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PROBLEMS

ALGEBRA

A1. Find all functions f : R+ → R and g : R+ → R such that

f(x2 + y2) = g(xy)

holds for all x, y ∈ R+.

A2. Find all functions f : R → R such that

f(x2 + y) !
!
1

x
+ 1

"
f(y)

holds for all x ∈ R \ {0} and all y ∈ R.

A3. Find all functions f : R+ → R+ such that

f(x+ f(x) + f(y)) = 2f(x) + y

holds for all x, y ∈ R+.

A4. Let f, g be functions from the positive integers to the integers. Vlad the impala is jumping
around the integer grid. His initial position is x0 = (0, 0), and for every n ! 1, his jump is

xn − xn−1 =
#
± f(n), ±g(n)

$
or

#
± g(n), ±f(n)

$
,

with eight possibilities in total. Is it always possible that Vlad can choose his jumps to return
to his initial location (0, 0) infinitely many times when

(a) f, g are polynomials with integer coefficients?

(b) f, g are any pair of functions from the positive integers to the integers?

A5. Find all functions f : R+ −→ R+ such that

f(xf(x+ y)) = yf(x) + 1

holds for all x, y ∈ R+.

A6. Find all functions f : R → R such that

f(xy) = f(x)f(y) + f(f(x+ y))

holds for all x, y ∈ R.
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COMBINATORICS

C1. Let An be the set of n-tuples x = (x1, . . . , xn) with xi ∈ {0, 1, 2}. A triple x, y, z of distinct
elements of An is called good if there is some i such that {xi, yi, zi} = {0, 1, 2}. A subset A of
An is called good if every three distinct elements of A form a good triple.

Prove that every good subset of An has at most 2
%
3
2

&n
elements.

C2. Let K and N > K be fixed positive integers. Let n be a positive integer and let
a1, a2, . . . , an be distinct integers. Suppose that whenever m1,m2, . . . ,mn are integers, not
all equal to 0, such that |mi| " K for each i, then the sum

n'

i=1

miai

is not divisible by N . What is the largest possible value of n?

C3. In an exotic country, the National Bank issues coins that can take any value in the interval
[0, 1]. Find the smallest constant c > 0 such that the following holds, no matter the situation
in that country:

Any citizen of the exotic country that has a finite number of coins, with a total value of no more
than 1000, can split those coins into 100 boxes, such that the total value inside each box is at
most c.

C4. A sequence of 2n + 1 non-negative integers a1, a2,. . . , a2n+1 is given. There’s also a
sequence of 2n + 1 consecutive cells enumerated from 1 to 2n + 1 from left to right, such that
initially the number ai is written on the i-th cell, for i = 1,2, . . . 2n + 1. Starting from this
initial position, we repeat the following sequence of steps, as long as it’s possible:

Step 1 : Add up the numbers written on all the cells, denote the sum as s.

Step 2 : If s is equal to 0 or if it is larger than the current number of cells, the process terminates.
Otherwise, remove the s-th cell, and shift all cells that are to the right of it one position to the
left. Then go to Step 1.

Example: (1, 0, 1, 2, 0) → (1, 0, 1, 0) → (1, 1, 0) → (1, 0) → (0).

A sequence a1, a2,. . . , a2n+1 of non-negative integers is called balanced, if at the end of this
process there’s exactly one cell left, and it’s the cell that was initially enumerated by (n + 1),
i.e. the cell that was initially in the middle.

Find the total number of balanced sequences as a function of n.

C5. Angel has a warehouse, which initially contains 100 piles of 100 pieces of rubbish each.
Each morning, Angel either clears every piece of rubbish from a single pile, or one piece of
rubbish from each pile. However, every evening, a demon sneaks into the warehouse and adds
one piece of rubbish to each non-empty pile, or creates a new pile with one piece. What is the
first morning when Angel can guarantee to have cleared all the rubbish from the warehouse?
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C6. There is a population P of 10000 bacteria, some of which are friends (friendship is mutual),
so that each bacterion has at least one friend and if we wish to assign to each bacterion a coloured
membrane so that no two friends have the same colour, then there is a way to do it with 2021
colours, but not with 2020 or less.

Two friends A and B can decide to merge in which case they become a single bacterion whose
friends are precisely the union of friends of A and B. (Merging is not allowed if A and B are
not friends.) It turns out that no matter how we perform one merge or two consecutive merges,
in the resulting population it would be possible to assign 2020 colours or less so that no two
friends have the same colour. Is it true that in any such population P every bacterium has at
least 2021 friends?



6 BMO 2021, Cyprus

GEOMETRY

G1. Let ABC be a triangle with AB < AC < BC. On the side BC we consider points D
and E such that BA = BD and CE = CA. Let K be the circumcenter of triangle ADE and
let F,G be the points of intersection of the lines AD,KC and AE,KB respectively. Let ω1 be
the circumcircle of triangle KDE, ω2 the circle with center F and radius FE, and c3 the circle
with center G and radius GD.

Prove that ω1,ω2 and ω3 pass through the same point and that this point of intersection lies on
the line AK.

G2. Let I and O be the incenter and the circumcenter of a triangle ABC, respectively, and let
sa be the exterior bisector of angle ∠BAC. The line through I perpendicular to IO meets the
lines BC and sa at points P and Q, respectively. Prove that IQ = 2IP .

G3. Let ABC be a triangle with AB < AC. Let ω be a circle passing through B,C and
assume that A is inside ω. Suppose X,Y lie on ω such that ∠BXA = ∠AY C and X lies on
the opposite side of AB to C while Y lies on the opposite side of AC to B.

Show that, as X,Y vary on ω, the line XY passes through a fixed point.

G4. Let ABC be a right-angled triangle with ∠BAC = 90◦. Let the height from A cut its side
BC at D. Let I, IB, IC be the incenters of triangles ABC,ABD,ACD respectively. Let also
EB, EC be the excenters of ABC with respect to vertices B and C respectively. If K is the
point of intersection of the circumcircles of ECIBI and EBICI , show that KI passes through
the midpoint M of side BC.

G5. Let ABC be an acute triangle with AC > AB and circumcircle Γ. The tangent from A
to Γ intersects BC at T . Let M be the midpoint of BC and let R be the reflection of A in B.
Let S be a point so that SABT is a parallelogram and finally let P be a point on line SB such
that MP is parallel to AB.

Given that P lies on Γ, prove that the circumcircle of △STR is tangent to line AC.

G6. Let ABC be an acute triangle such that AB < AC. Let ω be the circumcircle of ABC
and assume that the tangent to ω at A intersects the line BC at D. Let Ω be the circle with
center D and radius AD. Denote by E the second intersection point of ω and Ω. Let M be the
midpoint of BC. If the line BE meets Ω again at X, and the line CX meets Ω for the second
time at Y , show that A, Y and M are collinear.

G7. Let ABC be an acute scalene triangle. Its C-excircle tangent to the segment AB meets
AB at point M and the extension of BC beyond B at point N . Analogously, its B-excircle
tangent to the segment AC meets AC at point P and the extension of BC beyond C at point
Q. Denote by A1 the intersection point of the lines MN and PQ, and let A2 be defined as the
point, symmetric to A with respect to A1. Define the points B2 and C2, analogously. Prove
that △ABC is similar to △A2B2C2.
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G8. Let ABC be a scalene triangle and let I be its incenter. The projections of I on BC,CA
and AB are D,E and F respectively. Let K be the reflection of D over the line AI, and let
L be the second point of intersection of the circumcircles of the triangles BFK and CEK. If
1
3BC = AC −AB, prove that DE = 2KL.
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NUMBER THEORY

N1. Let n ! 2 be an integer and let

M =

(
a1 + a2 + · · ·+ ak

k
: 1 " k " n and 1 " a1 < · · · < ak " n

)

be the set of the arithmetic means of the elements of all non-empty subsets of {1, 2, . . . , n}.

Find min{|a− b| : a, b ∈ M with a ∕= b}.

N2. Denote by ℓ(n) the largest prime divisor of n. Let an+1 = an + ℓ(an) be a recursively
defined sequence of integers with a1 = 2. Determine all natural numbers m such that there
exists some i ∈ N with ai = m2.

N3. Let n be a positive integer. Determine, in terms of n, the greatest integer which divides
every number of the form p+1, where p ≡ 2 mod 3 is a prime number which does not divide n.

N4. Can every positive rational number q be written as

a2021 + b2023

c2022 + d2024
,

where a, b, c, d are all positive integers?

N5. A natural number n is given. Determine all (n − 1)-tuples of nonnegative integers
a1, a2, . . . , an−1 such that

*
m

2n − 1

+
+

*
2m+ a1
2n − 1

+
+

*
22m+ a2
2n − 1

+
+

*
23m+ a3
2n − 1

+
+ · · ·+

*
2n−1m+ an−1

2n − 1

+
= m

holds for all m ∈ Z.

N6. Let a, b and c be positive integers satisfying the equation (a, b) + [a, b] = 2021c. If |a− b|
is a prime number, prove that the number (a+ b)2 + 4 is composite.

N7. A super-integer triangle is defined to be a triangle whose lengths of all sides and at least
one height are positive integers. We will deem certain positive integer numbers to be good with
the condition that if the lengths of two sides of a super-integer triangle are two (not necessarily
different) good numbers, then the length of the remaining side is also a good number. Let 5 be
a good number. Prove that all integers larger than 2 are good numbers.
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SOLUTIONS

ALGEBRA

A1. Find all functions f : R+ → R and g : R+ → R such that

f(x2 + y2) = g(xy)

holds for all x, y ∈ R+.

Proposed by Greece

Solution. Given any u ! 2, take a, b ∈ R+ such that a+ b = u and ab = 1. This is possible as
the equation x2 − ux+ 1 for u ! 2 has two positive real solutions. (Discriminant is u2 − 4 ! 0,
sum and product of solutions are positive.) Now taking x =

√
a, y =

√
b we get f(u) = g(1).

Now given any t ∈ R+, taking x = t/2, y = 2 we have

g(t) = f

!
t2

4
+ 4

"
= g(1)

as t2

4 + 4 ! 2. So g is constant. But since any real number can be written as a sum of two
squares, then f is constant as well. So there is a c ∈ R such that f(x) = c and g(x) = c for
every x ∈ R+. Obviosuly any such pair of functions satisfies the equation.
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A2. Find all functions f : R → R such that

f(x2 + y) !
!
1

x
+ 1

"
f(y)

holds for all x ∈ R \ {0} and all y ∈ R.

Proposed by Uzbekistan

Solution. We will show that f(x) = 0 for all x ∈ R which obviously satisfies the equation.

For x = −1 and y = t+ 1 we get f(t) ! 0 for every t ∈ R.

For x = 1
n , we get that

f

!
y +

1

n2

"
! (n+ 1)f(y) .

Therefore

f

!
y +

2

n2

"
! (n+ 1)f

!
y +

1

n2

"
! (n+ 1)2f(y)

and inductively we have

f

!
y +

k

n2

"
! (n+ 1)kf(y) .

This holds for each k, n ∈ N and each y ∈ R. In particular, for k = n2 we get

f(y + 1) ! (n+ 1)n
2
f(y) .

Now if f(y) > 0, then letting n tend to infinity we obtain a contradiction. (E.g. taking n >
f(y + 1)/f(y) we get f(y + 1) ! (n+ 1)n

2
f(y) ! (n+ 1)f(y) > f(y + 1), a contradiction.)

So f(x) = 0 for every x ∈ R.
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A3. Find all functions f : R+ → R+ such that

f(x+ f(x) + f(y)) = 2f(x) + y

holds for all x, y ∈ R+.

Proposed by Greece

Solution 1. We will show that f(x) = x for every x ∈ R+. It is easy to check that this function
satisfies the equation.

We write P (x, y) for the assertion that f(x+ f(x) + f(y)) = 2f(x) + y.

We first show that f is injective. So assume f(a) = f(b). Now P (1, a) and P (1, b) show that

2f(1) + a = f(1 + f(1) + f(a)) = f(1 + f(1) + f(b)) = 2f(1) + b

and therefore a = b.

Let A = {x ∈ R+ : f(x) = x}. It is enough to show that A = R+.

P (x, x) shows that x+ 2f(x) ∈ A for every x ∈ R+. Now P (x, x+ 2f(x)) gives that

f(2x+ 3f(x)) = x+ 4f(x)

for every x ∈ R+. Therefore P (x, 2x+ 3f(x)) gives that 2x+ 5f(x) ∈ A for every x ∈ R+.

