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1  Introduction 
 

The Pell’s equation is one of the most interesting equations in the class of Diophantine 

equations and for the most part all the important results regarding its set of solutions are known. Let 

us remind ourselves of some of them. 
 

Definition 1. Diophantine equation of the form 

 

 𝑥2 − 𝐷𝑦2 = 1, (1) 
 

where 𝐷 is a given positive nonsquare integer, is called Pell’s equation.  
 

If 𝐷 < 0, then it is obvious that the equation has a finite number in nonnegative integers. When 𝐷 

is a perfect square (i.e., 𝐷 = 𝑎2), then Pell’s equation has the form (𝑥 − 𝑎𝑦)(𝑥 + 𝑎𝑦) = 1 and 

has only the following solutions (𝑥, 𝑦) = (±1,0). These solutions are known as trivial solutions. 

On the other hand, if (𝑥0, 𝑦0) is a solution of Pell’s equation, then its solutions are (−𝑥0, 𝑦0), 

(𝑥0, −𝑦0) and (−𝑥0, −𝑦0), too. Therefore, in the future, we will find solutions of the Pell’s 

equation only in positive integers. The fundamental solution of Pell’s equation is the least solution 

of Pell’s equation in positive integers. If 𝐷 is not perfect square, then we have the next result 

(Andreescu, 2010). 
 

Theorem 2. Let (𝑥1, 𝑦1) be a fundamental solution of Pell’s equation (1). Then all solutions in 

positive integers of equation (1) are of the form 

 𝑥𝑛 + 𝑦𝑛 𝐷 =  𝑥1 + 𝑦1 𝐷 
𝑛

, 𝑛 = 1,2, . . .. (2) 
 

Especially 
 

  
𝑥𝑛 =  

 
𝑛

2
 

𝑘=0  𝑛
2𝑘

 𝑥1
𝑛−2𝑘𝑦1

2𝑘𝐷𝑘 ,

𝑦𝑛 =  
 
𝑛

2
 

𝑘=0  𝑛
2𝑘+1

 𝑥1
𝑛−2𝑘−1𝑦1

2𝑘+1𝐷𝑘 .

  (3) 
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Remark 3. As we have seen, if (𝑥𝑛 , 𝑦𝑛) is a solution of equation (1), then (𝑥𝑛 , −𝑦𝑛) is also a 

solution of that equation. So,  
 

𝑥𝑛 − 𝑦𝑛 𝐷 =  𝑥1 − 𝑦1 𝐷 
𝑛

, 𝑛 = 1,2, . ..  . (4) 
 

From (2) and (4) we obtain: 
 

 
𝑥𝑛 =

1

2
  𝑥1 + 𝑦1 𝐷 

𝑛
+  𝑥1 − 𝑦1 𝐷 

𝑛
 

𝑦𝑛 =
1

2 𝐷
  𝑥1 + 𝑦1 𝐷 

𝑛
−  𝑥1 − 𝑦1 𝐷 

𝑛
 
 , (5) 

 

which are also the exact formulas for all solutions of equation (1), similar to the formulas (3).  
 

It is well known that recursive relations exist for solutions of equation (1). Namely, the 

following result holds (Andreescu, 2010). 
 

Theorem 4. If 𝐷 is positive integer that is not perfect square, then equation (1) has infinitely many 

solutions in positive integers, and general solution (𝑥𝑛 , 𝑦𝑛), 𝑛 ≥ 0 is given by 
 

  𝑥𝑛+1 = 𝑥1𝑥𝑛 + 𝐷𝑦1𝑦𝑛

𝑦𝑛+1 = 𝑥1𝑦𝑛 + 𝑦1𝑥𝑛
 , (6) 

 

where(𝑥0, 𝑦0) = (1,0) and (𝑥1, 𝑦1) is fundamental solution of (1).  
 

In this paper, our goal is to show how from recursive formulas (6) we can yield explicit 

formulas (5) with one different approach. We will do this by method of difference equations 

(Elaydi, 2005), (Kelley & Peterson, 2001), (Mickens, 1990), (Kulenović & Merino, 2002), 

(Nurkanović, 2008), (Nurkanović & Nurkanović, 2016), (Spiegel, 1971) in the next section. But 

before that let us briefly describe how we come to a fundamental solution (𝑥1, 𝑦1), without which 

we cannot have the formulas (5). 

