
The 11th Romanian Master of Mathematics Competition

Day 1 — Solutions

Problem 1. Amy and Bob play the game. At the beginning, Amy writes down a positive integer
on the board. Then the players take moves in turn, Bob moves first. On any move of his, Bob
replaces the number n on the blackboard with a number of the form n−a2, where a is a positive
integer. On any move of hers, Amy replaces the number n on the blackboard with a number of
the form nk, where k is a positive integer. Bob wins if the number on the board becomes zero.
Can Amy prevent Bob’s win?

Russia, Maxim Didin

Solution. The answer is in the negative. For a positive integer n, we define its square-free part
S(n) to be the smallest positive integer a such that n/a is a square of an integer. In other words,
S(n) is the product of all primes having odd exponents in the prime expansion of n. We also
agree that S(0) = 0.

Now we show that (i) on any move of hers, Amy does not increase the square-free part of
the positive integer on the board; and (ii) on any move of his, Bob always can replace a positive
integer n with a non-negative integer k with S(k) < S(n). Thus, if the game starts by a positive
integer N , Bob can win in at most S(N) moves.

Part (i) is trivial, as the definition of the square-part yields S(nk) = S(n) whenever k is odd,
and S(nk) = 1 ≤ S(n) whenever k is even, for any positive integer n.

Part (ii) is also easy: if, before Bob’s move, the board contains a number n = S(n) · b2, then
Bob may replace it with n′ = n− b2 = (S(n)− 1)b2, whence S(n′) ≤ S(n)− 1.

Remarks. (1) To make the argument more transparent, Bob may restrict himself to subtract
only those numbers which are divisible by the maximal square dividing the current number. This
restriction having been put, one may replace any number n appearing on the board by S(n),
omitting the square factors.

After this change, Amy’s moves do not increase the number, while Bob’s moves decrease it.
Thus, Bob wins.

(2) In fact, Bob may win even in at most 4 moves of his. For that purpose, use Lagrange’s four
squares theorem in order to expand S(n) as the sum of at most four squares of positive integers:
S(n) = a21 + · · ·+ a2s. Then, on every move of his, Bob can replace the number (a21 + · · ·+ a2k)b

2

on the board by (a21 + · · · + a2k−1)b
2. The only chance for Amy to interrupt this process is to

replace a current number by its even power; but in this case Bob wins immediately.
On the other hand, four is indeed the minimum number of moves in which Bob can guarantee

himself to win. To show that, let Amy choose the number 7, and take just the first power on
each of her subsequent moves.
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Problem 2. Let ABCD be an isosceles trapezoid with AB ‖ CD. Let E be the midpoint of
AC. Denote by ω and Ω the circumcircles of the triangles ABE and CDE, respectively. Let P
be the crossing poitn of the tangent to ω at A with the tangent to Ω at D. Prove that PE is
tangent to Ω.

Slovenia, Jakob Jurij Snoj

Solution 1. If ABCD is a rectangle, the statement is trivial due to symmetry. Hence, in what
follows we assume AD 6‖ BC.

Let F be the midpoint of BD; by symmetry, both ω and Ω pass through F . Let P ′ be the
meeting point of tangents to ω at F and to Ω at E. We aim to show that P ′ = P , which yields
the required result. For that purpose, we show that P ′A and P ′D are tangent to ω and Ω,
respectively.

Let K be the midpoint of AF . Then EK is a midline in the triangle ACF , so ∠(AE,EK) =
∠(EC,CF ). Since P ′E is tangent to Ω, we get ∠(EC,CF ) = ∠(P ′E,EF ). Thus, ∠(AE,EK) =
∠(P ′E,EF ), so EP ′ is a symmedian in the triangle AEF . Therefore, EP ′ and the tangents to ω
at A and F are concurrent, and the concurrency point is P ′ itself. Hence P ′A is tangent to ω.

