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3agaua 1. Bankara Bo Oco KOBa [Ba THIIOBH O MOHETH: alyMHHHYMCKH (obenexkysaMe A) u OpoH3eHH
(obenesxyBame ). MapujaHa uMa 7 amyMHHHYMCKH MOHETH M 72 ODOH3€HH MOHETH, NMOAPENEeH!U BO pel
BO HEKOj TIPOHM3BOJIEH Mo4eTeH penocien. Cuspup € IPOH3BOJIHA TIOAHU3A O TIOCIEOBATEIHH MOHETH OX
HCT THIT. 3a JajieH MO3WTHBEH ueni 0poj & < 2n, MapujaHa ja moBTOpyBa ClieqHATa IOCTAKa: Taa ro
HAOTra HajJOJITHOT CHHUMP KOj ja COApIKH k-TaTa MOHETA TVIEIAHO O JIEBO, W I'H MOMECTYBa CHTE MAPHUIKH
oIl OBOj CHHIIHD Ha jieBara cTpaHa ox pemor. Ha mpumep 3an = 4 u k = 4, mocrankara mO4HyBajKH O
noppenysawero AABBBABA ke Oune

AABBBABA — BBBAAABA — AAABBBBA — BBBBAAAA — BBBBAAAA — --- .

Hajau ru curte maposu (n, k) kage 1 < k < 2n TakBU LITO 3a CEKOE MOYETHO MOAPENYBabe, BO HEKO]
MOMEHT BO MOCTANKATA, PBUTE 72 MOHETH Of1 JIEBO Ke OMAAT CUTE O HCT THIL

3apaua 2. Hexa R™ ro o3HauyBa MHOKECTBOTO HA MO3WTHBHH peanHn Gpoen. Hajau ru cure dyHKImH
[ R" — R" takeu wo 3a cexoj © € R', nocron TouHo exen y € R 3a koj Basku

af(y) +yfle) <2

3apaua 3. Hexka £ e mosutuseH Len 6poj .S € KOHEYHO MHOXKECTBO OfI HelapHHU NMpocTH OpoeBH. Jlokaku
AeKa MOCTOM HajMHOTY eJIeH HauHH (/10 pOTalija 1 OCHAa CUMETPH)a) /1a Ce MOCTABAT eJIEMEHTHTE O .S OKONTy
KPY’KHHLA TaKa WITO MPOU3BOIOT O GHIIO KOM [IBA COCEH Ha KPYsKHHLATa € o obmuk 2 + x -+ k 3a Hekoj
TO3UTHBEH Le Opoj .

3agaua 4. Hexka ABCDFE e xoHBekceH meraroiHuk takoe wro BC — DFE. TlpermocraByBame aeka
noctou Touka 1’ Bo BHaTpewmHocTta Ha ABCDE saxojaT B =TD, TC =TEn ZABT = /T EA. Hexka
npaeara AB ru ceue npasute C'1) u C'I" Bo Touxu PP u (), coonsetHo. IlpeTnocraByBame eka TOUKHTE
P, B, A, () ce nocTaBeHH Ha rpasaTta BO 0BOj penocien. Heka npasara Al ru cede npasute C'D u D1 Bo
Touku R m S, coonserHo. TlpernocraByBame neka Toukute R, /) A, S ¢e mocTtaBeHn Ha npagaTa BO OBOj
penocnen. Joxaxu nexa toukute P, S, (), [ nexar Ha Kpy:KHULA.

3agaua 5. Hajou ru cure Tpojku (a, b, p) OX MO3UTHBHE ek OPOEBH, Kaje p € MPOCT Opoj U BaXKH
a’ = b+ p.

3apaua 6. Heka n e nosutusen uen 0poj. Hopoucku xeadpam e n X n tadia Ha KOja Ce HAIULIAHH CHTE
uenn 6poesu on 1 10 n? Taka WTO Ha CeKOe TONe € HANMMIIAH TOYHO efieH Opoj. [lpe momuma ce coceHu
aKo MMaar 3aefHHuKa cTpaHa, Cekoe roje Koe e COCeHO CaMo CO MOJIHbA HA KOM CE HAMMHIIAHH ITOTOIEMH
OpoeBu TO HapekyBaMe komauHda. Haeopruya e HU3a ON €IHO HITH NTOBEKE MONHbA TAKBA ITO!