 It is well known that all very good rational approximations of a real number can be 

obtained from its development into a continued fraction. The main method of determining the 

fundamental solution to Pell’s equation (1) involves continued fractions (Andreescu, 2010), 

(Elaydi, 2005), (Kulenović & Merino, 2002). It is obtained by writing  𝐷 as a simple continued 

fraction: 
 

 𝐷 = 𝑎0 +
1

𝑎1 +
1

𝑎2+
1

𝑎3+⋯

 

 

where 𝑎0 =   𝐷  and 𝑎1, 𝑎2, … is a periodic sequence of positive integers defined by 
 

  𝐷 = 𝑎0 +
1

𝛼1
, 𝑎1 = ⌊𝛼1⌋, 𝛼1 = 𝑎1 +

1

𝛼2
, …. 

 

The continued fraction will be denoted by  𝑎0; 𝑎1, 𝑎2, …  , and the 𝑘th  convergent of 
 𝑎0; 𝑎1, 𝑎2, …   is the number 
 

𝑝𝑘

𝑞𝑘
= 𝑎0 +

1

𝑎1 +
1

⋱+
1

𝑎𝑘

=  𝑎0; 𝑎1, … , 𝑎𝑘  



 

with 𝑝𝑘  and 𝑞𝑘  relatively prime. 

Let us now state the algorithm for determining the numbers 𝑎0; 𝑎1, … , 𝑎𝑙 , where 𝑙 is period 

for  𝐷: 

 𝑎𝑖 = ⌊
𝑠𝑖+𝛼

𝑡𝑖
⌋, 𝑠𝑖+1 = 𝑎𝑖𝑡𝑖 − 𝑠𝑖 , 𝑡𝑖+1 =

𝐷−𝑠𝑖+1
2

𝑡𝑖
,    𝑖 ≥ 0 

 

and algorithm stops when the pair (𝑠𝑘 , 𝑡𝑘) repeats. 
 

Theorem 5. Suppose that 𝑙  is period of  𝐷 . Then the least fundamental solution of Pell’s 

equation is 

(𝑥1, 𝑦1) =  
(𝑝𝑙−1, 𝑞𝑙−1) if 𝑙 is even

(𝑝2𝑙−1, 𝑞2𝑙−1) if 𝑙 is odd
  

 

(Andrescu, 2010). 

 

2  Explicit form of the solutions of Pell’s equation 
 

1) Note that recurrent relations can be considered as difference equations. So, system (6) is 

a homogeneous system with two first order linear difference equations and we can write it in the 

form 

 𝑋𝑛+1 = 𝐴𝑋𝑛 , (𝑛 = 0,1,2,3 … , ) (7) 
 

where 𝑋𝑛+1 =  
𝑥𝑛+1

𝑦𝑛+1
 , 𝐴 =  

𝑥1 𝐷𝑦1

𝑦1 𝑥1
 and𝑋0 =  

𝑥0

𝑦0
 =  

1
0
  is initial condition. In this case, the 

solution of system (7) is  
 

 𝑋𝑛 = 𝐴𝑛𝑋0, (𝑛 = 1,2,3 … ). (8) 
 

From (8) we can see that the only problem to find a solution of system (7) is to determine the 𝑛th 

degree of matrix 𝐴. There are several possible ways to calculate the matrix 𝐴𝑛 . Except the 

induction, we can do this in one of the following ways (Elaydi, 2005), (Kelley & Peterson, 2001), 

(Nurkanović, 2008), (Nurkanović & Nurkanović, 2016): 

- by using Hamilton-Cayley’s theorem, 

- by using binomial formula, 

- by using the so-called Putzer’s algorithm. 
 

In this paper, we will use Hamilton-Cayley’s theorem. 
 

Theorem 6, (Hamilton-Cayley) Every square matrix 𝐴 satisfied its own characteristic equation, 

i.e., 

 𝜅(𝐴) = 𝟎, 
where 𝟎 is zero matrix.  

 

The characteristic polynomial 𝜅(𝜆) of the matrix A is 
 

𝜅(𝜆) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) =  
𝑥1 − 𝜆 𝐷𝑦1

𝑦1 𝑥1 − 𝜆
 = 𝜆2 − 2𝑥1𝜆 + 𝑥1

2 − 𝐷𝑦1
2 = 𝜆2 − 2𝑥1𝜆 + 1. 

