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LINEAR ALGEBRA 
 

Problem 1. Let 2( )A . Suppose  

11 12

21 2

a a
A

a a

 
  
 

 

satisfies 

2 2 2 2 1
11 12 21 22 5

a a a a    . 

Show that I A  is invertible. 

Solution. We have 

11 22 11 22 12 21(det ) 1I A a a a a a a      . 

Since 

2 21
2

( )ab a b     for all ,a b , we get 

2 2 2 2
11 1

1 1
11 22 11 222 2 21 22 10

d 1)e ((t ) 1I A a a aa a a a a         . 

Also, 2 1
11 5

a  , so 1
11

5
| |a  , and similarly for 22a , therefore 

2 1
105

det ) 1( 0I A     

so I A  is invertible.                                                                                  

Remark. The problem is a particular case of a well known result in matrix theory: if || ||  is a 

sub-multiplicative norm (that is,  || || | | || | || |XY X Y   for all matrices X, Y) and || || 1A  , then nI A  

is invertible.  
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Problem 2. Let  

1 cos 0

sin 1 cos

0 sin 1

A



 



 
 

  
 
 

,    
4

m
  ,   m . 

Calculate nA .  

Solution. We present the matrix A  in view of  

3 ,A I H   

where 3I   is the identity matrix and  

0 cos 0

sin 0 cos

0 sin 0

H



 



 
 

  
 
 

. 

Then 

2

2

2

sin cos 0 cos

0 0 0

sin 0 sin cos

H

  

  

 
 

  
   

  and   
3

3H O , 

where 3O  is the zero matrix. We expand  

  0 2
3 3

0

2
3

2

2

0 1 2

( 1)

2

( 1) ( 1)
1 sin 2 cos cos

4 2

sin 1 cos .

( 1) ( 1)
sin sin 1 sin 2

2 4

n
nn k n k

k

n n n n
A I H H I H H H

k

n n
I nH H

n n n n
n

n n

n n n n
n
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Problem 3. Consider the n n  matrix  

1 0 0 0 ... 0 1

1 1 0 0 ... 0 0

0 1 1 0 ... 0 0

0 0 1 1 ... 0 0

... ... ... ... ... ... ...

0 0 0 0 ... 1 0

0 0 0 0 ... 1 1

nA

 
 
 
 
 

  
 
 
 
 
 

. 

Find the values of n , for which nA  is invertible.  

Solution. We first need to find the characteristic polynomial of nA .  

1

1 0 0 0 ... 0 1

1 1 0 0 ... 0 0

0 1 1 0 ... 0 0

( ) 0 0 1 1 ... 0 0

... ... ... ... ... ... ...

0 0 0 0 ... 1 0

0 0 0 0 ... 1 1

(1 ) ( 1) , for .

nA

n n

x

x

x

x x

x

x

x n











 





    

 

For 2n k , it is 2 2 1( ) (1 ) ( 1)
n

k k
A x x     , and | ( )

nAx x , so nA  is not invertible (it has 

the zero as an eigenvalue). 

For 2 1n k  , it is 2 1 2 2( ) (1 ) ( 1)
n

k k
A x x      , and | ( )

nAx x . So, nA  is invertible for 

n  odd.  
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Problem 4. Consider a natural number 1n   and a continuous real valued function f defined 

on the interval [a, b]. Show that there is only one polynomial function p of degree n  such that 

( ) ( ),p a f a       (1) 

 and  

 ( ) ( ) ( )d 0,
b

a

f x p x q x x      (2) 

for any polynomial function q of degree 1n  . 

Solution. On the vector space of continuous real valued functions defined on [a, b] take the 

inner product 

, ( ) ( )d ,
b

a

f g f x g x x     

so that (2) can be written as 

, 0.f p q         (3) 

Denote by nP  the vector space of polynomial functions of degree n . In nP  take a basis   of 

orthogonal polynomials,  

0 1, ,..., n     0 1deg deg ... deg n     . 

Represent p with respect to this basis as 

0

,
n

i i
i

p  


   

and write (3) in the equivalent form 

0

, 0,    0,1,..., 1,
n

i i j
i

f j n  


       

which  implies 

,
,    0,1,..., 1.

,

i
i

i i

f
i n




 
    

Now, condition (1) emerges as 

0

( ) ( ).
n

i i
i

c a f a


      (4) 

Since all the roots of  n  are in (a, b), we have   0n a  , so that (4) yields 

1

0

1
( ( ) ( )).

( )

n

n i i
n i

c f a c a
a








    

  



7 
 

Problem 5. Calculate the determinant 

2 2 2 3 2 4 1
1 1 1 1 1

2 3 2 4 2 5 1
2 2 2 22

2 4 2 5 2 6 1 2
3 3 3 3 3

1 1 4 3
2 2 2 2 2

1
1 1

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

... ... ... ... ... ... ...

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) (

nn n n n
n n n n n

nn n n n
n n n nn

n n n n n
n n n n n

n

n n n

n n

   
    

   
   

    
    

 



 

2 3 2
1 1 1) ... ( ) ( ) 1

1 1 1 ... 1 1 1

n

 . 

Solution. We transform the identity 1
1

( ) ( ) ( )
nn n

k kk



   into 1

1
( ) ( ) ( )

nn n
k kk



   . We present 

the determinant n  in view of 

2 2 2 3 2 4 1
1 1 1 1 1

2 3 2 4 2 5 1
2 2 2 22

2 4 2 5 2 6 1 2
3 3 3 3 3

1 1 4 3
2 2 2 2 2

1
1 1

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

... ... ... ... ... ... ...

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) (

nn n n n
n n n n n

nn n n n
n n n nn

n n n n n
n n n n n

n

n n n

n n

   
    

   
   

    
    

 



 

2 3 2
1 1 1

1 2 3 2 1
0 0 0 0 0

) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

n

n n n



  

 . 

Subtracting the adjacent rows we obtain  

2 3 2 4 2 5 1
1 1 1 11

2 4 2 5 2 6 1 2
2 2 2 2 2

2 5 2 6 2 7 2 3
3 3 3 3 3

1 2 3 2
2 2 2 2 2

1
1 1

( ) ( ) ( ) ... ( ) ( ) 0

( ) ( ) ( ) ... ( ) ( ) 0

( ) ( ) ( ) ... ( ) ( ) 0

... ... ... ... ... ... ...

( ) ( ) ( ) ... ( ) ( ) 0

( ) (

nn n n n
n n n nn

n n n n n
n n n n n

n n n n n
n n n n n

n

n n n

n n

   
   

    
    

    
    

 



 

2 3 2 1
1 1 1) ( ) ... ( ) ( ) 0

1 1 1 ... 1 1 1

n 

 .  

Expanding the determinant with respect to the last column we have 

2 3 2 4 2 5 1
1 1 1 1 1

2 4 2 5 2 6 1
2 2 2 22

2 5 2 6 2 7 1 2
3 3 3 3 3

1

1 1 5 4
3 3 3 3 3

2 2

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

... ... ... ... ... ... ...

( ) ( ) ( ) ... ( ) ( ) 1

( ) (

nn n n n
n n n n n

nn n n n
n n n nn

n n n n n
n n n n n

n n

n n n

n

   
    

   
   

    
    



 

   

1 2 4 3
2 2 2

1 2 3 3 2
1 1 1 1 1

) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

n n

n n n

 

  

 . 
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Note that 1n  is the upper right ( 1) ( 1)n n    block of n .  Subtracting the adjacent rows again 

we have 

2 4 2 5 2 6 1
1 1 1 11

2 5 2 6 2 7 1 2
2 2 2 2 2

2 6 2 7 2 8 2 3
3 3 3 3 3

1

1 2 4 3
3 3 3 3 3

1
2

( ) ( ) ( ) ... ( ) ( ) 0

( ) ( ) ( ) ... ( ) ( ) 0

( ) ( ) ( ) ... ( ) ( ) 0

... ... ... ... ... ... ...

( ) ( ) ( ) ... ( ) ( ) 0

( ) (

nn n n n
n n n nn

n n n n n
n n n n n

n n n n n
n n n n n

n

n n n

n

   
   

    
    

    
    



 



 

2 3 3 2
2 2 2 2

1 2 3 3 2
1 1 1 1 1

) ( ) ... ( ) ( ) 0

( ) ( ) ( ) ... ( ) ( ) 1

n n

n n n

 

  

 . 

After an expansion the determinant 1n  becomes 

2 4 2 5 2 6 1
1 1 1 1 1

2 5 2 6 2 7 1
2 2 2 22

2 6 2 7 2 8 1 2
3 3 3 3 3

1

1 1 6 5
4 4 4 4 4

1
3 3

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

... ... ... ... ... ... ...

( ) ( ) ( ) ... ( ) ( ) 1

( ) (

nn n n n
n n n n n

nn n n n
n n n nn

n n n n n
n n n n n

n

n n n

n n

   
    

   
   

    
    



 



 

2 5 4
3 3 3

1 2 3 4 3
2 2 2 2 2

) ( ) ... ( ) ( ) 1

( ) ( ) ( ) ... ( ) ( ) 1

n

n n n



  

 , 

which means that 

1 2n n n       . 

