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1 [4] In a convex 2002-gon several diagonals are drawn so that they do not intersect inside of
the polygon. As a result, the polygon splits into 2000 triangles.

Is it possible that exactly 1000 triangles have diagonals for all of their three sides?

2 [5] Each of two children (John and Mary) selected a natural number and communicated it to
Bill. Bill wrote down the sum of these numbers on one card and their product on another,
hid one card and showed the other to John and Mary.

John looked at the number (which was 2002) and declared that he was not able to determine
the number chosen by Mary. Knowing this, Mary said that she was also not able to determine
the number chosen by John.

What was the number chosen by Mary?

3

a) [1] A test was conducted in a class. It is known that at least
2

3
of the problems were hard:

each such problem was not solved by at least
2

3
of the students. It is also known that at least

2

3
of students passed the test: each such student solved at least

2

3
of the suggested problems.

Is this situation possible?

b) [2] The same question with
2

3
replaced by

3

4
.

c) [2] The same question with
2

3
replaced by

7

10
.

4) [5] 2002 cards with the numbers 1, 2, 3,. . . ,2002 written on them are put on a table face up.
Two players in turns pick up a card from the table until all cards are gone. The player who
gets the last digit of the sum of all numbers on his cards larger than his opponent, wins.

Who has a winning strategy and how one should play to win?

5) [5] An angle and a point A inside of it are given. Is it possible to draw through A three
straight lines so that on either side of the angle one of three points of intersection of these
lines be the midpoint between two other points of intersection with that side?

Keep the problem set.
Visit: http://www.math.toronto.edu/oz/turgor/
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1 Consider a triangulation of 2002-gon satisfying the conditions. Triangles which contain at least
one side of 2002-gon we call exterior triangles. So, our problem is reduced to the following
question:

Is it possible to have exactly 1000 exterior triangles? (then we have exactly 1000 triangles
which have diagonals for all three sides).

The answer is negative. Really, every exterior triangle contains at most 2 sides of 2002-gon
and there should be at least 1001 of them. Contradiction.

2 Let j and m be numbers selected by J and M respectively. Note that j|2002; otherwise J
would know that m = 2002− j. Also j 6= 2002; otherwise m = 1 (since m 6= 0). So, j ≤ 1001.

Further, the same is true for m. In addition, M knows that j ≤ 1001. Therefore, m = 1001
(otherwise M would know j = 2002 : m).

So, m = 1001 is the only possible solution. One can check that it works.

3 Let N be the number of students in the class, M the number of the problems, P the number
of passed students, H the number of hard problems. According to definition “a problem is

hard” if it has not been solved by at least rN students; where r =
2

3
,

3

4
,

7

10
in (a), (b),(c).

Also, according to definition “a student passes” if he solves at least rM problems.

a) It is possible. Consider a class consisting of students S1, S2, S3 and set of problems
P1, P2, P3. Let S1 solve P1 and P3, S2 solve P2 and P3 and S3 solved neither P1 nor P2.
Then S1, S2 pass and P1, P2 are hard problems.

b) It is impossible. Let us write down the results of the test (“+” or “−”) into N × M
table.

Let passed students be on the top and hard problems on the left of the table. Let us
estimate K+ and K−, the numbers of “+” and “−” in the table. First,

K+ ≥ (number of ” + ”got by students who passed) ≥ P × rM ≥ r2MN

and
K− ≥ (number of ”− ” got for hard problems) ≥ H × rN ≥ r2MN.

Then MN = K+ + K− ≥ 2r2MN which is impossible for r =
3

4
.



c) It is impossible. Arguments of (b) do not work here since 2r2 ≤ 1. Now we denote by
K+ and K− the numbers of “+” and “−” in the top-left P ×H sub-table. Then

K+ ≥ (minimal number of ” + ” for hard problems got by students who passed) ≥ P×4

7
H

(a student cannot pass if he solves less than 4
7
H of hard problems even if he solves all

the easy problems, the number of which does not exceed 3
7
M). On the other hand,

K− ≥ (minimal number of ”− ” got by students who passed for hard problems) ≥ H×4

7
P.

So, PH = K+ + K− ≥ 8
7
PH which is impossible.

4 The First Player (FP) wins. Let us pair all the cards (numbers): we pair k with 1000 + k,
k = 1, . . . , 1000. Also we pair 2001 with 2002. So, in each pair save the last one both cards
have the same last digit.

FP starts and picks up 2002. From this moment his strategy is to pick up the other half of
the pair chosen by SP. So, eventually SP is forced to pick up 2001. If cards are not gone, then
FP takes any card leaving for SP to pick up the other half of the pair. At the end FP has the
sum ≡ 45000 + 2 ≡ 2 (modulo 10) and SP has the sum ≡ 1 (modulo 10).

5 Let us assume that there are straight lines MZ, NY and LX passing through A such that
MN = NL and XY = Y Z where M , N , L are points on one side of the angle and X, Y ,
Z are points on the other side. Let us draw a straight line through X parallel to ML; it
intersects lines NY and MZ at points N1 and M1 respectively. 4AMN and 4AM1N1 are
similar; so are 4ANL and 4XAN1. Then XN1 = N1M1. Given the assumption XY = Y Z
we have that lines N1Y ‖ M1Z, which is impossible since they intersect at A.
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1 [4] Each of two children (John and Mary) selected a natural number and communicated it to
Bill. Bill wrote down the sum of these numbers on one card and their product on another,
hid one card and showed the other to John and Mary.

John looked at the number (which was 2002) and declared that he was not able to determine
the number chosen by Mary. Knowing this, Mary said that she was also not able to determine
the number chosen by John.

What was the number chosen by Mary?

2

a [1] A test was conducted in a class. It is known that at least
2

3
of the problems were hard: each

such problem was not solved by at least
2

3
of the students. It is also known that at least 2/3

of students passed the test: each such student solved at least
2

3
of the suggested problems.

Is this situation possible?

b [1] The same question with
2

3
replaced by

3

4
.

c [2] The same question with
2

3
replaced by

7

10
.

3 [5] Several straight lines such that no two of them are parallel, cut the plane into several
regions. A point A is marked inside of one region. Prove that a point, separated from A by
each of these lines, exists if and only if A belongs to unbounded region.

4 [5] Let x, y, z be any three numbers from the open interval (0, π/2). Prove the inequality

x · cos x + y · cos y + z · cos z

x + y + z
≤ cos x + cos y + cos z

3
.

5 [5] Each term of an infinite sequence of natural numbers is obtained from the previous term
by adding to it one of its nonzero digits. Prove that this sequence contains an even number.

Keep the problem set.
Visit: http://www.math.toronto.edu/oz/turgor/



Seniors
(Grades 11 and up)

International Mathematics
TOURNAMENT OF THE TOWNS: SOLUTIONS

O-Level Paper Fall 2002.

1 Let j and m be numbers selected by J and M respectively. Note that j|2002; otherwise J
would know that m = 2002− j. Also j 6= 2002; otherwise m = 1 (since m 6= 0). So, j ≤ 1001.

Further, the same is true for m. In addition, M knows that j ≤ 1001. Therefore, m = 1001
(otherwise M would know j = 2002 : m).

So, m = 1001 is the only possible solution. One can check that it works.

2 Let N be the number of students in the class, M the number of the problems, P the number
of passed students, H the number of hard problems. According to definition “a problem is

hard” if it has not been solved by at least rN students; where r =
2

3
,

3

4
,

7

10
in (a), (b),(c).

Also, according to definition “a student passes” if he solves at least rM problems.

a) It is possible. Consider a class consisting of students S1, S2, S3 and set of problems
P1, P2, P3. Let S1 solve P1 and P3, S2 solve P2 and P3 and S3 solved neither P1 nor P2.
Then S1, S2 pass and P1, P2 are hard problems.

b) It is impossible. Let us write down the results of the test (“+” or “−”) into N × M
table.