(i) mpBOTO MOJIE BO HU3ATA € KOT/IHMHA,
(il) cekoe clieqHO MONIE BO HU3ATA € COCEAHO CO NPETXOAHOTO MoJe, 1
(iil) OpoeBHTE KO ce HAITMIIAHH BO MOJIHRATA O HH3aTa C€ BO PACTEUKH PemoCen.

Hajau o, kako GyHKIHja O 72, HA]MATHOT MOXKEH BKYTIEeH Opo] Ha HaropHuuM Bo Hopawuckn keazpar.



Problem 1. The Bank of Oslo issues two types of coin: aluminium (denoted A) and bronze
(denoted B). Marianne has n aluminium coins and n bronze coins, arranged in a row in some
arbitrary initial order. A chain is any subsequence of consecutive coins of the same type. Given a
fixed positive integer £ < 2n, Marianne repeatedly performs the following operation: she identifies
the longest chain containing the &** coin from the left, and moves all coins in that chain to the left end
of the row. For example, if n = 4 and k = 4, the process starting from the ordering AABBBABA
would be

AABBBABA — BBBAAABA — AAABBBBA — BBBBAAAA — BBBBAAAA — - - .

Find all pairs (n, k) with 1 < k& < 2n such that for every initial ordering, at some moment during
the process, the leftmost n coins will all be of the same type.

Problem 2. Let R denote the set of positive real numbers. Find all functions f: RT — R™ such
that for each x € R, there is exactly one y € RT satisfying

zf(y) +yf(r) <2

Problem 3. Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that
there is at most one way (up to rotation and reflection) to place the elements of S around a circle
such that the product of any two neighbours is of the form 2% 4+ z + k for some positive integer x.

Problem 4. Let ABCDE be a convex pentagon such that BC = DE. Assume that there is a
point T inside ABCDFE with TB =TD, TC = TFE and ZABT = /TFEA. Let line AB intersect
lines C'D and C'T at points P and @), respectively. Assume that the points P, B, A, () occur on their
line in that order. Let line AFE intersect lines C'D and DT at points R and S, respectively. Assume
that the points R, E, A, S occur on their line in that order. Prove that the points P, S, @, R lie on
a circle.

Problem 5. Find all triples (a, b, p) of positive integers with p prime and

a’ = bl + p.

Problem 6. Let n be a positive integer. A Nordic square is an nxn board containing all the integers
from 1 to n? so that each cell contains exactly one number. Two different cells are considered adjacent
if they share a common side. Every cell that is adjacent only to cells containing larger numbers is
called a valley. An uphill path is a sequence of one or more cells such that:

(i) the first cell in the sequence is a valley,
(ii) each subsequent cell in the sequence is adjacent to the previous cell, and
(iii) the numbers written in the cells in the sequence are in increasing order.

Find, as a function of n, the smallest possible total number of uphill paths in a Nordic square.



The Bank of Oslo issues coins made out of two types of metal: aluminium (denoted
A) and copper (denoted C'). Morgane has n aluminium coins, and n copper coins, and arranges
her 2n coins in a row in some arbitrary initial order. Given a fixed positive integer k < 2n, she
repeatedly performs the following operation: identify the largest subsequence containing the
k-th coin from the left which consists of consecutive coins made of the same metal, and move
all coins in that subsequence to the left end of the row. For example, if n = 4 and k = 4, the
process starting from the configuration AACCCAC' A would be

AACCCACA - CCCAAACA — AAACCCCA — CCCCAAAA — ---

Find all pairs (n, k) with 1 < k < 2n such that for every initial configuration, at some point

of the process there will be at most one aluminium coin adjacent to a copper coin.
(France)

Answer: All pairs (n, k) such that n < k < 2%H.

Solution. Define a block to be a maximal subsequence of consecutive coins made out of the
same metal, and let M® denote a block of b coins of metal M. The property that there is at
most one aluminium coin adjacent to a copper coin is clearly equivalent to the configuration
having two blocks, one consisting of all A-s and one consisting of all C-s.

First, notice that if & < n, the sequence A" 'C" ' AC remains fixed under the operation,
and will therefore always have 4 blocks. Next, if k > 32 Jlet a = k—n—1,b=2n—k + 1.

2
Then k > 2a + b, k > 2b + a, so the configuration A*C*A*C? will always have four blocks:

ACPAPC — CUACPAY — APCUAYCY — CPAPCUA® — ACPAPC — ...