Suppose x, y ∈ R+ such that x, 2x+ y ∈ A. Then P (x, y) gives that

f(2x+ f(y)) = f(x+ f(x) + f(y)) = 2f(x) + y = 2x+ y = f(2x+ y)

and by the injectivity of f we have that 2x+ f(y) = 2x+ y. We conlude that y ∈ A as well.

Now since x+ 2f(x) ∈ A and 2x+ 5f(x) = 2(x+ 2f(x)) + f(x) ∈ A we deduce that f(x) ∈ A
for every x ∈ R+. I.e. f(f(x)) = f(x) for every x ∈ R+.

By injectivity of f we now conclude that f(x) = x for every x ∈ R+.

Solution 2. As in Solution 1, f is injective. Furthermore, letting m = 2f(1) we have that the
image of f contains (m,∞). Indeed, if t > m, say t = m+ y for some y > 0, then P (1, y) shows
that f(1 + f(1) + f(y)) = t.

Let a, b ∈ R. We will show that f(a) − a = f(b) − b. Define c = 2f(a) − 2f(b) and d =
a + f(a) − b − f(b). It is enough to show that c = d. By interchanging the roles of a and b in
necessary, we may assume that d ! 0.

From P (a, y) and P (b, y), after subtraction, we get

f(a+ f(a) + f(y))− f(b+ f(b) + f(y)) = 2f(a)− 2f(b) = c . (1)

so for any t > m (picking y such that f(y) = t in (1)) we get

f(a+ f(a) + t)− f(b+ f(b) + t) = 2f(a)− 2f(b) = c . (2)

Now for any z > m+ b+ f(b), taking t = z − b− f(b) in (2) we get

f(z + d)− f(z) = c . (3)
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Now for any x > m+ b+ f(b) from (3) we get that

2f(x+ d) + y = 2f(x) + y + 2c .

Also, for any x large enough, (x > max{m+ b+ f(b),m+ b+ f(b)+ c−d} will do), by repeated
application of (3), we have

f(x+ d+ f(x+ d) + f(y)) = f(x+ f(x+ d) + y) + c

= f(x+ f(x) + y + c) + c

= f(x+ f(x) + y + c− d) + 2c .

(In the first equality we applied (3) with z = x+ f(x+ d)+ y > x > m+ b+ f(b), in the second
with z = x > m+b+f(b) and in the third with z = x+f(x)+y−c+d > x+c−d > m+b+f(b).)

In particular, now P (x+ d, y) implies that

f(x+ f(x) + y + c− d) = 2f(x) + y = f(x+ f(x) + y)

for every large enough x. By injectivity of f we deduce that x+ f(x)+ y+ c− d = x+ f(x)+ y
and therefore c = d as required.

It now follows that f(x) = x + k for every x ∈ R+ and some fixed constant k. Substituting in
the initial equation we get k = 0.
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A4. Let f, g be functions from the positive integers to the integers. Vlad the impala is jumping
around the integer grid. His initial position is x0 = (0, 0), and for every n ! 1, his jump is

xn − xn−1 =
#
± f(n), ±g(n)

$
or

#
± g(n), ±f(n)

$
,

with eight possibilities in total. Is it always possible that Vlad can choose his jumps to return
to his initial location (0, 0) infinitely many times when

(a) f, g are polynomials with integer coefficients?

(b) f, g are any pair of functions from the positive integers to the integers?

Proposed by United Kingdom

Solution 1.

(a) Yes it is always possible. The key idea is the following: Let b(n) be the number of 1’s in
the binary expansion of n = 0, 1, 2, . . ..

Lemma: Given a polynomial f with integer coefficients and degree at most d, then

2d+1−1'

k=0

(−1)b(k) f(n+ k) = f(n)− f(n+ 1)− f(n+ 2) + · · · ± f
#
n+ (2d+1 − 1)

$
= 0 .

Proof of Lemma: The result is clear for d = 0. For d ! 1, we have

2d+1−1'

k=0

(−1)b(k)f(n+ k) =

2d−1'

k=0

(−1)b(k)
,
f(n+ k)− f(n+ k + 2d)

-
.

So set f̃(n) = f(n)− f(n+ 2d), which is a polynomial of degree at most d− 1. Then

2d+1−1'

k=0

(−1)b(k)f(n+ k) =

2d−1'

k=0

f̃(n+ k) = 0 ,

by induction, completing the proof of the lemma. □

In particular, if we take

xn − xn−1 =
#
(−1)b(n)f(n), (−1)b(n)g(n)

$
,

then xD = 0 whenever D is a multiple of 21+max(deg(f),deg(g)).

(b) No, it is not always possible. Let g be any suitable function. Then, we construct f induc-
tively. There are at most 8n−1 possibilities for xn−1, so choose f(n) to be greater than
the magnitude of all of them. Consequently xn cannot be 0.

Solution 2.

(a) Given a polynomial f of degree at most d and integers n, r, we claim that

2d+1−1'

k=0

εkf(2
dn+ r + k) = 0

for some choice of ε0, ε1, . . . , ε2d+1−1 ∈ {−1, 1}. (Which are allowed to depend on d and
f .)
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We proceed by induction on d, the case d = 0 being immediate. For the inductive step we
define the polynomial g(n) = f(2n + r + 1) − f(2n + r) which is a polynomial of degree
at most d− 1. Then

2d−1'

k=0

εkg(2
d−1n+ k) = 0

for some choice of the εk’s giving

2d+1−1'

k=0

ε′kf(2
dn+ r + k) = 0

where ε′2k = −εk and ε′2k+1 = εk. This completes the proof of the claim.

Now the proof can be completed as in Solution 1.

(b) Apart from magnitude arguments, one could also use modulo arguments. For example,
taking f(0), g(0) to be odd and f(n), g(n) to be even for every n ! 1 works.

Comments.

(1) We propose to omit part (b) as it is easy and furthermore it suggests that the answer to
(a) is most likely affirmative.

(2) Giving a precise self-contained characterisation of b(n) in Solution 1 is not necessary for
the lemma. It could instead be phrased as:

There exists a sequence β(k) ∈ {−1,+1}N such that
.

β(k)f(n+ k) = 0.

Then, one constructs β(·) inductively as part of the proof via β(k + 2d) = −β(k) for
k < 2d, which coincides with the original definition, ie β(·) = (−1)b(·).

(3) The sequence of signs in both solutions are essentially the same. (Either all signs exactly
the same or all signs different.)
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A5. Find all functions f : R+ −→ R+ such that

f(xf(x+ y)) = yf(x) + 1

holds for all x, y ∈ R+.

Proposed by North Macedonia

Solution 1. We will show that that f(x) = 1
x for every x ∈ R+. It is easy to check that this

function satisfies the equation.

We write P (x, y) for the assertion that f(xf(x+ y)) = yf(x) + 1.

We first show that f is injective. So assume f(x1) = f(x2) and take any x < x1, x2. Then
P (x, x1 − x) and P (x, x2 − x) give

(x1 − x)f(x) + 1 = f(xf(x1)) = f(xf(x2)) = (x2 − x)f(x) + 1

giving x1 = x2.

It is also immediate that for every z > 1 there is an x such that f(x) = z. Indeed P (x, z−1
f(x))

gives that

f

!
xf

!
x+

z − 1

f(x)

""
= z .

Now given z > 1, take x such that f(x) = z. Then P (x, z−1
z ) gives

f

!
xf

!
x+

z − 1

z

""
=

z − 1

z
f(x) + 1 = z = f(x) .

Since f is injective, we deduce that f(x+ z−1
z ) = 1.

So there is a k ∈ R+ such that f(k) = 1. Since f is injective this k is unique. Therefore
x = k + 1

z − 1. I.e. for every z > 1 we have

f

!
k +

1

z
− 1

"
= z .

We must have k + 1
z − 1 ∈ R+ for each z > 1 and taking the limit as z tends to infinity we

deduce that k ! 1. (Without mentioning limits, assuming for contradiction that k < 1, taking
z = 2

1−k leads to a contradiction.) Set r = k − 1.

Now P (r + 1
6 ,

1
3) gives

f

!!
r +

1

6

"
f

!
r +

1

6
+

1

3

""
=

1

3
f

!
r +

1

6

"
+ 1 =

6

3
+ 1 = 3 = f

!
r +

1

3

"
.

But

f

!!
r +

1

6

"
f

!
r +

1

6
+

1

3

""
= f

!!
r +

1

6

"
f

!
r +

1

2

""
= f

!
2r +

1

3

"
.

The injectivity of f now shows that r = 0, i.e. that f(1) = k = 1.

This shows that f(1z ) = z for every z > 1, i.e. f(x) = 1
x for every x < 1. Now for x > 1 consider

P (1, x− 1) to get f(f(x)) = (x− 1)f(1) + 1 = x = f( 1x). Injectivity of f shows that f(x) = 1
x .

So for all possible values of x we have shown that f(x) = 1
x .
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Solution 2. P (1, y) shows that f(f(y+1)) = yf(1)+1. Now P
#
f(y + 1), yf(1)

yf(1)+1

$
shows that

f

!
f(y + 1)f

!
f(y + 1) +

yf(1)

yf(1) + 1

""
=

yf(1)

yf(1) + 1
f(f(y + 1)) + 1 = yf(1) + 1 .

Since f is injective (as in Solution 1) we get that

f(y + 1)f

!
f(y + 1) +

yf(1)

yf(1) + 1

"
= f(y + 1)

and therefore there is a unique k such that f(k) = 1. Furtermore, for every y > 0 we have

f(y + 1) = k − yf(1)

yf(1) + 1
. (1)

The right hand side of (1) is always positive. But letting y tend to infinity, the right hand side
tends to k − 1 so we must have k ! 1.

If k > 1, then P (k − 1, 1) gives

f(k − 1) = f((k − 1)f(k)) = f(k − 1) + 1 ,

a contradiction. So f(1) = k = 1.

For x < 1, P (x, 1− x) gives

f(x) = f(xf(x+ (1− x))) = (1− x)f(x) + 1

from which we deduce that f(x) = 1
x . To show that f(x) = 1

x for x > 1 we can either work as
in Solution 1 or take y = x− 1 in (1) to get that

f(x) = 1− x− 1

(x− 1) + 1
=

1

x
.
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A6. Find all functions f : R → R such that

f(xy) = f(x)f(y) + f(f(x+ y))

holds for all x, y ∈ R.

Proposed by Romania

Solution 1. We will show that f(x) = 0 for every x ∈ R or f(x) = x− 1 for every x ∈ R. It is
easy to check that both of these functions work.

We write P (x, y) for the assertion that f(xy) = f(x)f(y) + f(f(x+ y)). For later use we write
Q(x, y) for the assertion that f(xy) = f(x)f(y) and R(x, y) for the assertion that f(xy) =
f(x)f(y) + f(x+ y − 1).

Assume first that f(0) = 0.

For each t ∈ R, P (0, t) gives f(f(t)) = 0. Therefore we get that Q(x, y) holds for each x, y ∈ R.
Now Q(x, 1) gives f(x) = f(x)f(1) for each x ∈ R. But f(1) ∕= 1 as otherwise we would have
f(f(1)) = f(1) = 1 ∕= 0, a contradiction. Since f(1) ∕= 1, then f(x) = f(x)f(1) gives f(x) = 0.
This holds for each x ∈ R and gives our first solution.

From now on we assume that f(0) = a ∕= 0. If f(1) = 1, then for t ∈ R, P (t − 1, 1) gives
f(f(t)) = 0 so we get that Q(x, y) holds for each x, y ∈ R. Now Q(x, 0) gives f(0) = f(x)f(0)
for each x ∈ R. Since f(0) ∕= 0, then f(x) = 1 for each x ∈ R. This however contradicts the
fact that f(f(t)) = 0 for each t ∈ R.

So from now on we can further assume that f(1) = b ∕= 1.

Now P (x, 0) gives

f(f(x)) = a− af(x)

and P (x− 1, 1) gives

f(f(x)) = f(x− 1)− bf(x− 1) .

Therefore, letting c = b−1
a , we get

f(x) = cf(x− 1) + 1 (1)

for every x ∈ R.

Claim 1. There is an integer n such that n2 ! 4f(n).

Proof. If c = 1, then inductively from (1) we get that f(n) = f(0) + n = a+ n for each n ∈ N.
So for n large enough we have n2 ! 4f(n).