 

By using Hamilton-Cayley’s theorem we have 
 



 𝐴2 − 2𝑥1𝐴 + 𝐼 = 𝟎 and 𝐴𝑛+2 − 2𝑥1𝐴
𝑛+1 + 𝐴𝑛 = 𝟎, 

 

which is a second order difference equation with constant coefficients. Since the eigenvalues of the 

matrix 𝐴 are 𝜆1,2 = 𝑥1 ± 𝑦1 𝐷, then 𝐴𝑛 = 𝐶1𝜆1
𝑛 + 𝐶2𝜆2

𝑛 ,i.e., 
 

 𝐴𝑛 = 𝐶1(𝑥1 + 𝑦1 𝐷)𝑛 + 𝐶2(𝑥1 − 𝑦1 𝐷)𝑛 , 
 

where 𝐶1 and 𝐶2 constant matrices that we will determine by using the initial condition. 

For 𝑛 = 0:  

 𝐴0 = 𝐶1 + 𝐶2 = 𝐼, 
and for 𝑛 = 1: 

 𝐴 = 𝐶1(𝑥1 + 𝑦1 𝐷) + 𝐶2(𝑥1 − 𝑦1 𝐷), 
from which is  

 𝐶1 =
1

2 𝐷
  

𝐷 𝐷

1  𝐷
 , 𝐶2 =

1

2 𝐷
  

𝐷 −𝐷

−1  𝐷
 . 

Now,  
 

𝐴𝑛 =
1

2 𝐷
 
 𝐷 (𝑥1 + 𝑦1 𝐷)𝑛 + (𝑥1 − 𝑦1 𝐷)𝑛 𝐷 (𝑥1 + 𝑦1 𝐷)𝑛 − (𝑥1 − 𝑦1 𝐷)𝑛 

(𝑥1 + 𝑦1 𝐷)𝑛 − (𝑥1 − 𝑦1 𝐷)𝑛  𝐷 (𝑥1 + 𝑦1 𝐷)𝑛 + (𝑥1 − 𝑦1 𝐷)𝑛 
 . 

 

Finally, we have 
 

 𝑋𝑛 = 𝐴𝑛𝑋0 =  

1

2
 (𝑥1 + 𝑦1 𝐷)𝑛 + (𝑥1 − 𝑦1 𝐷)𝑛 

1

2 𝐷
 (𝑥1 + 𝑦1 𝐷)𝑛 − (𝑥1 − 𝑦1 𝐷)𝑛 

 , (𝑛 = 1,2,3, … ). (9) 

 

We can always use the above procedure to solve specific Pell’s equations, since it is sufficient to 

remember the general form of the matrix 𝐴. 
 

Example 7. Find all solutions of the equation  
 

 𝑥2 − 15𝑦2 = 1 (10) 
 

in positive integers by using Hamilton-Cayley’s theorem.  

 

Solution: For equation (10), by using (6), we have the following system of difference 

equations 

  𝑥𝑛+1 = 𝑥1𝑥𝑛 + 15𝑦1𝑦𝑛

𝑦𝑛+1 = 𝑥1𝑦𝑛 + 𝑦1𝑥𝑛
 , (11) 

 

where (𝑥0, 𝑦0) = (1,0)and(𝑥1, 𝑦1) is a fundamental solution of (10). As it is first necessary to find 

a fundamental solution (𝑥1, 𝑦1), for this purpose we will write  15 as a continuous fraction. For 

𝐷 = 15  we have that 𝛼 =  15  and let 𝑠0 = 0  and 𝑡0 = 1 . Then, by using corresponding 

algorithm we have: 𝑎0 = 3, 𝑠1 = 3, 𝑡1 = 6,  𝑎1 = 1, 𝑠2 = 1, 𝑡2 = 1, 𝑎2 = 6, 𝑠3 = 3and 𝑡3 = 6. 

Since (𝑠3, 𝑡3) = (𝑠1, 𝑡1) = (3,6) we get 
 

  15 =  𝑎0; 𝑎1, 𝑎2 =  3; 1,6 , 
 

and we see that the period 𝑙 = 2 (i.e., it is even). By Theorem 5  the fundamental solution is  



 

 (𝑥1, 𝑦1) = (𝑝1, 𝑞1) = (𝑎0𝑎1 + 1, 𝑎1) = (4,1). 
 