The second claim is similar. Taking L to be the midpoint of DE, we have ∠(DF,FL) =
∠(FB,BE) = ∠(P ′F, FE), so P ′F is a symmedian in the triangle DEF , and hence P ′ is the
meeting point of the tangents to Ω at D and E.
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Remark. The above arguments may come in different orders. E.g., one may define P ′ to be the
point of intersection of the tangents to Ω at D and E — hence obtaining that P ′F is a symmedian
in 4DEF , then deduce that P ′F is tangent to ω, and then apply a similar argument to show
that P ′E is a symmedian in 4AEF , whence P ′A is tangent to ω.

Solution 2. Let Q be the isogonal conjugate of P with respect to 4AED, so ∠(QA,AD) =
∠(EA,AP ) = ∠(EB,BA) and ∠(QD,DA) = ∠(ED,DP ) = ∠(EC,CD). Now our aim is to
prove that QE ‖ CD; this will yield that ∠(EC,CD) = ∠(AE,EQ) = ∠(PE,ED), whence PE
is tangent to Ω.

Let DQ meet AB at X. Then we have ∠(XD,DA) = ∠(EC,CD) = ∠(EA,AB) and
∠(DA,AX) = ∠(AB,BC), hence the triangles DAX and ABC are similar. Since ∠(AB,BE) =
∠(DA,AQ), the points Q and E correspond to each other in these triangles, hence Q is the
midpoint of DX. This yields that the points Q and E lie on the midline of the trapezoid parallel
to CD, as desired.

2



A B

CD

E

P

Q
R

XI

I

Remark. The last step could be replaced with another application of isogonal conjugacy in the
following manner. Reflect Q in the common perpendicular bisector of AB and CD to obtain a
point R such that ∠(CB,BR) = ∠(QA,AD) = ∠(EB,BA) and ∠(BC,CR) = ∠(QD,DA) =
∠(EC,CD). These relations yield that the points E and R are isogonally conjugate in a triangle
BCI, where I is the (ideal) point of intersection of BA with CD. Since E is equidistant from AB
and CD, R is also equidistant from them, which yields what we need. (The last step deserves
some explanation, since one vertex of the triangle is ideal. Such explanation may be obtained in
many different ways — e.g., by a short computation in sines, or by noticing that, as in the usual
case, R is the circumcenter of the triangle formed by the reflections of E in the sidelines AB,
BC, and CD.)
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Solution 3. (Dan Carmon) Let O be the intersection of the diagonals AC and BD. Let F be
the midpoint of BD. Let S be the second intersection point of the circumcircles of triangles AOF
and DOE. We will prove that SD and SE are tangent to Ω; the symmetric argument would
then imply also that SA and SF are tangent to Γ. Thus S = P and the claimed tangency holds.

We first prove that OS is parallel to AB and DC. Compute the powers of the points A,B
with respect to the circumcircles of AOF and DOE:

d(A,AOF ) = 0, d(A,DOE) = AO ·AE

d(B,AOF ) = BO ·BF, d(B,DOE) = BO ·BD = 2BO ·BF

And therefore

d(B,DOE)− d(B,AOF ) = BO ·BF = AO ·AE = d(A,DOE)− d(A,AOF )

Thus both A and B belong to a locus of the form

d(X,DOE)− d(X,AOF ) = const,

which is always a lines parallel to the radical axis of the respective circles. Since this radical axis
is OS by definition, it follows that AB is parallel to OS, as claimed.

Now by angle chasing in the cyclic quadrilateral DSOE, we find

∠(SD,DE) = ∠(SO,OE) = ∠(DC,CE),

∠(SE,ED) = ∠(SO,OD) = ∠(DC,DB) = ∠(AC,CD) = ∠(EC,CD),

and these angle equalities are exactly the conditions of SD, SE being tanget to Ω, as claimed.