If c ∕= 1, then inductively from (1) we get that

f(n) =

!
a− 1

1− c

"
cn +

1

1− c

for every n ∈ Z. (We apply induction once to prove the result for every n ! 0 and once to prove
the result for every n < 0.)

For |c| < 1 we have lim
n→∞

f(n) = 1
1−c so we can find n large enough such that 4f(n) " n2.

For |c| > 1 we have lim
n→−∞

f(n) = 1
1−c so we can find a negative integer n with |n| large enough

such that 4f(n) " n2.
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For |c| = 1, we must have c = −1, so f(n) = ±(a− 1
2)+

1
2 and again for n large enough we have

4f(n) " n2. □

Claim 2. f(1) = 0.

Proof. Let n be as given by Claim 1 and pick x′, y′ ∈ R such that x′ + y′ = n and x′y′ = f(n).
This is possible since n2 ! 4f(n). Now P (x′, y′) gives f(x′)f(y′) = 0.

So there is a d ∈ R such that f(d) = 0.

Putting x = d+ 1 in (1) we get f(d+ 1) = 1. Now P (d, 1) gives f(f(d+ 1)) = 0 and therefore
b = f(1) = 0. □

Claim 3. c ∕= −1.

Proof. If c = −1, then f(x) + f(x− 1) = 1 for every x ∈ R. In particular, for every x ∈ R, we
have

f(x) + f(x+ 1) = 1 = f(x+ 1) + f(x+ 2)

giving f(x) = f(x+ 2). So P (12 ,
1
2) and P (12 ,

5
2) give

f

!
5

4

"
= f

!
1

2

"
f

!
5

2

"
+ f(f(3)) = f

!
1

2

"
f

!
1

2

"
+ f(f(1)) = f

!
1

4

"
.

But f
%
1
4

&
+ f

%
5
4

&
= 1, therefore f

%
1
4

&
= f

%
5
4

&
= 1

2 . Since f(1) = 0, then f(0) = 1 and so

1

2
= f

!
1

4

"
= f

!
1

2

"2

+ f(f(1)) ! f(f(1)) = f(0) = 1 ,

a contradiction. □

Claim 4. c = 1.

Proof. From (1) we get that f(2) = 1, f(3) = c + 1 and f(4) = c2 + c + 1. Now P (3, 1) and
P (2, 2) give that

f(f(4)) = f(3)− f(3)f(1) = c+ 1 and f(f(4)) = f(4)− f(2)2 = c2 + c = c(c+ 1) .

Since by Claim 3 c ∕= −1, then we must have c = 1. □

Since f(1) = 0, then P (x+y−1, 1) gives f(x+y−1) = f(f(x+y)). Thus we have that R(x, y)
holds for every x, y ∈ R.

Now R(x, y + 1) gives

f(xy + y) = f(x)f(y + 1) + f(x+ y)

and from (1) and the fact that c = 1 we deduce that

f(xy + x) = f(x)f(y) + f(x) + f(x+ y)

= f(x)f(y) + f(x) + f(x+ y − 1) + 1

= f(xy) + f(x) + 1 .

This holds for every x, y ∈ R. In particular, taking x ∕= 0 and y = t/x, we have

f(t+ x) = f(t) + f(x) + 1 (2)

for every t ∈ R, x ∈ R \ {0}. Note that (2) holds for x = 0 as well, since c = 1 implies that
f(0) = −1.
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Defining g(x) = f(x) + 1 for each x ∈ R then (2) gives that

g(t+ x) = g(t) + g(x)

for every t, x ∈ R. I.e. g is additive. Furthermore R(x, y) implies that

g(xy)− 1 = (g(x)− 1)(g(y)− 1) + g(x+ y − 1)− 1

= g(x)g(y)− g(x)− g(y) + g(x+ y − 1)

= g(x)g(y)− 1 .

This implies that g is multiplicative.

We know that an additive and multiplicative function is either identically zero or the identity
function. [Since g is multiplicative, g(x2) = g(x)2 ! 0 giving that g takes non-negative values at
non-negative arguments. Since also g is additive we get that g is monotone increasing. Since also
g is additive it is know that g(x) = Cx for every x ∈ R for some contant C. The multiplicativity
of g now gives that C = 0 or C = 1.]

Since g is not identically 0 we get that g(x) = x for every x ∈ R giving that f(x) = x − 1 for
every x ∈ R.

Solution 2 (Sketch). One can prove directly Claims 3 and 4 without the use of Claims 1 and
2. To prove Claim 3 we can make use of P (x + 1, y − 1) which together with P (x, y) and (1)
gives

f(xy + y − x)− cf(xy) = f(y)− cf(x) . (3)

Assuming c = −1, then (1) and (3) give that f(x + 2) = f(x) for every x ∈ R. It follows that
f(x + 2n) = f(x) for every x ∈ R and every n ∈ Z. Now with similar ideas as in the proof
of Claim 1, it can be shown that for every u, v ∈ R there is n ∈ N large enough such that
u = xy + x− y + 2n and v = xy + y − x. Then using (3) we can get

f(u) = f(xy + x− y + 2n) = f(xy + x− y) = f(xy + y − x) = f(v) .

So f is constant and it must be identically equal to 1/2 which leads to a contradiction.

Now using (3) with x = y and assuming c ∕= 1 we get f(x2) = f(x). So f is even. This eventually
leads to f(n) = 1/(1 − c) = a = b for every integer n. Now P (0, 0) gives a = a2 + f(a) and
P (a,−a) gives f(−a2) = f(a)f(−a) + f(a). Since f is even we eventually get f(a) = 0 which
gives a = 0 or a = 1 both contraidicting the facts that a ∕= 0 and b ∕= 1.

So c = 1 and using (1) and (3) one can eventually get a = −1. The solution can then finish in
the same way as in Solution 1.
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COMBINATORICS

C1. Let An be the set of n-tuples x = (x1, . . . , xn) with xi ∈ {0, 1, 2}. A triple x, y, z of distinct
elements of An is called good if there is some i such that {xi, yi, zi} = {0, 1, 2}. A subset A of
An is called good if every three distinct elements of A form a good triple.

Prove that every good subset of An has at most 2
%
3
2

&n
elements.

Proposed by Greece

Solution 1. We proceed by induction on n, the case n = 1 being trivial. Let

A0 = {(x1, . . . , xn) ∈ A : xn ∕= 0}

and define A1 and A2 similarly.

Since A is good and A0 is a subset of A, then A0 is also good. Therefore, any three of its
elements have a coordinate that differs. This coordinate cannot be the last one since 0 cannot
appear as a last coordinate. This means that the set A′

0 obtained from A0 by deleting the last
coordinate from each of its elements is a good subset of An−1.

Moreover, if |A0| ! 3 then |A′
0| = |A0|. Indeed, if otherwise, then there is an element a ∈ A′

0

such that x, y ∈ A0, where x and y are obtained from a by adding to it the digits 1 and 2
respectively as the n-th coordinate. But then if z is any other element of A0 then x, y, z do not
form a good triple, a contradiction. So by the inductive hypothesis

|A0| " max{2, |A′
0|} " 2

!
3

2

"n−1

.

Similarly,

|A2|, |A3| " 2

!
3

2

"n−1

.

On the other hand, each element of A appears in exactly two of A0, A1, A2. As a result,

|A| = 1

2
(|A0|+ |A1|+ |A2|) " 2

!
3

2

"n

.

Solution 2. Let
B = {x = (x1, . . . , xn) ∈ An : xi ∈ {0, 1}}

Let A be a good subset of An and define f : A×B → An by f(a, b) = a+b = (a1+b1, . . . , an+bn)
where the addition is done modulo 3.

We claim that if (a, b), (a′, b′) and (a′′, b′′) are distinct, then f(a, b), f(a′, b′) and f(a′′, b′′) cannot
all be equal. Indeed assume f(a, b) = f(a′, b′) = f(a′′, b′′) = (x1, . . . , xn). So for each i we
have ai + bi = a′i + b′i = a′′i + b′′i = xi. But then ai = xi − bi ∈ {xi, xi − 1} and similarly
a′i, a

′′
i ∈ {xi, xi − 1}. So {ai, a′i, a′′i } ∕= {0, 1, 2}. Since this holds for each i then A cannot be a

good set, contradiction.

Therefore |A||B| " 2|An| which gives |A| " 2
%
3
2

&n
as required.

Remark. Writing f(n) for the maximal possible size of a good set, we proved that f(n) "
2
%
3
2

&n
. We do not know the best possible asymptotic for f(n) but we offer a corresponding

lower bound which can increase the difficulty of the proposed problem.
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We pick each element of An independently with probability p to form a set A. For each bad
triple x, y, z of elements of A we arbitrarily remove one of the elements to end up with a good
set B. Note that there are at most 21n bad triples (x, y, z) since for coordinate i, out of the
27 triples of the form (xi, yi, zi), only 6 of them will make the triple (x, y, z) a good triple.
(Actually there are less than 21n triples since this counts also triples where two or more of the
n-tuples are the same.) So we get that

E|B| ! p · 3n − p3 · 21n .

Taking p =
1√
3 · 7n

we get

E|B| ! 1√
3

!
9

7

"n/2

− 1

3
√
3

!
9

7

"n/2

=
2

3
√
3

!
9

7

"n/2

= Cαn

where α = 1.13389 . . . and C = 0.3849 . . .. It follows that there is a good set of size at least
Cαn.



22 BMO 2021, Cyprus

C2. Let K and N > K be fixed positive integers. Let n be a positive integer and let
a1, a2, . . . , an be distinct integers. Suppose that whenever m1,m2, . . . ,mn are integers, not
all equal to 0, such that |mi| " K for each i, then the sum

n'

i=1

miai

is not divisible by N . What is the largest possible value of n?

Proposed by North Macedonia

Solution. The answer is n =
/
logK+1N

0
.

Note first that for n "
/
logK+1N

0
, taking ai = (K + 1)i−1 works. Indeed let r be maximal

such that mr ∕= 0. Then on the one hand we have

11111

n'

i=1

miai

11111 "
n'

i=1

K(K + 1)i−1 = (K + 1)n − 1 < N .

On the other hand we have
11111

n'

i=1

miai

11111 ! |mrar|−

11111

r−1'

i=1

miai

11111 ! (K + 1)r−1 −
r−1'

i=1

K(K + 1)i−1 = 1 > 0 .

So the sum is indeed not divisible by n.

Assume now that n !
/
logK+1N

0
and look at all n-tuples of the form (t1, . . . , tn) where each

ti is a non-negative integer with ti " K. There are (K + 1)n > N such tuples so there are two
of them, say (t1, . . . , tn) and (t′1, . . . , t

′
n) such that

n'

i=1

tiai ≡
n'

i=1

t′iai mod N .

Now taking mi = ti − t′i for each i satisfies the requirements on the mi’s but N divides the sum

n'

i=1

miai ,

a contradiction.
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C3. In an exotic country, the National Bank issues coins that can take any value in the interval
[0, 1]. Find the smallest constant c > 0 such that the following holds, no matter the situation
in that country:

Any citizen of the exotic country that has a finite number of coins, with a total value of no more
than 1000, can split those coins into 100 boxes, such that the total value inside each box is at
most c.

Proposed by Romania

Solution 1. The answer is c = 1000
91 = 11− 11

1001 . Clearly, if c
′ works, so does any c > c′. First

we prove that c = 11− 11
1001 is good.

We start with 100 empty boxes. First, we consider only the coins that individually value more
than 1000

1001 . As their sum cannot overpass 1000, we deduce that there are at most 1000 such
coins. Thus we are able to put (at most) 10 such coins in each of the 100 boxes. Everything so
far is all right: 10 · 1000

1001 < 10 < c = 11− 11
1001 .

Next, step by step, we take one of the remaining coins and prove there is a box where it can be
added. Suppose that at some point this algorithm fails. It would mean that at a certain point
the total sums in the 100 boxes would be x1, x2, . . . , x100 and no matter how we would add the
coin x, where x " 1000

1001 , in any of the boxes, that box would be overflowed, i.e., it would have a
total sum of more than 11− 11

1001 . Therefore,

xi + x > 11− 11

1001

for all i = 1, 2, . . . , 100. Then

x1 + x2 + · · ·+ x100 + 100x > 100 ·
!
11− 11

1001

"
.

But since 1000 ! x1 + x2 + · · ·+ x100 + x and 1000
1001 ! x we obtain the contradiction

1000 + 99 · 1000
1001

> 100 ·
!
11− 11

1001

"
⇐⇒ 1000 · 1100

1001
> 100 · 11 · 1000

1001
.