Let passed students be on the top and hard problems on the left of the table. Let us
estimate K+ and K−, the numbers of “+” and “−” in the table. First,

K+ ≥ (number of ” + ”got by students who passed) ≥ P × rM ≥ r2MN

and
K− ≥ (number of ”− ” got for hard problems) ≥ H × rN ≥ r2MN.

Then MN = K+ + K− ≥ 2r2MN which is impossible for r =
3

4
.

c) It is impossible. Arguments of (b) do not work here since 2r2 ≤ 1. Now we denote by
K+ and K− the numbers of “+” and “−” in the top-left P ×H sub-table. Then

K+ ≥ (minimal number of ” + ” for hard problems got by students who passed) ≥ P×4

7
H

(a student cannot pass if he solves less than 4
7
H of hard problems even if he solves all

the easy problems, the number of which does not exceed 3
7
M). On the other hand,

K− ≥ (minimal number of ”− ” got by students who passed for hard problems) ≥ H×4

7
P.

So, PH = K+ + K− ≥ 8
7
PH which is impossible.



3 Let us assume that such point B exists (separated from A by each line). Then segment AB
intersects all the lines and therefore ray [BA) originated at B has no points of intersection
beyond A. Therefore, A belongs to unbounded region.

Now, assume that A belongs to unbounded region. Our region is convex, bounded by two rays
and maybe several segments. Note, that these rays are divergent. Therefore, one can draw
a ray, originated at A and lying inside of our region. Without any loss of the generality we
can assume that this ray is not-parallel to any of the lines; otherwise we can rotate it slightly.
Then the opposite ray (originated at A) intersects all the lines and any point B beyond the
last point of intersection satisfies the condition.

4 Since function cos x is a monotone decreasing on (0, π/2) we have (x − y)(cos x − cos y) ≤ 0
(equality holds only for x = y). Also (x− z)(cos z− cos x) ≤ 0 and (y− z)(cos y− cos z) ≤ 0.
Adding these inequalities we get

2(x cos x + y cos y + z cos z) ≤ (y + z) cos x + (x + z) cos y + (y + x) cos z

and therefore

3(x cos x + y cos y + z cos z) ≤ (x + y + z)(cos z + cos y + cos x)

which implies our inequality.

5 Let {ak} be our sequence. Note that 1 ≤ ak+1 − ak ≤ 9. Then the segment [9 . . . 989, 9 . . . 999]
contains a term of our sequence; ak = 9 . . . 99r. If r is even than ak is even. If r is odd then
ak+1 must be odd.
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1 [4] There are 2002 employees in a bank. All the employees came to celebrate the bank’s jubilee
and were seated around one round table. It is known that the difference in salaries of any two
employees sitting next to each other is 2 or 3 dollars. Find the maximal difference in salaries
of two employees, if it is known that all the salaries are different.

2 [5] All the species of plants existing in Russia are catalogued (numbered by integers from 2 to 20
000; one after another, without omissions or repetitions). For any pair of species, the greatest
common divisor of their catalogue numbers was calculated and recorded, but the catalogue
numbers themselves were lost computer error). Is it possible to restore the catalogue number
for each specie from that data?

3 [6] The vertices of a 50-gon divide a circumference into 50 arcs, whose lengths are 1, 2, 3,. . . ,
50, in some order. It is known that lengths of any pair of “opposite” arcs (corresponding to
opposite sides of the polygon) differ by 25. Prove that the polygon has two parallel sides.

4 [6] Point P is chosen in triangle ABC so that 6 ABP is congruent to 6 ACP , while 6 CBP is
congruent to 6 CAP . Prove that P is the intersection point of the altitudes of the triangle.

5 [7] A convex N -gon is divided by diagonals into triangles so that no two diagonals intersect
inside of the polygon. The triangles are painted in black and white so that any two triangles
with common side are painted in different colors. For each N , find the maximal difference
between the numbers of black and white triangles.

6 [9] There is a large pile of cards. On each card one of the numbers 1, 2, . . . , n is written. It
is known that the sum of all numbers of all the cards is equal to k · n! for some integer k.
Prove that it is possible to arrange cards into k stacks so that the sum of numbers written
on the cards in each stack is equal to n!.

7 a) [5] A power grid has the shape of a 3 × 3 lattice with 16 nodes (vertices of the lattice)
joined by wires (along the sides of the squares). It may have happened that some of the wires
are burned out. In one test technician can choose any pair of nodes and check if electrical
current circulates between them (that is, check if there is a chain of intact wires joining the
chosen nodes). Technician knows that current will circulate from any node to any other node.
What is the least number of tests which is required to demonstrate this?

7 b) [5] The same question for a grid in the shape of a 5 × 5 lattice (36 nodes).

Keep the problem set.
Visit: http://www.math.toronto.edu/oz/turgor/
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1 Answer: $ 3002. First, let us prove that d (the difference in salaries) does not exceed 3002. Let
us number employees in clock-wise direction starting from one with the minimal salary. Let
n be the employee with the maximal salary. Then 1 and n are separated by n− 2 employees
in clock-wise and (2002 − n) counter-clockwise. So d ≤ 3(n − 1) and d ≤ (2003 − n). Then
d ≤ 3(n − 1 + 2003 − n)/2 = 3003. Note, that d = 3003 is only possible if the difference
between any two neighbors is exactly 3, which contradicts to assumption that all employees
have different salaries.

Let us construct an example with the difference 3002. Let S(k) be a salary of k-th worker.
Let S(1) = 0, S(2) = 2, S(k) = S(k − 1) + 3 for k = 3, 4, . . . , 1002, S(1003) = S(1002) − 2,
S(k) = S(k − 1)− 3 for k = 1004, . . . , 2002. Then S(1002)− S(1) = 3002.

2 The answer is negative. It is sufficient to give an example of two numbers which have the same
gcd with all the other numbers from 2 to 20,000.

Examples: a) 213 and 214;

b) 19, 993 and 19, 997; both numbers are primes because they have no prime divisors less than
142.

3 Let AB be an arc from A to B in clock-wise direction. For any ordered pair of opposite arcs
AB and CD we define d(AB) equal to the difference between arc DA and arc BC. Obviously
d(AB) is divisible by 50 (because the difference between two opposite arcs is ±25 and we have
24 pairs).

Now let us switch to next pair of opposite arcs in clock-wise direction. Note that the increment
of d(AB) is either 50, or -50, or 0. Also note that d(CD) = −d(AB). Therefore at some
moment we reach a pair of opposite arcs with difference 0.

Then corresponding sides of polygon are parallel.

4 Let us encircle4ABC. Let K be an intersection point of continuation of BP and encircle. Then
6 ABK = 6 ACK and 6 CBK = 6 CAK (subtended by the same arc). Then4APC ∼= 4AKC
(A-S-A). Therefore PK ⊥ AC. Similarly, we prove that AP ⊥ BC as well.

5 Since in N -gon the sum of all angles equals (N − 2) · 180◦, then N -gon is split into (N − 2)
triangles by (N − 3) diagonals, not intersecting inside of N -gon. Side of each white (black)
triangle we call white (black); so diagonals are both black and white.

Then, there are at least (N − 3) white (black) sides; therefore there are at least d1
3
(N − 3)e

triangles of each color. Let R(N) be the difference in question. Let us consider 3 cases:



a) N = 3k. Then there are at least k− 1 black triangles, at most 2k− 1 white triangles and
thus R(N) ≤ k.

b) N = 3k + 1. Then there are at least k black triangles, at most 2k− 1 white triangles and
thus R(N) ≤ k − 1.

c) N = 3k + 2. Then there are at least k black triangles, at most 2k white triangles and
thus R(N) ≤ k.