Remarks. (1) The solution was motivated by the following observation: Suppose P is the
intersection of the tangents to Ω at D and E as claimed. Then by single angle chasing we
observe that the isogonal conjugate of P in the triangle DOE is the common ideal point at
infinity of DC and EF . This implies that P is on the circumcircle of DOE and that OP is
parallel to DC (to be precise, it implies that the reflection of OP in the angle bisector of DOE
is parallel to DC and EF – but the angle bisector is also parallel to these lines, so in fact OP is
the angle bisector). By symmetry it follows that P is also on the circumcircle of AOF , thus the
construction.

(2) The key parts of the proof can be described as (1) Constructing S, (2) Proving that OS
is parallel to AB and CD, and (3) Concluding that S = P and finishing the problem. Parts
(2) and (3) can be performed in various other ways. For example, part (2) can be proved by
showing that the circumcentres of AOF and DOE lie on a line perpendicular to the trapezium’s
bases; part (3) can be proved considering the spiral map taking the circumcircle of DOC to the
circumcircle of DSE. Since O is the second intersction point of these circles, and since OCE
are collinear and SO is tangent to the circumcircle of DOC at O (by symmetry), it follows that
the spiral map sends C to E and O to S, i.e. the triangle DSE is similar to the isoceles triangle
DOC, from which the remainder of the angle chase is trivial.
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Problem 3. Given any positive real number ε, prove that, for all but finitely many positive
integers v, any graph on v vertices with at least (1 + ε)v edges has two distinct simple cycles of
equal lengths.

(Recall that the notion of a simple cycle does not allow repetition of vertices in a cycle.)

Russia, Fedor Petrov

Solution. Fix a positive real number ε, and let G be a graph on v vertices with at least (1 + ε)v
edges, all of whose simple cycles have pairwise distinct lengths.

Assuming ε2v ≥ 1, we exhibit an upper bound linear in v and a lower bound quadratic in v
for the total number of simple cycles in G, showing thereby that v cannot be arbitrarily large,
whence the conclusion.

Since a simple cycle in G has at most v vertices, and each length class contains at most one
such, G has at most v pairwise distinct simple cycles. This establishes the desired upper bound.

For the lower bound, consider a spanning tree for each component of G, and collect them all
together to form a spanning forest F . Let A be the set of edges of F , and let B be the set of all
other edges of G. Clearly, |A| ≤ v− 1, so |B| ≥ (1 + ε)v− |A| ≥ (1 + ε)v− (v− 1) = εv+ 1 > εv.

For each edge b in B, adjoining b to F produces a unique simple cycle Cb through b. Let
Sb be the set of edges in A along Cb. Since the Cb have pairwise distinct lengths,

∑
b∈B |Sb| ≥

2 + · · ·+ (|B|+ 1) = |B|(|B|+ 3)/2 > |B|2/2 > ε2v2/2.
Consequently, some edge in A lies in more than ε2v2/(2v) = ε2v/2 of the Sb. Fix such an edge

a in A, and let B′ be the set of all edges b in B whose corresponding Sb contain a, so |B′| > ε2v/2.
For each 2-edge subset {b1, b2} of B′, the union Cb1 ∪ Cb2 of the cycles Cb1 and Cb2 forms a

θ-graph, since their common part is a path in F through a ; and since neither of the bi lies along
this path, Cb1 ∪ Cb2 contains a third simple cycle Cb1,b2 through both b1 and b2. Finally, since
B′ ∩Cb1,b2 = {b1, b2}, the assignment {b1, b2} 7→ Cb1,b2 is injective, so the total number of simple

cycles in G is at least
(|B′|

2

)
>
(
ε2v/2

2

)
. This establishes the desired lower bound and concludes

the proof.

Remarks. (1) The problem of finding two cycles of equal lengths in a graph on v vertices with
2v edges is known and much easier — simply consider all cycles of the form Cb.

The solution above shows that a graph on v vertices with at least v + Θ(v3/4) edges has
two cycles of equal lengths. The constant 3/4 is not sharp; a harder proof seems to show that
v + Θ(

√
v log v) edges would suffice. On the other hand, there exist graphs on v vertices with

v + Θ(
√
v) edges having no such cycles.