Thus the algorithm does not fail and since we have finitely many coins, we will eventually reach
to a happy end.

Now we show that c = 11− 11α, with 1 > α > 1
1001 does not work.

Take r ∈
2

1
1001 ,α

&
and let n =

3
1000
1−r

4
. Since r ! 1

1001 , then
1000
1−r ! 1001, therefore n ! 1001.

Now take n coins each of value 1 − r. Their sum is n (1− r) " 1000
1−r · (1 − r) = 1000. Now, no

matter how we place them in 100 boxes, as n ! 1001, there exist 11 coins in the same box. But
11 (1− r) = 11− 11r > 11− 11α, so the constant c = 11− 11α indeed does not work.

Solution 2 (for the upper bound). Amongst all possible arrangements into boxes, pick one
where the maximum value inside a box is as small as possible. If there are several arrangements
achieving this smallest maximum value, pick one where the number of boxes achieving this value
is as small as possible.

Say that the boxes have total values equal to 10+ x1 ! 10+ x2 ! · · · ! 10+ x100. respectively.
We must have x1 + · · ·+ x100 " 0. In particular, 0 ! x1 + 99x100.
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Assume for contradiction that x1 >
990
1001 = 90

91 . Remove the coin of smallest denomination from
the first box and add it into the 100-th box. Since the total value in the first box is greater
than 10, the first box has at least 11 coins and therefore it has a coin of value at most 10+x1

11 .
The total new value in the last box is at most

10 + x100 +
10 + x1

11
" 10− x1

99
+

10 + x1
11

= 10 + x1 +
90− 91x1

99
< 10 + x1 .

Remark. If we replace [0, 1] with [0, v], the total sum with s, and the number of available
boxes with n, then the answer to the problem is

c = v +
s

n
−
# s

n
+ 1

$
· 1

s+ 1
= v +

s2 − n

n(s+ 1)
.
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C4. A sequence of 2n + 1 non-negative integers a1, a2,. . . , a2n+1 is given. There’s also a
sequence of 2n + 1 consecutive cells enumerated from 1 to 2n + 1 from left to right, such that
initially the number ai is written on the i-th cell, for i = 1,2, . . . 2n + 1. Starting from this
initial position, we repeat the following sequence of steps, as long as it’s possible:

Step 1 : Add up the numbers written on all the cells, denote the sum as s.

Step 2 : If s is equal to 0 or if it is larger than the current number of cells, the process terminates.
Otherwise, remove the s-th cell, and shift all cells that are to the right of it one position to the
left. Then go to Step 1.

Example: (1, 0, 1, 2, 0) → (1, 0, 1, 0) → (1, 1, 0) → (1, 0) → (0).

A sequence a1, a2,. . . , a2n+1 of non-negative integers is called balanced, if at the end of this
process there’s exactly one cell left, and it’s the cell that was initially enumerated by (n + 1),
i.e. the cell that was initially in the middle.

Find the total number of balanced sequences as a function of n.

Proposed by North Macedonia

Solution. The answer is: Cn · Cn, where Cn = 1
n+1

%
2n
n

&
is the n-th Catalan number.

We divide the proof into several steps. First, some terminology: the last (rightmost) n cells
will be called the back cells and the front (leftmost) n cells will be called the front cells. The
central, (n+ 1)-st, cell will be called the middle cell.

Claim 1. All the back cells must be removed before any front cell is removed.

Proof. Assume for contradiction that this is not the case. Then there must be a point in time
where a front cell is deleted and then immediately after a back cell is deleted. Let us say that
the deleted front cell was at position i. So all back cells have positions greater or equal to i+2.
After the cell is deleted all back cells have positions greater or equal to i + 1. But since we
deleted cell i, then the total sum is i and this does not increase. So at the next step we delete
a cell at position at most i, a contradiction. □

Claim 2. The middle cell must contain the number 0, i.e., an+1 = 0.

Proof. Consider the last step in the process where we have total of 2 cells. One of these is the
middle cell, and by Claim 1 the other must be one of the front cells. I.e. we have (x, an+1). On
the next move, we remove x, which means that x + an+1 = 1. So an+1 = 0 or an+1 = 1. But
after that we cannot remove an+1, which means that an+1 ∕= 1. So an+1 = 0. □

Now, let’s define a self-destructing sequence to be one with no surviving cells at the end of the
process. For example, (0, 1, 2) is self-destructing because (0, 1, 2) → (0, 1) → (1) → ().
Let Sn be the set of self-destructing sequences of length n. For example, S2 = {(0, 1), (1, 1)}. It
is clear that the front cells form a self-destructing sequence, i.e., (a1, a2, · · · an) ∈ Sn. The back
cells also have certain self-destructing quality, which is made more precise in Claim 3 below.

Claim 3. Fix the front sequence ϕ = (a1, a2, · · · , an). Let Bφ be the set of all possible back
sequences of length n that can be appended to ϕ (with a 0 between them) to get a balanced
sequence. Then there is a bijection f : Sn ,→ Bφ.

Proof. Let c = n+1−
.n

i=1 ai and consider a particular σ = (s1, s2, . . . , sn) ∈ Sn. Let ℓ be the
initial index of the last surviving cell in σ. Then f(σ) = (s1, s2, . . . , sℓ + c, sℓ+1, . . . , sn) defines
a bijection Sn ,→ Bφ.
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Indeed we claim that the k-th deleted cell in σ is the k-th deleted cell in ϕ0f(σ) for each
k = 1, . . . , n. Indeed after some deletions let S be the total sum remaining in σ. Then the total
sum remaining in ϕ0f(σ) is −

.n
i=1 ai + 0 + S + c = S + n + 1. So we delete next the cell in

position S in σ if and only if we delete the cell in position S + n+ 1 in ϕ0f(σ).

So φ0f(σ) is clearly a balanced sequence: we first eliminate all cells in the back, then the front.
In the same manner it follows that every balanced sequence in of this form. □

So far we have shown that the total number of balanced sequences is |Sn|2. It remains to cal-
culate the size |Sn|.

Claim 4. Let Tn be the set of 2n-sequences consisting of n zeros and n ones such that in
each initial segment the number of 1’s does not surpass the number of 0’s. Then |Sn| = |Tn|.

Proof. Let [n] = {1, 2, . . . , n}, and let us also consider the set Fn of non-decreasing mappings
f : [n] → [n] such that f(i) " i for each i ∈ [n]. The claim will follow once we show that
|Sn| = |Fn| and that |Fn| = |Tn|.

In order to demonstrate that |Sn| = |Fn|, observe that there is an obvious bijective correspon-
dence a ,→ f between the sets Sn and Fn. Indeed, reversing the self-destructing process for an
n-sequence a = (a1, a2, . . . , an) ∈ Sn, simply define f(i) to be the (partial) sum of the existing
terms after the i-th backward step.

As for |Tn| = |Fn|, note the following bijective correspondence t ,→ f between the sets Tn and
Fn. Let f(i) equal 1 + #(i), where #(i) is defined to be the total number of 1′s appearing in
t before the i-th zero.

Finally, it is a known fact that |Bn| is the n-th Catalan number Cn = 1
n+1

%
2n
n

&
. (The essential

idea of the textbook proof of this fact uses the so-called reflection principle of A. D. André.)
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C5. Angel has a warehouse, which initially contains 100 piles of 100 pieces of rubbish each.
Each morning, Angel either clears every piece of rubbish from a single pile, or one piece of
rubbish from each pile. However, every evening, a demon sneaks into the warehouse and adds
one piece of rubbish to each non-empty pile, or creates a new pile with one piece. What is the
first morning when Angel can guarantee to have cleared all the rubbish from the warehouse?

Proposed by United Kingdom

Solution 1. We will show that he can do so by the morning of day 199 but not earlier.

If we have n piles with at least two pieces of rubbish and m piles with exactly one piece of
rubbish, then we define the value of the pile to be

V =

5
67

68

n m = 0 ,

n+ 1
2 m = 1 ,

n+ 1 m ! 2 .

We also denote this position by (n,m). Implicitly we will also write k for the number of piles
with exactly two pieces of rubbish.

Angel’s strategy is the following:

(i) From position (0,m) remove one piece from each pile to go position (0, 0). The game ends.

(ii) From position (n, 0), where n ! 1, remove one pile to go to position (n − 1, 0). Either
the game ends, or the demon can move to position (n− 1, 0) or (n− 1, 1). In any case V
reduces by at least 1/2.

(iii) From position (n, 1), where n ! 1, remove one pile with at least two pieces to go to
position (n − 1, 1). The demon can move to position (n, 0) or (n − 1, 2). In any case V
reduces by (at least) 1/2.

(iv) From position (n,m), where n ! 1 and m ! 2, remove one piece from each pile to go to
position (n− k, k). The demon can move to position (n, 0) or (n− k, k + 1). In any case
V reduces by at least 1/2. (The value of position (n − k, k + 1) is n + 1

2 if k = 0, and
n− k + 1 " n if k ! 1.)

So during every day if the game does not end then V is decreased by at least 1/2. So after 198
days if the game did not already end we will have V " 1 and we will be in one of positions
(0,m), (1, 0). The game can then end on the morning of day 199.

We will now provide a strategy for demon which guarantees that at the end of each day V has
decreased by at most 1/2 and furthermore at the end of the day m " 1.

(i) If Angel moves from (n, 0) to (n− 1, 0) (by removing a pile) then create a new pile with
one piece to move to (n− 1, 1). Then V decreases by 1/2 and and m = 1 " 1

(ii) If Angel moves from (n, 0) to (n− k, k) (by removing one piece from each pile) then add
one piece back to each pile to move to (n, 0). Then V stays the same and m = 0 " 1.

(iii) If Angels moves from (n, 1) to (n− 1, 1) or (n, 0) (by removing a pile) then add one piece
to each pile to move to (n, 0). Then V decreases by 1/2 and m = 0 " 1.

(iv) If Angel moves from (n, 1) to (n−k, k) (by removing a piece from each pile) then add one
piece to each pile to move to (n, 0). Then V decreases by 1/2 and m = 0 " 1.

Since after every move of demon we have m " 1, in order for Angel to finish the game in the
next morning we must have n = 1,m = 0 or n = 0,m = 1 and therefore we must have V " 1.
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But now inductively the demon can guarantee that by the end of day N , where N " 198 the
game has not yet finished and that V ! 100−N/2.

Solution 2.

Define Angel’s score SA to be SA = 2n +m − 1. The Angel can clear the rubbish in at most
max {SA, 1} days. The proof is by induction on (n,m) in lexicographic order.

Angel’s strategy is the same as in Solution 1 and in each of cases (ii)-(iv) one needs to check
that SA reduces by at least 1 in each day. (Case (i) is trivial as the game ends in one day.)

Now define demon’s score SD to be SD = 2n − 1 if m = 0 and SD = 2n if m ! 1. The claim
is the if (n,m) ∕= (0, 0), then the demon can ensure that Angel requires SD days to clear the
rubbish.

Again, demon’s strategy is the same as in the Solution by PSC and in each of cases (i)-(iv) one
needs to check that SD reduced by at most 1 in each day.

Comment. If we start from position (n,m), then the number N of days required is

N =

5
66667

66668

2n− 1 if m = 0 ,

2n if m = 1 ,

2n if m ! 2, and k ! 1 ,

2n+ 1 if m ! 2, and k = 0 .
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C6. There is a population P of 10000 bacteria, some of which are friends (friendship is mutual),
so that each bacterion has at least one friend and if we wish to assign to each bacterion a coloured
membrane so that no two friends have the same colour, then there is a way to do it with 2021
colours, but not with 2020 or less.

Two friends A and B can decide to merge in which case they become a single bacterion whose
friends are precisely the union of friends of A and B. (Merging is not allowed if A and B are
not friends.) It turns out that no matter how we perform one merge or two consecutive merges,
in the resulting population it would be possible to assign 2020 colours or less so that no two
friends have the same colour. Is it true that in any such population P every bacterium has at
least 2021 friends?

Proposed by Bulgaria

Solution 1. The answer is affirmative.

We will use the terminology of graph theory. Here the vertices of our main graph G are the
bacteria and there is an edge between two precisely when they are friends. The degree d(v) of a
vertex v of G is the number of neighbours of v. The minimum degree δ(G) of G is the smallest
amongst all d(v) for vertices v of G. The chromatic number χ(G) of G is the number of colours
needed in order to colour the vertices such that neighbouring vertices get distinct colours.

