nMO02021

3apaua 1. Hekan > 100 e uen Opoj. Mean ru sanuwan Gpoesure n, 7 + 1, ..., 2n cexoj Ha pasiMyHa
kapra. Ilotoa ru u3Metnan opue 7 + | KapTH U T'H NOAETHI BO [Be Kymuuiba. JloKaxu neka bapeM BO eqHO
OJ1 OBHE JIBE KYITUHILA MTOCTOJAT JBE KAPTH TAKBH IITO 30MPOT HA HUBHHUTE OPOECBH € MOJIH KBaAPAT.

3agaua 2. Jlokaku nexka HEPaBEHCTBOTO

ZZ\/\-’H—JTH < ZZ i +

1

T T

i=1 j=1 i=1 j

BaKM 32 CEKOM peaiHi OPOEBH 1, . . ., Ty,

3agaua 3. Heka /) e BHaTpeluHa Touka Bo octpoaroneH Tpuaronnuk ABC 3a ko] AB > AC, Taka wro
ZDAB — ZCAD. 3aToukara F Ha orceuxara AC Bawu ZADE — ZBCD, 3a toukara I’ Ha orcedkara
AB Baxu ZF DA = £ BC w3aToukara X nHa npasata AC Baxu C'X = BX. Hexa O; u O, ce ueHrpure
Ha ONMHULIAHUTE KPYKHHLM Ha Tpuaronuuuure ADC u KX D, coonserno. Jlokaxu neka npasute BC,
EFu 0,0, ce cevar BO elHa TOYKA.

3anaua 4. Heka [" e kpy:xnuua co uentap [ u ABC') e KOHBeKCEH YETHPUATONHUK TaKa IITO CEKOja O
orceukure AB, BC, CD v DA e tanrenra Ha [, Heka () € onuuianara KpysKHHL@ OKOY TPHATOIHHKOT
AIC. Tponomxenuero Ha B A npeky A ja cede {2 Bo Toukara X u nponomkennero Ha BC npeky (' ja
cedve {2 Bo Toukara /. IIponomxkenujara va A u C'D npeky 17 ja cevar 2 Bo Toukute Y u T, coonserHo,
Jloka:ku nexa

AD+ DT +TX + XA=CD+ DY +YZ 4 ZC.

3amaua 5. [lee eepeepuukn, bymasko u Ckokanko, codpane 2021 opeewn 3a 3umara. CKOKAIKO TH HyMepHpas
opesute ox | o 2021 u uckoman 2021 aynuumba Hape#eHM BO KPyskHA (OpMa OKOMy HErOBOTO OMHJIEHO
apso. CnemHoro yTpo Cxokanko 3abeneskan feka bylraBko cTaBHI 110 €€H OpPEB BO CEKOE IyITde, HO
He BHHMaBaJl Ha HyMepHpameTo. Hesamosonen on Toa, CKOKaNKo O/UTYUIIJ Aa TH MpepeaH OpPeBHUTE CO
oMo Ha Hu3a of 2021 yexopH Taka mTo BO k-THOT yekop, CKOKANKO M 3aMeHyBa MMO3HIHUTE HA IBATA
OpeBH COCEIHH A0 OPEBOT HyMepupaH co k. Jlokaxu aeka noctou k Taka wto BO k-THOT Yekop, Crokanko
3aMeHyBa HEKOH OPEBH HyMepHpaHu coa ub3akona < k < b.

3anaua 6. Hexa m > 2 e uen 0poj, A e KOHEUHO MHOXKECTBO O LenH Opoeen (Kou He Mopa fia Gunar
MO3UTHBHHN) U B, By, Bs, ..., B, ce nonmuoskectea on A. Jla npernocraBume nekasacekoj k = 1,2,...,m
36upot Ha enementhTe on B3, e m*. Jlokaxm nexa A conpiu 6apem 1m,/2 enreMeHTH.
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Let n = 100 be an integer. The numbers n,n + 1,...,2n are written on n + 1 cards,

one number per card. The cards are shuffled and divided into two piles. Prove that one of the
piles contains two cards such that the sum of their numbers is a perfect square.

Solution. To solve the problem it suffices to find three squares and three cards with numbers
a,b, c on them such that pairwise sums a + b, b + ¢, a + ¢ are equal to the chosen squares. By
choosing the three consecutive squares (2k — 1)2, (2k)?, (2k + 1)? we arrive at the triple

(a,b,¢) = (21’;2 — 4k, 2K*+1, 2K*+ 41.".) )
We need a value for & such that
n < 2k? — 4k, and 2k* + 4k < 2n.