Let us prove that all these estimates are sharp and equalities could be reached. For N = 3, 4, 5
(k = 1) one can check it easily. For larger N one can construct example by induction by k.

Let us assume that for some k we have corresponding N -gon with the required difference
(white triangles are in excess). Then we add a pentagon (2 white and 1 black triangles) to
N -gon matching black side of pentagon with the white one of N -gon. Then N increases by
3, k increases by 1 and R(N) increases by 1.

6 Let us start from

Proposition. From any set {a1, . . . , an} of n integers one can choose a number or several
numbers with their sum divisible by n.

Proof . Let us assume that none of the numbers is divisible by n. Consider numbers b1 = a1,
b2 = a1 + a2, . . . , bn = a1 + a2 + . . . + an. If none of them is divisible by n then at least two
numbers bj and bl (k < l) have the same remainders. Then their difference aj+1 + . . . + al is
divisible by n.

Let us apply an induction by n. If n = 1 then only number 1 is written on each card. So,
every card by itself forms a required group (with sum 1!).

Assume that a main statement is proven for (n− 1), meaning that if the sum of the numbers
on all cards is k · (n − 1)! then cards could be arranged into k stacks with the sum of the
numbers in each stuck equal (n− 1)!.

Lets call a supercard any group of cards with sum l ·n , l = 1, . . . , n−1. We call l a supercard
value. Any card with number n on it is a supercard of value 1. From the rest of cards with
numbers 1, . . . , n−1 we form supercards by the following procedure: pick any n cards; due to
proposition choose several with the sum divisible by n; they form a supercard by definition.
This procedure stops when less than n cards are left. However, their sum must be divisible by
n (since the total sum and sum on each supercard are divisible by n) meaning that leftovers
also form a supercard (sum does not exceed (n− 1)n).

Now we have a pile of supercards with values 1, . . . , n− 1, the total sum of the values equals
(k · n!)/n = k · (n − 1)!. Then according to induction assumption, we can split supercards
into k stacks with the sum of the values in each equal (n − 1)! . Therefore the sum of cards
(normal) in each stuck is (n− 1)! · n = n!.

7 Solution for (2k − 1)× (2k − 1) lattice (4k2 nodes).

For any test a technician chooses a pair of nodes. If the number of tests is less than 2k2, at
least one node would not be tested. It could happen that this node is isolated but the rest of
the wires are intact. So, at least 2k2 tests are needed.



Let us numerate the nodes along the main diagonal ∆ of the grid from 1, . . . , 2k. Let us test
pairs of nodes (1, k + 1), (2, k + 2), . . . (k, 2k) plus every pair of nodes which are symmetrical
with respect to ∆ (k + k(2k − 1) = 2k2). Assume that all tests were successful. We need to
prove that there is a link between every pair of nodes.

First, we prove that there is a link (connection) between every pair of nodes on ∆. Since nodes
1 and k + 1 are linked, there exits a path π between them formed by intact wires. Consider
a path π′ symmetrical to π with respect to ∆. Notice that any node of π′ is linked to the
symmetrical node of π. Therefore every node of π′ is linked to node 1 and therefore all nodes
of π′ are linked between themselves.

Note that node 2 is either encircled by π
⋃

π′ or belongs to both π and π′. Since nodes 2 and
k + 2 are linked then the intact path between them intersects π

⋃
π′ and therefore both 2 and

k + 2 are linked to 1. Similarly, all other diagonal nodes are linked to 1; therefore all of them
are linked.

Now let us consider any non-diagonal node. It is linked with its symmetrical node; the intact
path connecting them intersects ∆. This means that any two nodes are linked.
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1 [4] All the species of plants existing in Russia are catalogued (numbered by integers from
2 to 20 000; one after another, without omissions or repetitions). For any pair of species,
the greatest common divisor of their catalogue numbers was calculated and recorded, but the
numbers themselves were lost (as the result of a computer error). Is it possible to restore the
catalogue number for each specie from that data?

2 [6] A cube is cut by a plane so that the cross-section is a pentagon. Prove that the length of
one of the sides of the pentagon differs from 1 meter by at least 20 centimeters.

3 [6] A convex N -gon is divided by diagonals into triangles so that no two diagonals intersect
inside of the polygon. The triangles are painted in black and white so that any two triangles
with common side are painted in different colors. For each N , find the maximal difference
between the numbers of black and white triangles.

4 [8] There is a large pile of cards. On each card one of the numbers {1, 2, . . . , n} is written. It
is known that the sum of all numbers of all the cards is equal to k · n! for some integer k.
Prove that it is possible to arrange cards into k stacks so that the sum of numbers written
on the cards in each stack is equal to n!.

5 Two circles intersect at points A and B. Through point B a straight line is drawn, intersecting
the first and second circle at points K and M (different from B) respectively. Line `1 is
tangent to the first circle at point Q and parallel to line AM . Line QA intersects the second
circle at point R (different from A). Further, line `2 is tangent to the second circle at point
R. Prove that

a) [4] `2 is parallel to AK;

b) [4] Lines `1, `2 and KM have a common point.

6 [8] A sequence with first two terms equal 1 and 2 respectively is defined by the following rule:
each subsequent term is equal to the smallest positive integer which has not yet occurred in
the sequence and is not coprime with the previous term. Prove that all positive integers occur
in this sequence.

7 a) [4] A power grid has the shape of a 3 × 3 lattice with 16 nodes (vertices of the lattice)
joined by wires (along the sides of the squares). It may have happened that some of the wires
are burned out. In one test technician can choose any pair of nodes and check if electrical
current circulates between them (that is, check if there is a chain of intact wires joining the
chosen nodes). Technician knows that current will circulate from any node to any other node.
What is the least number of tests which is required to demonstrate this?

7 b) [5] The same question for a grid in the shape of a 7 × 7 lattice (36 nodes).

Keep the problem set.
Visit: http://www.math.toronto.edu/oz/turgor/
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1 The answer is negative. It is sufficient to give an example of two numbers which have the same
gcd with all the other numbers from 2 to 20,000.

Examples: a) 213 and 214;

b) 19, 993 and 19, 997; both numbers are primes because they have no prime divisors less than
142.

2 Proof by a contradiction. Assume that pentagon has sides ranging from 0.8 to 1.2. To get
a pentagon in cross-section of a cube, a plane has to cross five faces, two pairs of which are
parallel. Therefore the pentagon has two pairs of parallel sides. Let us consider pentagon
BCDKL with BC ‖ DK and CD ‖ LB. Then A be a point of intersection of BL and KD
(extended). Note that ABCD is a parallelogram. Due to triangle inequality AL+AK > LK,
then AB + AD > BL + LK + KD. So, BC + CD > BL + LK + KD. Then even if BC and
CD are two longest sides, BC + CD ≤ 2 · 1.2 = 2.4 while BL + LK + KD ≥ 3 · 0.8 = 2.4
which is contradiction.

3 Since in N -gon the sum of all angles equals (N − 2) · 180◦, then N -gon is split into (N − 2)
triangles by (N − 3) diagonals, not intersecting inside of N -gon. Side of each white (black)
triangle we call white (black); so diagonals are both black and white.

Then, there are at least (N − 3) white (black) sides; therefore there are at least d1
3
(N − 3)e

triangles of each color. Let R(N) be the difference in question. Let us consider 3 cases:

a) N = 3k. Then there are at least k− 1 black triangles, at most 2k− 1 white triangles and
thus R(N) ≤ k.

b) N = 3k + 1. Then there are at least k black triangles, at most 2k− 1 white triangles and
thus R(N) ≤ k − 1.

c) N = 3k + 2. Then there are at least k black triangles, at most 2k white triangles and
thus R(N) ≤ k.