It suffices to establish the following:

Claim. Let k be a positive integer and let G be a graph on n > k vertices with δ(G) ! 1 and
χ(G) = k. Suppose that merging one pair or two pairs of vertices results in a graph G′ with
χ(G′) " k − 1. Then δ(G) ! k.

We establish this in a series of claims.

Claim 1. δ(G) ! k − 1.

Proof. Suppose for contradiction that we have a vertex v of degree r " k − 2 and denote its
neighbours by v1, . . . , vr. (Note that, by assumption, v has at least one neighbour.)

Suppose we merge v with vi. We denote the new vertex by v0, and we colour the obtained
graph in k − 1 colours. Note that at most r " k − 2 colours can appear in the set S1 =
{v0, v1, . . . , vi−1, vi+1, . . . , vr}. Therefore we can get a (k − 1)-colouring of G by assigning the
colour of v0 to vi and an unused colour (from the k − 1 available) to v, thus contradicting the
assumption that χ(G) = k. □

So from now on we may assume that there is a vertex v of G with deg(v) = k− 1, as otherwise
the proof is complete. We denote its neighbours by v1, . . . , vk−1.

Claim 2. The set of neighbours of v induces a complete graph.

Proof of Claim 2. Suppose vivj ∕∈ E(G). Merge v with vi, giving a next vertex w, and then
merge w with vj , denoting the newest vertex by v0. Then colour the resulting graph in k − 1
colours. Note that at most k− 2 colours can appear in the set S2 = {v0, v1, . . . , vk−1} \ {vi, vj}.
So we can get a (k− 1)-colouring of G by assigning the colour of v0 to vi and vj and an unused
colour (from the k − 1 available) to v, thus contradicting the assumption that χ(G) = k. □

Claim 3. For every edge uw, both u and w belong in the set {v, v1, . . . , vk−1}.

Proof. Otherwise merge u and w and call the new vertex z. If u,w /∈ {v, v1, . . . , vk−1} then by
Claim 2 the resulting graph contains a complete graph on {v, v1, . . . , vk−1} and so its chromatic
number is at least k, a contradiction. If one of u,w belongs in the set {v, v1, . . . , vk−1}, say
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u = vi, then the resulting graph contains a complete graph on {v, v1, . . . , vk−1, z} \ {vi}. This
is again a contradiction. □

From Claim 3 we see that G consists of a complete set on k vertices together with n − k > 0
isolated vertices. This is a contradiction as δ(G) ! 1.

Remark. We do not know if the result is best possible or whether it can be improved to show
δ(G) ! 2022.
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GEOMETRY

G1. Let ABC be a triangle with AB < AC < BC. On the side BC we consider points D
and E such that BA = BD and CE = CA. Let K be the circumcenter of triangle ADE and
let F,G be the points of intersection of the lines AD,KC and AE,KB respectively. Let ω1 be
the circumcircle of triangle KDE, ω2 the circle with center F and radius FE, and c3 the circle
with center G and radius GD.

Prove that ω1,ω2 and ω3 pass through the same point and that this point of intersection lies on
the line AK.

Proposed by Greece

Solution 1. Since the triangles BAD,KAD and KDE are isosceles, then ∠BAD = ∠BDA
and ∠KAD = ∠KDA and ∠KDE = ∠KED. Therefore,

∠BAK = ∠BAD − ∠KAD = ∠BDA− ∠KDA = ∠KDE = ∠KED = 180◦ − ∠BEK .

So the points B,E,K,A are concyclic. Similarly the points C,D,K,A are also concyclic.

Let M,N be the midpoints of AD and AE respectively. Since the triangle ACE is isosceles,
the perpendicular bisector of AE, say ε1, passes through the points C,K and N . Similarly,
the perpendicular bisector of AD, say ε2, passes through the points B,K and M . Therefore
the points F,G lie on ε1 and ε2 respectively. Thus, using also the fact that AKDC is a cyclic
quadrilteral we get that

∠FDC = ∠ADC = ∠AKC = ∠EKC = ∠EKF .

So the point F lies on the circle ω1. Similarly G also lies on ω1.

Let I be the point of intersection of the line AK with ω1. The triangles AKF and EKF are
equal, so ∠KAF = ∠KEF . Since also K,E, F, I all belong on ω1 then

∠KAF = ∠KEF = ∠FIK .
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It follows that FI = FA = FE. Therefore I lies on ω2 as well. Similarly it also lies on ω3. So
the circles ω1,ω2,ω3 all pass through I which lies on line AK.

Solution 2. Let M the midpoint of AD. Then BM is the perpendicular bisector of AD,
because the triangle ABD is isosceles. KM is also the perpendicular bisector of AD, because
the point K is the circumcenter of the triangle AED. So points B,G,K,M are collinear and
GM is also the perpendicular bisector of AD. Therefore GD = GA and so A belongs on ω3.
Similarly A belongs on ω2.

Since ADG is isosceles with GA = GD, it follows that ∠EGD = 2∠GAD = 2∠EAD. Since
AFE is isosceles with FA = FE, it follows that ∠EFD = 2∠FAE = 2∠EAD. We also have
EKD = 2∠EAD as K is the circumcenter of the triangle EAD. From the last three equalities
it follows that F,G belong on ω1.

Let T ∕= A be the second point of intersection of the circles ω2,ω3 and let S = AT ∩ FG. Let
N be the midpoint of AE. Since ∠AMK = ∠ANK = 90◦, then the points A,M,K,N are
concyclic and therefore ∠NAK = ∠NMK. Since NM is parallel to ED (M,N midpoints of
AD,AE) then ∠NMK = ∠DBM = 90◦ − ∠MDB. Since also D,E,G, F are concyclic, then
∠MDB = ∠FGN = 90◦ − ∠GAS. From the above, it follows that ∠NAK = ∠GAS and so
A,K, S are collinear. By definition of S, we get that T also belongs on the same line.

Since GF is the perpendicular bisector of AT then ∠GAK = ∠GAS = ∠GTS = ∠GTK.
But since GK is the perpendiuclar bisector of AD we also have ∠GAK = ∠GDK. Thus
∠GTK = ∠GDK showing that T belongs to ω1 as well.
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G2. Let I and O be the incenter and the circumcenter of a triangle ABC, respectively, and let
sa be the exterior bisector of angle ∠BAC. The line through I perpendicular to IO meets the
lines BC and sa at points P and Q, respectively. Prove that IQ = 2IP .

Proposed by Serbia

Solution. Denote by Ib and Ic the respective excenters opposite to B and C. Also denote the
midpoint of side BC by D, the midpoint of the arc BAC by M , and the midpoint of segment
AM by N . Recall that M is on the perpendicular bisector of BC, i.e. on line OD. Points
I,O,D, P lie on the circle with diameter OP , whereas points I,O,Q,N lie on the circle with
diameter OQ. Thus ∠IOP = ∠IDP and ∠IOQ = 180◦ − ∠INQ = ∠INA. So the triangles
IAN and QIO are similar.

On the other hand, points B,C, Ib, Ic are on the circle with diameter IbIc, so the triangles
IBC and IIcIb are similar. We have ∠IIcA = ∠CIcIb = ∠CBIb = 1

2β. Since also ∠IBA =
1
2β = ∠IIcA then we deduce (the known fact) that Ic, A, I, B are concyclic. Thus ∠BIcA =
180◦ − AIB = 1

2(α + β). Since also IcMB = AMB = ACB = γ, then we also have that
∠IcBM = ∠BIcA = 1

2(α + β). We deduce that IcM = MB = MC = IbM , i.e. M is the
midpoint of IbIc.

It follows that the triangles IBD and IIcM are similar, so ∠IOP = ∠IDP = ∠IMA. Thus
the triangles OIP and MAI are similar. Therefore

IQ

IO
=

IA

AN
=

2IA

AM
=

2IP

IO
.

Thus IQ = 2IP .
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G3. Let ABC be a triangle with AB < AC. Let ω be a circle passing through B,C and
assume that A is inside ω. Suppose X,Y lie on ω such that ∠BXA = ∠AY C and X lies on
the opposite side of AB to C while Y lies on the opposite side of AC to B.

Show that, as X,Y vary on ω, the line XY passes through a fixed point.

Proposed by United Kingdom

Solution 1. Extend XA and Y A to meet ω again at X ′ and Y ′ respectively. We then have
that:

∠Y ′Y C = ∠AY C = ∠BXA = ∠BXX ′ .

so BCX ′Y ′ is an isosceles trapezium and hence X ′Y ′ ‖ BC.

A

B C

P
Q

X ′Y ′

X

Y

Z

Let ℓ be the line through A parallel to BC and let ℓ intersect ω at P,Q with P on the opposite
side of AB to C. As X ′Y ′ ‖ BC ‖ PQ then

∠XAP = ∠XX ′Y ′ = ∠XY Y ′ = ∠XY A

which shows that ℓ is tangent to the circumcircle of triangle AXY . Let XY intersect PQ at Z.
By power of a point we have that

ZA2 = ZX · ZY = ZP · ZQ .

As P,Q are independent of the positions of X,Y , this shows that Z is fixed and hence XY
passes through a fixed point.
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Solution 2. Let B′ and C ′ be the points of intersection of the lines AB and AC with ω
respectively and let ω1 be the circumcircle of the triangle AB′C ′. Let ε be the tangent to ω1 at
the point A. Because AB < AC the lines B′C ′ and ε intersects at a point Z which is fixed and
independent of X and Y .

We have
∠ZAC ′ = ∠C ′B′A = ∠C ′B′B = ∠C ′CB .

Therefore, ε ‖ BC.

Let X ′, Y ′ be the points of intersection of the lines XA,Y A with ω respecively. From the
hypothesis we have ∠BXX ′ = ∠Y ′Y C. Therefore

>
BX ′ =

>
Y ′C =⇒ >

BC +
>
CX ′ =

>
Y ′B +

>
BC =⇒

>
CX ′ =

>
Y ′B

and so X ′Y ′ ‖ BC ‖ ε. Thus

∠XAZ = ∠XX ′Y ′ = ∠XY Y ′ = ∠XY A .

From the last equality we have that ε is also tangent to the circmucircle ω2 of the triangle XAY .

Consider now the radical centre of the circles ω,ω1,ω2. This is the point of intersection of the
radical axes B′C ′ (of ω and ω1), ε (of ω1 and ω2) and XY (of ω and ω2).

This must be point Z and therefore the variable line XY passes through the fixed point Z.

Remark: The condition that AB < AC ensures that the point Z exists (rather than being at
infinity). If XY ‖ ℓ ‖ BC then AX = AY and XB = Y C so, as ∠BXA = ∠AY C, we would
have △AXB ∼= △AY C and hence AB = AC.
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G4. Let ABC be a right-angled triangle with ∠BAC = 90◦. Let the height from A cut its side
BC at D. Let I, IB, IC be the incenters of triangles ABC,ABD,ACD respectively. Let also
EB, EC be the excenters of ABC with respect to vertices B and C respectively. If K is the
point of intersection of the circumcircles of ECIBI and EBICI , show that KI passes through
the midpoint M of side BC.

Proposed by Greece

Solution. Since ∠ECBI = 90◦ = ICEB, we conclude that ECBCEB is cyclic. Moreover, we
have that

∠BAIB =
1

2
∠BAD =

1

2
9C ,

so AIB ⊥ CI. Similarly AIC ⊥ BI. Therefore is the orthocenter of triangle AIBIC . It follows
that

∠IIBIC = 90◦ − ∠AICIB = ∠IAIC = 45◦ − ∠ICAC = 45◦ − 1

2
9B =

1

2
9C .

Therefore IBICCB is cyclic. Since AEBCI is also cyclic (on a circle of diameter IEB) then

∠ECEBB = ∠ACI =
1

2
9C = ∠IIBIC ,

therefore IBIC ‖ EBEC .

From the inscribed quadrilaterals we get that

∠KICI = ∠KEBI and KECI = ∠KIBI ,

which implies that the triangles KECIC and KIBEB are similar. So

d(K,ECIC)

d(K,EBIB)
=

ECIC
EBIB

.

But IBIC ‖ EBEC and IBICCB is cyclic, therefore

ECIC
EBIB

=
IIC
IIB

=
IB

IC
.