Continue with the same arguments we have 

1 11
1 2 3 2 2 111

2

( )
( ) (

1
)

1
( ) 1

( )

n
n n nn

n n n n n nnn
n

 
    



             . 
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Problem 6. Consider an n n  symmetric matrix A with real entries ija , and  let 1  be the 

largest eigenvalue of A.  

a) Prove that 1,   1,2,..., .iia i n    

b) Show that, if for a some {1,2,..., }i n  

1iia   

holds, then 

 0    for    ,  1,2,..., .ija j i j n    

Solution. Denote by  

1 2 ... n      - the eigenvalues of A, 

 ,1nM  - the vector space of 1n  column matrices with real entries, 

1 2, ,..., ne e e  - the canonical basis of  ,1nM , and by 

 ,u v - the Euclidean inner product on  ,1nM : 

1 1
1

( , ) ,     with    ( ,..., ) , ( ,..., ) .
n

T T
i i n n

i

u v u v u u u v v v


    

As any symmetric matrix,  A can be expressed as 

TA QDQ ,      (1) 

where  Q  is an orthogonal matrix and D is the diagonal matrix  D = 1( ,... )diag , n  . 

a)  Using (1) we deduce 

2 2
1 1( , ) ( , ) ... ,T T

ii i i i i n na Ae e DQ e Q e x x       

with 
T

ix Q e . Since || || 1x  , relation (2) immediately implies 

2 2 2
1 1 1 1( ... ) || || .ii na x x x            (2) 

Obs.  A straightforward answer to question a) uses the inequality 

2 2
1|| || ( , ) || || ,n x Ax x x    

valid for any 1n  column matrix x: here one  takes ix e . 

b) Assume 1iia   for a some i, that is, see (2),    

2 2
1 1 1... .n nx x           (3) 

Let r  denote the multiplicity of the eigenvalue 1 .  

For || || 1x  , assumption (3) can be written as 

2 2 2 2 2 2
1 1 1 2 1 1 1... ... ( ... ),r r n n nx x x x x x             

implying 

2 2
2 1 1 1( ) ... ( ) 0,r n nx x         

and hence 1 ... 0.r nx x     This gives 1Dx x . Finally, 

1 1 1( , ) ( , ) ( , ) ( , ) ( , ) ,T
ij i j i j j j i j ija Ae e QDQ e e QDx e Qx e e e          

where ij  is the Kronecker symbol. Consequently, 0ija   for j i . 
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Problem 7. Let , ( )nA B  be two matrices satisying the conditions 
2 ,A A  2B B  and 

rank rankA B .  

Prove that A and B are similar matrices. (A and B are similar matrices if there exists a 

nonsingular matrix ( )nC , such that 1A C BC .) 

Solution. First of all, let us remark that the eigenvalues of the matrix A can be 0 or 1, only. Let 

A be an eigenvalue of A and X be the correesponding eigenvector. 

We have:  
2

1 1

2 2

2 2
( ) ( )( ) 0 , 0 0 0 or 1.

n n

A A

M M

AX X A X AX AX AX X X

X X

    

     
 



      

        

 

In the following, we will prove that the matrix A is diagonalisable. 

If we suppose the contrary, the matrix A has a Jordan canonical form having at least one 

Jordan block of order k, for instance: 

1 0 ... 0

0 1 ... 0

.... ... ... ... ...

0 0 0 ... 1

0 0 0 ...

k k kJ I E









 
 
 
   
 
 
 
 

 

Therefore,  

2

2

2 2 2 2

2

2 1 ... 0

0 2 ... 0

( ) 2 .... ... ... ... ...

0 0 0 ... 2

0 0 0 ...

k k k k k kJ I E I E E

 

 

  





 
 
 
 

       
 
 
 
 

 

Taking into account the condition from hypothesis, we obtain: 

2 1 2 2 1 2,  ,  .A A A PJP A PJ JP J      

On the other hand, 
2
k kJ J , for all eigenvalues of the matrix A. So, our supposition was wrong and 

consequently, the matrices A and B are diagonalisable. 

The diagonal forms of the matrices A and B have on the diagonal only 0 and 1. Taking into 

account the condition rank rankA B  it follows that the diagonal forms of A and B contain the same 

number of entries 1 on the diagonal and 0 in rest. 

So, we can choose the same diagonal matrix for both matrices A and B: 

1 0 0 ... 0

0 1 0 ... 0

diag(1,1,...,1,0,...,0) ... ... ... ... ...

0 0 0 ... 0

0 0 0 ... 0

n pp

D



 
 
 
  
 
 
 
 

 

where rank rankp A B  . 

Of course, we have the same diagonal matrix but it is obtained from A and B using different 

modal matrices , ( ), det 0nP S P   and det 0S  :  

1 1 ,A PDP B SDS   . 
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Thus,  

1 1 1 1

1 1 1 1 1

,

( ) ( ).

D P AP D S BS P AP S BS

A PS BSP SP B SP

   

    

   

  
 

Denoting  

1 1( ), det det det 0nC SP M C S P       

we obtain the conclusion. 
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Problem 8. a) Let ,A B  be two m n  matrices over . Show that if A and B have the same 

image, then there is an invertible matrix ( )nP  such that A BP . (The image of an m n  

matrix A is the subset { | }nAx x  of m .) 

b) Let  

2

0 0

2( 1)
A

X X

 
    

 and 
2

0 0

2
B

X

 
   
 

 

be two 2 2  matrices over the polynomial ring [ ]R X . Show that A and B have the same image, 

but there is no invertible matrix 2( )P R  such that A BP . 

Solution. a) Set Im ImM A B  . This is a subspace of m , and let dimr M . We then 

have rM  hence we may assume Im Im rA B  . 

Since : n rA   is surjective there is ' ( )n rA   such that ' rAA I . Then 

ker Im 'n A A  , and since dimker A n r   there is a matrix ( )' ( )n n rX    whose columns 

form a basis for ker A . Thus the matrix ( ' | ') ( )nA X   has the property that its columns form a 

basis for n , hence it is invertible and its inverse has the form 
A

X

 
 
 

.  

Similarly, we get a matrix ( ' | ')B Y  whose columns form a basis for n  and its inverse has 

the form 
B

Y

 
 
 

.  

Since the matrices 
A

X

 
 
 

 and 
B

Y

 
 
 

 provide bases for n  they differ by an invertible matrix, 

and we are done. 

b) To show that Im ImA B  is straightforward.  

Suppose there is an invertible matrix 2( )P R  such that A BP . Set  

a b
P

c d

 
  
 

. 

From A BP  we get 

2 2( 1)

1 2 2

X f X X g
P

f g

  
    

. 

Since P is invertible we have det 1P   . But 
2det ( 1)(2 1)P X f X g    . If 

2( 1)(2 1) 1X f X g      we send X to 0 and get (0) 0f  , hence 1f Xf . Plugging this into the 

previous equation one gets 
2

1( 1)(2 1) 1X Xf X g     , equivalents  

2 2
1 12 2 0X f X Xf X g    . 

This gives 1 12 1 2 0Xf f Xg    , and sending again X to 0 one obtains 12 (0) 1f  , a contradiction. 

If  
2( 1)(2 1) 1X f X g     we send X to 0 and get (0) 1f  , hence 1 1f Xf  . Plugging 

this into the previous equation one gets 
2

1( 1)(2 1) 1X Xf X g    , equivalents 

2 2
1 12 2 0X f X Xf X g    . This gives 1 12 1 2 0Xf f Xg     and sending again X to 0 one 

obtains 12 (0) 1f   , a contradiction.  
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Problem 9. Let A  and B  be two 3 3  complex matrices such that  

3 3 22 (( ) ) ( ( )) ( ) ((3 ) )Tr A B Tr A B Tr A B Tr A B    , 

where Tr  denotes the trace of the matrix in cause. Prove that A B  is invertible, and 

1 1 1 1(( ) ) ( ( ) (( ) )) ( ( ) )m nn mBA A B B A A B B A B A B A B A         

is the null matrix for all ,m n . 

Solution. Taking into attention the eigenvalues of of the matrix A B , denoted here by 1 2,   

and 3 , the following equalities may be used : 

2 2 2 2 3 3 3 3
1 2 3 1 2 3 1 2 3, (( ) ) , ((( )) ) .Tr A B Tr A B Tr A B                    

In this way, remarking that  

3 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 36 ( ) 3( )( ) 2( )                         , 

the relationship  

3 3 22 (( ) ) ( ( )) ( ) ((3 ) )Tr A B Tr A B Tr A B Tr A B     

offered by hypothesis, is easily transposed into the following one: 1 2 3 0    . 

This means just that det( ) 0A B  , which ensures that A B  is invertible. In other words, it 

can be next counted on the matrix 
1( )A B  .  

It is noticeable now that 
1 1( ) ( )A A B B B A B A    , by virtue of the following sequence of 

equalities:  

1 1 1

1 1 1

( ) ( )(

(

) ( )

( ) ) ( ) ( ) .

A A B B A B B A B B B B A B B

B A B A B B A B B B A B A

  

  

       

      
 

On such a basis, it is inductively inferred the fact:  

1 1(( ) ) ( ( ) )n nA B B AA B B A   , for all n . 