A concrete k is suitable for all n with

ne [k® +2k,2k* — 4k + 1] = I.
For k > 9 the intervals I and [, overlap because

(k+1)%+2(k+1) <2k*—4k+ 1.
Hence Ig U I1p U ... = [99, ), which proves the statement for n > 99.

Comment 1. There exist approaches which only work for sufficiently large n.

One possible approach is to consider three cards with numbers 70k%, 99k2, 126k% on them. Then
their pairwise sums are perfect squares and so it suffices to find k such that 70k% > n and 126k? < 2n
which exists for sufficiently large n.

Another approach is to prove, arguing by contradiction, that @ and a — 2 are in the same pile
provided that n is large enough and a is sufficiently close to n. For that purpose, note that every pair
of neighbouring numbers in the sequence a, 2% —a, a+ (2x +1), 2% +2x +3 —a,a—2 adds up to a perfect
square for any 2; so by choosing 2 = |v/2a| + 1 and assuming that n is large enough we conclude that
a and a — 2 are in the same pile for any a € [n + 2,3n/2]. This gives a contradiction since it is easy to

find two numbers from [n + 2, 3n/2] of the same parity which sum to a square.

It then remains to separately cover the cases of small n which appears to be quite technical.

Comment 2. An alternative formulation for this problem could ask for a proof of the statement
for all n > 10°. An advantage of this formulation is that some solutions, e.g. those mentioned in
Comment 1 need not contain a technical part which deals with the cases of small n. However, the
original formulation seems to be better because the bound it gives for n is almost sharp, see the next
comment for details.

Comment 3. The statement of the problem is false for n = 98. As a counterexample, the first pile
may contain the even numbers from 98 to 126, the odd numbers from 129 to 161, and the even numbers
from 162 to 196.



2. Show that for all real numbers zy,...,z, the following inequality holds:
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i=1j=1 i=1j=1

Solution 1. If we add ¢ to all the variables then the left-hand side remains constant and the
right-hand side becomes

n n

H(L) = ZZ |$i+:17j+2[,|.
i=1j=1
Let T be large enough such that both H(—7') and H(T') are larger than the value L of the left-
hand side of the inequality we want to prove. Not necessarily distinct points p; ; := —(z; +;)/2

together with 7" and —7" split the real line into segments and two rays such that on each of
these segments and rays the function H(t) is concave since f(t) := 1/|¢ + 2t| is concave on
both intervals (—oo, —¢/2] and [—¢/2,+0). Let [a,b] be the segment containing zero. Then
concavity implies H(0) = min{H (a), H(b)} and, since H(+T) > L, it suffices to prove the
inequalities H(—(x; + x;)/2) = L, that is to prove the original inequality in the case when all
numbers are shifted in such a way that two variables x; and z; add up to zero. In the following
we denote the shifted variables still by x;.

If i = j, i.e. x; = 0 for some index 7, then we can remove z; which will decrease both sides
by 23 A/|xx|. Similarly, if x; + x; = 0 for distinct ¢ and j we can remove both z; and x; which
decreases both sides by

2 2|mi|+2-2( |1k+-7?i|+\/|fk+mj’>'

k#1,5
In either case we reduced our inequality to the case of smaller n. It remains to note that for
n = 0 and n = 1 the inequality is trivial.

Solution 2. For real p consider the integral
* 1 — cos(px)
Iy} = —— dz,
(p) L .
which clearly converges to a strictly positive number. By changing the variable y = |p|z one
notices that /(p) = 4/|p|/(1). Hence, by using the trigonometric formula cos(av — ) — cos(a +
) = 2sinasin § we obtain
BT T T = 1 J“" cos((a — b)x) — cos((a + b)x) e — 1 f” 2 sin(ax) sin(bx) .
I(1) Bl T I(1) Jg wa i

from which our inequality immediately follows:

ZZ\/M:’H_'T”—ZZ

i=1j=1 i=1j=1

|; — dx = 0.

— 2 (* (T, sin(@a))”
il = 1<1)L NG

Comment 1. A more general inequality

n n

n n
YDl —alt < DY |mi gl

i=1j=1 i=1j=1

holds for any 7 € [0, 2]. The first solution can be repeated verbatim for any r € [0, 1] but not for r > 1.
In the second solution, by putting 2”+! in the denominator in place of 24/ we can prove the inequality
for any r € (0,2) and the cases r = 0,2 are easy to check by hand.