(2) To avoid graph terminology, the statement of the problem may be rephrased as follows:

Given any positive real number ε, prove that, for all but finitely many positive integers
v, any v-member company, within which there are at least (1+ε)v friendship relations,
satisfies the following condition: For some integer u ≥ 3, there exist two distinct u-
member cyclic arrangements in each of which any two neighbours are friends. (Two
arrangements are distinct if they are not obtained from one another through rotation
and/or symmetry; a member of the company may be included in neither arrangement,
in one of them or in both.)
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Sketch of solution 2. (Po-Shen Loh) Recall that the girth of a graph G is the minimal length
of a (simple) cycle in this graph.

Lemma. For any fixed positive δ, a graph on v vertices whose girth is at least δv has at most
v + o(v) edges.

Proof. Define f(v) to be the maximal number f such that a graph on v vertices whose girth is
at least δv may have v + f edges. We are interested in the recursive estimates for f .

Let G be a graph on v vertices whose gifth is at least δv containing v + f(v) edges. If G
contains a leaf (i.e., a vertex of degree 1), then one may remove this vertex along with its edge,
obtaining a graph with at most v − 1 + f(v − 1) edges. Thus, in this case f(v) ≤ f(v − 1).

Define an isolated path of length k to be a sequence of vertices v0, v1, . . . , vk, such that vi
is connected to vi+1, and each of the vertices v1, . . . , vk−1 has degree 2 (so, these vertices are
connected only to their neighbors in the path). If G contains an isolated path v0, . . . , vk of
length, say, k >

√
v, then one may remove all its middle vertices v1, . . . , vk−1, along with all their

k edges. We obtain a graph on v − k + 1 vertices with at most (v − k + 1) + f(v − k + 1) edges.
Thus, in this case f(v) ≤ f(v − k + 1) + 1.

Assume now that the lengths of all isolated paths do not exceed
√
v; we show that in this case

v is bounded from above. For that purpose, we replace each maximal isolated path by an edge
between its endpoints, removing all middle vertices. We obtain a graph H whose girth is at least
δv/
√
v = δ

√
v. Each vertex of H has degree at least 3. By the girth condition, the neighborhood

of any vertex x of radius r = b(δ
√
v − 1)/2c is a tree rooted at x. Any vertex at level i < r has

at least two sons; so the tree contains at least 2b(δ
√
v−1)/2c vertices (even at the last level). So,

v ≥ 2b(δ
√
v−1)/2c which may happen only for a finite number of values of v.

Thus, for all large enough values of v, we have either f(v) ≤ f(v − 1) or f(v) ≤ f(v − k + 1)
for some k >

√
v. This easily yields f(v) = o(v), as desired. �

Now we proceed to the problem. Consider a graph on v vertices containing no two simple
cycles of the same length. Take its bεv/2c shortest cycles (or all its cycles, if their total number
is smaller) and remove an edge from each. We get a graph of girth at least εv/2. By the lemma,
the number of edges in the obtained graph is at most v + o(v), so the number of edges in the
initial graph is at most v + εv/2 + o(v), which is smaller than (1 + ε)v if v is large enough.
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The 11th Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. Prove that for every positive integer n there exists a (not necessarily convex)
polygon with no three collinear vertices, which admits exactly n different triangulations.

(A triangulation is a dissection of the polygon into triangles by interior diagonals which have no
common interior points with each other nor with the sides of the polygon.)

Iran, Morteza Saghafian

Solution. The left figure below shows an example of a polygon admitting a unique triangulation:
the only its diagonals lying inside the polygon come from A, so all of them must be drawn. (Notice
that the “exterior” polygon B1B2 . . . Bn is convex.)