At the same time, one can similarly be seen the fact:  

1 1( ( ) ) (( ) )mmA B B B A B AA    , for all m . 

Finally, the nullity of the matrix specified in this problem derives by the substraction of suitable 

products of terms in latter two equalities. 
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Problem 10. Let ( )nA  be a diagonalisable matrix, and ( )nV   be another matrix, 

such that 2 .nV I   

a) Prove that, for any 0   sufficiently small, the matrix equation AX X V   has an 

unique solution ( ),nX   denoted by ( ).X    

b) Prove that 

0
lim Tr( ( )) null .VX A


 


   

Solution. a) Remark that the matrix nA I  has the eigenvalues 1 ,..., ,n      where by 

1,..., n   we have denoted the eigenvalues of .A  If all i  are nonzero, for any 0   sufficiently 

small, 1 ,..., n      are nonzero, hence the matrix nA I  is nonsingular. If 0  is eigenvalue for 

,A  again, the matrix nA I  has as eigenvalues   or ,i   with 0,i   which are nonzero for any 

  sufficiently small, therefore nA I  is nonsingular, too. 

b) Since A  is diagonalisable, nA I  is diagonalisable. There is an nonsingular matrix 

( )nP  such that 
1,nA I PD P    where 

1

2

0 ... 0

0 ... 0
.

.. .. .. ..

0 0 .. n

D

 

 

 

 
 

 
 
 

 

 

For every 0   sufficiently small, nA I  is invertible, and its inverse can be written as 

1

2

1

1
1 1

1

0 ... 0

0 ... 0
( ) .

.. .. .. ..

0 0 ..
n

nA I P P

 

 

 





 



 
 
 
    
 
 
  
 

 

It follows that 

1

21 1

0 ... 0

0 ... 0
( ) ( ) ,

.. .. .. ..

0 0 ..
n

nX A I V P P V


 


 


 

   



 



 
 
 
     
 
 
  
 

 

and, furthermore, using that 
2 ,nV I Tr( ) Tr( ),AB BA  and the fact that the traces of similar matrices 

are equal, we obtain 

1

1 2Tr( ( )) Tr( ( ) ) Tr( ( ) ) ... .
n

nVX X V A I V  
   

      
 

       

Then  
0

lim Tr( ( )) ,X k


  


   where k  is the number of zero eigenvalues of the matrix ,A  i.e., 

null .A   
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Problem 11. Given a triangle 0 0 0A B C . On its sides are built squares outside the triangle to 

form a new triangle 1 1 1A B C  with vertices the centers of these squares. Continuing in the same way an 

infinite sequence of triangles is obtained and 0 1, , , ,nS S S  are the areas of them. 

 a) Let 3 3:   be linear operator defined by the matrix  

0 1 0

0 0 1

1 0 0

 
 
 
 
 

 

and 0 0 0, ,a b c  are the complex numbers corresponding to the vertices 0 0 0, ,A B C  of the triangle 

0 0 0A B C , and vector 0 0 0( , , )a b c0z . Prove that 

1
0 2

Im( , )S  0 0z z , 

where  ,   is the standard inner product in 3 . 

 b) Prove that  

1
1 24

2 , 2n n nS S S n     

and 

1
1 2 0 1 1 1 0 2

3
(( ) ( ) )n n

nS S q S q S q S q     

where 2 3 2 3
1 22 2

,q q   . 

Solution. a) We will prove more: if 1 2, , , mA A A  are vertices of polygon and 1 2, , ma a a  are 

the their corresponding complex numbers, and 1 2( , , , )ma a aw  then his area is  

1
2

Im( , )S  w w
, 

where 2 3 1( , , , , )ma a a aw .  

Really, if  cos sink k k ka r i   , then 1 1
1

Im( , ) sin( )
m

k k k k
k

r r   


 w w  1 1( )ma a  . 

Let us denote that Im( , )w w  doesn't change in translation (i. e. in addition to w  of a vector 

(1,1, ,1),k k v
). 

b) First note that  is unitary operator and 
3 Id . Put ( , , )k k k ka b cz  where , ,k k ka b c  

are the corresponding complex numbers to the vertices , ,k k kA B C . Let us define the operator 

2   , where 1
2

(1 )i   . It is not difficult to see that 1, 1k k k z z , and 

1
2

Im( , )k k kS  z z , 0k  . 

It is sufficient to prove requested equality for 2n  .  

By using the properties of the unitary operators, we obtain consecutively  

2
1 1 0 0 0 0 0 02 2

( , ) ( , ) ( , ) ( , )i i  z z z z z z z z  

whence  

 2 1
1 1 1 0 0 0 0 02 2

2 Im( , ) 2 Im ( , ) ,iS S   z z z z z z . 

Similarly, 

27
2 2 2 0 0 0 0 02

2 Im( , ) ( , ) Im ( , )S S i   z z z z z z . 
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From the last two equalities follows requested result. 

Finally, characteristic equation of sequence nS  is 2 1
4

2 0q q    with roots 

2 3 2 3
1 22 2

,q q   . Then nS  has the form 1 1 2 2
n n

nS C q C q   where the constants 1C  and 2C  are 

obtained from the system 

0 1 2

1 1 1 2 2

S C C

S C q C q
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Problem 12. Let ( )nA  be a fixed non-zero matrix. Define the function 

: ( ) ( ),

( ) , ( ).

A n n

A n

f

f X AX XA X



   
 

a) Show that Af   if and only if ,nA I  where nI  is the identity matrix. 

b) Show that A B B Af f f f  if and only if .AB BA   

c) If A  is a matrix with n  distinct real eigenvalues, find the dimension of ker( ).Af   

Solution. a) Since Af  , it follows that 0 , ( ).n nAX XA X      

Denote by ijE  the matrix with 1  on the  ,i j  position and 0  elsewhere. For ,ijX E  we 

have .ij ijAE E A   

  ijAE  is the matrix whose j -th column is the i -th column of A  and 0  elsewhere, and ijE A  is 

the matrix whose i -th column is the j -th column of A  and 0  elsewhere. For ,i j  one has 

, 1,.., , 1,.., ,ii jja a i n j n    and for ,i j  one has 0, 0, ,ik kia a k i    1,..., .k n  It follows that 

A  is a diagonal matrix, nA I  . 

b) One has  

( )( ) ( )( ), ( )

, ( )

( ) ( ), ( ).

A B B A

A B B A n

n

n

f f f f

f f X f f X X

ABX XBA BAX XAB X

AB BA X X AB BA X



   

     

     

 

If ,AB BA  then A B B Af f f f .  

If A B B Af f f f  then  

( ) ( ) 0 , ( ),n nAB BA X X AB BA X       

hence ( ) 0 , ( ).AB BA n nf X X     Using a), it follows that 

.nAB BA I   

Since Tr( ) Tr( ),nAB BA I   it follows 0 ,n  hence 0,   and, finally, .AB BA   

c) We have 

ker( ) { ( ) : }.A nf X AX XA    

 

We prove that all the matrices ker( )AX f  have the same eigenvectors, due the condition 

that A  is a matrix with n  distinct real eigenvalues. 

Indeed, take an eigenvector v  corresponding to the eigenvalue   for .A  Then 

,AXv XAv X v Xv     

hence Xv  is an eigenvector for A  corresponding to .  But since the eigenspace corresponding to   

has dimension 1,  it follows that there is   such that ,Xv v  hence v  is an eigenvector for .X  

Since X  can have at most n  eigenvectors which are linearly independent, and all the eigenvectors for 

A  are eigenvectors for X  , it follows that X  has the same eigenvectors as .A   

Observe that every X  is diagonalisable, since its eigenvectors are linearly independent. We 

want to prove that there exist a polynomial f  of degree at most 1n   such that 

( ).X f A  

Denote by 1,..., n   the eigenvalues of ,X  and by 1,..., n   the eigenvalues of .A  Then 

1,XX PD P  and 
1,AA PD P  where by P  we have denoted the matrix whose columns are the 
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eigenvectors of A  and X  (which are the same), and the relation ( )X f A  reduces to ( ),X AD f D  

or 

1 1

2 2

0 ... 0 ( ) 0 ... 0

0 ... 0 0 ( ) ... 0
.

.. .. .. .. .. .. .. ..

0 0 .. 0 0 .. ( )n n

f

f

f

 

 

 

   
   
   
   
   
   

 

Since 1,..., n   are distinct, the Lagrange interpolation polynomial, of degree 1n   in our case, 

satisfies ( ) ,i if    1,..., .i n   It follows that 
2 1{ , , ,..., }n

nI A A A 
 generates ker( ).Af  Moreover, the 

linear independence of 2 1{ , , ,..., }n
nI A A A   reduces to the fact that the Vandermonde determinant 

1
1 1

1
2 2

1

1 ...

1 ...

.. .. .. ..

1 ..

n

n

n
n n

 

 

 







 

is nonzero, which is true due to the fact that i  are all distinct. Then, 
2 1{ , , ,..., }n

nI A A A 
 form a basis 

in ker( ),Af  so the dimension of ker( )Af  is n .  
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ANALYSIS 
 

Problem 1. Let f  be continuous on [0,1] and differentiable on (0,1). Suppose that 

(0) (1) 0f f   and that there is 0 (0,1)x   such that 0( ) 1f x  . Prove that | '( ) | 2f c   for some 

(0,1)c . 