Comment 2. In fact, the integral from Solution 2 can be computed explicitly, we have I(1) = +/27.



A point D is chosen inside an acute-angled triangle ABC with AB > AC so that
/LBAD = ZDAC. A point E is constructed on the segment AC so that LZADE = ZDCB.
Similarly, a point F' is constructed on the segment AB so that ZADF = /ZDBC. A point
X is chosen on the line AC so that CX = BX. Let O; and O, be the circumcentres of the
triangles ADC and DX E. Prove that the lines BC, EF', and O,0; are concurrent.

Common remarks. Let @) be the isogonal conjugate of D with respect to the triangle ABC.
Since LBAD = ZDAC, the point Q lies on AD. Then LQBA = ZDBC = ZFDA, so the
points @, D, F, and B are concyclic. Analogously, the points @), D, E, and C are concyclic.
Thus AF-AB =AD - AQ = AE - AC and so the points B, I, FE, and C' are also concyclic.

Let T" be the intersection of BC' and FE.
Claim. TD*=TB-TC =TF -TE.
Proof. We will prove that the circles (DEF) and (BDC) are tangent to each other. Indeed,
using the above arguments, we get

{LBDF = LAFD — LABD = (180° — LFAD — LFDA) — (LABC — £ZDBC)
= 180°—4LFAD—-ZABC =180°-4DAE—/ZFEA=/LFED+/ADFE = LZFED+/DCB,

which implies the desired tangency.

Since the points B, C, E, and F' are concyclic, the powers of the point 7" with respect to the
circles (BDC') and (EDF) are equal. So their radical axis, which coincides with the common
tangent at D, passes through 7', and hence TD? =TE-TF =TB -TC. O

Solution 1. Let T'A intersect the circle (ABC) again at M. Due to the circles (BCEF)
and (AMCB), and using the above Claim, we get TM -TA=TF-TE =TB-TC =TD? in
particular, the points A, M, I/, and I are concyclic.

Under the inversion with centre 7" and radius 1'D, the point M maps to A, and B maps to
C', which implies that the circle (M BD) maps to the circle (ADC'). Their common point D
lies on the circle of the inversion, so the second intersection point K also lies on that circle,
which means T'K' = T'D. Tt follows that the point 7" and the centres of the circles (K DFE)
and (ADC) lie on the perpendicular bisector of K D.

Since the center of (ADC') is Oy, it suffices to show now that the points D, K, F, and X
are concyclic (the center of the corresponding circle will be O).

The lines BM, DK, and AC are the pairwise radical axes of the circles (ABCM), (ACDK)
and (BMDK), so they are concurrent at some point P. Also, M lies on the circle (AEF), thus

x(EX,XB) = x(CX,XB) = £(XC, BC) + ¥(BC, BX) = 2x(AC,CB)
= X(AC,CB) + X(EF, FA) = ¥(AM, BM) + ¥x(EM, MA) = x(EM, BM),

so the points M, E, X, and B are concyclic. Therefore, PE - PX = PM - PB = PK - PD, so
the points £, K, D, and X are concyclic, as desired.



Comment 1. We present here a different solution which uses similar ideas.
Perform the inversion ¢ with centre 7" and radius T'D. It swaps B with C' and E with I'; the point
D maps to itself. Let X’ = ¢(X). Observe that the points E, F; X, and X’ are concyclic, as well as

the points B, C, X, and X’. Then

x(CX', X'F) = x(CX'",X'X) + x(X'X, X'F) = £(CB, BX) + %(EX, EF)
= %(XC,CB) + x(EC, EF) = x(CA,CB) + %x(BC, BF) = x(CA, AF),

therefore the points €', X', A, and F' are concyclic.
Let X'F intersect AC at P, and let K be the second common point of DP and the circle (ACD).

Then

PK.-PD=PA-PC =PX'-PF =PE.PX;
hence, the points K, X, D, and E lie on some circle wy, while the points K, X', D, and F lie on some
circle wy. (These circles are distinct since ZEXF + LZEDF < LEAF + £ZDCB + ZDBC < 180°).
The inversion ¢ swaps w; with ws and fixes their common point D, so it fixes their second common
point K. Thus T'D = T K and the perpendicular bisector of DK passes through 7', as well as through

the centres of the circles (CDKA) and (DEKX).