Let us prove that all these estimates are sharp and equalities could be reached. For N = 3, 4, 5
(k = 1) one can check it easily. For larger N one can construct example by induction by k.

Let us assume that for some k we have corresponding N -gon with the required difference
(white triangles are in excess). Then we add a pentagon (2 white and 1 black triangles) to
N -gon matching black side of pentagon with the white one of N -gon. Then N increases by
3, k increases by 1 and R(N) increases by 1.



4 Let us start from

Proposition. From any set {a1, . . . , an} of n integers one can choose a number or several
numbers with their sum divisible by n.

Proof . Let us assume that none of the numbers is divisible by n. Consider numbers b1 = a1,
b2 = a1 + a2, . . . , bn = a1 + a2 + . . . + an. If none of them is divisible by n then at least two
numbers bj and bl (k < l) have the same remainders. Then their difference aj+1 + . . . + al is
divisible by n.

Let us apply an induction by n. If n = 1 then only number 1 is written on each card. So,
every card by itself forms a required group (with sum 1!).

Assume that a main statement is proven for (n− 1), meaning that if the sum of the numbers
on all cards is k · (n − 1)! then cards could be arranged into k stacks with the sum of the
numbers in each stuck equal (n − 1)!.

Lets call a supercard any group of cards with sum l ·n , l = 1, . . . , n−1. We call l a supercard
value. Any card with number n on it is a supercard of value 1. From the rest of cards with
numbers 1, . . . , n−1 we form supercards by the following procedure: pick any n cards; due to
proposition choose several with the sum divisible by n; they form a supercard by definition.
This procedure stops when less than n cards are left. However, their sum must be divisible by
n (since the total sum and sum on each supercard are divisible by n) meaning that leftovers
also form a supercard (sum does not exceed (n − 1)n).

Now we have a pile of supercards with values 1, . . . , n− 1, the total sum of the values equals
(k · n!)/n = k · (n − 1)!. Then according to induction assumption, we can split supercards
into k stacks with the sum of the values in each equal (n − 1)! . Therefore the sum of cards
(normal) in each stuck is (n − 1)! · n = n!.

5 Denote the point of intersection of the two tangents by P .
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(a) By Thales’ Theorem, 6 RBM = 6 RAM . Since AM and QP are parallel, we have
6 RAM = 6 RQP . Since QP is tangent to the first circle, 6 RQP = 6 QBA. Similarly,
6 ARP = 6 ABR = 6 ABM + 6 RAM = 6 ABM + 6 RAM = 6 QBM . By Thales’
Theorem, 6 QAK = 6 QBK. Hence 6 QBM = 180◦ − 6 QBK = 180◦ − 6 QAK = 6 KAR.
From 6 ARP = 6 KAR, we conclude that AK and PR are parallel.

(b) We have 6 QPR+ 6 QBR = 6 QPR+ 6 QBA+ 6 RBA = 6 QPR+ 6 AQP + 6 ARP = 180◦.
Hence BQPR is cyclic so that 6 PBQ = 6 PRQ = 6 MBQ from (a). Hence P lies on
MB.
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6

Proposition 1. If p is prime and a sequence contains an infinite number of multiples of p then
it contains all multiples of p.

Proof. Let us assume that for some k our sequence does not contain pk. If p|an and an+1 6= pk
then an+1 < pk. This could happen only for a finite number of terms multiple of p.

Proposition 2. Our sequence contains all even numbers.

Proof. It is enough to prove that our sequence contains an infinite number of even terms.
Assume that it is not the case. Then for some n all terms starting from an are odd. Note,
that sequence contains an infinite number of terms am (with m ≥ n) such that am+1 > am.
Let d = gcd(am, am+1), d is odd. Note that am + d < am+1 and is not coprime with am and
therefore am + d is a term of our sequence. Note that am + d is even. Therefore our sequence
contains an infinite number of even terms. Contradiction.

Proposition 3. Our sequence contains all odd numbers.

Proof. Let z be the smallest odd number which is skipped in our sequence. Note that the
sequence contains all numbers 2kz. Each such term should be followed by a term which is
less than z. This could happen only for a finite number of terms.



7 Solution for (2k − 1) × (2k − 1) lattice (4k2 nodes).

For any test a technician chooses a pair of nodes. If the number of tests is less than 2k2, at
least one node would not be tested. It could happen that this node is isolated but the rest of
the wires are intact. So, at least 2k2 tests are needed.

Let us numerate the nodes along the main diagonal ∆ of the grid from 1, . . . , 2k. Let us test
pairs of nodes (1, k + 1), (2, k + 2), . . . (k, 2k) plus every pair of nodes which are symmetrical
with respect to ∆ (k + k(2k − 1) = 2k2). Assume that all tests were successful. We need to
prove that there is a link between every pair of nodes.

First, we prove that there is a link (connection) between every pair of nodes on ∆. Since nodes
1 and k + 1 are linked, there exits a path π between them formed by intact wires. Consider
a path π′ symmetrical to π with respect to ∆. Notice that any node of π′ is linked to the
symmetrical node of π. Therefore every node of π′ is linked to node 1 and therefore all nodes
of π′ are linked between themselves.

Note that node 2 is either encircled by π
⋃

π′ or belongs to both π and π′. Since nodes 2 and
k + 2 are linked then the intact path between them intersects π

⋃
π′ and therefore both 2 and

k + 2 are linked to 1. Similarly, all other diagonal nodes are linked to 1; therefore all of them
are linked.

Now let us consider any non-diagonal node. It is linked with its symmetrical node; the intact
path connecting them intersects ∆. This means that any two nodes are linked.
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1 [4] 2003 dollars are placed into N purses, and the purses are placed into M pockets. It is known
that N is greater than the number of dollars in any pocket. Is it true that there is a purse
with less than M dollars in it?

2 [4] Two players in turns colour the sides of an n-gon. The first player colours any side that
has 0 or 2 common vertices with already coloured sides. The second player colours any side
that has exactly 1 common vertex with already coloured sides. The player who cannot move,
loses. For which n the second player has a winning strategy?

3 [5] Points K and L are chosen on the sides AB and BC of the isosceles 4ABC (AB = BC)
so that AK + LC = KL. A line parallel to BC is drawn through midpoint M of the segment
KL, intersecting side AC at point N . Find the value of 6 KNL.

4 [5] Each term of a sequence of natural numbers is obtained from the previous term by adding to
it its largest digit. What is the maximal number of successive odd terms in such a sequence?

5 [5] Is it possible to tile 2003 × 2003 board by 1 × 2 dominoes placed horizontally and 1 × 3
rectangles placed vertically?
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1 Let S be an entire amount of money ($2003),

ai be amount of money in i-pocket, i = 1, 2, . . . ,M . Then

ai < N, S =
M∑
i=1

ai < MN. (1)

Let us assume that each purse contains no less than M dollars in it. Let bi be amount of
money in i-purse. Then

bi ≥ M, S =
N∑

i=1

bi ≥ MN. (2)

Contradiction.

2 Consider three cases:

(a) n > 4. Let us show that the first player has a winning strategy. On each of his subsequent
moves, the first player colours a side which is one space away from one of already coloured
sides. Note, that doing this, he creates a “store”, which he can use later; however, the
second player can not, because of the nature of requirement. So, in the end of the game,
after the first player’s move, we are left with cases:

(i) One uncoloured side is left (plus “store”). The second player has no move.

(ii) Two uncoloured sides are left (plus “store”). After the second player’s move, the
first player wins.

(iii) Three uncoloured sides are left (plus “store”). After the second player’s move, the
first player uses his ”store”, and wins on his next move.