Solution. Suppose first that 1
0 2

x  . Then either 0[0, ]x  or 0[ ,1]x  has length less than 1. 

Suppose, for example, that this is 0[ ,1]x . By the mean value theorem,  

0

0 0

(1) ( )1
'( )

1 1

f f
f c

x

x x


 

 
 

and consequently, | '( ) | 2f c  .  

Suppose now that 1
0 2

x   and that f  is linear on 1
2

[0, ] . Then ( ) 2f x x  for 1
2

[0, ]x . Since 

1
2

'( ) 2f  , there is 1
1 2

x   such that 1 1(  )f x  . In this case, the assertion follows from the mean value 

theorem applied to f  on 1[ ,1]x . Finally, suppose that f  is not linear on 1
2

[0, ] . If there is 1
2 2

(0, )x   

such that 2 2( ) 2f x x , then to get the desired result it is enough to apply the mean value theorem on 

2[0, ]x . 2 2( ) 2f x x , then one can apply the mean value theorem on 1
0 2

[ , ]x .  
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Problem 2. Draw a tangent line of parabola 2y x   at the point (1,1)A . Suppose the line 

intersects the x-axis and y-axis at D and B respectively. Let point C be on the parabola and point E on 

AC such that 1
AE

k
EC

 . Let point F be on BC such that 2
BF

k
FC

  and 1 2 1k k  . Assume that CD 

intersects EF at point P. When point C moves along the parabola, find the equation of the trail of P. 

Solution.The slope of the tangent line passing through A is 2'(1)y  . So the equation of the 

tangent line AB is 2 1y x  . Hence coordinates of B and D are 1
2

(0; 1),  ( , 0)B D . Thus D is midpoint 

of the line segment AB.  

Consider 2
0 0 1 1 2 2( ); ),  ( , , ( , ,  () ),P x y C x x E x y F x y . Then by 1

AE
k

EC
 , we get 1 0

1
1

1
,

1

k x
x

k





 

2
1 0

1
1

1

1

k x
y

k





. From 2

BF
k

FC
 , we get 

2
2 0 2 0

2 2
2 2

1
,

1 1

k x k x
x y

k k

 
 

 
. Therefore the equation of line EF 

is 

2
1 0 1 0

1 1
2 2

2 0 1 02 0 1 0

2 12 1

1 1

1 1

11 1
1 11 1

k x k x
y x

k k

k x k xk x k x
k kk k

 
 

 

   
  

 .  

Simplifying it, we get 

2 2
2 1 0 2 2 1 0 0 2 0) ( )[( (1 )] [ 3] 1k k x k y k k x x x k x         .  (1) 

When 0
1

2
x   the equation of line CD is  

2 2
0 0

0

2
.

2 1

x x x
y

x





      (2) 

From (1) and (2), we get 0 01
,

3 3

x x
x y


  . By elimination of 0x , we get the equation of the trail of 

point P as  

21
(3 1)

3
y x  .  

When 0
1

2
x    the equation of EF is 3 31 1 1

2 1 22 4 4 2 4
3( )y k k x k      , the equation CD is 1

2
x  . 

Combining then, we conclude that 1 1
2 12

( , ) ( , )x y   is on the trail of P. Since C and A cannot be 

congruent, 2
0 3

1, x x    

Therefore the equation of trail is 21
(3 1)

3
y x  , 2

3
x  .  
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Problem 3. The function ( )f x  has a derivative of order two in the interval [ , ]a b  with a 

length 2, ( ) ( ) 0f a f b   and there is a point ( , )x a b  such that ( ) 0f x  . Prove that  

[ , ] [ , ]
inf ( ) max ( ) 0

x a b x a b
f x f x

 
   . 

 

Solution. Let 0 ( , )x a b  be such that 0
[ , ]

max ( ) ( )
x a b

f x f x


  and 
[ , ]
inf ( )

x a b
m f x


 . By the 

Taylor’s Theorem we have 

21
0 0 0 1 02

21
0 0 0 2 02

0 ( ) ( ) ( )( ) ( )( )

0 ( ) ( ) ( )( ) ( )( )

f a f x f x a x f a x

f b f x f x b x f b x





      

      
 

for some 1 1 0, a x    and 2 0 2, x b   . 

Because 0 ( , )x a b , 0( ) 0f x   and we obtain 

2 21
0 1 0 2 04

( ) ( ( )( ) ( )( ) ) 0f x f a x f b x       , 

and  

2 2
0 0 04

( ) (( ) ( ) ) 0mf x a x b x      

(obviously 0m  ).  

The maximal value of the function 
2 2( ) ( ) ( )y x a x b x     in [ , ]a b  is equal to 4, which 

proves the requested inequality.  
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Problem 4. Prove the inequality  

1

2 2 2
1

3 2
d

16ln3(1 3 ) (1 )

x

x
x

x








 
  . 

Solution. First stage. Let us denote 
2

3
( )

(1 3 )

x

x
f x 


,  

2 2

1
( )

(1 )
g x

x



. The function ( )f x  is 

even since  ( ) ( ) 0.f x f x    That is why the product ( ) ( )f x g x  is also an even function. Therefore 

1 1

2 2 2 2 2 2
1 0

3 3
d 2 d

(1 3 ) (1 ) (1 3 ) (1 )

x x

x x
x x

x x


   

  . 

Computing the derivatives: 

3

3 ( 1 3 )ln3
'( )

(1 3 )

x x

x
f x

 
 


 and 

2 3

4
'( )

(1 )

x
g x

x
 


 

we conclude that both functions are decreasing in [0,1] . Additionally, ( )f x  and ( )g x  are positive. 

 

Second stage. The above properties of the functions ( )f x  and ( )g x  make valid Chebishev’s 

inequality  

1 1 1

2 2 2 2 2 2
0 0 0

3 3 1
2 d 2 d d

(1 3 ) (1 ) (1 3 ) (1 )

x x

x x
x x x

x x


   
   .  (1) 

We continue with the antiderivatives of ( )f x  and ( )g x : 

1
( )

(1 3 )ln3x
F x  


, 

2

1
( ) rctan 

2 1

x
G x a x

x

 
  

 
. 

Therefore: 

1

2
0

3 1
d

4ln3(1 3 )

x

x
x 


  and  

1

2 2
0

1 2
d

8(1 )
x

x





 . 

It remains just to replace the latter results in (1) to complete the proof.  
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Problem 5. Let f  be a nontrivial function, of class 2C , continuous, such that 

:[1,2] [0, ],f R  0 R   and (1) (2) 0f f  . Prove that 

2
''( )

( )
1

| | 2
f t

f t
dt x , for [1,2]x . 

Solution. It is enough to prove the following inequality  

2
''( )

( )
1

| | 4
f t

f t
dt  . 

Let 
[1,2]

max | ( ) | 0
x

M f x


  .The 

2 2
''( ) 1
( )

1 1

| | | ''( ) |
f t

f t M
I dt f x dx   .     (1) 

There is a 0 (1,2)x   such that 0( )M f x . It' s clear that 0 1,2x  . From mean - value theorem: 

- There is a 1 0(1, )x   such that 1 1
'( ) M

x
f 


 ,  

- There is a 2 0( ,2)x   such that 2 2
'( ) M

x
f  


 .  

From (1) and Cauchy-Schwarz inequality in Engel form, since 0 (1,2)x  , we have   

2 2

1 1

2

2
1 1 1

1

1 1 1 1
2 1 2 1 2 1

(1 1)1 1
2 1 (2 ) ( 1)

| ''( ) | | ''( ) | | ''( ) |

| '( ) '( ) | | | | |

4.

M M M

M M
M M x x x x

x x x x

I f x dx f x dx f x dx

f f
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Problem 6. a) Calculate the limit 

1
1

log log

1 1
log( 1) log

lim

n
dx

x n
n

n nn










. 

b) Let : ( , )f a    ( 0a  ) be differentiable such that 'f  is monotone, has no roots and 

'( )

'( 1)
lim 1

f n

f nn 
 . Prove that 

1

( ) ( )

1
( 1) ( ) 2

lim

n

n

f x dx f n

f n f nn





 


 . 

Solution. b) Using Taylor's formula with the Lagrange remainder for the function 

0

( ) ( ) ,
t

F t f x dx t a   

we obtain that for every n a , there exists some , 1( )nx n n   such that 

1
2

( 1) ( ) ( ) (' )' nF n F n F xFn    ,  

hence 

1
1
2

( ) ( ) '( )
n

n
n

f x dx f n f x


  .  

Similarly, for every n a , there exists some , 1( )ny n n   such that 

1)  (( ( ))  ' nf n f n f y   , 

hence 

1

( ) ( )
'( )1

( 1) ( ) 2 '( )

n

n n

n

f x dx f n
f x

f n f n f y





 


  . 