Now we prove that the right figure below shows a polygon A1A2B1B2 . . . Bn with exactly n
triangulations. Indeed, any triangulation must contain a triangle with side A1A2, and there are
n possible such, namely A1A2Bi for i = 1, 2, . . . , n. After such triangle has been chosen, the rest
part of the polygon splits into two (or one) polygons admitting a unique triangulation. Hence
the result.
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Problem 5. Determine all functions f : R→ R satisfying

f(x+ yf(x)) + f(xy) = f(x) + f(2019y),

for all real numbers x and y.

Slovenia, Jakob Jurij Snoj

Solution. There are three types of such functions: (i) f(x) = 2019 − x; (ii) f(x) = c for an
arbitrary constant c; and (iii) f(x) = 0 for x 6= 0, and f(0) is arbitrary.

A straightforward check shows that all three types satisfy the equation hence we need to show
that they are the only ones. Let N = 2019.

First of all, setting x = Nx′, we arrive at the equation f(Nx′ + yf(Nx′)) + f(Nx′y) =
f(Nx′) + f(Ny). After a change g(x) = f(Nx)/N this equation reads

g
(
x+ yg(x)

)
+ g(xy) = g(x) + g(y) (x, y ∈ R), (1)

which does not depend on N . Now we investigate the corresponding functions g.
Setting x = 1 we get g(1 +yg(1)) = g(1). If g(1) 6= 0, then 1 +yg(1) attains all real values, so

we arrive at the answer (ii). Otherwise, g(1) = 0, and by setting y = 1 we get g
(
x+ g(x)

)
= 0. If

a = 1 is the unique real number with g(a) = 0, then we obtain x+g(x) = 1, whence g(x) = 1−x,
which falls into (i). Hence in the sequel we assume that

g(1) = 0, and also g(a) = 0 for some a 6= 1. (∗)

We will make use of the following two arguments.

Claim 1. If b is an arbitrary zero of g, then by substituting x = z we get g(zy) = g(y). Recalling
that g(g(0)) = g(0 + g(0)) = 0, we obtain also g(g(0)y) = g(y). �

Claim 2. Let a and b are two zeroes of g, and let s be its non-zero, i. e. g(s) 6= 0. We claim that
g is p-periodic, where p = (a− b)s. Indeed, substituting x = as and using Claim 1, we get that
he expression

g(as+ yg(s)) = g(as) + g(y)− g(asy) = g(s) + g(y)− g(sy)

does not de[pend on a. Hence g(as+ yg(s)) = g(bs+ yg(s)) for all y, which proves the required
periodicity, since yg(s) attains all real values. �

Now, if g(x) = 0 for all x 6= 0, we get the remaining answer (iii). Assume now that there
exists s 6= 0 with g(s) 6= 0, so by Claim 2 g is periodic with some period p. Substituting x = p
and using periodicity we get g(yg(0)) + g(py) = g(0) + g(y). Since g(yg(0)) = g(y) by Claim 1,
we arrive at g(py) = g(0) which shows g is constant.

Remark. After arriving at (∗) and obtaining Claims 1 and 2, alternative approaches are possible.
E. g., denote by Z = {x ∈ R : g(x) = 0} the set of zeros of g. Claim 1 yields that Z is

a-invariant, i. e., aZ = Z. We want to show that Z − Z = R; this will, by means of Claim 2,
yield that g is periodic with every period, i. e., constant.

For any β ∈ Z, we plug in y = β and use Claim 1 to obtain g(x+βg(x)) = 0, so x+βg(x) ∈ Z
for all x. Now, setting β = 1 and β = a (from (∗)) we get x + g(x), x + ag(x) ∈ Z. The first
inclusion yields also a(x + g(x)) ∈ Z, and hence (a− 1)x = a(x + g(x))− (x + ag(x)) ∈ Z − Z.
This shows that Z − Z = R.
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Problem 6. Find all pairs of integers (c, d), both greater than 1, such that the following holds:
For any monic polynomial Q of degree d with integer coefficients and for any prime p >

c(2c+ 1), there exists a set S of at most
(
2c−1
2c+1

)
p integers, such that⋃

s∈S
{s, Q(s), Q(Q(s)), Q(Q(Q(s))), . . .}

contains a complete residue system modulo p (i.e., intersects with every residue class modulo p).

