2B − 2ABA+BA2 + A2BA− ABA2

then det(A) = 0.

Solution: 1. We have

Ak = AkB − Ak−1BA+ Ak+1B − AkBA− AkBA+ Ak−1BA2 + Ak+1BA− AkBA2.

Taking the trace and employing tr(MN) = tr(NM) we deduce

tr(Ak) = tr(AkB)− tr((Ak−1B)A) + tr(Ak+1B)− tr((AkB)A)− tr((AkB)A)

− tr((Ak−1B)A2) + tr((Ak+1B)A)− tr((AkB)A2) = 0.

For any k ≥ 1, tr(Ak) = 0 and hence A is nilpotent. Therefore det(A) = 0.

Solution: 2. If det(A) ̸= 0, multyplying the equation by A−1 from left (right), we get

In = B − A−1BA+ AB − 2BA+ A−1BA2 + ABA−BA2.

Taking trace and having in mind that tr(MN) = tr(NM) we deduce:

n = tr(In) = tr(A(A−1B))− tr((A−1B)A) + tr(AB)− tr(BA)− tr((BA2)A−1)+

+ tr(A−1(BA2)) + tr(A(BA))− tr((BA)A) = 0,

which is a contradiction. Hence det(A) = 0.



Problem 2. For the sequence

Sn =
1√

n2 + 12
+

1√
n2 + 22

+ . . .+
1√

n2 + n2
,

�nd

lim
n→∞

n

(
n(ln(1 +

√
2)− Sn)−

1

2
√
2(1 +

√
2)

)
.

Solution: In what follows O
(
xk
)
stays for Cxk where C is some constant.

f(x) = f(b) + f ′(b)(x− b) +
1

2
f ′′(b)(x− b)2 +

1

6
f ′′′(θ)(x− b)3

for some θ between a and b. It follows that∫ b

a

f(x)dx = f(b)(b− a)− 1

2
f ′(b)(b− a)2 +

1

6
f ′′(b)(b− a)3 +O((b− a)4). (1)

Now, let n be a positive integer. Then, for k = 0, 1, 2, . . . , n− 1,∫ k/n

(k−1)/n

f(x)dx =
1

n
f

(
k

n

)
− 1

2n2
f ′
(
k

n

)
+

1

6n3
f ′′

(
k

n

)
+O

(
1

n4

)
. (2)

Summing over k then yields∫ 1

0

f(x)dx =
1

n

n∑
k=1

f

(
k

n

)
− 1

2n2

n∑
k=1

f ′
(
k

n

)
+

1

6n3

n∑
k=1

f ′′
(
k

n

)
+O

(
1

n3

)
. (3)

Similarly, we can get

f(1)− f(0) =

∫ 1

0

f ′(x)dx =
1

n

n∑
k=1

f ′
(
k

n

)
− 1

2n2

n∑
k=1

f ′′
(
k

n

)
+O

(
1

n2

)
, (4)

and

f ′(1)− f ′(0) =

∫ 1

0

f ′′(x)dx =
1

n

n∑
k=1

f ′′
(
k

n

)
+O

(
1

n

)
. (5)

Combining (3), (4) and (5) we obtain∫ 1

0

f(x)dx =
1

n

n∑
k=1

f

(
k

n

)
− 1

2n
(f(1)− f(0))− 1

12n2
(f ′(1)− f ′(0)) +O

(
1

n3

)
.

Now, let

f(x) =
1√

1 + x2
.



Then ∫ 1

0

f(x)dx = ln
∣∣∣x+

√
1 + x2

∣∣∣ ∣∣∣1
0
= ln(1 +

√
2)− ln(1) = ln(1 +

√
2);

1

n

n∑
k=1

f

(
k

n

)
=

1

n

n∑
k=1

1√
1 + (k/n)2

=
n∑

k=1

1√
n2 + k2

= Sn;

f(1)− f(0) =
1√
2
− 1 =

1−
√
2√

2
= − 1√

2(1 +
√
2)
;

f ′(1)− f ′(0) = − 1

2
√
2
− 0 = − 1

2
√
2
.

Hence

ln(1 +
√
2) = Sn +

1

2
√
2(1 +

√
2)n

+
1

24
√
2n2

+O

(
1

n3

)
.

Finally,

lim
n→∞

n

(
n(ln(1 +

√
2)− Sn)−

1

2
√
2(1 +

√
2)

)
=

1

24
√
2
.



Problem 3. Prove that: if A is n × n square matrix with complex entries such that

A + A∗ = A2 A∗, then A = A∗. (For any matrix M , denote by M∗ = M
t
the conjugate

transpose of M .)

Solution: We show �rst that A is normal, i.e., A A∗ = A∗ A.
We have that A+ A∗ = A2 A∗ leads to A = (A2 − In)A

∗ (1), hence
A± In = (A− In)(A+ In)A

∗ ± In, so

(A− In) [(A+ In)A
∗ − In] = In

(A+ In) [In − (A− In)A
∗] = In,

which leads to A− In and A+ In being invertible. From here, A2 − In is also invertible,
and by (1) it follows that A∗ = (A2 − In)

−1A. Using the Cayley�Hamilton theorem,
it follows that (A2 − In)

−1 is a polynomial of A2 − In, hence a polynomial of A, so
A∗ A = A A∗.