For the system (10) matrix 𝐴 is of the form 
 

 𝐴 =  
𝑥1 𝐷𝑦1

𝑦1 𝑥1
 =  

4 15
1 4

  

 

with the characteristic polynomial  
 

 𝜅(𝜆) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) =  
4 − 𝜆 15
1 4 − 𝜆

 = 𝜆2 − 8𝜆 + 1. 

 

By Hamilton-Cayley’s theorem we have  

 𝐴2 − 8𝐴 + 𝐼 = 0, 
and 

 𝐴𝑛+2 − 8𝐴𝑛+1 + 𝐴𝑛 = 0, (12) 
 

which is a second order homogeneous difference equation with constant coefficients. The 

eigenvalues of 𝐴 are 𝜆1,2 = 4 ±  15, so that the general solution of equation (12) is 
 

 𝐴𝑛 = 𝐶1(4 +  15)𝑛 + 𝐶2(4 −  15)𝑛 . (13) 
 

In doing so, 𝐶1 and 𝐶2 are constant matrices that we will determine from the initial conditions 

For 𝑛 = 0:  

 𝐴0 = 𝐼 = 𝐶1 + 𝐶2, 
and for 𝑛 = 1: 

 𝐴 = 𝐶1(4 +  15) + 𝐶2(4 −  15), 
from which  

 𝐶1 =
1

2 15
  

15 15

1  15
 , 𝐶2 =

1

2 15
  

15 −15

−1  15
 . 

 

By substituting in (13) we obtain 
 

 𝐴𝑛 =
1

2 15
 
 15 (4 +  15)𝑛 + (4 −  15)𝑛 −15 (4 +  15)𝑛 − (4 −  15)𝑛 

(4 +  15)𝑛 − (4 −  15)𝑛  15 (4 +  15)𝑛 + (4 −  15)𝑛 
 . 

 

Now, the solutions of equation (10) is  
 

𝑋𝑛 =
1

2 15
 
 15 (4 +  15)𝑛 + (4 −  15)𝑛 −15 (4 +  15)𝑛 − (4 −  15)𝑛 

(4 +  15)𝑛 − (4 −  15)𝑛  15 (4 +  15)𝑛 + (4 −  15)𝑛 
 ⋅  

1
0
 , 

 

i.e., 

 𝑋𝑛 =  
𝑥𝑛

𝑦𝑛
 =  

1

2
 (4 +  15)𝑛 + (4 −  15)𝑛 

1

2 15
 (4 +  15)𝑛 − (4 −  15)𝑛 

 (𝑛 = 0,1,2, … ). 

 

Remark 8. System of difference equations (6) can be reduced to a second-order equation in 𝑥𝑛  or 

in 𝑦𝑛 . In this way, the general solution (𝑥𝑛 , 𝑦𝑛) of Pell’s equation (1) can be expressed exactly 



only through 𝑥1 or/and 𝑦1.  

 

Let us show how the procedure mentioned in Remark 8 is performed. 

From the first equation of System (6) by iterating, and then by using the second equation, 

we obtain 

 𝑥𝑛+2 = 𝑥1𝑥𝑛+1 + 𝐷𝑥1𝑦1𝑦𝑛 + 𝐷𝑦1
2𝑥𝑛 . (14) 

 

Also from the first equation of System (6) we have 𝐷𝑦1𝑦𝑛 = 𝑥𝑛+1 − 𝑥1𝑥𝑛 , and by substituting into 

(14), we get 

 𝑥𝑛+2 − 2𝑥1𝑥𝑛+1 +  𝑥1
2 − 𝐷𝑦1

2 𝑥𝑛 = 0. 
 

Since 𝑥1
2 − 𝐷𝑦1

2 = 1, we finally get the second order difference equation in 𝑥𝑛 : 
 

 𝑥𝑛+2 − 2𝑥1𝑥𝑛+1 + 𝑥𝑛 = 0. (15) 
 

The corresponding characteristic equation is of the form 𝜆2 − 2𝑥1𝜆 + 1 = 0 with the roots𝜆1,2 =

𝑥1 ±  𝑥1
2 − 1, so that the general solution of the difference equation (15) is 

 

 𝑥𝑛 = 𝐶1  𝑥1 −  𝑥1
2 − 1 

𝑛

+ 𝐶2  𝑥1 +  𝑥1
2 − 1 

𝑛

. 
 