Solution 2. We use only the first part of the Common remarks, namely, the facts that the
tuples (C,D,Q,FE) and (B,C, E, F) are both concyclic. We also introduce the point 7" =
BC n EF. Let the circle (CDE) meet BC again at F;. Since ZE,CQ = ZDCE, the arcs DE
and QF, of the circle (CDQ) are equal, so DQ || EE;.

Since BFEC is cyclic, the line AD forms equal angles with BC and E I, hence so does E'F}.
Therefore, the triangle FF\T' is isosceles, Tl = T'F,, and T lies on the common perpendicular
bisector of F'F; and DQ.

Let U and V be the centres of circles (ADE) and (CDQFE), respectively. Then UO; is the
perpendicular bisector of AD. Moreover, the points U/, V, and O belong to the perpendicular
bisector of DE. Since UO, || VT, in order to show that O;0; passes through 7', it suffices to

show that
OxU B oU

= ) 1

0,V TV (L)

Denote angles A, B, and C' of the triangle ABC by a, 3, and 7, respectively. Projecting
onto AC' we obtain

0,U  (XE—AE))2 AX _AX _sin(y—f)

0,V (XE+EC)2 CX BX  sina

(2)

The projection of O1U onto AC'is (AC — AE)/2 = CE/2; the angle between O;U and AC
is 90° — a/2, so
O\U 1
EC — 2sin(a/2)

Next, we claim that £, V, C, and T" are concyclic. Indeed, the point V lies on the per-
pendicular bisector of C'E, as well as on the internal angle bisector of ZCT F. Therefore, V'
coincides with the midpoint of the arc C'E of the circle (I'CE).

Now we have ZEVC = 2/LEE,C = 180°—(y—p) and LVET = LVE\T =90°-£LE,EC =
90° — a/2. Therefore,

(3)

EC _ sin ZETC _ sin(y - §)

(4)

TV ~— sinZVET ~ cos(a/2)




Recalling (2) and multiplying (3) and (4) we establish (1):
OxU  sin(y—p) 1 sin(y—8)  OU EC OU

0,V sina 2sin(a/2)  cos(e/2)  EC TV TV

Solution 3. Notice that ZAQF = ZQCB and ZAQF = ZQBC so, if we replace the point D
with @ in the problem set up, the points F, F, and T remain the same. So, by the Claim, we
have 7Q?% = TB . TC'=TD>.

Thus, there exists a circle I' centred at 1" and passing through D and @). We denote the
second meeting point of the circles I" and (ADC') by K. Let the line AC meet the circle (DEK)
again at Y; we intend to prove that ¥ = X. As in Solution 1, this will yield that the point 7',
as well as the centres O; and O, all lie on the perpendicular bisector of DK.

Let L = AD n BC. We perform an inversion centred at C; the images of the points
will be denoted by primes, e.g., A" is the image of A. We obtain the following configuration,
constructed in a triangle A'C'L'.

The points D" and @’ are chosen on the circumcircle Q of A'L’C' such that «<(L'C, D'C) =
*(Q'C, A'C), which means that A'L’ || D'Q’. The lines D'Q" and A’C' meet at £’

A circle I” centred on C'L’ passes through D' and ). Notice here that B’ lies on the
segment C L/, and that ZA'B'C = LBAC = 2/LAC = 2/A'L'C, so that B'L' = B'A’, and B’
lies on the perpendicular bisector of A’L’ (which coincides with that of D'Q)’). All this means
that B’ is the centre of 1.

Finally, K’ is the second meeting point of A’D’ and 1", and Y’ is the second meeting
point of the circle (D'K'E") and the line A’E’, We have x(Y'K',K'A") = x(Y'E',E'D') =
x(Y'A', A'L), so A'L’ is tangent to the circumcircle w of the triangle Y’ A'K’.

Let O and O* be thic)entres Lf, Q and w, respectively. Then O*A" L A'L’ 1 B'O. The

projections of vectors O*A" and B'O onto K'D’ are equal to K'A"/2 = K'D"/2 — A'D'/2. So
ety R —_— —_—
O*A' = B'O, muivalently_/)’—l'() = O*B'. Projecting this equality onto A’C', we see that the
projection of O*B’ equals A'C'/2. Since O* is projected to the midpoint of A'Y”, this yields
that B’ is projected to the midpoint of CY’, i.e., B'Y' = B'C and £ZB'Y'C = ZB'CY’. In
the original figure, this rewrites as ZCBY = ZBCY, so Y lies on the perpendicular bisector
of BC, as desired.