Since A is normal, it is unitary diagonalizable, i.e., there exist a unitary matrix
U ∈ Mn(C) and D = diag [λ1, λ2, . . . , λn] a diagonal matrix such that
A = UDU∗. Then A∗ = UDU∗, which, by the hypothesis leads to D + D = D2D,
meaning that λi + λi = λ2

iλi, for all i ∈ {1, 2, . . . , n}. Then 2Reλi = λi · |λi|2, so λi are
all real, and D = D. This is now enough for A = A∗.



Problem 4. Let f : R → R be a continuous, strictly decreasing function such that
f ([0, 1]) ⊆ [0, 1] .

(i) For all n ∈ N\{0}, prove that there exists a unique an ∈ (0, 1) , solution of the
equation

f (x) = xn.

Moreover, if (an) is the sequence de�ned as above, prove that lim
n→∞

an = 1.

(ii) Suppose f has a continuous derivative, with f (1) = 0 and f ′ (1) < 0. For any x ∈ R,
we de�ne

F (x) =

∫ 1

x

f (t) dt.

Study the convergence of the series
∑∞

n=1 (F (an))
α , with α ∈ R.

Solution: (i) Consider the continuous function g : [0, 1] → R given by g (x) = f (x)−xn,
and observe that g (0) = f (0) > 0, and g (1) = f (1) − 1 < 0. It follows the existence
of an ∈ (0, 1) such that g (an) = 0. For uniqueness, observe that if would exists two
solutions of the equation (4), say an < bn, we would obtain

f (an) > f (bn) ⇔ ann > bnn ⇔ an > bn,

a contradiction.
We prove that the sequence (an) is strictly increasing. If it would exist n ∈ N∗ such

that an ≥ an+1, we would obtain that

f (an) ≤ f (an+1) ⇔ ann ≤ an+1
n+1 < ann+1,

since f is strictly decreasing and an+1 ∈ (0, 1) . It follows that an < an+1, a contradiction.
Hence, (an) is strictly increasing and bounded above by 1, so it converges to ℓ ∈ (0, 1] .
Suppose, by contradiction, that ℓ < 1. Since f (an) = ann for any n, using the continuity
of f it follows that f (ℓ) = 0 for ℓ < 1, contradicting the fact that f is strictly decreasing
with f (1) ≥ 0. Hence, lim

n→∞
an = 1.

(ii) Observe that F is well-de�ned, of class C2, with F (1) = 0, F ′ (x) = −f (x) ⇒
F ′ (1) = 0, F ′′ (x) = −f ′ (x) ⇒ F ′′ (1) > 0. Moreover, remark that F (x) > 0 on [0, 1) .
Using the Taylor formula on the interval [an, 1] , it follows that for any n, there exist
cn, dn ∈ (an, 1) such that

F (an) = F (1) + F ′ (1) (an − 1) +
F ′′ (cn)

2
(an − 1)2 =

F ′′ (cn)

2
(an − 1)2 ,

f (an) = f (1) + f ′ (dn) (an − 1) = f ′ (dn) (an − 1) . (1)

Hence, since cn → 1 and F is C2, we obtain

lim
n→∞

(1− an)
2

F (an)
=

2

F ′′ (1)
∈ (0,+∞) ,



so due to the comparison test,

∞∑
n=1

(F (an))
α ∼

∞∑
n=1

(1− an)
2α .

But

lim
n→∞

n (1− an) = − lim
n→∞

n · (an − 1)

ln (1 + (an − 1))
· ln an

= − lim
n→∞

ln ann = − lim
n→∞

ln f (an) = − ln
(
lim
n→∞

f (an)
)
= +∞.

It follows that
∑∞

n=1 (1− an) diverges and, furthermore,
∑∞

n=1 (1− an)
2α diverges for

any 2α ≤ 1.
Next, consider arbitrary γ ∈ (0, 1) . Using (1) and the fact that dn → 1, we obtain

lim
n→∞

nγ (1− an) = lim
n→∞

[n (1− an)]
γ · (1− an)

1−γ

= lim
n→∞

[n (1− an)]
γ ·

[
f (an)

−f ′ (dn)

]1−γ

=
1

(−f ′ (1))1−γ · lim
n→∞

[− ln f (an)]
γ ·

[
eln f(an)

]1−γ
.

Observe that

− ln f (an) → +∞ and lim
x→+∞

xγ

e(1−γ)x
= 0,

hence lim
n→∞

nγ (1− an) = 0. So, if α >
1

2
, we obtain that there exists ε > 0 such that

2α > 1 + ε, hence for γ :=
1 + ε

2α
< 1, we get

lim
n→∞

n2αγ (1− an)
2α = lim

n→∞
n(1+ε) (1− an)

2α = 0.

Using the comparison test, it follows that the series
∑∞

n=1 (1− an)
2α converges. In

conclusion, the series
∑∞

n=1 (F (an))
α converges i� α > 1

2
.