By using initial values 𝑥0 = 1 and 𝑥1, we can determine the constants 𝐶1 and 𝐶2. Namely,  
 

 𝑛 = 0 ⟹ 𝑥0 = 1 = 𝐶1 + 𝐶2, 

 𝑛 = 1 ⟹ 𝑥1 = 𝐶1  𝑥1 −  𝑥1
2 − 1 + 𝐶2  𝑥1 +  𝑥1

2 − 1 , 
 

from which is 𝐶1 = 𝐶2 =
1

2
, and so on 

 

 𝑥𝑛 =
1

2
  𝑥1 −  𝑥1

2 − 1 
𝑛

+  𝑥1 +  𝑥1
2 − 1 

𝑛

 . (16) 

 

By an analogous procedure, the following second-order difference equation in 𝑦𝑛  is obtained from 

System (6): 

 𝑦𝑛+2 − 2𝑥1𝑦𝑛+1 + 𝑦𝑛 = 0, 
 

whose the general solution is  
 

 𝑦𝑛 = 𝐶1  𝑥1 −  𝑥1
2 − 1 

𝑛

+ 𝐶2  𝑥1 +  𝑥1
2 − 1 

𝑛

. 
 

By using the initial values 𝑦0 = 0 and 𝑦1, we can determine the constants 𝐶1 and 𝐶2. Namely,  
 

 𝑛 = 0 ⟹ 𝑦0 = 0 = 𝐶1 + 𝐶2, 

 𝑛 = 1 ⟹ 𝑦1 = 𝐶1  𝑥1 −  𝑥1
2 − 1 + 𝐶2  𝑥1 +  𝑥1

2 − 1 , 
 

from which we obtain 𝐶1 = −𝐶2 = −
𝑦1

2 𝑥1
2−1

, and so on 

 

 𝑦𝑛 =
𝑦1

2 𝑥1
2−1

  𝑥1 +  𝑥1
2 − 1 

𝑛

−  𝑥1 +  𝑥1
2 − 1 

𝑛

 . (17) 



 

Remark 9. Of course, if we use the equality 𝑥1
2 − 𝐷𝑦1

2 = 1, from (9) immediately the formulas 

(16) and (17) follow.  

 

2) Now, consider the equation of the form 
 

 𝑎𝑥2 − 𝑏𝑦2 = 1, (18) 
 

where 𝑎 and 𝑏 are natural numbers. We list the following two theorems without the proofs 

(Andreescu, 2010). 

 

Theorem 10. If 𝑎𝑏 = 𝑘2, where 𝑘 is a natural number greater than 1, then the equation 

𝑎𝑥2 − 𝑏𝑦2 = 1 has no solution in ℕ. 
 

The equation of the form  

 𝑢2 − 𝑎𝑏𝑣2 = 1 (19) 

is called Pell’s resolvent. 

 

The following theorem is a well known result (Andreescu, 2010). 

 

Theorem 11. Suppose that equation (18) has the solutions in set ℕ and that (𝑥0, 𝑦0) is the 

fundamental solution of (18). The general solution (𝑥𝑛 , 𝑦𝑛), 𝑛 ≥ 0 of equation (18) is given by the 

following iterations  
 

  𝑥𝑛 = 𝑥0𝑢𝑛 + 𝑏𝑦0𝑣𝑛

𝑦𝑛 = 𝑥0𝑢𝑛 + 𝑎𝑦0𝑣𝑛
 , (20) 

 

where (𝑢𝑛 , 𝑣𝑛), 𝑛 ≥ 0 is a solution of Pell’s resolvent (19).  

 

Now, our goal is to find an explicit form for general solution of equation (18) by using the 

fundamental solution (𝑢1, 𝑣1) of (19). By using Theorem 4 the solutions of (19) are given by the 

following recursive formulas  
 

  𝑢𝑛+1 = 𝑢1𝑢𝑛 + 𝑎𝑏𝑣1𝑣𝑛

𝑣𝑛+1 = 𝑣1𝑢𝑛 + 𝑢1𝑣𝑛
 , (21) 

 

where (𝑢0, 𝑣0) = (1,0)  and (𝑢1, 𝑣1)  is the fundamental solution of (19). These recursive 

formulas (21) can be written in the following matrix form  
 

 𝑈𝑛+1 = 𝐴𝑈𝑛(𝑛 = 0,1,2, … ), (22) 
 

where 𝑈𝑛+1 =  
𝑢𝑛+1

𝑣𝑛+1
 , 𝐴 =  

𝑢1 𝑎𝑏𝑣1

𝑣1 𝑢1
  and 𝑈0 =  

𝑢0

𝑣0
 =  

1
0
  is the initial condition. System of 

difference equations (22) is an initial value problem whose solution is given by  
 

 𝑈𝑛 = 𝐴𝑛𝑈0, (𝑛 = 1,2,3 … ). 
 