L
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v 2 \\
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Comment 2. The point K appears to be the same in Solutions 1 and 3 (and Comment 1 as well).
One can also show that K lies on the circle passing through A, X, and the midpoint of the arc BAC.



Comment 3. There are different proofs of the facts from the Common remarks, namely, the cyclicity
of B, C, E, and F, and the Claim. We present one such alternative proof here.

We perform the composition ¢ of a homothety with centre A and the reflection in AD, which maps
E to B. Let U = ¢(D). Then x(BC,CD) = x(AD,DFE) = x(BU,UD), so the points B, U, C,
and D are concyclic. Therefore, x(CU,UD) = x(CB,BD) = ¥(AD, DF), so ¢(F) = C. Then the
coefficient of the homothety is AC/AF = AB/AE, and thus points C, I/, ', and B are concyclic.

Denote the centres of the circles (EDF) and (BUCD) by Oz and Oy, respectively. Then ¢(O3) =
Oy, hence (03D, DA) = —x(O4U,UA) = £(0O4D, DA), whence the circle (BDC) is tangent to the
circle (EDF).

Now, the radical axes of circles (DEF), (BDC') and (BCEF) intersect at 7', and the claim follows.

A

This suffices for Solution 1 to work. However, Solutions 2 and 3 need properties of point @,
established in Common remarks before Solution 1.

Comment 4. In the original problem proposal, the point X was hidden. Instead, a circle v was
constructed such that D and F lie on 7, and its center is collinear with Oy and 7. The problem
requested to prove that, in a fixed triangle ABC', independently from the choice of D on the bisector
of ZBAC, all circles 7y pass through a fixed point.



4

Let ABCD be a convex quadrilateral circumscribed around a circle with centre [.

Let w be the circumcircle of the triangle AC'I. The extensions of BA and BC beyond A and
C meet w at X and 7, respectively. The extensions of AD and C'D beyond D meet w at Y
and 7', respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals
ADTX and CDY Z are equal.

Solution. The point [ is the intersection of the external bisector of the angle T'C'Z with the
circumcircle w of the triangle TCZ, so I is the midpoint of the arc TC'Z and IT = 1Z.
Similarly, I is the midpoint of the arc Y AX and IX = IY. Let O be the centre of w. Then X
and T are the reflections of Y and Z in 1O, respectively. So XT =Y Z.

Let the incircle of ABCD touch AB, BC', CD, and DA at points P, Q, R, and S, respec-
tively.

The right triangles /X P and IY S are congruent, since /P = IS and X = IY. Similarly,
the right triangles I RT and 1Q)Z are congruent. Therefore, XP =Y S and RT = QZ.

Denote the perimeters of ADTX and CDY Z by Paprx and Peopyyz respectively. Since
AS = AP, CQ = RC, and SD = DR, we obtain

Paprx = XT+ XA+ AS+SD+ DT = XT+ XP+ RT
=YZ+YS+QZ=YZ+YD+ DR+ RC+ CZ = Pepyyz,
as required.

Comment 1. After proving that X and 7T are the reflections of Y and Z in 10O, respectively, one can
finish the solution as follows. Since X7T = Y Z, the problem statement is equivalent to
XA+ AD+ DT =YD+ DC+CZ. (1)

Since ABC'D is circumscribed, AB — AD = BC' — CD. Adding this to (1), we come to an equivalent
equality XA+ AB+ DI'=YD + BC +CZ, or

XB+DI'=YD+ BZ. (2)
Let A = X—g = % Since X AC'Z is cyclic, the triangles ZBX and ABC' are similar, hence

XB BZ XZ _
BC  AB  AC



It follows that X B = ABC and BZ = AAB. Likewise, the triangles TDY and ADC' are similar, hence
Dr py TY
AD CD  AC
Therefore, (2} rewrites as ABC' + AAD = ANCD + MAB.
This is equivalent to BC + AD = C'D + AB which is true as ABC' D is circumscribed.

Comment 2. Here is a more difficult modification of the original problem, found by the PSC.

Let ABC'D he a convex quadrilateral circumscribed around a circle with centre I. Let w be the
circumcircle of the triangle AC'I. The extensions of BA and BC beyond A and €' meet w at X and
Z, respectively. The extensions of AD and C'D beyond D meet w at Y and 7T, respectively. Let
U=BCnAD and V = BAn CD. Let Iy be the incentre of UY Z and let Jy be the V-excentre of
VXT. Then IyJy L BD.