Note that 'f  has the Darboux (i.e. intermediate value) property, while being nonzero on ( , )a  , 

which leads to 'f  having constant sign (without any loss of generality, we may assume that 'f  is 

positive on ( , )a  ). Next, using the monotonicity of 'f , it follows that 

'( )'( ) '( 1)

'( 1) '( ) '( )
n

n

f xf n f n

f n f y f n




   

hence 

'( )

'( )
1n

n

f x

f y
 , as n  

which leads to the conclusion. 

a) We apply B) for 1
log

( )
x

f x  .  
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Problem 7. Let 1( )f C  is a positive valued function. Prove that 

2 2 2
3 2 2

0 20 0 0

| ( ( )) ( (0)) ( ) | max | '( ) | ( ( ) )
x

f x dx f f x dx f x f t dt
 

    . 

Solution. Let 
0 2
max | '( ) |

t
M f t

 
 . We have  

( ) '( ) ( ) ( ), [0,2]Mf t f t f t Mf t t     . 

Integrating on [0, ]x :  

0 0 0

2 21
2

0 0

( ) ( ) '( ) ( )

( ) (( ( )) ( (0)) ) ( ) .

x x x

x x

M f t dt f t f t dt M f t dt

M f t dt f x f M f t dt

  

   

  

 

 

Multiply the last inequalities by ( )f x :  

3 21
2

0 0

3 21
2

0 0 0 0

2 3 2 21
2 2 2

0 0

( ) ( ) (( ( )) ( (0)) ( )) ( ) ( )

( ( ) ) ' ( ) (( ( )) ( (0)) ( )) ( ( ) ) ' ( )

(( ( ) ) ) ' (( ( )) ( (0)) ( )) (( ( ) ) ) '.

x x

x x x x

x x
M M

Mf x f t dt f x f f x Mf x f t dt

M f t dt f t dt f x f f x M f t dt f t dt

f t dt f x f f x f t dt

   

     

   

 

   

 

 

Intergrating on [0,2]:  

2 2 2 2
2 3 2 21 1

2 2 2 2
0 0 0 0 0 0

2 2 2 2
2 3 2 21 1

2 2 2 2
0 0 0 0

2 2 2
3 2

0 20 0 0

(( ( ) ) ) ' ( ( )) ( (0)) ( ) (( ( ) ) ) '

( ( ) ) ( ( )) ( (0)) ( ) ( ( ) )

| ( ( )) ( (0)) ( ) | max | '( ) | ( ( )

x x
M M

M M

x

f t dt dx f x dx f f x dx f t dt dt

f t dt f x dx f f x dx f t dt

f x dx f f x dx f x f t dt
 

   

   

 

     

   

 
2) .
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Problem 8. Let :f   be a continuous function. Prove that 

4 3
2 2

0 1

( ( 3) ) 2 ( ( 3) )f x x dx f x x dx    . 

Solution. Let :[0,4]g   defined by 2( ) ( )3g x xx   . Then '( 3) ( )( )1 3g x x x    and the 

behaviour of function g is given in the following table:  

 

x  0  1  3  4 

'( )g x  + + 0    0 + + 

( )g x  0   4   0   4 

 

Let 1 2 3, ,g g g  be the restrictions of g  over 0,1),( (1,3)  and (3,4) , respectively, and let 1 2 3, ,h h h  be 

their inverses: 

1 2 3: (0,4) (0,1), : (0,4) (1,3), : (0,4) (3,4)h h h    

where, for every (0,4)t , 

1 1( )x h t  is the solution of 
23( )x tx    in (0,1) ,  

2 2( )x h t  is the solution of 
23( )x tx    in (1,3) ,  

3 3( )x h t  is the solution of 
23( )x tx    in (3,4) . 

Using the changes of variable ( ) ( 1,2,3)ix h t i  , we have that 

4 3 1 3 4
2 2

0 1 0 1 3

4 0 4
' ' '
1 2 3

0 4 0

4
' ' '
1 2 3

0

( ( 3) ) 2 ( ( 3) ) ( ( )) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ( ) ( ) ( )) .

f x x dx f x x dx f g x dx f g x dx f g x dx

f t h t dt f t h t dt f t h t dt

f t h t h t h t dt

     

     

   

    

  



 

Since the sum of the roots of the polynomial equation 
23( )x tx    is 6, it follows that 

1 2 3( ) ( ) ( ) 6h t h t h t    for every (0,4)t , 

hence 

' ' '
1 2 3( ) ( ) ( ) 0h t h t h t    for every (0,4)t , 

which concludes the proof.  

 

Remark. Since '(1) '(3) 0g g  , it follows that 
' ' '
1 2 2(4), (0), (4)h h h  and 

'
3(0)h  are infinite, 

hence the integrals 
4 4

' '
1 2

0 0

( ) | ( ) | , ( ) | ( ) |f t h t dt f t h t dt    and 
4

'
3

0

( ) | ( ) |f t h t dt  are improper, yet 

convergent, because they where obtained from proper integrals by a change of variable. 
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Problem 9. Let :[0, )f    be the function denned by 3( ) log (3 )xf x x  , [0, )x   .  

a) Considering the sequence { }n nx  , where 1
0 2

x   and 1 ( )n nx f x   for all n , 

evaluate 
0

n
n

x




 .  

b) Calculate  

2016
2017 1 1

0 1

lim ( [( ( ))ln3 3 ] )k kx

x k

x x f x k x  

 

   . 

Solution. a) It is useful to be observed that 3 1xx e x   , [0, )x   . Thus it is guaranteed 

that ( ) 0f x  , [0, )x   . Consequently, 0nx   for all n . At the same time, seeing that 

13 3 0nn x
n

x
x   , n  , one can deduce that 1n nx x  , n  . These mean that the sequence 

{ }n nx   is decreasing and bounded below. So it is convergent. By taking lim n
n

l x


  and relying on 

the equality 13 3 nnx x
nx  , it appears that 3 03 lll   . Therefore, the necessary criterion for 

convergence of the series 
0

n
n

x




  is accomplished. More than that, inasmuch as  

1 0 1

0 0

(3 3 3 3)kk n
n

xx
k

x

k

x
n

k

x  

 

     and 0 1lim ( ) 33 3 1nxx

n




    

we may conclude that 
0

n
n

x




  is a convergent series and its sum is 3 1 .  

b) Taking into account that 1
3 3 ln33 3

( ) log (3 ) log (1 ) ln(1 )
x x

x x xf x x x x        , 

[0, )x    and 
1

ln(1 ) , ( 1,1)
kt
k

k

t t




      , it is obvious that 
31

( ( )) ln3
k

kx
x

kk

x f x




   , because 

3
1

x
x  , [0, )x   . Then it follows that  

2016
1

31 2017

( ( ))ln3 3
k

kx

k kx x

kk k

x f x k x


 

 

    , [0, )x    

and so  

2017

32017

2016
2017 1 1 1

1

[( ( )) ln3 3 ]
kx

kxkk

k kx

k

x x f x k x
 



  



  


 , [0, )x   . 

Accordingly, we obtain: 

2016
2017 1 1

0 1

lim ( [( ( ))ln3 3 ] ) 2017k kx

x k

x x f x k x  

 

   . 
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Problem 10. Given is the function 
2( \{0})f C  for which 

0
lim ( )
x

f x


 , 
0

lim ( )
x

f x


    

and  

2

( )

( )0
lim 0

f x

f xx




 .                                                       (*)  

We define the function  

sin ( ), 0
( )

0, 0.

f x x
g x

x


 


. 

a) Prove that ( )g x  has a primitive on , (i.e. ( ) :G x   so that ( ) ( )G x g x  ). Is this 

true if the condition (*) is not satisfied?  

b) Let ( )G x  be a primitive of ( )g x . Prove that exists a function ( )x , satisfying the condition 

( ) (0) ( ( ))G x G xg x   where ( )x  is between 0  and x , and this function has points of discontinuity 

randomly near zero.  

Solution. a) Let us define 

0

( ) ( )d
x

G x g t t   for 0x  and (0) 0G  . If 0x   by the Newton-

Leibniz Theorem we have ( ) ( )G x g x  . It remains to prove that there exists (0)G  and (0) 0G  . By 

definition  

( ) 1

0 0 0

(0) lim lim ( )d
x

G x

x xx x
G g t t

 
   

. 

We consecutively obtain (for example for 0x  )  

sin ( )

( )00

( )d lim d ( )
x x

f t

f t
g t t f t

 


 
 

. 

After integration by parts we have 

2 2

cos ( ) ( )cos ( ) cos ( ) ( )cos ( )

( ) ( )( ) ( )00 0

( )d lim ( d ) d
x x xx

f t f t f t f x f t f t

f t f xf t f t
g t t t t

  

 

   
       

. 

Now,  

2

cos ( ) ( )cos ( )1
( ) ( )0 0

(0) lim ( d ) 0
x

f x f t f t

xf x x f tx
G t



 
      

by the L’Hospital rule and the condition (*). 

Note that the statement is not true if the condition (*) is not satisfied, for example 

( ) lnf x x . 

b) Such a function ( )x  exists (for example for 0x  ) by Lagrange Theorem. Let us assume 

that there exists 0   such that ( )x  is continuous in (0, ) . Then the function ( ( ))f x  transforms 

the interval (0, )  onto infinite interval and 
0

lim sin ( ( ))
x

f x


 does not exist contrary to the fact  

( ) (0)

0 0
lim ( ( )) lim (0) 0

G x G

xx x
g x G



 
  

. 
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Problem 11. Assume that g  is a continuous function from \{0,1}  to , such that 

1( ) (1 )
x

g x g   denoted by ( )h x , is admitted to be known for every \{0,1}x . 