By using Hamilton-Cayley’s theorem we obtain 
 



𝐴𝑛 =
1

2 𝑎𝑏
 
 𝑎𝑏 (𝑢1 + 𝑣1 𝑎𝑏)𝑛 + (𝑢1 − 𝑣1 𝑎𝑏)𝑛 𝑎𝑏 (𝑢1 + 𝑣1 𝑎𝑏)𝑛 − (𝑢1 − 𝑣1 𝑎𝑏)𝑛 

(𝑢1 + 𝑣1 𝑎𝑏)𝑛 − (𝑢1 − 𝑣1 𝑎𝑏)𝑛  𝑎𝑏 (𝑢1 + 𝑣1 𝑎𝑏)𝑛 + (𝑢1 − 𝑣1 𝑎𝑏)𝑛 
 , 

 

which implies that  
 

 𝑈𝑛 =  

1

2
 (𝑢1 + 𝑣1 𝑎𝑏)𝑛 + (𝑢1 − 𝑣1 𝑎𝑏)𝑛 

1

2 𝑎𝑏
 (𝑢1 + 𝑣1 𝑎𝑏)𝑛 − (𝑢1 − 𝑣1 𝑎𝑏)𝑛 

 . 

 

Now, since we can write system (20) in the following matrix form 
 

  
𝑥𝑛

𝑦𝑛
 =  

𝑥0 𝑏𝑦0

𝑥0 𝑎𝑦0
  

𝑢𝑛

𝑣𝑛
 , 

 

we have that 
 

  
𝑥𝑛

𝑦𝑛
 =  

 𝑎

2𝑎
 ( 𝑎𝑥0 +  𝑏𝑦0)(𝑢1 + 𝑣1 𝑎𝑏)𝑛 + ( 𝑎𝑥0 −  𝑏𝑦0)(𝑢1 − 𝑣1 𝑎𝑏)𝑛 

 𝑏

2𝑏
 ( 𝑏𝑥0 +  𝑎𝑦0)(𝑢1 + 𝑣1 𝑎𝑏)𝑛 + ( 𝑏𝑥0 +  𝑎𝑦0)(𝑢1 − 𝑣1 𝑎𝑏)𝑛 

 , (23) 

 

which is the general solution of equation (18). 

 

The formulas (23) are complicated and in specific problems it is better to use the procedure 

described above. 

 

Example 12. Find all solutions of the equation  
 

 6𝑥2 − 5𝑦2 = 1 (24) 
 

in the set of natural numbers.  

 

Solution: The minimal solution in the set of natural numbers of equation (24) is (𝑥0, 𝑦0) =
(1,1). Since 𝑎 = 6 and 𝑏 = 5 the corresponding Pell’s resolvent is of the form  

 

 𝑢2 − 30𝑣2 = 1. (25) 
 

Equation (25) corresponds to the system of difference equations 
 

  𝑢𝑛+1 = 𝑢1𝑢𝑛 + 30𝑣1𝑣𝑛

𝑣𝑛+1 = 𝑣1𝑢𝑛 + 𝑢1𝑣𝑛
 , 

 

where (𝑢0, 𝑣0) = (1,0)and(𝑢1, 𝑣1) = (11,2) is its fundamental solution. Now, we have  
 

 𝑈𝑛 = 𝐴𝑛𝑈0(𝑛 = 0,1,2, … ), (26) 
 

where 𝑈𝑛 =  
𝑢𝑛

𝑣𝑛
 , 𝐴 =  

11 60
2 11

  and 𝑈0 =  
1
0
  is initial value condition. The characteristic 

polynomial 𝜅(𝜆) of matrix 𝐴 is 
 

 𝜅(𝜆) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) =  
11 − 𝜆 60
2 11 − 𝜆

 = 𝜆2 − 22𝜆 + 1. 