(b) From above, we can see that the only chance for the second player to win is in the case
(iii), when “store” is not yet created. It corresponds to the case n = 4. Really, the first
player can not produce his second move and loses.

(c) n = 3. The first player wins.



3 Let us draw straight line KP ‖ BC where P is a point on AC. Since KLCP is a trapezoid, its
midline MN = 1

2
(KP + LC) = 1

2
(AK + LC) = 1

2
KL = KM = ML. Then KL is a diameter

of a circle passing through K, N, L and therefore 6 KNL = 90◦.

4 We start from

Proposition. If a is an even number, then 5a ≡ 0 (mod 10).

Proof is obvious.

Note, that in order to maintain the row of odd terms in a sequence, given the requirements,
the last term’s digit has to be odd and the term’s largest digit even. Further, each addition
could change the term’s largest digit by at most 1. When it happens, the term’s largest digit
becomes odd and on next term the row of odd terms in a sequence is terminated. Since the
term’s largest digit stays the same through the row, the maximal number of terms cannot
exceed five due to proposition. It is possible to have a row of five: 807, 815, 823, 831, 839.

5 The answer is negative.

Let us colour the board with black and white strips, black in excess. Note, that since dominoes
placed horizontally and 1 × 3 rectangles placed vertically, each domino covers one black and
one white square, meanwhile each rectangle covers three squares of the same colour.

Let us assume, that it is possible to tile 2003× 2003 board by dominoes and rectangles. Let
n be a number of dominoes. Then the numbers of black and white rectangles are equal to
(2003× 1002− a)/3 and (2003× 1001− a)/3 respectively. Therefore, the difference between
black and white rectangles is 2003 and has to be a multiple of 3. Contradiction.
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1 [3] 2003 dollars are placed into N purses, and the purses are placed into M pockets. It is known
that N is greater than the number of dollars in any pocket. Is it (always) true that there is
a purse with less than M dollars in it?

2 [3] 100-gon made of 100 sticks. Could it happen that it is not possible to construct a polygon
from any lesser number of these sticks?

3 [4] Point M is chosen in 4ABC so that the radii of the circumcircles of 4AMC, 4BMC,
and 4BMA are no smaller than the radius of the circumcircle of 4ABC. Prove that all four
radii are equal.

4 [5] In the sequence 00, 01, 02, 03,. . . , 99 the terms are rearranged so that each term is obtained
from the previous one by increasing or decreasing one of its digits by 1 (for example, 29 can
be followed by 19, 39, or 28, but not by 30 or 20). What is the maximal number of terms that
could remain on their places?

5 [5] Prove that one can cut a × b rectangle,
b

2
< a < b, into three pieces and rearrange them

into a square (without overlaps and holes).

Keep the problem set.
Visit: http://www.math.toronto.edu/oz/turgor/
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1 Let S be an entire amount of money ($2003),

ai be amount of money in i-pocket, i = 1, 2, . . . ,M . Then

ai < N, S =
M∑
i=1

ai < MN. (1)

Let us assume that each purse contains no less than M dollars in it. Let bi be amount of
money in i-purse. Then

bi ≥M, S =
N∑

i=1

bi ≥MN. (2)

Contradiction.

2 Yes, it could happen.

Example. Consider a 100-gon with sides:

1, 1, 2, 22, . . . , 298, 299 − 1.

Since 1 + 1 + 2 + . . . + 298 = 299 > 299− 1 it is possible to construct 100-gon with these sides.
On the other hand, one cannot construct a polygon from any lesser number of sides. Really,
consider two cases:

(a) Side (299 − 1) is among selected.

Then even if the shortest side is absent, 1 + 2 + . . . + 298 = 299 − 1.

(b) The longest selected side is 2k, 1 ≤ k ≤ 298.

Then 1 + 1 + . . . + 2k−1 = 2k.



3 Let 6 AMC = β, 6 BMC = α, 6 AMB = γ, AC = b, BC = a, AB = c, R, r1, r2 and
r3 be the radii of the circumcircles of 4ABC, 4AMC, 4BMC and 4BMA respectively.
Then formulae b = 2R sin 6 B, b = 2r1 sin β and condition r1 ≥ R imply that sin β ≤ sin B.
Similarly, sin α ≤ sin A, sin γ ≤ sin C.

Note that β > B, α > A, γ > C.

Consider two cases:

(a) 4ABC is acute.

Then β > B and sin β ≤ sin B imply that β ≥ π −B. Similarly, α ≥ π −A, γ ≥ π − C.
Then

2π = α + β + γ ≥ 3π − A−B − C = 2π

and therefore β = π −B, α = π − A, γ = π − C which imply ri = R.

(b) 4ABC is not acute.

Assume that B ≥ π
2
. Then β > π

2
and

2π = α + β + γ >
5π

2
− A− C =

3π

2
+ B.

Then B < π
2
. Contradiction. This case is impossible.

4 The answer is 50.

Let bk be a rearranged sequence. Note, that the given operation changes a parity of the next
term. I.e., if sum of the digits of bk is odd/even, then sum of the digits of bk+1 is even/odd
respectively.

Let us assume that both bk and bk+10 remain on their original places. Note, that the parities
of bk and bk+10 are always different. On the other hand, to get bk+10 from bk, one need to
change parity an even number of times; so the parities in question should be the same. This
implies that a maximal number of terms which could remain on their places does not exceed
50.

Example, in which 50 is achieved:

00↗ 09, 19↘ 10, 20↗ 29, 39↘ 30, 40↗ 49, 59↘ 50, 60↗ 69, 79↘ 70, 80↗ 89, 99↘ 90



5 Note that 1
2
b < a < b implies a <

√
ab < b. Let us choose point E on BC such that

AE =
√

ab. It is possible due to inequality BE =
√

ab− a2 < b.

Let F be a point of intersection of AE and DF ⊥ AE. Calculating the area of 4AED in two
ways we get 1

2
AE ·DF = 1

2
AD · CD. Then FD = ab/

√
ab =

√
ab.

Since AF =
√

b2 − ab <
√

ab = AE (due to inequality b < 2a) point F belongs to AE.

Now 4ABE, 4AFD and quadrilateral DFEC could be rearranged into a square by parallel
translation of 4ABE into 4DCM and 4ADF into 4EMK. One can justify it.
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1 [4] Johnny writes down quadratic equation

ax2 + bx + c = 0

with positive integer coefficients a, b, c. Then Pete changes one, two, or none “+” signs to
“−”. Johnny wins, if both roots of the (changed) equation are integers. Otherwise (if there
are no real roots or at least one of them is not an integer), Pete wins.

Can Johnny choose the coefficients in such a way that he will always win?

2 [4] 4ABC is given. Prove that R/r > a/h, where R is the radius of the circumscribed circle, r
is the radius of the inscribed circle, a is the length of the longest side, h is the length of the
shortest altitude.

3 In a tournament, each of 15 teams played with each other exactly once. Let us call the game
“odd” if the total number of games previously played by both competing teams was odd.

(a) [4] Prove that there was at least one “odd” game.

(b) [3] Could it happen that there was exactly one “odd” game?

4 [7] A chocolate bar in the shape of an equilateral triangle with side of the length n, consists
of triangular chips with sides of the length 1, parallel to sides of the bar. Two players take
turns eating up the chocolate.

Each player breaks off a triangular piece (along one of the lines), eats it up and passes leftovers
to the other player (as long as bar contains more than one chip, the player is not allowed to
eat it completely).

A player who has no move or leaves exactly one chip to the opponent, loses.

For each n, find who has a winning strategy.

5 [7] What is the largest number of squares on 9 × 9 square board that can be cut along their
both diagonals so that the board does not fall apart into several pieces?