Therefore a pair (n, k) can have the desired property only if n < k < 3”2—+1 We claim that all
such pairs in fact do have the desired property. Clearly, the number of blocks in a configuration
cannot increase, so whenever the operation is applied, it either decreases or remains constant.
We show that unless there are only two blocks, after a finite amount of steps the number of
blocks will decrease.

Consider an arbitrary configuration with ¢ > 3 blocks. We note that as £ > n, the leftmost
block cannot be moved, because in this case all n coins of one type are in the leftmost block,
meaning there are only two blocks. If a block which is not the leftmost or rightmost block is
moved, its neighbor blocks will be merged, causing the number of blocks to decrease.

Hence the only case in which the number of blocks does not decrease in the next step is if
the rightmost block is moved. If ¢ is odd, the leftmost and the rightmost blocks are made of
the same metal, so this would merge two blocks. Hence ¢ > 4 must be even. Suppose there is a
configuration of ¢ blocks with the i-th block having size a; so that the operation always moves
the rightmost block:

A% AL C s QO AT A% > A1 A O

Because the rightmost block is always moved, k > 2n + 1 — q; for all i. Because ) a; = 2n,
summing this over all ¢ we get ck > 2cn+c¢—> a; =2cn+c¢—2n,s0k = 2n+1— 27" = 37" + 1.
But this contradicts k < 3”2—+1 Hence at some point the operation will not move the rightmost
block, meaning that the number of blocks will decrease, as desired.


PC
Typewritten text
1


Let R-( be the set of positive real numbers. Find all functions f: R.qg — R such

that, for every x € R.q, there exists a unique y € R.q satisfying

wf(y) +yfle) <2
(Netherlands)

Answer: The function f(z) = 1/x is the only solution.

Solution 1. First we prove that the function f(x) = 1/z satisfies the condition of the problem
statement. The AM-GM inequality gives

TV,

Y

for every x,y > 0, with equality if and only if x = y. This means that, for every x > 0, there
exists a unique y > 0 such that

8

+

SHES

<2,

< |8

namely y = x.

Let now f: R.g — R.( be a function that satisfies the condition of the problem statement.
We say that a pair of positive real numbers (z,y) is good if zf(y) + yf(z) < 2. Observe that
if (x,y) is good, then so is (y, ).

Lemma 1.0. If (z,y) is good, then z = y.

Proof. Assume that there exist positive real numbers x # y such that (z,y) is good. The
uniqueness assumption says that y is the unique positive real number such that (z,y) is good.
In particular, (z,x) is not a good pair. This means that

vf(z) +axf(z) > 2

and thus z f(x) > 1. Similarly, (y,x) is a good pair , so (y,y) is not a good pair, which implies
yf(y) > 1. We apply the AM-GM inequality to obtain

of(y) +yf(2) = 22 f(y) - yf(2) = 2v/af(2) - yfly) > 2.

This is a contradiction, since (x, y) is a good pair.

By assumption, for any = > 0, there always exists a good pair containing x, however Lemma
1 implies that the only good pair that can contain z is (z,x), so

rfx) <1 <= f(z)< i,

for every x > 0.
In particular, with x = 1/f(¢) for t > 0, we obtain

! () <

t-f<%) <tf(t) <1

We claim that (¢,1/f(¢)) is a good pair for every t > 0. Indeed,

t-f(%)+%f(t)=t-f(%)+l<2.

Lemma 1 implies that t = 1/f(t) < f(t) = 1/t for every ¢t > 0.

Hence
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Solution 1.1. We give an alternative way to prove that f(z) = 1/ assuming f(x) < 1/x for
every x > (.

Indeed, if f(z) < 1/x then for every a > 0 with f(z) < 1/a < 1/x (and there are at least
two of them), we have

af(z) +azf(a) <1+ T oo
a
Hence (x,a) is a good pair for every such a, a contradiction. We conclude that f(z) = 1/x.

Solution 1.2. We can also conclude from Lemma 1 and f(z) < 1/x as follows.
Lemma 2. The function f is decreasing.

Proof. Let y > x > 0. Lemma 1 says that (z,y) is not a good pair, but (y,y) is. Hence

ef(y) +yf(x) >2=2yf(y) >yfly) +xf(y),

where we used y > z (and f(y) > 0) in the last inequality. This implies that f(x) > f(y),
showing that f is decreasing.

We now prove that f(x) = 1/z for all z. Fix a value of = and note that for y > = we must

have zf(z) + yf(x) > zf(y) + yf(x) > 2 (using that f is decreasing for the first step), hence

flz) > x—iy The last inequality is true for every y > x > 0. If we fix z and look for the

2

71g over all y > z, we get

supremum of the expression

fa) > —— =2

r+r T

Since we already know that f(z) < 1/z, we conclude that f(z) = 1/x.