 



By using Hamilton-Cayley’s theorem we obtain  
 

 𝐴2 − 22𝐴 + 1 = 0, 
and 

 𝐴𝑛+2 − 22𝐴𝑛+1 + 1 = 0,    𝑛 = 0,1, . . ., (27) 

from which 

 𝐴𝑛 = 𝐶1𝜆1
𝑛 + 𝐶2𝜆2

𝑛 = 𝐶1(11 + 2 30)𝑛 + 𝐶2(11 − 2 30)𝑛 , 
 

where 𝜆1,2 = 11 ± 2 30  are the eigenvalues of the matrix 𝐴  and 𝐶1  and 𝐶2  are constant 

matrices that we will determine using the initial conditions. 

For 𝑛 = 0:  

 𝐴0 = 𝐼 = 𝐶1 + 𝐶2, 
and for 𝑛 = 1: 

 𝐴 = 𝐶1(11 + 2 30) + 𝐶2(11 − 2 30), 
from which is  

 𝐶1 =
1

2
 
1  30
 30

30
1

 , 𝐶2 =
1

2
 
1 − 30

−
 30

30
1

 . 

So, 
 

𝐴𝑛 =
1

2 30
 
 30 (11 + 2 30)𝑛 + (11 − 2 30)𝑛 30 (11 + 2 30)𝑛 − (11 − 2 30)𝑛 

(11 + 2 30)𝑛 − (11 − 2 30)𝑛  30 (11 + 2 30)𝑛 + (11 − 2 30)𝑛 
 . 

 

By using (26) we obtain the solution of Pell’s resolvent (27) in the following matrix form 
 

 𝑈𝑛 =  

1

2
 (11 + 2 30)𝑛 + (11 − 2 30)𝑛 

1

2 30
 (11 + 2 30)𝑛 − (11 − 2 30)𝑛 

 . 

 

By Theorem 11 we have that  
 

  𝑥𝑛 = 𝑢𝑛 + 5𝑣𝑛

𝑦𝑛 = 𝑢𝑛 + 6𝑣𝑛
 , 

 

that is  

  
𝑥𝑛

𝑦𝑛
 =  

6+ 30

12
 (11 + 2 30)𝑛 +

6− 30

12
(11 − 2 30)𝑛 

5+ 30

10
 (11 + 2 30)𝑛 +

5− 30

10
(11 − 2 30)𝑛 

 . 

 

3)The negative Pell’s equation 
 

Now, consider so-called the negative Pell’s equation (Andreescu (2010)): 
 

 𝑥2 − 𝐷𝑦2 = −1. (28) 

 

Theorem 13. Assume that equation (28) has the solutions in ℕ and that (𝐴, 𝐵) is the minimal 

solution of (28). Then the general solution (𝑥𝑛 , 𝑦𝑛), 𝑛 ≥ 0 of (28) has the following form 
 



  𝑥𝑛 = 𝐵𝑢𝑛 + 𝐷𝐴𝑣𝑛

𝑦𝑛 = 𝐴𝑢𝑛 + 𝐵𝑣𝑛
 , 

 

where (𝑢𝑛 , 𝑣𝑛),  𝑛 ≥ 0 are solutions of Pell’s resolvent 𝑢2 − 𝐷𝑣2 = 1.  

 

Theorem 14. Let 𝑝 be a prime number. Equation (28) has the solutions if and only if 𝑝 = 2 or 

𝑝 ≡ 1(𝑚𝑜𝑑4). 
 

Now, we will demonstrate the method of difference equation in the following example. 

 

Example 15. Find all the pairs  𝑘, 𝑚  (𝑘, 𝑚 ∈ ℕ) such that 𝑘 < 𝑚 and that 

 

 1 + 2 + 3 + ⋯ + 𝑘 = (𝑘 + 1) + (𝑘 + 2) + ⋯ + 𝑚. (29) 
 

Solution: Equation (29) is equivalent with 

 

 2(1 + 2 + 3+. . . +𝑘) = 1 + 2+. . +𝑚, 
i.e., 

 (2𝑚 + 1)2 − 2(2𝑘 + 1)2 = −1. 
 

If we introduce the substitutions 𝑥 = 2𝑚 + 1 and 𝑦 = 2𝑘 + 1, we obtain the following negative 

Pell’s equation 

 𝑥2 − 2𝑦2 = −1, (30) 
 

whose the minimal solution is (𝐴, 𝐵) = (1,1). The solutions of equation (30) are of the form 
 

  𝑥𝑛 = 𝑢𝑛 + 2𝑣𝑛

𝑦𝑛 = 𝑢𝑛 + 𝑣𝑛
 , 

 

where (𝑢𝑛 , 𝑣𝑛) are the solutions of Pell’s resolvent 𝑢2 − 2𝑣2 = 1. As we know, the solutions of 

this resolvent are given by the following system of difference equations 
 

  𝑢𝑛+1 = 𝑢1𝑢𝑛 + 2𝑣1𝑣𝑛

𝑣𝑛+1 = 𝑣1𝑢𝑛 + 𝑢1𝑣𝑛
  

 

where (𝑢0, 𝑣0) = (1,0)and (𝑢1, 𝑣1)=(3,2) is its fundamental solution. 