6 [7] A trapezoid with bases AD and BC is circumscribed about a circle, E is the intersection
point of the diagonals. Prove that 6 AED is not acute.
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1 Answer: Yes.

Example. Consider quadratic equation x2 + 5x + 6 = 0. It could be transformed into one of
the following four equations:

(a) x2 + 5x + 6 = 0 (roots −2,−3;

(b) x2 + 5x− 6 = 0 (roots −6, 1);

(c) x2 − 5x + 6 = 0 (roots 2, 3);

(d) x2 − 5x− 6 = 0 (roots 6,−1).

2 The longest side of the triangle is a chord of a circumscribed circle and thus it does not exceeds
its diameter: a ≤ 2R. Projection of incircle onto the shortest altitude is contained strictly
inside of the projection of the triangle onto this altitude. So 2r < h. Since all the numbers
are positive we can multiply these inequalities: 2r · a < h · 2R which implies a/h < R/r.

3

(a) Answer: Yes. Let us assign to i-th team a number ai = 0, if prior to the game it already
played even numbers of games and ai = 1 otherwise. Note, that ai changes after each
game in which i-th team participated.

Assume, that all games were “even”, meaning that prior to the game both teams had
the same parity.

Consider the sum A = a1 + a2 + · · · + a15 of the parities of all teams. After each game
played by two teams with the same parity A changes by ±2 ≡ 2 mod 4.

Initially we had a1 = a2 = · · · = a15 = 0, therefore A = 0. In the end we have
a1 = a2 = · · · = a15 = 0 (each team played an even number of games (14)) and again
A = 0.

Since the total number of games 15 · 14/2 = 105 is odd, so in the end of the tournament
A ≡ 2 mod 4.

Contradiction.

(b) Answer: Yes. We will construct an example of a tournament with one “odd” game.
Let us consider a graph, in which vertices represent teams and edges represent games. It
is enough to draw edges in such a way that every time (but one) we connect the vertices
of the same parity. Let us split all the vertices into three sets of five: A1, A2, . . . A5;
B1, . . . , B5; C1, . . . , C5. We proceed in three steps:

1



(i) Step 1. Let us connect all vertices in each set in the following order: 1− 2, 3− 4,
2 − 3, 2 − 5, 1 − 5, 1 − 3, 1 − 4, 4 − 5, 2 − 4, 3 − 5. One can check that each time
we connect vertices of the same parity and in the end of this step all vertices have
parity 0.

(ii) Step 2. Now, consider a cycle A1B1C1A2B2C2 . . . A5B5C5. Let us connect vertices
in order A1 − B1, C1 − A2, . . . , A5 − B5 (the same parity 0), B5 − C5 (opposite
parities - the only odd connection), then C5 −A1, B1 −C1, . . . , C4 −A5 ( the same
parity 1). Note, that now all the vertices have parity 0.

(iii) Step 3. Now consider 5 sequences of five connections:

A1 −B1, A2 −B2, . . . , A5 −B5;

A1 −B2, A2 −B3, . . . , A5 −B1;

A1 −B3, A2 −B4, . . . , A5 −B2;

A1 −B4, A2 −B5, . . . , A5 −B3;

A1 −B5, A2−B1, . . . , A5 −B4.

We already made the first sequence. With each sequence the parities of vertices
A1, . . . , B5 change; so after 4 sequences executed parities are restored to 0. Now all
connections Ai −Bj are done.
In the same way we make remaining 20 connections of Bi − Cj and then remaining
20 connections Ci − Aj.

(b)′ Second solution. We construct an example for each n = 4k − 1, applying induction by
k. For k = 1, n = 3 we make connections 1− 2, 2− 3, 3− 1 with only second connection
odd.

Let us assume that the statement has been proven for n = 4k − 1; we will prove it for
n = 4k+3, proceeding from k to k+1. So, we add extra 4 points. Already we have n old
points connected between themselves with one odd connection. Now all these vertices
are even because each of them is connected with n− 1 = 4k − 2 others. Let us split old
points in k − 1 quartets and one triplet. Consider an old quartet Q1, . . . , Q4 and a new
one N1, . . . , N4 and make the following 4 sequences of 4 connections each:

Q1 −N1, Q2 −N2, Q3 −N3, Q4 −N4;

Q1 −N2, Q2 −N3, Q3 −N4, Q4 −N1;

Q1 −N3, Q2 −N4, Q3 −N1, Q4 −N2;

Q1 −N4, Q2 −N1, Q3 −N2, Q4 −N3.

After each sequence the parities of all points in both quartets change and in the end
they are restored. Let us repeat this procedure, connecting points N1, . . . , N4 with all
old points except T1, T2, T3 (last triplet).

Then we make connections T1 − N1, T2 − N2, T3 − N3 (all points but N4 become odd).
Now connect:

N2 −N3, N3 −N4, N4 − T3, N2 −N4, N4 − T2, N1 −N2, N1 −N4, N4 − T1, N1 −N3.

One can check easily that all these connections are even. Each new points is connected
with other points.

2



4 Answer: if n is prime, Second Player has a winning strategy; otherwise First Player has.

(i) Let n be a prime number. Let First Player eat a triangle with side k. Leftover is a trapezoid
with sides (k, n − k, n, n − k). Denote a = max(k, n − k) b = min(k, n − k). Note that
a 6= b because gcd(a, b) = gcd(n, n − k) = 1. Second Player eats a triangle with the side
n− k, leaving the parallelogram with sides a and b.

(A) Now, if First Player eats triangle with side less than b, then Second Player repeats
his move symmetrically (with respect to the center of the parallelogram), and wins since
First Player has no move.

(B) If First Player eats triangle with side b, leftover is the trapezoid with sides (a−b, b, a, b),
where gcd(a− b, b) = gcd(a, b) = 1. The game is over when a = b = 1, meaning that the
last triangular chip is left after First Player’s move. Therefore, Second Player wins.

(ii) Let n be a composite number, p any prime divisor of n, n = kp. First Player eats triangle
with side p. Consider two cases:

(A) If Second Player eats triangle with a side, not equal to n − p, then First Player eats
triangle with side 1 and wins.

(B) If Second Player eats a triangle with the side n − p, then leftover is a parallelogram
with sides p and (k − 1)p. First Player eats the triangle with side p. Again, if Second
Player eats triangle with side, not equal to p, then First Player eats triangle with side
1 and wins. So, in the end, after First Player’s move, leftover is a triangle with side p.
We are in the situation (A) now; however, Second Player has the first move, therefore,
he loses.

5 Answer:21

(I) Example: Fig. 1

Fig. 1 Fig. 2

3



(II) Let us prove, that 21 is a maximum.

First, note that cutting any square on the border results in the board falling apart. Cutting
any two adjacent squares also results in failure. Let us divide 7 × 7 board without central
square into four rectangles 3 × 4 as on Fig. 2. Let us show, that no more then five squares
can be cut in each rectangle. Assume, that it is possible to cut at least six. Since row of 3× 4
rectangle contains no more than two squares cut, so we have exactly two squares cut in each
row. Consider two cases:

(i) The first line is cut (X- -X). Then in the second row only one square could be cut.

(ii) The first row is cut (X-X-) or (-X-X) then second line is cut (-X-X) or (X-X-) and the
third line is cut like (X-X-) or (-X-X) again:

However, this results in the board falling apart. Contradiction.

(II)′ Second proof that 21 is a maximum. First of all, we cut all 81 squares. Let us prove
that one needs to repair at least 60 squares in order to restore integrity of the board. Really,
all squares are cut, the board splits into 180 pieces (9 triangles along each border and one
diamond at each pair of adjacent squares; there are 8 pairs of adjacent squares in each row
and column of the board; so we get

(
4× 9 + (9 + 9)× 8 = 180

)
of pieces.