Solution 2.0. As in the first solution, we note that f(z) = 1/x is a solution, and we set out
to prove that it is the only one. We write g(z) for the unique positive real number such that
(x,g(z)) is a good pair. In this solution, we prove Lemma 2 without assuming Lemma 1.
Lemma 2. The function f is decreasing.

Proof. Consider x < y. It holds that yf(g(y)) + g(y)f(y) < 2. Moreover, because y is the only
positive real number such that (g(y),y) is a good pair and x # y, we have zf(g(y)) +g(y) f(x) >
2. Combining these two inequalities yields

cf(g) + gW) f@)>2=yf(g) + 9()f W),

or f(g(y))(x—vy) > g(y)(f(y) — f(x)). Because g(y) and f(g(y)) are both positive while x — y
is negative, it follows that f(y) < f(z), showing that f is decreasing.

We now prove Lemma 1 using Lemma 2. Suppose that x # y but zf(y) + yf(z) < 2.
As in the first solution, we get xf(z) + xf(z) > 2 and yf(y) + yf(y) > 2, which implies
zf(z) +yf(y) > 2. Now

zf(z) +yf(y) > 22 xf(y) +yf(z)

implies (z — y)(f(z) — f(y)) > 0, which contradicts the fact that f is decreasing. So y = z is
the unique y such that (z,y) is a good pair, and in particular we have f(x) < 1/z.
We can now conclude the proof as in any of the Solutions 1.x.

Solution 3.0. As in the other solutions we verify that the function f(x) = 1/z is a solution.
We first want to prove the following lemma:

Lemma 3. For all x € R.y we actually have zf(g(z)) + g(z)f(z) = 2 (that is: the inequality
is actually an equality).



Proof. We proceed by contradiction: Assume there exists some number x > 0 such that for
y = g(x) we have zf(y) +yf(x) < 2. Then for any 0 < € < %)(;)ym we have, by uniqueness
of y, that 2 f(y + €) + (y + €) f(x) > 2. Therefore

f(y+€)>2_(y+6)f(x) :2_yf($)_€f($)

y 9 _ yf(:c) . 2—xf(y%—yf(x)

2 af(y) — yf(a)
2x

+ fy) > f(y). (1)

Furthermore, for every such e we have g(y + €)f(y + €) + (v + €)f(9(y + €)) < 2 and

€
gy +e)fly) + yf(g(y +¢€) > 2 (since y # y+¢ = g(g(y + ¢€))). This gives us the two
inequalities

2—gly+e)f(y+e and f(g(y+e>>>2—g(y+6)f(y)‘

flgly +¢€) < JTe ;

Combining these two inequalities and rearranging the terms leads to the inequality

2e < gy + o)y +e)fly) —yfly+ el

Moreover combining with the inequality (1) we obtain

2—zf(y) —yf(z)
2x

2¢ < g(y+e) [(y +e)f(y) —y ( 27

#10)) | = sty |es) - 2= =2

We now reach the desired contradiction, since for e sufficiently small we have that the left
hand side is positive while the right hand side is negative.

With this lemma it then follows that for all z,y € R., we have
zf(y) +yf(x) =2,

since for y = g(x) we have equality and by uniqueness for y # g(x) the inequality is strict.
In particular for every x € R.g and for y = x we have 2z f(x) > 2, or equivalently f(z) > 1/z
for all x € R.y. With this inequality we obtain for all z € R.

2> af(g(o) + 90)f(0) > o+ B >0

where the first inequality comes from the problem statement. Consequently each of these
inequalities must actually be an equality, and in particular we obtain f(z) = 1/z for all z € R..

Solution 4. Again, let us prove that f(z) = 1/x is the only solution. Let again g(x) be the
unique positive real number such that (z, g(x)) is a good pair.

Lemma 4. The function f is strictly convex.

Proof. Consider the function ¢5(z) = f(x) + sz for some real number s. If f is not strictly
convex, then there exist u < v and t € (0,1) such that

fltu+ (1 =t)) = tf(u) + (1 =1)f(v).