Shortlisted Problems with Solutions 37

We deduce that
d(K, IC)

d(K, IB)
=

IB

IC
,

i.e. the distances of K to the sides IC and IB are inversly analogous to the lenghts of these
sides. So by a well known property of the median, K lies on the median of the triangle IBC.
(The last property of the median can be proved either by the law of sines, or by taking the
distances of the distances of the median M to the sides and prove by Thales theorem that
M, I,K are collinear.)
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G5. Let ABC be an acute triangle with AC > AB and circumcircle Γ. The tangent from A
to Γ intersects BC at T . Let M be the midpoint of BC and let R be the reflection of A in B.
Let S be a point so that SABT is a parallelogram and finally let P be a point on line SB such
that MP is parallel to AB.

Given that P lies on Γ, prove that the circumcircle of △STR is tangent to line AC.

Proposed by United Kingdom

Solution 1. Let N be the midpoint of BS which, as SABT is a parallelogram, is also the
midpoint of TA. Using ST ‖ AB ‖ MP we get:

NB

BP
=

1

2
· SB
BP

=
TB

2 ·BM
=

TB

BC

which shows that TA ‖ CP .

A

B
C

M

R

P

S

T

N

O

Let Ω be the circle with diameter OT . As ∠OMT = 90◦ = ∠TAO we have that A,M lie on Ω.
We now show that P lies on Ω. As TA ‖ CP and TA is tangent to Γ we have that AP = AC,
so

∠TAP = ∠ACP = ∠CPA = ∠CBA = ∠TMP

where in the last step we used the fact that MP ‖ AB. This shows that P lies on Ω. Further-
more, this shows that ∠OPT = 90◦ and so TP is also tangent to Γ.

Now we show that R,S lie on Ω which would show that Ω is the circumcircle of triangle STR.
For S, using ST ‖ AB and that TA tangent to Γ we have

∠TSP = ∠ABS = ∠ACP = ∠TAP .

For R, the homothety with factor 2 centred at A takes BN to RT . So BN ‖ RT and hence

∠ART = ∠ABS = ∠TAP = ∠APT ,
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where the last step follows from TA = TP as they are both tangents to Γ.

Finally, we observe that as TA tangent to Γ then

∠TAC = 180◦ − ∠CBA = ∠ABT = ∠TSA

which, by the alternate segment theorem, means that line AC is tangent to Ω as required.

Solution 2. We have
∠APS = ∠ACB = ∠TAB = ∠ATS ,

so S,A, P, T are concyclic on a circle Ω. We also have

∠PAC = ∠PBC = ∠SBT = ∠PSA

so AC is tangent to Ω. It remains to prove that R belongs on Ω.

As in Solution 1 we have that TA ‖ CP . Then

∠CPM = ∠ATS = ∠APS .

Since also ∠BAP = ∠BCP , then the triangles APB and CPM are similar. But then the
triangles BPC and RAP are also similar as ∠RAP = ∠BCP and

RA

AP
=

2BA

AP
=

2MC

CP
=

BC

CP
.

It now follows that
∠ARP = ∠PBC = ∠ASP

and therefore R belongs to Ω as required.
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G6. Let ABC be an acute triangle such that AB < AC. Let ω be the circumcircle of ABC
and assume that the tangent to ω at A intersects the line BC at D. Let Ω be the circle with
center D and radius AD. Denote by E the second intersection point of ω and Ω. Let M be the
midpoint of BC. If the line BE meets Ω again at X, and the line CX meets Ω for the second
time at Y , show that A, Y and M are collinear.

Proposed by North Macedonia

Solution 1. Denote by S the intersection point of Ω and the segment BC. Because DA = DS,
we have ∠DSA = ∠DAS. Now using that DA is tangent to ω we obtain:

∠BAS = ∠DAS − ∠DAB = ∠DSA− ∠DCA = ∠CAS .

This means that the line AS is the angle bisector of ∠BAC.

Notice that DE is also tangent to ω, because it is the second intersection point of ω and Ω.
From here, and from DE = DX, we see that

∠DCE = ∠BCE = ∠BED = ∠DXE .

It follows that CEDX is a cyclic quadrilateral.

Since D is the center of Ω, then ∠EDY = 2∠EXY. Since CEDX is cyclic, we also have

∠SDE = ∠CDE = ∠CXE = ∠EXY .

Thus

2∠SDE = 2∠EXY = ∠EDY = ∠SDE + ∠SDY .

and so ∠SDE = ∠SDY . So we obtain

∠SAE =
1

2
∠SDE =

1

2
∠SDY = ∠SAY .

Combining this with the fact that AS is the angle bisector of ∠BAC, we see that the lines AE
and AY are symmetric with respect to the angle bisector of ∠BAC.

Now let F be the second intersection point of the line AY and the circumcircle ω. We have shown
that ∠BAE = ∠CAF , which means that BE = CF (two chords with the same corresponding
central angle are equal). We similarly get BF = CE.
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Since DA is tangent to ω, then ∠BAD = ∠DCA. Since also ∠ADB = ∠CDA then the
triangles DAB and DCA are similar. This gives.

AB

AC
=

AD

CD
.

Similarly, the triangles DEB and DCE are similar, giving

BE

CE
=

ED

CD
.

Combining these with BE = CF and BF = CE which we have shown above, and using that
DA = DE (tangents from the same point D), we get the relation

CF

BF
=

BE

CE
=

ED

CD
=

AD

CD
=

AB

AC
.

Finally, let K be the intersection point of the line AY with the segment BC. We have

BK

CK
=

BK sin(∠BKA)

BK sin(∠CKA)
=

AB sin(∠BAK)

AC sin(∠CAK)
=

CF sin(∠BCF )

BF sin(∠CBF )
= 1 .

Thus K = M and A, Y,M are collinear as required.

Solution 2. As in Solution 1, we let S be the intersection of Ω with BS and obtain that AS
is the angle bisector of ∠BAC and that AE and AY are symmetric with respect to AS.

Let R =
:

(AB)(AC) and let Ψ be the map obtained by first inverting on the circle centered
at A of radius R and the reflecting on AS.

By construction of Ψ we have Ψ(B) = C and Ψ(C) = B. (After the inversion B maps to a
point B′ on AB such that (AB)(AB′) = R2 = (AB)(AC). So after the reflection B′ maps to
C.) Since the inversion of any line not passing through A is a circle passing through A, then
Ψ(BC) is a circle passing through A. Since it also passes through B and C then Ψ(BC) = ω.

Because DA is tangent to ω at A, and D is the center of Ω, the circles ω and Ω are orthogonal.
Both reflection and inversion preserve orthogonality and both are involutions. This means
that Ψ is an involution that preserves orthogonality. From here we conlude that the images
Ψ(ω) = BC and Ψ(Ω) are orthogonal lines.

Since Ψ(AS) = AS,Φ(BC) = ω and S belongs on BC, then Ψ(S) is the intersection of AS
with ω. Since AS is the angle bisector of triangle ABC, then Ψ(S) = N , the midpoint of the
arc BC of ω not containing A.

Since S belongs on Ω and Ψ(Ω) and Ψ(ω) are orthogonal lines, then Ψ(Ω) is the line perpen-
dicular to BC at N . It therefore contains the midpoint M of BC.

The intersection point E of ω and Ωmaps to Ψ(E), which is the intersection point of Ψ(ω) = BC
and Ψ(Ω) = MN , which must be equal to M , i.e. Ψ(E) = M . Because of this, we see that
AE and AM are symmetric with respect to the angle bisector AS. Since also AE and AY are
symmetric with respect to AS, it follows that A,M, Y are collinear as required.
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G7. Let ABC be an acute scalene triangle. Its C-excircle tangent to the segment AB meets
AB at point M and the extension of BC beyond B at point N . Analogously, its B-excircle
tangent to the segment AC meets AC at point P and the extension of BC beyond C at point
Q. Denote by A1 the intersection point of the lines MN and PQ, and let A2 be defined as the
point, symmetric to A with respect to A1. Define the points B2 and C2, analogously. Prove
that △ABC is similar to △A2B2C2.

Proposed by Bulgaria

Solution 1. We shall use the standard notations for ABC, i.e. ∠ABC = β, BC = a etc. We
also write s = a+b+c

2 for the semiperimeter and r for the inradius.

LetMN intersect the altitude AD (D lies on BC) at the point L. We have that ∠BAD = 90◦−β
and ∠AML = ∠BMN = β

2 . (Since BMN is an isosceles triangle with ∠MBN = 180◦ − β.) It
is known that AM = s− b so by the Sine Law in the triangle AML we have

AM

sin∠ALM =
AL

sin∠AML
=⇒ s− b

sin(90◦ + β
2 )

=
AL

sin β
2

=⇒ AL = (s− b) tan
β

2
= r .

Analogously we see that if PQ intersects AD at L′, then AL′ = r. Therefore L and L′ coincide
and since A1 = MN ∩ PQ by definition, we conclude that L = L′ = A1. In particular, we can
now view the point A2 as the point on the A-altitude such that AA2 = 2r. Analogously B2 and
C2 lie on the B-altitude and C-altitude, respectively, and BB2 = CC2 = 2r.

Now let X be the reflection of A on the midpoint of BC and define XY Z analogously. So
XY Z is the triangle whose midpoints of sides are A, B and C. Let J be the incenter of this
triangle. As the triangles XY Z and ABC are similar with ratio 2, the inradius of XY Z is equal
to 2r. So if JJ0 is perpendicular to Y Z (with J0 on Y Z), then AA2 and JJ0 are parallel (both
perpendicular to Y Z) and equal, hence AA2JJ0 is a rectangle and in particular A2 is the foot
of the perpendicular from J to the A-altitude of ABC. It follows that A2, B2 and C2 lie on the
circle ω with diameter JH.

Now we finish with a simple angle chasing. The circle k gives ∠A2B2C2 = ∠A2HC2 =
∠180◦ − ∠AHC = ∠ABC; similarly for the angles at A2 and C2. The desired similarity
follows.

Solution 2. As in Solution 1, we have that A2, B2, C2 belong on the corresponding altitudes
with AA2 = BB2 = CC2 = 2r. We present an approach with complex numbers (and minimal
calculations) which can also complete the proof.
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Set the incenter I of the triangle ABC to be the origin. We may assume that r = 1. We write
a, b, c to denote A′, B′, C ′. Point A is the intersection of the tangents to the unit circle (incircle)
at B′ and C ′ and is therefore represented by the complex number 2bc/(b+ c). Analogously the
points B and C are represented by 2ac/(a+ c) and 2ab/(a+ b) respectively.

Since AA2 = r = 2 and AA2 is parallel to IA′, we have that A2 is represented by the complex
number

2bc

b+ c
+ 2a =

2(ab+ bc+ ca)

b+ c
.

Now since |c| = 1, then

(AB) =

1111
bc

b+ c
− ac

a+ c

1111 =
1111

b− a

(a+ c)(b+ c)

1111 .

We also have

(A2B2) =

1111
2(ab+ bc+ ca)

b+ c
− 2(ab+ bc+ ca)

a+ c

1111 = 2|ab+ bc+ ca|(A2B2) .

Analogously we get
A2B2

AB
=

B2C2

BC
=

C2A2

CA
= 2|ab+ bc+ ca| .

So the triangle A2B2C2 is similar to the triangle ABC.
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G8. Let ABC be a scalene triangle and let I be its incenter. The projections of I on BC,CA
and AB are D,E and F respectively. Let K be the reflection of D over the line AI, and let
L be the second point of intersection of the circumcircles of the triangles BFK and CEK. If
1
3BC = AC −AB, prove that DE = 2KL.

Proposed by Romania

Solution. Writing AE = AF = x,BF = BD = y and CE = CD = z, the condition
1
3BC = AC −AB translates to y + z = 3(z − y) giving z = 2y, i.e. CD = 2BD.

Letting B′ be the reflection of B on AI we have that B′ belongs on AC with B′E = BF =
BD = 1

2CD = 1
2CE therefore B′ is the midpoint of CE.

Under reflection on AI, the circumcircle ω of triangle DEF remains fixed. Its tangent BD
maps to B′K. So B′K is tangent to ω. Since B′E is tangent to ω, then B′E = B′K = B′C.
Thus CKE is a right-angled triangle with diameter CE. If Q is the midpoint of DE then, since
CD = CE, we have that ∠CQE = 90◦ and therefore the points C,K,Q,L,E are concyclic.
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Observe that

∠BLC = ∠BLK + ∠CLK = ∠BFK + ∠CEK = (180◦ − ∠AFK) + (180◦ − ∠AEK)

= ∠BAC + ∠FKE = ∠BAC + ∠FDE = ∠BAC +

!
90◦ − 1

2
∠BAC

"

= 90◦ +
1

2
∠BAC = ∠BIC .