1) Find 
1

0

( )g x dx , when 2( ) ln | |h x x . 

2) If h  is so that 
2

1 1
1 1

1 3
0 0

( ( ) ( )) (1 ) 4
x x

h x h dx h dx


      , prove the existence of a number 

(0,1)r  such that ( ) ln ln(1 )g r r r  .  

Solution. First of all, it is important to realize that the following relation is in effect: 

1 1
1

2 ( ) ( ) ( ) (1 ), \{0,1}
x x

g x h x h h x


      .   (1) 

Based on this, noting that, at 1),  

1 1
1

( ) ( ) (1 ) 2ln | | ln | 1|, \{0,1}
x x

h x h h x x x


       , 

one may be found that ( ) ln ln(1 )g x x x   for all x  in (0,1) . Therefore, in this case, we have: 

1 1

0 0

( ) ln ln(1 )g x dx x x dx   .     (2) 

Inasmuch as the improper integral 
1

0

ln ln(1 )x x dx  is convergent, and its value can be 

calculated on the path of the following sequence of equalities 

2

2 2

1 1
1 1 1 1

( 1) 6( 1) ( 1)1 1 1 10 0

ln ln(1 ) ln 1 ( 1)k
k k kk k kk k k k

x x dx x xdx 
   

    

             ,  (3) 

we obtain: 

2
1

6
0

( ) 2g x dx   .      (4) 

In the situation of 2), taking into account the assumption in effect and once again the relation 

(1) we deduce that, in fact, the equality (4) occurs. Having in mind (3), this means (2) , that is: 

1

0

( ( ) ln ln(1 )) 0g x x x dx   . 

From here, applying the mean value theorem for integrals, the desired conclusion is finally achieved. 
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Problem 12. Find all functions 2
3

:[0, ] (0, )f    of class 1C  satisfying the following 

conditions:  
2 2
3 3

2 1
( )

0 0

2
3

[ ( )] 4, and

( ) 1 (0).

f x
f x dx dx

f f

  

 

 
 

Solution. We have  
2 2 2 2
3 3 3 3

2
3

0

'( )2 21 1
( )( ) ( )

0 0 0 0

2
3

0 [ '( ) ] [ ( )] 2

4 4 ( ) 4 4( ( ) (0)) 0.

f x

f xf x f x
f x dx f x dx dx dx

f x f f

    

     

   
 

Thus,  
2
3

21

( )
0

[ '( ) ] 0,
f x

f x dx   

and since f  is 
1,C  it follows that  

1 2
3( )

( ) , [0, ].
f x

f x x     

 

We obtain  
3
2 3 23 3 93

2 2 4
[ ( )]' ( ) ( ) ( ) ( ) .f x f x x C f x x C        

The condition 2
3

( ) 1 (0)f f   leads us to 0C   and 2
3

.C    Consequently, we obtain two 

functions satisfying the hypotesis:  

2 29 93 3
4 4

( ) and ( ) 3 1.f x x f x x x     
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Problem 13. Let 1p   be a real number, and let [0,1]C  denote the set of all continuous 

functions : 0,[ 1]f  . Find 
[0,1]

max ( )
f C

I f


 where  

1 1

0 0

( ) | ( ) | | ( ) |p pI f x f x dx x f x dx   . 

Solution. Answer: 
1

1 11
2[0,1]

max ( ) ( )

p

p p

pf C
I f p p 


  .  

Let 
1

p

p
q


  be the conjugate of p  (i.e. 1 1 1

p q
  ). By virtue of the Hölder inequality we 

have 

1 1 1 1 11 1 1 1( )

0 0 0 0

| ( ) | | ( ) | ( ) ( | ( ) | ) .p p p q p
p q pp px f x dx x x f x dx x dx x f x dx
 

       

Since  

11 1( ) 1 1
2

0 0

p
q p p

p
x dx x dx

 


    

it follows that  

1

1

1 1
1

0 0( 2)

| ( ) | ( | ( ) | ) .p
p

p

p p

p

x f x dx x f x dx




   

Letting 
1

1

( 2)

p

p

p

p






  and 
1

0

| ( ) |pA x f x dx   we deduce that 

1

( ) p
pI f A A  . 

An elementary computation shows that the function :[0, )g    defined by 

1

( ) p
pg y y y  , has a unique critical point, namely 1

0 ( )

p
p p

p
y


 . In addition, g is increasing on 

0[0, ]y  and decreasing on 0[ , )y  . Consequently, we have 

1
1 1

0( ) ( ) ( ) ( ) ( ) ,

p
p pp p

p p p
I f g A g y

 
       

whence 

1
1 1 1

1
1 1

1 1 1
2

( ) ( ) ( )

p p

p p p
p

p p

p p
p p

I f p p   

 


    . 

Equality holds, for instance, in the case of the function 
1

1( ) pf x p x  for all [0,1]x . 

Remark. This problem is a generalization of problem B5 in the 2006 William Lowell Putnam 

mathematical competition.  
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Problem 14. Consider the series 
1

1

( 1)n

n n






  and the sequence 

1
1 ,nx

n
   1.n   Define the 

function 

1( 1)
, [0,1)

:[0,1] , ( )

0, 1.

n

n

x x

x
nf f x

x





 


  





 

a) Study the continuity of .f   

b) Prove that f  is Riemann integrable on  0,1  and compute 
1

0

( ) .f x dx   

Solution. a) Denote by 
1( 1)

, 1.
n

na n
n


   It is clear that the series 

1

1

( 1)n

n n






  is 

convergent, the sum of the series is ln 2,S   and that the sequence nx  is increasing to 1  and all its 

terms lie in [0,1].  Given [0,1),x  because 1,nx   there is some xn   such that nx x  for all 

.xn n  Taking xn  the smallest one with this property, and taking into account that ( )nx  is increasing, 

then  

1( ) ,
x

x

n n
n n

f x a S S





    

which is finite. Here, nS  denotes the partial sum sequence associated with the given series. In this 

way, one can write 

1
1 2

1 2
2 2 3

1
1

, 0

, (0, ]

, ( , ]
( )

, ( , ]n n
n n n

S x

S S x

S S x
f x

S S x 





 


 
 



 



 

It follows that f  is continuous at every 1
1

( , )n n
n n

x 


  for every 1.n   Furthermore,  

1

( 0) ,  and

( 0) ( ) .

n n

n n n

f x S S

f x f x S S 

  

   
 

Thus, f  is continuous at every [0,1] \{ | 1},nx x n   is continuous from the left at every ,nx  and is 

not continuous from the right at any , 1.nx n    

b) Observe that f  is bounded, since ( )nS  is convergent (hence bounded). Then, f  is 

Riemann integrable over [0,1],  since is bounded and its discontinuity set is at most countable, and  

11
1 1 1

1 1
1 1 10

( ) ( ) ( )( ) ( )( ).
n

n

x
n n

n nn n n n
n n nx

f x dx f x dx S S S S
  


 

  

           

Denote by nT  the partial sum of the series 1 1
1

1

( )( )n n n
n

S S





  . Then  
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1 2

1 1 1 1 1 1
1 21 2 2 3 1

1 1 1 1 1 1 1
1 21 1 2 2 3 1

1 1 1 1 1
1 2 1 3 2 11 1 2 3 1

1
1 1 2 1

( )( ) ( )( ) ... ( )( )

(1 ) ( ) ( ) ... ( )

(1 ) ( ) ( ) ... ( )

(1 ) ( ... ) .

n

n n

n n n n

nn n n

S
n nn n n

a Sa a

n n n

T S S S S S S

S S S S

S S S S S S S S

S



 

 

 

         

         
 

           
 

      

 

Consider now the series 
1

2

( 1)

1 1

.
n

na

n nn n

 


 

   This is absolutely convergent so its associated partial 

sums sequence is also convergent. Moreover, because ( )nS  is bounded, it follows that 
1

0nS

n
  as 

.n  Thus, ( )nT  is convergent and  

1

2

1
( 1)

10

( ) .
n

nn

f x dx S






    

Because ln 2S   and 
1 2

2

( 1)

12
1

,
n

nn








  it follows that  

2
1

12
0

( ) ln 2 .f x dx    
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Problem 15. a) Let 0n   be an integer. Calculate 
1

0

(1 )n tt e dt .  

b) Let 0k   be a fixed integer and let ( )n n kx   be the sequence defined by 

1 1 1
1! 2! !

( )( 1 ... )
n

i
n k i

i k

x e


      . 

Prove that the sequence converges and find its limit. 

Solution. a) Let 
1

0

(1 )n t
nI t e dt  , 0n  . We integrate by parts and we get that 

11n nI nI    , 1n   which implies that 11
! ( 1)!!

n nI I

nn n



   . It follows that 

1 1 1 1 1 1
! 1! 2! ! 1! 2 !0 !

... 1 ...n

n n

I

n
I e          . 

Thus,  

1 1 1
1! 2! !