Croatia, Adrian Beker

Solution. Those pairs are all pairs (c, d) of positive integers greater than 1 such that d ≤ c.

Assume first that d ≥ c + 1. Choose a large prime p (we need p > 2c2 + c) congruent to 1
modulo d (such a prime exists, by a particular case of Dirichlet’s theorem; this particular case is
easier to prove by using the cyclotomic polynomial Φd). Let Q(X) = Xd. Since d | p− 1, exactly
1 + (p− 1)/d residues modulo p are d-th powers; all other (d− 1)(p− 1)/d residue classes contain
no values of P . Hence, if a set S satisfies the requirements, it should contain representatives of
all those classes. But this is more than S is allowed to contain, since

d− 1

d
(p− 1) >

2c− 1

2c+ 1
p ⇐=

c

c+ 1
(p− 1) >

2c− 1

2c+ 1
p

⇐=
p

(c+ 1)(2c+ 1)
>

c

c+ 1
⇐= p > c(2c+ 1).

We now show that such set S exists, whenever d ≤ c. To this end, usage is made of the lemma
below.

Lemma. Fix an integer d ≥ 2. Let G = (V,E) be a directed graph, each vertex of which has
exactly one outgoing edge and at most d incoming edges. Assume further that there are at most
d loops in this graph. Then there exists a subset V ′ of V of cardinality |V ′| ≤ 1 + d−1

d |V | such
that every vertex in V r V ′ is the terminus of a directed path emanating from V ′.

Proof. Consider any (weak) connected component G1 = (V1, E1) in G — i.e., a component of
the corresponding undirected graph. Since from each vertex emanates exactly one edge, the
component contains a directed cycle (possibly a loop); and since the numbers of vertices and
edges in G1 are equal, even an undirected cycle is unique. Hence, the component is a cycle with
some trees rooting out of its vertices. With reference again to uniqueness of outgoing edges, the
edges of these trees are all directed towards the cycle.

Now, let V ′ choose exactly one vertex from each component that is just a cycle; for any other
component, let V ′ choose all its in-degree 0 vertices, i.e., the leaves of all trees rooting out of the
vertices of the core-cycle — any vertex of such a tree can be reached from some leaf, and hence
so can any vertex of the core-cycle.

To bound |V ′| from above, let t be the number of single-vertex components in G, and notice
that t ≤ d, since there are at most d loops in the graph. From each other component that is a
cycle, V ′ chooses at most half of its vertices, so at most d−1

d -th part of them. Finally, consider
a component containing some trees. Since each in-degree is at most d, at least 1

d -th part of the

vertices have incoming edges, hence V ′ chooses at most d−1
d -th part of the vertices. Consequently,

|V ′| ≤ t+
d− 1

d
(|V | − t) =

t

d
+
d− 1

d
|V | ≤ 1 +

d− 1

d
|V |,
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as desired. This establishes the lemma. �

Now let p and Q be chosen as in the problem statement. Consider a graph with vertex set
Zp. Regard Q as a polynomial over Zp, and draw an edge a → Q(a) for every a in Zp. Since
degQ = d, each b in Zp has at most d preimages, so the in-degree of each vertex is at most d.
Since Q is monic and d > 1, the equation Q(x) = x has at most d roots in Zp, hence the graph
has at most d loops. Thus, implementation of the lemma provides a set V ′ which is suitable as
the required set S. Indeed, the lemma statement shows that each residue is a repetitive image
of some element of S; and the implications below show that the cardinality of V ′ lies within the
required range:

|V ′| ≤ d− 1

d
p+ 1 ≤ 2c− 1

2c+ 1
p ⇐=

c− 1

c
p+ 1 ≤ 2c− 1

2c+ 1
p

⇐=
p

c(2c+ 1)
≥ 1 ⇐= p ≥ c(2c+ 1).
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