So L belongs on the circumcircle of triangle BIC, i.e. on the A-excircle ωA of triangle ABC.

Let J be the A-excenter of triangle ABC and recall that it is the antipodal point of I on ωA.
Then

∠CLJ = ∠CBJ = 90◦ − 1

2
∠ABC = ∠BFD = ∠CEK = ∠CLK .

So K,L, J are collinear and therefore ∠ILK = 90◦.

Let T be the reflection of L on AI. Since L belongs on the circle with centre B′ containing E and
K, then L belongs on the circle ω2 with centre B containing F and D. Let S be the intersection
of IT and BC. Since KL ⊥ IL, then DT ⊥ IT . It follows that ∠IDT = 90◦−∠DIS = ∠ISD.
Since ID is tangent on ω2, then S belongs on ω2. Then SD = 2BD = DC and so the
triangles IDC and IDS are equal. Their height DT and DQ must be equal. Therefore
DE = 2DQ = 2DT = 2KL as required.
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NUMBER THEORY

N1. Let n ! 3 be an integer and let

M =

(
a1 + a2 + · · ·+ ak

k
: 1 " k " n and 1 " a1 < · · · < ak " n

)

be the set of the arithmetic means of the elements of all non-empty subsets of {1, 2, . . . , n}.

Find min{|a− b| : a, b ∈ M with a ∕= b}.

Proposed by Romania

Solution. We observe that M is composed by rational numbers of the form a = x
k , where

1 " k " n. As the arithmetic mean of 1, . . . , n is n+1
2 , if we look at these rational numbers in

their irreducible form, we can say that 1 " k " n− 1.

A non-zero difference |a− b| with a, b ∈ M is then of form

1111
x

k
− y

p

1111 =
|p0x− k0y|

[k, p]
,

where [k, p] is the l.c.m. of k, p, and k0 = [k,p]
k , p0 = [k,p]

p . Then |a− b| ! 1
[k,p] , as |p0x− k0y| is

a non-zero integer. As

max{[k, p]|1 " k < p " n− 1} = (n− 1)(n− 2) ,

we can say that m = min
a,b∈M
a ∕=b

|a− b| ! 1
(n−1)(n−2) .

To reach this minimum, we seek x ∈ {3, 4, ..., 2n− 1} and y ∈ {1, 2, ..., n} for which

11111

n(n+1)
2 − x

n− 2
−

n(n+1)
2 − y

n− 1

11111 =
1

(n− 1)(n− 2)
,

meaning 1111
n(n+ 1)

2
− (n− 1)x+ (n− 2)y

1111 = 1 .

If n = 2k, we can choose x = k + 3 and y = 2 and if n = 2k + 1 we can choose x = n = 2k + 1
and y = k. Therefore, the required minimum is 1

(n−1)(n−2) .

Comment. For n ! 5, the only other possibilities are to take x = 3k − 1, y = 2k − 1 if n = 2k
and to take x = 2k + 3, y = k + 2 if n = 2k + 1. (For n = 3, 4 there are also examples where
one of the sets is of size n.)
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N2. Denote by ℓ(n) the largest prime divisor of n. Let an+1 = an + ℓ(an) be a recursively
defined sequence of integers with a1 = 2. Determine all natural numbers m such that there
exists some i ∈ N with ai = m2.

Solution. We will show that all such numbers are exactly the prime numbers.

Let p1, p2, . . . be the sequence of prime numbers. We will prove the following:

Claim: Assume an = pipi+1. Then for each k = 1, 2, . . . , pi+2 − pi we have that an+k =
(pi + k)pi+1.

Proof. By induction on k. Since ℓ(an) = pi+1, then an+1 = pipi+1+pi+1 = (pi+1)pi+1. Assume
now that an+r = (pi+r)pi+1 for some r < pi+2−pi. For the inductive step, it is enough to show
that ℓ(an+r) = pi+1 as then we would have an+r = (pi+r)pi+1+pi+1 = (pi+r+1)pi+1. Assume
for contradiction that ℓ(an+r) ∕= pi+1. Since pi+1|an+r, then we must have that ℓ(an+r) > pi+1.
Since also an+r = (pi + r)pi+1, then ℓ(pi + r) > pi+1 and therefore ℓ(pi + r) ! pi+2. This is
impossible as pi + r < pi+2. □

Since a1 = 2, a2 = 4, a3 = 6 = 2 ·3 = p1p2, from the above claim, by induction, we can break up
the sequence into pieces of the form pipi+1, (pi + 1)pi+1, . . . , pi+2pi+1 for i = 1, 2, . . ., together
with the initial piece 2, 4.

We immediately see that for each prime p, the number p2 appears in the sequence. It remains
to show that no other square number appears in the sequence.

Assume for contradiction that another square appears in pipi+1, (pi + 1)pi+1, . . . , pi+2pi+1 for
some i. Since all elements of this piece are multiples of pi+1, if a square appears in this sequence,
it must be a multiple of p2i+1. So the smallest possible square different from p2i+1 is 4p2i+1. It is
enough to show that 4p2i+1 > pi+2pi+1. This is equivalent to showing that pi+2 < 4pi+1 which
follows from Bertrand’s postulate.



48 BMO 2021, Cyprus

N3. Let n be a positive integer. Determine, in terms of n, the greatest integer which divides
every number of the form p+1, where p ≡ 2 mod 3 is a prime number which does not divide n.

Proposed by Bulgaria

Solution. Let k be the greatest such integer. We will show that k = 3 when n is odd and
k = 6 when n is even.

We will say that a number p is nice if p is a prime number of the form 2 mod 3 which does not
divide N .

Note first that if 3|p+ 1 for every nice number p and so k is a multiple of 3.

If n is odd, then p = 2 is nice, so we must have k|3. From the previous paragraph we get that
k = 3.

If n is even, then p = 2 is not nice, therefore every nice p is of the form 5 mod 6. So in this case
6|p+ 1 for every nice number p.

It remains to show that (if n is even then)

(i) There is a nice p such that 4 ∤ p+ 1.

(ii) There is a nice p such that 9 ∤ p+ 1.

(iii) There is a nice p such that for every prime q ∕= 2, 3 we have that q ∤ p+ 1.

For (i), by Dirichlet’s theorem on arithmetic progressions, there are infinitely many primes of
the form p ≡ 5 mod 12. Any one of them which is larger than n will do.

For (ii), by Dirichlet’s theorem on arithmetic progressions, there are infinitely many primes of
the form p ≡ 2 mod 9. Any one of them which is larger than n will do.

For (iii), by Dirichlet’s theorem on arithmetic progressions, there are infinitely many primes of
the form p ≡ 2 mod 3q. Any one of them which is larger than n will do.

Remark. In the proposal, the statement of Dirichlet’s theorem on Arithmetic Progressions was
given as known. Even though this makes the problem fairer we omitted it because we feel that
it also makes it easier.
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N4. Can every positive rational number q be written as

a2021 + b2023

c2022 + d2024
,

where a, b, c, d are all positive integers?

Proposed by United Kingdom

Solution. The answer is yes. Set a = x2023, b = x2021 and c = y2024, d = y2022 for some integers
x, y and let q = m

n in lowest terms. Then we could try to solve

a2021 + b2023

c2022 + d2024
=

2x2021×2023

2y2022×2024
=

x2021×2023

y2022×2024
=

m

n
.

Consider setting x = mx1nx2 and y = my1ny2 . Then by considering powers of m and powers of
n separately, it would be sufficient to solve the pair of equations

2021× 2023x1 − 2022× 2024y1 = 1, and 2021× 2023x2 − 2022× 2024y2 = −1 .

We know that these equations have solutions in positive integers so long as 2021 × 2023 and
2022 × 2024 are coprime. Amongst integers which differ by at most three, the only possible
common prime factors are 2 and 3. Clearly 2 is not a common prime factor of the products,
nor is 3, since only one of the four factors is divisible by 3. So these two integers are coprime,
and the equations have solutions.
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N5. A natural number n is given. Determine all (n − 1)-tuples of nonnegative integers
a1, a2, . . . , an−1 such that

*
m

2n − 1

+
+

*
2m+ a1
2n − 1

+
+

*
22m+ a2
2n − 1

+
+

*
23m+ a3
2n − 1

+
+ · · ·+

*
2n−1m+ an−1

2n − 1

+
= m

holds for all m ∈ Z.

Proposed by Serbia

Solution 1. We will show that there is a unique such n-tuple: ak = 2n−1 + 2k−1 − 1 for
k = 1, . . . , n− 1.

Write N = 2n − 1 and fk(x) =
,
2kx+ak

N

-
for k = 0, 1, . . . , n− 1, where a0 = 0. Since

n−1'

k=0

fk(m)−
n−1'

k=0

fk(m− 1) = 1 ,

for each m ∈ Z, there is exactly one k for which fk(m) = fk(m− 1) + 1. We work modulo N .
The last equality holds if and only if 2km+ ak ∈ {0, 1, . . . , 2k − 1}. I.e. if and only if

2km ∈ {−ak, 1− ak, . . . , 2
k − 1− ak} .

Multiplying with 2n−k, and noting that 2n ≡ 1 mod N , we get the following:

For each m ∈ Z there is a unique k ∈ {0, 1, . . . , n− 1} such that m ∈ Bk (modulo N) where

Bk = {bk, bk + 2n−k, . . . , bk + (2k − 1)2n−k}

with bk = −2n−kak. Therefore the problem condition is equivalent to
;n−1

k=0 Bk being a partition
of {0, 1, . . . , N − 1}.

For a number b and set a A ⊆ Z we write b + A = {b + a : a ∈ A}. With this notation,
Bn−1 = bn−1 + {0, 2, 4, . . . , 2n − 2}. The set Bn−2 = bn−2 + {0, 4, 8, . . . , 2n − 4} is contained in
Bn−1 = bn−1+{1, 3, . . . , 2n−3}, implying bn−2, bn−2+2n−4 ∈ Bn−1, which holds only if bn−2 ≡
bn−1 + 1. Further, the set Bn−3 = bn−3 + {0, 8, 16, . . . , 2n − 8} is contained in Bn−1 ∪Bn−2 =
bn−1 + {3, 7, . . . , 2n − 5}, so we must have bn−3 ≡ bn−1 + 3. Similarly, bn−4 ≡ bn−1 + 7 etc. In
general, bn−k ≡ bn−1 + 2k−1 − 1 for k = 1, . . . , n− 1. It follows that b0 ≡ bn−1 + 2n−1 − 1. On
the other hand, we have b0 = 0, which gives bn−1 ≡ 1− 2n−1 and therefore bk ≡ 2n−1−k − 2n−1.
Thus ak ≡ −2kbk ≡ 2n+k−1 − 2n−1 ≡ 2n−1 + 2k−1 − 1 for k = 1, . . . , n− 1.

Finally,
.

k fk(0) = 0 implies ak < N for all k, so we conclude that ak = 2n−1 + 2k−1 − 1 for
each k = 1, 2, . . . , n− 1.

Solution 2. We will use the identity

[x] +

*
x+

1

N

+
+

*
x+

2

N

+
+ · · ·+

*
x+

N − 1

N

+
= [Nx]

which holds for every x ∈ R and every N ∈ N. (One can check this by noting that the difference
between the two sides of the identity is periodic with period 1/N and that the identity clearly
holds for x ∈ [0, 1

N ). )

Writing a0 = 0 and N = 2n − 1 we observe that

m =

n−1'

k=0

*
2km+ ak

N

+
=

2k−1'

r=0

2k−1'

r=0

*
m+ ak

2k

N
+

r

2k

+
=

n−1'

k=0

2k−1'

r=0

<
m+ ak+rN

2k

N

=
. (1)
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It follows that cr,k =
,
ak+rN

2k

-
are all distinct modulo N for k = 0, 1, . . . , n − 1 and r =

0, 1, . . . , 2k − 1. Indeed if two (or more) of them are congruent to t, then writing f(t) for the
right hand side of (1) we get 1 = f(−t)− f(−t− 1) ! 2, a contradiction.