1 ...!( ), 0
nn e nI n       . 

b) We have 

1 1 1 1
1 1! 2! ( 1)!

( )( 1 ... ) 0n
n n k n

x x e
 
         

hence the sequence is strictly increasing. 

On the other hand, we have based on Taylor's formula, that 

1 1 1
1! 2! ! ( 1)!

1 ... e
n n

e



       

for some (0,1)  . It follows that 

1 1 1
1! 2! ! ( 1)!

0 1 ... e
n n

e


       . 

Therefore 

2
1 1 1 1

( 1)! ! ( )! ! 0! 1! ( )! !
( ) ( ... )

n n
i e e e e

n k i k i k k n k k
i k i k

x
  

 

         

which implies the sequence is bounded. Since the sequence is bounded and increasing it converges. 

To find lim
n

nx


 we apply part a) of the problem and we have, since 

1
1 1 1 1
1! 2! ! !

0

1 ... (1 )i t
i i

e t e dt        

that 
1 1

(1 )1 1
! ! ( )!
0 0

( ) (1 ) (1 ) ( )
i kn n

ti i t k t
n k i k i k

i k i k

x t e dt t e dt



 

      . 

Since 
(1 ) 1
( )!

lim
i kn

t t
i kn i k

e
 

 

  and 
(1 ) 1
( )!

i kn
t t

i k
i k

e
 




 , we get based on Lebesgue Dominated 

Convergence Theorem 

1
11

! ( 1)!
0

lim (1 )k t t e
k kn

n
t e e dx t


   . 

Remark. Part b) of the problem has an equivalent formulation 

1 1 1
1! 2! ! ( 1)!

( )( 1 ... )i e
k i k

i k

e





      . 
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Problem 16. Let C  be the set of all real numbers x  for which the series 

2

1

sin (2 ! )
n

n x



      (1) 

converges. Prove that: 

a) C , but C  . 

b) There exists a dense subset A  of  such that \A C . 

Solution. a) If 
p

q
x   is an arbitrary rational number, with ,p q , 0q  , then for every 

| |n q  we have 
2sin (2 ! ) 0n x  , hence the series (1) converges. Therefore, we have C . In 

order to prove that C  , we show that e C . It is well-known that for each 1n   there exists some 

(0,1)n   such that 1 1
1! ! !

1 ... n

n n n
e




     , whence 

1 1
2

221 1 1
1! ! ( 1)! ( 1) ( 1)! 1 ( 1)

2 ! 2 !(1 ... ) 2 ,n n
nn n n n n n

n e n k
    

     
          

where 1 1
1! !

!(1 ... )n n
k n     is a positive integer and 1 (0,1)n   . Taking into account that 

2 2sin  ( )x O x  as 0x , it follows that  

1 1
2 2 2

2 22 2 22 2 1
1 1( 1) ( 1)

sin (2 ! ) sin ( ) (( ) ) ( )n n

n nn n n
n e O O

    

  
     , as n . 

Consequently, the series 
2

1

sin (2 ! )
n

n e



  has the same nature as the series 

2
1

1 nn





  which is 

convergent. This shows that e C , as claimed. 

b) We prove first that 
3
e C . Indeed, for each positive integer 3n   there exists some 

(0,1)n   such that  

2! 21 1 1 1 1
3 3 1! ( 3)! ( 2)! ( 1)! ! ! 3 3

2 ! 2 (1 ... ) 2 ( ( 1) 1) ,n ne n
nn n n n n n n

n m n n n
   

   
               

where 

( 1)( 2)! 1 1 1 1
3 1! ( 3)! 3 1! ( 3)!

(1 ... ) ( 3)!(1 ... )
n n nn

n n n
m n

 

 
          

is a positive integer. Therefore, we have 

22 2 22
3 3 3

sin (2 ! ) sin ( ( 1) )ne
n

n n
    . 

If 0(mod3)n  , then 
2 1 1(mod3)n   , whence 

22 2 2 22 2 3
3 3 3 3 4

0(mod3) 0(mod3)

lim sin (2 ! ) lim sin ( ( 1) ) sinne
nn n

n n

n n
 

 
 

     . 

Consequently, the series 
2

3
1

sin (2 ! )e

n

n



  diverges, showing that 

3
e C , as claimed. 

Now set 
3 3

{ } { | }e eA x x     . If 
p

q
x   is an arbitrary rational number, with ,p q , 

0q  , then for every | |n q  we have 2 2
3 3

sin (2 !( )) sin (2 ! )e en x n   , whence 
3
e x C  . It follows 

that \A C  and A  is obviously a dense subset of .  
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Problem 17. Consider the function :[0, )f    given by ( ) .xf x xe   

1) Prove that, for every (0,1),   there exists  0,1   such that, for every (1 ,1 ),x      

one has: 
2 2( 1) ( 1)

2 2
1 (1 ) 1 (1 )

( ) .
x x

e f x e
 

 
     

   

2) Prove that: 

1

0

1 1
lim ( ) .

! 2

n
n

n
f t t dt

n




    

3) Compute the limit: 

!
0

lim ( ).
kn

n n
kn k

e

 

   

Solution. 1) Observe that f  achives a strict maximum at 1  and that (0) 0f   and 

lim ( ) 0.
x

f x


  Consider : (0, )g    given as ( ) ln( ( )).g x f x  Remark that (1) 1,g    (1) 0g   

and (1) 1.g    Then, by the Taylor formula, there exists a function   such that 
1

lim ( ) 0
x

x


  such 

that 

2( 1)
( ) 1 (1 ( )).

2

x
g x x


     

Using 
1

lim ( ) 0
x

x


  it follows that for every (0,1),   there exists  0,1   such that, for every 

(1 ,1 ),x      one has ( ) .x   The conclusion follows. 

2) Denote by  

1

0

1
lim ( ) .

!

n
n

n
f t t dt

n




    

By the change of the variable ,nt x  one has 

1 1

0

lim ( ) .
!

n
x n

n

n
xe dx

n





    

Denote 

1 1

0 0

( ( )) ( ) .n x n
nI f x dx xe dx    

Observe that, in view of 1), that for every (0,1),   there exists (0,1)   such that 

2( 1)

2

1 1
(1 )

1 1

( ) ,
x

n nx n
nI xe dx e dx



 


  

 

    

hence, using also the Stirling formula, there exists 1n   such that 

2( 1)

2

1 1 1 1
(1 )

1

1
.

! 2 ( ) 2 ( )

xn n n
n

n nn n nn n
n ne e

n n n
I I e dx

n n n e



   

  
 



      

 

Now, observe that, by the change of variable (1 ) ( 1) ,n x y     the integral 
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2( 1)

2

1
(1 )

1

x
n

e dx





 


  becomes 

2

2

(1 )
1

(1 )
0

.
yn

n
e dy

 







   

It follows that 

2

2

(1 )1

0

1
.

! 2 (1 )

ynn

n
n

n
I e dy

n

 

  







  

Passing to the limit for n  and using the fact that 

2

2 2
2

0

,
y

e dy 



  we obtain that 

1
.

2 (1 )



  

For the upper bound for ,nI  observe that 

 

1 1
1

1
0,11 0

( ) ( ) ( max ( )) .x n x n n
n

x
I xe dx xe dx f x I






  

 

      

Since 
 

1

0,1
: max ( ) (1) ,

ex
m f x f

 
    it follows that 

1
1

1 1
1

1

( ) ( ) ,
n

Ix n n n
n me

I xe dx m I m e


 


 



       

hence for every (0,1),   there exists (0,1),   : (0,1)A m e   and 1: 0,
I

m
k


   such that 

1

1

( ) ( ) .x n nA
n e

I xe dx k







    

Then, reasoning as above, it follows that 
2( 1)

2

2

2

1 1 1 1
(1 )1

1

(1 )
1

2 (1 ) 2
0

[ ( ) ]
! 2 ( ) 2 ( )

.

x

n

y

n n

n n n
n nA

n n en nn n e
n ne e

n
nk

n n n
I I e dx k

n n n

e dy n A





 

    

   

  
 








    

   





 

Passing to the limit for ,n  it follows that 
1

.
2 (1 )




  

In conclusion, 

1 1
,

2 (1 ) 2 (1 ) 
 

 
 

for every (0,1),   hence 1
2

.   

3) Observe, integrating by parts, that 

1 2

0

! ( ( 1) ... !).
n

t n n n n ne t dt n e n n n n n n n             

Using 2), it follows that 

1 1
2 ! !

00

lim 1 lim ( ).
k

n n
t n n n

n kn n k

e t dt e 

  

      

Hence, the desired limit equals 1
2

.  ?   
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DISCRETE MATHEMATICS  
 

Problem 1. Let 1n    be an integer which not divisible by 2017. Consider two sequences 

, ( 1,2,3, ,2016)
2017

i
ni

a i i     

2017
, ( 1,2,3, ,  1)j

j
b j j n

n
     . 

Writing all members of these two sequences in the increasing order, we get the sequence 

1 2 3 2015nc c c c    .  

Prove that  

1 2, for all  1,2,3, ,  2014k kc c k n      . 

Solution. Replace 2017 by the number m which not divide n. Let  

, ( 0,1  ,2, , )i
ni

a i i m
m

     

, ( 0,1,2, ,  )j
mj

b j j n
n

    . 