5 A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are

arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves;
in the k™" move, he swaps the positions of the two thimbles adjacent to thimble .

Prove that there exists a value of k such that, in the k*" move, the thimblerigger swaps
some thimbles ¢ and b such that a < k < b.

Solution. Assume the contrary. Say that the k" thimble is the central thimble of the k™ move,
and its position on that move is the central position of the move.

Step 1: Black and white colouring.

Before the moves start, let us paint all thimbles in white. Then, after each move, we repaint
its central thimble in black. This way, at the end of the process all thimbles have become black.

By our assumption, in every move k, the two swapped thimbles have the same colour (as
their numbers are either both larger or both smaller than k). At every moment, assign the
colours of the thimbles to their current positions; then the only position which changes its
colour in a move is its central position. In particular, each position is central for exactly one
move (when it is being repainted to black).

Step 2: Red and green colouring.

Now we introduce a colouring of the positions. If in the k&' move, the numbers of the two
swapped thimbles are both less than k, then we paint the central position of the move in red;
otherwise we paint that position in green. This way, each position has been painted in red or
green exactly once. We claim that among any two adjacent positions, one becomes green and
the other one becomes red; this will provide the desired contradiction since 2021 is odd.

Consider two adjacent positions A and B, which are central in the a' and in the b*" moves,
respectively, with @ < b. Then in the a'™ move the thimble at position B is white, and therefore
has a number greater than a. After the a' move, position A is green and the thimble at
position A is black. By the arguments from Step 1, position A contains only black thimbles
after the a'" step. Therefore, on the b move, position A contains a black thimble whose
number is therefore less than b, while thimble b is at position B. So position B becomes red,
and hence A and B have different colours.

Comment 1. Essentially, Step 1 provides the proof of the following two assertions (under the indirect
assumption):

(1) Each position P becomes central in exactly one move (denote that move’s number by k); and

(2) Before the k'™ move, position P always contains a thimble whose number is larger than the number
of the current move, while after the k" move the position always contains a thimble whose number is
smaller than the number of the current move.

Both (1) and (2) can be proved without introduction of colours, yet the colours help to visualise
the argument.

After these two assertions have been proved, Step 2 can be performed in various ways, e.g., as
follows.

At any moment in the process, the black positions are split into several groups consisting of one or
more contiguous black positions each; different groups are separated by white positions. Now one can
prove by induction on k that, after the k*" move, all groups have odd sizes. Indeed, in every move, the
new black position either forms a separate group, or merges two groups (say, of lengths a and b) into
a single group of length a + b + 1.

However, after the 2020'" move the black positions should form one group of length 2020. This is
a contradiction.

This argument has several variations; e.g., one can check in a similar way that, after the process
starts, at least one among the groups of while positions has an even size.



IC' Let A be a finite set of (not necessarily positive) integers, and let m > 2 be an integer.
Assume that there exist non-empty subsets B;, Bs, Bs, ..., By, of A whose elements add up to
the sums m!', m?,m3, ..., m™, respectively. Prove that A contains at least m/2 elements.

Solution. Let A = {ay,...,ax}. Assume that, on the contrary, k = |A| < m/2. Let

S; = Z a;

j:aje€B;

be the sum of elements of B;. We are given that s; = m' fori =1,...,m.
Now consider all m™ expressions of the form

Fleiy« won Cm) =181+ €385+ ot CuBmy G € 10,1, v y— 1} forall i = 1,2, .. ymu
Note that every number f(cy,...,¢,) has the form
aiar + ...+ axak, a; € {0,1,...,m(m — 1)}.

Hence, there are at most (m(m — 1) + 1)* < m* < m™ distinct values of our expressions;
therefore, at least two of them coincide.

Since s; = m‘, this contradicts the uniqueness of representation of positive integers in the
base-m system.

Comment 1. TFor other rapidly increasing sequences of sums of B;’s the similar argument also
provides lower estimates on k = |A|. For example, if the sums of B; are equal to 1!, 2!, 3!, ..., ml,
then for any fixed £ > 0 and large enough m we get k > (1/2 — 2)m. The proof uses the fact that the
combinations Y, ¢! with ¢; € {0,1,...,4} are all distinct.

Comment 2. The problem statement holds also if A4 is a set of real numbers (not necessarily integers),
the above proofs work in the real case.