Since N = 2n− 1, then cr,k = r2n−k + dr,k, where dr,k =
2
ak−r
2k

>
. Because c0,0 = 0, then c0,k ∕= 0

for each k ∕= 0 giving ak ! 2k for each k ! 1. Setting m = 0 in the original equation gives
ak < N for each k and so d0,k " 2n−k − 1 for each k. Furthermore

2n−k − 1 ! d0,k ! d1,k ! · · · ! d2k−1,k ! d2k,k = d0,k − 1 ! 0 . (2)

In particular 0 " cr,k = r2n−k + dr,k " (2n − 2n−k) + (2n−k − 1) = N . For k = 0, 1, 2, . . . , n− 1
define Ak = {cr,k : r = 0, 1, . . . , 2k − 1}. From the above, since A0 = {0}, we must have that
A1 ∪A2 ∪ · · · ∪An−1 = {1, 2, . . . , N − 1}.

For a natural number t let v2(t) be as usual the largest exponent such that 2v2(t)|t. Let

f(t) = n− v2(t)− 1 , g(t) =
t− 2v2(t)

21+v2(t)
, and h(t) = 2f(t) − 1− g(t) .

Note that f(t) uniquely determines v2(t) and together with g(t) they uniquely determine t.
Similarly h(t) and g(t) uniquely determine t.

Claim. For each t ∈ {1, 2, . . . , 2n−1 − 1} we have:

(i) dg(t),f(t) = 2v2(t) ,

(ii) dh(t),f(t) = 2v2(t) − 1 ,

(iii) cg(t),f(t) = t ,

(iv) ch(t),f(t) = N − t .

Proof of Claim. We proceed by induction on t. For t = 1 we have v2(1) = 0, f(1) =
n − 1, g(1) = 0 and h(1) = 2n−1 − 1. From (2) we have 1 ! d0,n−1 and d0,n−1 − 1 ! 0 proving
(i). Also, cg(1),f(1) = c0,n−1 = d0,n−1 = 1 proving (iii). From (2) we have 1 ! d2n−1−1,n−1 ! 0.
But c2n−1−1,n−1 = 2n − 2 + d2n−1−1,n−1 = N − 1 + d2n−1−1,n−1. Since c2n−1−1,n−1 " N − 1 we
deduce both (ii) and (iv).

Assume now that the result is true for t = s− 1. We will prove the result for t = s.

Case 1: If s−1 = 2u is even, then v2(s) = 0, so f(s) = n−1, g(s) = u and h(s) = 2n−1−1−u.

By the induction hypothesis, since all the cr,k’s are distinct, we must have

s " cg(s),f(s) = 2u+ dg(s),f(s) = s− 1 + dg(s),f(s)

and
N − s ! ch(s),f(s) = 2n − 2− 2u+ dh(s),f(s) = N − s+ dh(s),f(s) .

From the above we must have dg(s),f(s) ! 1 and dh(s),f(s) " 0. But from (2) any two dr,k’s for
fixed k differ by at most 1. This can only be achieved if we have equalities everywhere proving
(i)-(iv).

Case 2: If s − 1 = 2u + 1 is odd, then we write s = 2u + 2 = 2vw for some odd w. Then
v2(s) = v and so k = f(s) = n − 1 − v and r = g(s) = (w − 1)/2. Also h(s) = 2k − 1 − r. By
the induction hypothesis we must have

s " cr,k = r2n−k + dr,k = 2v(w − 1) + dr,k = s− 2v + dr,k
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and

N − s ! ch(s),k = (2k − 1− r)2n−k + dh(s),k

= 2n − 2v+1 − s+ 2v + dh(s),k

= N + 1− s− 2v + dh(s),k .

From the above we must have dr,k ! 2v and dh(s),k " 2v − 1. As in Case 1 we must have
equalities everywhere proving (i)-(iv). □

For t = 2n−1 − 2n−k−1 we have v2(t) = n − k − 1, f(t) = k, g(t) = 2k−1 − 1 and h(t) =
2k − 1− (2k−1 − 1) = 2k−1. Thus from (ii) and (iv) we get

*
ak − (2k−1 − 1)

2k

+
= 2n−k−1 and

*
ak − 2k−1

2k

+
= 2n−k−1 − 1 .

This is only possible if ak = 2k · 2n−k−1 + (2k−1 − 1) = 2n−1 + 2k−1 − 1 as required.
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N6. Let a, b and c be positive integers satisfying the equation (a, b) + [a, b] = 2021c. If |a− b|
is a prime number, prove that the number (a+ b)2 + 4 is composite.

Proposed by Serbia

Solution. We write p = |a − b| and assume for contradiction that q = (a + b)2 + 4 is a prime
number.

Since (a, b) | [a, b], we have that (a, b) | 2021c. As (a, b) also divides p = |a − b|, it follows that
(a, b) ∈ {1, 43, 47}. We will consider all 3 cases separately:

(1) If (a, b) = 1, then 1 + ab = 2021c, and therefore

q = (a+ b)2 + 4 = (a− b)2 + 4(1 + ab) = p2 + 4 · 2021c . (1)

(a) Suppose c is even. Since q ≡ 1 mod 4, it can be represented uniquely (up to order) as a
sum of two (non-negative) squares. But (1) gives potentially two such representations
so in order to have uniqueness we must have p = 2. But then 4|q a contradiction.

(b) If c is odd then ab = 2021c − 1 ≡ 1 mod 3. Thus a ≡ b mod 3 implying that
p = |a− b| ≡ 0 mod 3. Therefore p = 3. Without loss of generality b = a+ 3. Then
2021c = ab+ 1 = a2 + 3a+ 1 and so

(2a+ 3)2 = 4a2 + 12a+ 9 = 4 · 2021c + 5 .

So 5 is a quadratic residue modulo 47, a contradiction as

!
5

47

"
=

!
47

5

"
=

!
2

5

"
= −1 .

(2) If (a, b) = 43, then p = |a− b| = 43 and we may assume that a = 43k and b = 43(k + 1),
for some k ∈ N. Then 2021c = 43 + 43k(k + 1) giving that

(2k + 1)2 = 4k2 + 4k + 4− 3 = 4 · 43c−1 · 47− 3 .

So −3 is a quadratic residue modulo 47, a contradiction as

!
−3

47

"
=

!
−1

47

"!
3

47

"
=

!
47

3

"
=

!
2

3

"
= −1 .

(3) If (a, b) = 47 then analogously there is a k ∈ N such that

(2k + 1)2 = 4 · 43c · 47c−1 − 3 .

If c > 1 then we get a contradiction in exactly the same way as in (2). If c = 1 then
(2k+1)2 = 169 giving k = 6. This implies that a+ b = 47 · 6+ 47 · 7 = 47 · 13 ≡ 1 mod 5.
Thus q = (a+ b)2 + 4 ≡ 0 mod 5, a contradiction.
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N7. A super-integer triangle is defined to be a triangle whose lengths of all sides and at least
one height are positive integers. We will deem certain positive integer numbers to be good with
the condition that if the lengths of two sides of a super-integer triangle are two (not necessarily
different) good numbers, then the length of the remaining side is also a good number. Let 5 be
a good number. Prove that all integers larger than 2 are good numbers.

Proposed by Serbia

Solution. Evidently, all right-angle triangles with integer sides are super-integer triangles. We
will use the following notation (a, b, c {h}) to denote a super-integer triangle whose sides are a,
b and c and the height of integer length is h. The height will be written in curly brackets next
to the corresponding side and it will be omitted for right-angled triangles. It also follows that
if (a, b, c) is an super-integer triangle, then so is (ka, kb, kc), where k is a positive integer.

Note. In all cases of right-angled triangles one can check directly that they are right-angled
by Pythagoras’ Theorem or use the standard result that (d(m2 − n2), 2dmn, d(m2 + n2)) is a
right-angled triangle. For non-right angled triangled we will use Heron’s formula that the area
of the triangle is

:
s(s− a)(s− b)(s− c) where s is the semiperimeter. For the triangle to be

super-integer we need that s(s− a)(s− b)(s− c) is a perfect square, say s = m2, and that 2m
is a multiple of a or b or c. We will only make implicit use of the above.

From (5, 5, 6 {4}) and (5, 5, 8 {3}) it follows that 6 and 8 are good. From (6, 8, 10) it then follows
that 10 is also good.

It thus follows if a is good that 2a is also good. Indeed consider a sequence of super-integer
triangles showing that if 5 is good then a is good. Then the sequence of super-integer triangles
of double the size of their edges show that since 10 is good then 2a is good.

It easily follows that 12, 16, 20 and 24 are good. From (5, 12, 13) it follows that 13 and therefore
also 26 are good. From (11 {12}, 13, 20) and (21 {12}, 13, 20) it follows that 11 and 21 are good.
From (20, 21, 29) it follows that 29 is good. From (6 {20}, 25, 29) it follows that 25 is good.

We will say that a positive integer is nice if it is either good or equal to 1 or 2.

Claim 1. If a is good and b is nice then ab is good.

Proof of Claim. The claim is trivial if b = 1 and we already proved the case b = 2. So assume
that b is good. Pick a sequence of super-integer triangles which shows that if 5 is good then
b is good. Then the sequence of super-integer triangles 5 times the size of their edges shows
that since 25 is good then 5b is also good. Now pick a sequence of super-integer triangles which
shows that if 5 is good then b is good. Then the sequence of super-integer triangles b times the
size of their edges shows that since 5a is good then ab is also good. □.

Next, from (15, 20, 25) and (7, 24, 25) we get that 15, 7 and therefore 14 are good. From
(9, 12, 15) and (8, 15, 17) we get that 9, 17 and therefore 18 are good and finally from (3 {24}, 25, 26)
and then (3, 4, 5) we get that 3 and 4 are good.

We now have that all integers from 3 to 18 are good. To prove that the remaining integers
larger than 18 are good, we will proceed by strong induction. Assume that all integers from 3
to n− 1 are good for n ! 19.

Case 1. If n = 2m is even, then 3 " m " n−1 so m is good. By Claim 1, n = 2m is also good.

Case 2. If n is odd and composite, say n = ab, with a, b > 1, then 3 " a, b " n− 1 so a, b are
good. By Claim 1, n = ab is also good.
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Case 3. If n is an odd prime of the form 4k + 1, then by Fermat sum of two squares theorem
we can write n = a2 + b2. We may assume a > b. (a ∕= b as n is prime.) Consider the triangle
(a2 − b2, 2ab, a2 + b2). This is a super-integer triangle since it is a right-angled triangle. We
have 3 " a2 − b2 " n− 1 so a2 − b2 is good. We also have 3 " 2ab < a2 + b2 = n so 2ab is also
good. Thus n = a2 + b2 is good as well.

Case 4. Assume n is an odd prime of the form 4k + 3. Note that 4k + 4 is good by Case 1 as
2k + 2 < 4k + 3. We also have that 4k + 5 is good either by Case 2 (if it is composite) or by
Case 3 (if it is prime) except if 4k + 5 is a prime equal to a2 + 1. (Because in this case, to use
Case 3 we would need that a2− 1 = n is good which is what we are trying to prove. But in this
exceptional case n = a2 − 1 = (a− 1)(a+ 1) is not prime.

We will make use of the following Claim:

Claim 2. Let a, b, ℓ be positive integers such that ℓ > 1 and a ∕= b. If ℓ− 1, |a− b|, a, b are nice,
and ℓ, a+ b, a2ℓ+ b2 are good, then a2ℓ2 + b2 is good.

Proof of Claim. By Claim 1, the numbers |a2 − b2| = |a− b|(a+ b) and 2ab are good. From
the right-angled triangle (2ab, |a2 − b2|, a2 + b2) it follows that a2 + b2 is good. So by Claim
1 ℓ(a2 + b2) is good. By Claim 1 (ℓ − 1)(a2ℓ + b2) is also good. Finally, from the triangle
((ℓ− 1)(a2ℓ+ b2) {2ℓab}, ℓ(a2 + b2), a2ℓ2 + b2), we get that a2ℓ2 + b2 is good. □

From Claim 2 with a = 2, b = 1 and ℓ = k + 1 to obtain that

22(k + 1)2 + 12 = 4k2 + 8k + 5 = 4(k + 1) + (2k + 1)2

is good. From Claim 2 with a = 2, b = 2k + 1 and ℓ = k + 1 we obtain that

22(k + 1)2 + (2k + 1)2 = (2k + 2)2 + (2k + 1)2

is good. Since from Claim 1, 2(2k + 1)(2k + 2) is good, then from the right-angled triangle
(4k+3, 2(2k+1)(2k+2), (2k+2)2+(2k+1)2) we finally deduce that 4k+3 is good as required.