Repairing one square we join no more than 4 different pieces, decreasing their total number

by no more than 3. So, to get 1 piece we need to repair at least
⌈179

3

⌉
= 60 squares.

6 Let O be the center of incircle, K and L tangency points with sides AD and BC respectively.

Solution 1. We start from two following statements:

Lemma 1. Points K, E, O and L are colinear.

Proof (see Fig.1 on next page). Note that OK and OL are perpendicular to bases of the
trapezoid and thus are parallel. So, O belongs to KL. One can assume with no loss of the
generality that AD > BC (if AD = BC our trapezoid is a rhombus and ∠AED = 90◦).

Let N be a point of intersection of AB and CD. Let K ′ be a point of tangency of incircle
of 4BCN with side BC. From the property of tangents (drawn from the same point to the
circle) we have

BK + BN = CK + CN

K ′C + BN = p

where p is a half-perimeter of 4BCN . So, BK = CK ′.
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Note that 4BEC ' 4DEA (BC ‖ AD). Then
BE

ED
=

BC

AD
and therefore

BE

ED
=

BK

LD
. This

implies that 4BKE ' 4DLE (∠KBE = ∠LDE and
BE

ED
=

BK

LD
). Then ∠BEK = ∠DEL

which means that points K, E,L are colinear. �
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Lemma 2. Let S be a midpoint of side PQ of 4PQR. If RS = 1
2
PQ then ∠PRS = 90◦. If

RS < 1
2
PQ then ∠PRS > 90◦.

Proof. Consider a circumference with diameter PQ. Then R belongs to this circumference
in the former case and lies inside of it in the latter case. �

Let M be a midpoint of CD (see Fig. 2); then OM is a midline of trapezoid KCDL, and
therefore it is parallel to its bases and is equal to (KC + LD)/2 = (PC + PD)/2 = CD/2
where P is a point of tangency with CD. Then by lemma 2 ∠COD = 90◦ and O belongs to a
circumference with diameter CD and a center M . Since MO ‖ CK, therefore MO ⊥ KL, we
conclude that KL is tangent to this circle at O. Then all points of KL (but O) are outside
of this circumference. Therefore ∠DEC does not exceed 90◦, so AED ≥ 90◦.

Solution 2. Extending AD beyond A (see Fig. 3), we choose point D′ such that AD′ = BC.
Also extending BC beyond B we choose point C ′ such that BC ′ = AD. Then CC ′D′D is a
parallelogram. Select point N on CC ′, such that C ′N = D′A = BC.

5



Since AC ′BD is a parallelogram (C ′B = AD, C ′B ‖ AD) then C ′A ‖ BD. Therefore
∠BEC = ∠C ′AC. So we need to prove that ∠C ′AC ≥ 90◦. Let M be a midpoint of CC ′;
then M is a midpoint of NB. Then CC ′ = AD+BC = AB +CD (property of circumscribed
quadrilateral), and CD = AN (because ANC ′D′ is a parallelogram) and AB + AN ≥ 2AM
(triangle inequality). Then ∠C ′AC ≥ 90◦ due to lemma 2.

A D 

B C 

E 

Fig. 3 

C‘ 

D‘ 

N M 
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Seniors
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A-Level Paper Spring 2003.

1 [4] A triangular pyramid ABCD is given. Prove that R/r > a/h, where R is the radius of the
circumscribed sphere, r is the radius of the inscribed sphere, a is the length of the longest
edge, h is the length of the shortest altitude (from a vertex to the opposite face).

2 [5] P (x) is a polynomial with real coefficients such that P (a1) = 0, P (ai+1) = ai (i = 1, 2, . . .)
where {ai}i=1,2,... is an infinite sequence of distinct natural numbers. Determine the possible
values of degree of P (x).

3 [5] Can one cover a cube by three paper triangles (without overlapping)?

4 [6] A right 4ABC with hypothenuse AB is inscribed in a circle. Let K be the midpoint of
the arc BC not containing A, N the midpoint of side AC, and M a point of intersection of
ray KN with the circle. Let E be a point of intersection of tangents to the circle at points
A and C.

Prove that 6 EMK = 90◦.

5 [6] Prior to the game John selects an integer greater than 100.

Then Mary calls out an integer d greater than 1. If John’s integer is divisible by d, then Mary
wins. Otherwise, John subtracts d from his number and the game continues (with the new
number). Mary is not allowed to call out any number twice. When John’s number becomes
negative, Mary loses. Does Mary have a winning strategy?

6 [7] The signs ”+” or ”-” are placed in all cells of a 4 × 4 square table. It is allowed to change
a sign of any cell altogether with signs of all its adjacent cells (i.e. cells having a common
side with it). Find the number of different tables that could be obtained by iterating this
procedure.

7 [8] A square is triangulated in such way that no three vertices are colinear. For every vertex
(including vertices of the square) the number of sides issuing from it is counted. Can it happen
that all these numbers are even?

Keep the problem set.
Visit: http://www.math.toronto.edu/oz/turgor/
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1 Solution 1. The longest edge of the pyramid is a chord of the cir-
cumscribed sphere and thus it does not exceed diameter of the sphere:
a ≤ 2R. Projection of insphere onto the shortest altitude of the pyra-
mid is strictly contained in the projection of the pyramid onto this
altitude. So, 2r < h. Multiplying inequalities we get 2r · a < h · 2R,

which is equivalent to
a

h
<

R

r
.

Solution 2. Let us calculate the volume of the pyramid in two ways:
V = 1

3
HjSj and V = 1

3
r(S1 + S2 + S3 + S4), where Sj is the area of

j-th face, and Hj is a corresponding altitude. Thus Hj = 3V/Sj and
h = 3V/Smax, where Smax = maxj Sj is the area of the face with the
largest area.

Therefore, r = 3V/(S1 +S2 +S3 +S4). Note that (S1 +S2 +S3 +S4) >
2Smax. Really, if we project the pyramid onto one of its faces (treated
as a base) then a projections of the lateral faces will cover the base.
Since area of projection is less than the area of the face itself (because
none of lateral faces is parallel to the base) we get our inequality.

Then
R

r
=

R(S1 + S2 + S3 + S4)

3V
>

2RSmax

3V
=

2R

h
≥ a

h
.

2 Answer: deg P = 1.

Solution. We consider a more general problem when ai are integers
(not necessarily positive).

(i ) deg P = 0 then P = c = const and all ai = P (ai+1) are equal
which contradicts conditions.

(ii ) deg P = 1 is possible: for example, ai = i, P (x) = x− 1.

1



(iii) m = deg P ≥ 2. Let us prove that such sequence {ai} does not
exists.

Lemma. If m ≥ 2 then there exists a constant C such that
∀x : |x| ≥ C |P (x)| > |x|.
Proof. Let P (x) = bmxm + bm−1x

m−1 + · · · + b0 with bm 6= 0.
Then for |x| ≥ 1

|P (x)| ≥|bm| · |x|m −
(
|bm−1|+ |bm−2 + · · ·+ |b0|

))
|x|m−1 ≥

|x|m−1

(
|bm| · |x| −

(
|bm−1|+ |bm−2 + · · ·+ |b0|

))
which is larger than |x|m−1 as |x| ≥

(
|bm−1|+ |bm−2 + · · ·+ |b0|+

1
)
/|bm| and in turn |x|m−1 ≥ |x|. �

Since ai are distinct integers, for any C there exists M such that
∀i ≥ M |ai| ≥ C. Then according to Lemma, for i ≥ M |ai| =
|P (ai+1)| ≥ |ai+1| and therefore |ai| are bounded. Contradiction.