Now, we have that 𝑈𝑛 = 𝐴𝑛𝑈0(𝑛 = 0,1,2, … ),where 𝑈𝑛 =  
𝑢𝑛

𝑣𝑛
 , 𝐴 =  

3 4
2 3

  and 𝑈0 =  
1
0
  is 

the initial condition. The characteristic polynomial 𝜅(𝜆) of the matrix 𝐴 is 
 

 𝜅(𝜆) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) =  
3 − 𝜆 4
2 3 − 𝜆

 = 𝜆2 − 6𝜆 + 1. 

 

By Hamilton-Cayley’s theorem we obtain  

 𝐴2 − 6𝐴 + 𝐼 = 0, 
and 

 𝐴𝑛+2 − 6𝐴𝑛+1 + 𝐼 = 0,    𝑛 = 0,1, . . ., 
from which 

 𝐴𝑛 = 𝐶1𝜆1
𝑛 + 𝐶2𝜆2

𝑛 = 𝐶1(3 + 2 2)𝑛 + 𝐶2(3 − 2 2)𝑛 , 
 



where 𝜆1,2 = 3 ± 2 2 are the eigenvalues of the matrix 𝐴 and 𝐶1 and 𝐶2 are constant matrices 

that we will determine using the initial conditions. 

For 𝑛 = 0: 

 𝐴0 = 𝐼 = 𝐶1 + 𝐶2, 
and for 𝑛 = 1 

 𝐴 = 𝐶1(3 + 2 2) + 𝐶2(3 − 2 2), 
which implies that  
 

 𝐶1 =  

1

2

 2

2

 2

4

1

2

 , 𝐶2 =  

1

2
−

 2

2

−
 2

4

1

2

 . 

 

Then, we have 
 

 𝐴𝑛 =  

1

2
 (3 + 2 2)𝑛 + (3 − 2 2)𝑛 

 2

2
 (3 + 2 2)𝑛 − (3 − 2 2)𝑛 

 2

4
 (3 + 2 2)𝑛 − (3 − 2 2)𝑛 

1

2
 (3 + 2 2)𝑛 + (3 − 2 2)𝑛 

 , 

 

so it is  
 

 𝑈𝑛 =  

1

2
 (3 + 2 2)𝑛 + (3 − 2 2)𝑛 

 2

2
 (3 + 2 2)𝑛 − (3 − 2 2)𝑛 

 2

4
 (3 + 2 2)𝑛 − (3 − 2 2)𝑛 

1

2
 (3 + 2 2)𝑛 + (3 − 2 2)𝑛 

 ⋅  
1
0
 , 

 

i.e., 
 

  
𝑢𝑛

𝑣𝑛
 =  

1

2
 (3 + 2 2)𝑛 + (3 − 2 2)𝑛 

 2

4
 (3 + 2 2)𝑛 − (3 − 2 2)𝑛 

 . 

 

Since 

  𝑥𝑛 = 𝑢𝑛 + 2𝑣𝑛

𝑦𝑛 = 𝑢𝑛 + 𝑣𝑛
 , 

 

finally, we obtain 
 

  
𝑥𝑛

𝑦𝑛
 =  

1+ 2

2
(3 + 2 2)𝑛 +

1− 2

2
(3 − 2 2)𝑛

2+ 2

4
(3 + 2 2)𝑛 +

2− 2

4
(3 − 2 2)𝑛

 . 

 

By using the substitution 𝑥 = 2𝑚 + 1  and 𝑦 = 2𝑘 + 1 , we get the required solution in the 

following form 

 

  
𝑚𝑛

𝑘𝑛
 =  

1+ 2

4
(3 + 2 2)𝑛 +

1− 2

4
(3 − 2 2)𝑛 −

1

2

2+ 2

8
(3 + 2 2)𝑛 +

2− 2

8
(3 − 2 2)𝑛 −

1

2

 . 
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