We show that these sequences have the same property. We have  

0 1 2 10 m ma a a a a m n       ,  

0 1 2 10 n nb b b b b m n       .  

We may assume that n m . Then  

1 1 2i i
n

a a
m

     . 

For each 1, ,   2k m n     there is unique j  such that  

1, (0 1).j k ja c a j n      

Then 1 1k jc a   and  

1 1 2k k j jc c a a     . 
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Problem 2. Let 0( )n nT   be the sequence of polynomials defined by 

0 0

1 1

1 1

: , ( ) 1, ( )

: , ( ) , ( )

: , ( ) 2 ( ) ( ), ( , 1)n n n n

T T x x

T T x x x

T T x xT x T x x n 

  

  

    

 

and 0( )n nF   the sequence of numbers defined by 

0 1

1 1

1,0, 

  ( 1, ).n n n

F F

F F F n   


 

Prove that: 

a) 
2

1 1 1)( n
n n nF F F    , for every 1n  ,  

b) 5 23
2 2

( ) 1 ( 1)n
nn FT      for every n . 

Solution. a) Proof by induction, or by other methods - this is a well-known identity of the 

Fibonacci sequence (any method is accepted). 

b) We give a proof by induction. It is easy to check that the conclusion takes place for 0,1n 

. We assume the relation to be true for 0,1,... (, 1) n k k   and prove it for 1k  . Since 

13 5
1 2 2

3 5

2
1

2
2 2

( ) 1 ( 1)

( ) 1 ( 1) ,

k
k

k
k

k

k FT

T F


    

   
 

by using the recurrence that defines nT , we have that 

3 3 3 5
1 12 2 2 2

1 2 2
1( ) 3 ( ) ( ) 4 ( 1) [3 ]k

k kk k kT T T F F


             

so we need to prove the identity: 

1 25 51 2 2
1 12 2

1 ( 1) 4 ( 1) ][3k k
k k kF F F 
         

which is equivalent to 

2 2 2
1 13 2( 1)k

k k kF F F    . 

We have  

2 2 2 2 2 2
1 1 1 1

2 2
1 1

2
1 1

2
1 1

( )

2( )

2[ ( ) ]

2( ) )

2( )

3 3

1

k k k k k k k

k k k k

k k k k

k k k

k

F F F F F F F

F F F F

F F F F

F F F

   

 

 

 

    

  

  

 

 

 

by a), which concludes the proof.  

Remark: nT  are the Chebyshev polynomials, defined for [ 1,1]x   by  

(( ) cos arccos )nT x n x . 
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Problem 3. Given a positive integer n , let nT  denote the set of all permutations of 1,2,.{ .., }n  

without fixed points. Find ( )

nT

 


  where ( )   denotes the sign of the permutation  . 

Solution. We have  

0 1 1 ... 1 1 1

1 0 1 ... 1 1 1

1 1 0 ... 1 1 1

( ) ... ... ... ... ... ... ...

1 1 1 ... 0 1 1

1 1 1 ... 1 0 1

1 1 1 ... 1 1 0

nT

 


 . 

By adding all the lines 2,3,...,n  to the first line we get 

1 1 1 ... 1 1 1

1 0 1 ... 1 1 1

1 1 0 ... 1 1 1

( ) ( 1) ... ... ... ... ... ... ...

1 1 1 ... 0 1 1

1 1 1 ... 1 0 1

1 1 1 ... 1 1 0

nT

n


 


  . 

By subtracting the first line from each of the lines 2,3,...,n  we obtain  

1 1 1 ... 1 0 0

0 1 0 ... 0 0 0

0 0 1 ... 0 0 0

( ) ( 1) ... ... ... ... ... ... ...

0 0 0 ... 1 0 0

0 0 0 ... 0 1 0

0 0 0 ... 0 0 1

nT

n


 






 







  

Whence  

1( ) ( 1) ( 1)

n

n

T

n


  



   . 
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Problem 4. A group of students is arranged on a circle around their professor. The professor 

gave each student a positive number of coins. The game begins when student gives the “extra-half” of 

his coins (it means that if the number of his coins is even, hi gives the half of his number and if not, he 

takes one more coin from the professor and gives the half) to the friend standing on his right side. 

Then this one, after receiving the coins from the former, gives the “extra-half” of all his coins to the 

friend standing on his right side, and so on.  Prove that we shall arrive at situation where if a student, 

at his turn, gives the “extra-half” of his coins not his friend, but to the professor, then each student 

will have the same number of coins. 

Solution I. Consider two students A and B standing next to the each other, in the order of 

passing coins. At the moment n when A is giving nx  coins to B, suppose A has    coins and B has nb  

coins ( nx  coins not belong to both A and B at this moment). Let ,n nM P  be the maximum and the 

minimum number of coins of all students at the moment n (not including nx ). 

At the moment 1n   when B is giving 1nx   coins to the next student, the number of coins that B has 

is  

1 1

,    f    s even 
2

1
,  if    is odd

2

n n
n n

n n
n n

n n

b x
i b x

b x
b x

b x

 




  
  



 

At this time, the student next to B has not received any coin, and the number of coins of each student 

except B is unchanged in comparison with the moment n. 

Consider following cases: 

1) If n n na x b  , then 1n n nb b a   , thus 1n nM M   and 1 .n nP P   

2) If n n na x b   

a) Consider 1 :nM    

1
1 1 1

2 2 2

n n n n
n n

b x M M
b M

   
      

Since nM  and 1nb   are integers, we have 1n nb M  , therefore 1n nM M    

From 1) and a), we conclude that { }nM  is increasing integer sequence. 

b) Consider 1 :nP   if n nx b  then 1 1 1n n n nb x a P      . If n nx b  then 

1 1n n nx b P    . In both cases, we always have 

1
1 1

2 2 2

n n n n
n n

b x P P
b P

  
      

Since both nP  and 1nb   are integers, 1 1n nb P   . Therefore, either 1n nP P   if at the 

moment n, there is exactly one n nb P , or 1n nP P   if there is least one student different 

from B having nP  coins.  

Generally { }nP  is non-decreasing integer sequence. Moreover, when n n nb P a   then at the moment 

1n  , we will have 1 1n nb P   , hence { }nP  strictly increasing sometimes. 

As { }nM  is non-increasing integer sequence and { }nP  is non-decreasing integer sequence and strictly 

increases sometimes, there must exist a moment k such that k kM P . At that moment, all students 

have (including coins in giving process) equal number of coins.  
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Solution II. Let us consider two students A and B next to each other. When the student A 

possess 2xi coins and he should give xi coins to the student B, we correspond the following sequence 

of coins 

  1 2 1 2, ,  , , , , ,  ,i i i i nx x x x x x x      (n is the number of students). 

The the next sequence will be  

  1 1
1 222 2

,, ,  , , , ,  ,i i i ix x x x
i i nx x x x x 


 

      (if 1i ix x   is even number) 

or  

    1 1
1 2

1

2 2
1

2
,, ,  , , , ,  ,i i i i

i i n
x x x x

x x x x x 


   
    (if 1i ix x   is odd number). 

We should prove that after finite number of steps all terms of the sequence will be mutually equal.  

Let M be a sufficiently large number, such that each student has less than M coins at the initial 

moment. Then for each sequence of 1n   terms 1 1, , ny y   we map into the following positive 

integer 
2 2

1 1   ) ( ) ( nS M y M y       . Hence the obtained sequence of numbers 1 2,  ,...S S   is 

non-increasing. Indeed,  
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and also 
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Hence, 1k kS S    for each k. Since 1 2,  ,...S S  is a non-increasing sequence of positive 

integer numbers, there exists  a positive integer m, such that 1 2m m mS S S    and it is easy to 

see that this is satisfied only for constant sequence 1 1, , ny y   , i.e. only for  1 1  ny y    .  
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Problem 5. Let 0( )n nx   be the sequence defined by  

0 1 20, 1, 1x x x    and 3 2 1 , 0n n n nx x x x n n        . 

Prove the series 
21

n
n

x

n





  converges and find its sum. 

Solution. Let 
2
n

n ny x  . It follows that the sequence 0( )n ny   verifies the recurrence 

formula 3 2 1 , 0n n n ny y y y n       . The characteristic equation of this recurrence relation is 

3 2 1 0t t t    . We have, based on the study of the graph of the function 

3 2: , ( ) 1f tt tf t      that the equation ( ) 0f t   has a real root 1 (1,2)t   and two complex 

conjugate roots,  

2 (cos sin )t i     and 3 (cos sin )t i    . 

We have, based on Viete’s formula, that 1 2 3 1t t t   which implies 
2

1 1t   . Thus, 
1

1 1
t

   . It 

follows that  

1cos sinn n n
ny A n B n Ct      , 

for some constants , ,A B C . This implies that  

12 2
cos sinn n nn n

n nx y A n B n Ct        . 

Since 1 (1,2)t   and 
1

1 (0,1)
t

    we have that 
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and this implies the series 
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  converges. 

Let 
21
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  . We prove that 6S  . We have 
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since 3 1
424

n
n

n






  (This follows from the geometric series). This implies that 6S   and the problem 

is solved.  

 