3 First let us notice that no vertex can be covered by an interior of a
triangle. So, it should be covered by edges. Note that if an interior of
edge covers a vertex, the sum of adjacent angles covered by triangle is
exactly 180◦. At the same time the sum of angles adjacent to vertex of
cube is 270◦. Therefore, at least 90◦ at each vertex should be covered
by angles of triangles. So angles of triangles cover at least 8 · 90◦ and
there should be at least 8 · 90◦/180◦ = 4 of triangles.

Consider T-shaped envelope of a cube, consisting of two rectangles.
Each of them can be covered by 2 triangles. So, it is possible to cover
a cube by 4 triangles.

4
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Let O be a center of the circle. Since 4ABC is a right triangle, O is
a midpoint of hypotenuse AB. Then ∠NOK is a right angle. Really,
midline NO of 4ABC is parallel to BC and OK ⊥ BC (arcs CK and
KB are equal).

Note that right triangles 4ECO and 4EAO are congruent (by side
and hypotenuse). So EO is a bisector of ∠AEC.

Further, 4AEEC is isosceles (AE = EC as tangents to the circle).
Then median EN is also a bisector. Therefore, EN and EO are both
bisectors of the same ∠AEC; so E, N, O are colinear.

Furthermore, A, E, C and O belong to the same circumference (∠ECO =
∠EAO = 90◦). By power of the point we have

AN ×NC = EN ×NO,

AN ×NC = MN ×NK

which imply that
MN ×NK = EN ×NO,

meaning that M, K, E and O belong to the same circumference (by
power of the point).

3



Then ∠EMK = ∠EOK (subtended by the same arc). However,
∠EOK = 90◦; therefore ∠EMK = 90◦.

5 Answer: Mary has a winning strategy.

Consider John’s number modulo 6.

Mary calls 2. If John continues to play, then his number was odd:
J ≡ 1, 3, 5 mod 6. His new number J1 = J − 2 ≡ 1, 3, 5 mod 6 is also
odd.

Mary calls 3. So, if J1 ≡ 3 mod 6, Mary wins on her second move.
So, after two moves John’s number is J2 = J1 − 3 ≡ 2, 4 mod 6 or
J2 ≡ 2, 4, 8, 10 mod 12.

Mary calls 4. John continues to play, if J2 ≡ 2, 10 mod 12 or J3 =
J2 − 4 ≡ 10, 6 mod 12.

Mary calls 6. If J3 ≡ 6 mod 12 then J4 ≡ 0 mod 12, meaning that
Mary wins. So, J4 ≡ 4 mod 12.

Mary calls 16. J5 ≡ 0 mod 12 and Mary wins. Note, that John’s last
number is not negative, for the most he subtracted is 2+3+4+6+16 =
31.

There are other sequences of numbers of Mary’s moves.

6 Answer: 212.

Let A be a 4× 4-table consisting of “+” and “−”.

Since it is allowed to change a sign in any cell (altogether with signs
of all adjacent cells), we have 16 elementary transformations Tij (i, j =
1, . . . , 4); all other transformations are compositions of elementary ones.

Note, that elementary transformations commute: if from table A we
get table V applying some sequence of elementary transformations,
then applying to A the same sequence, but in different order, we get V
again. Also note, that changing sign in a cell (and in its neighboring
cells) of table A twice we will get A again; therefore every elementary
transformation needs to be applied no more than once.

Let T be a 4 × 4-matrix of transformation consisting of “0” and “1”.
The number 0(1) in cell (i, j) shows that elementary transformation Tij

is applied 0(1) times.
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It is clear, that if table A and matrix T are given, then the resulting
table V is uniquely defined. Note, that if we apply two transformations
with matrices T and S, then resulting transformation corresponds to
matrix T + S (corresponding elements are added modulo 2).

(i) First, let us get an upper estimate. One can check that the following
matrices do not change a table:

0110
1001
1001
0110

 ,


1111
0110
0110
1111

 ,


1001
1111
1111
1001

 ,


0000
0000
0000
0000

 , H =


0001
0011
0101
1110

 , G =


0010
0111
1000
1011

 ;

from matrix H we can get 3 more matrices with the same property by
90◦ rotations; from matrix G we can get 7 more matrices with the same
property by rotations and a mirror reflection. Altogether, we have at
least 16 (24) matrices Pα (α = 1, . . . , 16), which preserve tables.

Now let us divide all transformation matrices into equivalence classes
in the following way: T ∼ S if applied to table A both produce the
same result. Note that for any matrix of transformation S and any
α = 1, . . . , 16 we have S ∼ S + Pα. So each equivalence class contains
at least 24 elements and since there are 216 matrices of transformations,
there are at most 216/24 = 212 different equivalence classes. This means
that table A can generate no more than 212 different tables.

(ii) Let us get a lower estimate. Let us color our table as a chess board
with white top-left corner.

1. Note that any table could be transformed into a table with “−” in
all black cells (if some black cell contains “+” we can change it to “−”
without affecting all other black cells).

2. Now we show how with some special transformations we can make
“−” in 4 white cells of the lower half of our table without affecting
black cells. Let us consider the following matrices of transformations:

S1 =


0100
1110
0100
0000

 , S2 =


1100
1000
0000
0000

 , S3 =


0100
1110
0101
0011

 , S3 =


1100
1010
0111
0010

 .
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One can check that applying transformations with matrices S1, S2, S3,
S4 we change signs only in cells, marked by 1 (all of them are white):

I1 =


0000
0101
0000
0100

 , I2 =


1010
0000
1000
0000

 , I3 =


0000
0100
0000
0001

 , I3 =


1000
0000
0010
0000

 .

Note that each of matrices Ij has exactly one “1” in the lower half-table.
Therefore, if table A has “+” in some white cells of lower half-table,
we can change them into “−” applying corresponding transformations
Si without affecting black cells.

Now, we have “−” in all cells except 4 white cells in the upper half-
table. Thus we can transform A into one of 16 tables of this type; call
them canonical tables.

Inversely, if one can reduce table A to canonical table V , one can restore
A from V by the same transformation. We already proved in (i) that
each table can be transformed into no more than 212 tables; since there
is 216 tables and only 24 canonical tables, each canonical table can be
transformed into exactly 212 tables.

Therefore, every table can be transformed into exactly 212 tables.

7 Answer: No.

Solution. Let us introduce degree of vertex P , the number of seg-
ments issued from P .

Let us assume that degrees of all vertices are even.

Lemma. Let degrees of all vertices be even. Then one could paint all
the triangles into two colors so that every two triangles with a common
side would have different colors.

Proof. Let us consequently paint adjacent triangles into opposite
colors, every time connecting the centers of consequent triangles by a
curve passing through their common side.

Assume that on some step we painted a triangle and found that an
adjacent triangle had been already painted into the same color. Con-
necting centers of conflicting triangles we get a closed path, intersecting

6



an odd number of segments; each of them is intersected only once. This
path bounds some region D.

Consider directed segments issued from vertices belonging to D. Their
total number i equals the sum of degrees of vertices belonging to D
and is even by assumption. On the other hand, the number of directed
segments with both ends in D is also even because each such directed
segment is paired with the opposite one. Therefore the total number
of (directed) segments intersecting our path must be also even.

This contradiction proves lemma. �

Let us paint triangles according to Lemma. Due to the assumption that
vertices of the square have even degrees as well, all the “boundary”
triangles are painted in the same color, say, white.

Let W and B be the numbers of white and black triangles respectively.
We assume that every inner segment has two sides; one is colored in
black and the other in white colors. Then the total number of white
sides is 3W while the total number of black sides is 3B. Note that
xactly 4 white sides do not have black counterparts; they are sides of
the square. So, 3(W −B) = 4 which is impossible. Contradiction.
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