Hence

gs(tu + (1 —t)v) = tf(u) + (1 —t)f(v) + s(tu+ (1 —t)v)
= tQS(U’) + (1 - t)Qs(U>'



Let w = tu+(1—t)v and consider the case s = f(g(w))/g(w). For that particular choice of s,
the function ¢4 () has a unique minimum at z = w. However, since ¢s(w) = tqs(u)+ (1 —1t)qs(v),
it must hold ¢s(u) < gs(w) or gs(v) < gs(w), a contradiction.

Lemma 5. The function f is continuous.
Proof. Since f is strictly convex and defined on an open interval, it is also continuous.

As in Solution 1, we can prove that f(z) < 1/z. If f(z) < 1/x, then we consider the function
h(y) = xf(y) + yf(x) which is continuous. Since h(x) < 2, there exist at least two distinct
z # x such that h(z) < 2 giving that (z, z) is good pair for both values of z, a contradiction.
We conclude that f(x) = 1/x as desired.

Comment. Lemma 5 implies Lemma 3, using an argument similar as in the end of Solution 4.



Let k be a positive integer and let .S be a finite set of odd prime numbers. Prove that
there is at most one way (modulo rotation and reflection) to place the elements of S around a
circle such that the product of any two neighbors is of the form 22 + x + k for some positive
integer x.

(U.S.A.)

Solution. Let us allow the value x = 0 as well; we prove the same statement under this more
general constraint. Obviously that implies the statement with the original conditions.

Call a pair {p,q} of primes with p # ¢ special if pg = 2% + x + k for some nonnegative
integer x. The following claim is the key mechanism of the problem:

Claim.
(a) For every prime r, there are at most two primes less than r forming a special pair with 7.
(b) If such p and q exist, then {p, ¢} is itself special.

We present two proofs of the claim.

Proof 1. We are interested in integers 1 < x < r satsfying
> +r+k=0 (modr). (1)

Since there are at most two residues modulo r that can satisfy that quadratic congruence, there
are at most two possible values of x. That proves (a).
Now suppose there are primes p, ¢ with p < ¢ < r and nonnegative integers x, y such that

v+ k=pr
v 4y +k=qr

From p < ¢ < r we can see that 0 < x <y < r — 1. The numbers z,y are the two solutions of
(1); by Vieta’s formulas, we should have x + y = —1 (mod r), so z +y =r — 1.
Letting K =4k —1, X =2z + 1, and Y = 2y + 1, we obtain

dpr = X* + K,
dgqr =Y?* + K

with X +Y = 2r. Multiplying the two above equations,

16pgr? = (X* + K)(Y? + K)
= (XY - K)?+K(X+Y)?
= (XY — K)* + 4Kr?,

XY — K\?

XY-K

In particular, the number Z = =~

Z is odd, and thus

should be an integer, and so 4pqg = Z? + K. By parity,

Z—1
pg=2>+2+k wherez=T,

so {p, q} is special. O
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Proof 2. As before, we suppose that

2 +r+k= pr
v +y+k=qr
Subtracting, we have
(+y+ 1@ —y)=rlp—q).

As before, we have z +y=r—1,s0 x —y = p — ¢, and

r=s(r+p—q—1)

1
2
s(r+q—p—1).

y:
Then,
(4pr —(r+p—q—17%=2(r+p—q—1))

(4pr —(r+p—q)*+1)
(2pq+2pr+2qr—p2—q2—7’2+1),

k=pr—a2*—x=

NN TN

which is symmetric in p, g, r, so
pg=2"+z+k wherez=1(p+q—r-1),

and {p, ¢} is special. O

Now we settle the problem by induction on |S|, with |S| < 3 clear.
Suppose we have proven it for |S| = n and consider |S| = n + 1. Let r be the largest prime
in 9; the claim tells us that in any valid cycle of primes:

e the neighbors of r are uniquely determined, and

e removing r from the cycle results in a smaller valid cycle.
It follows that there is at most one valid cycle, completing the inductive step.

Comment. The statement is not as inapplicable as it might seem. For example, for k = 41, the
following 385 primes form a valid cycle of primes:

53, 4357, 104173, 65921, 36383, 99527, 193789, 2089123, 1010357, 2465263, 319169, 15559, 3449, 2647, 1951, 152297
542189, 119773, 91151, 66431, 222137, 1336799, 469069, 45613, 1047941, 656291, 355867, 146669, 874879, 2213327
305119, 3336209, 1623467, 520963, 794201, 1124833, 28697, 15683, 42557, 6571, 30607, 1238833, 835421, 2653681,
5494387, 9357539, 511223, 1515317, 8868173, 114079681, 59334071, 22324807, 3051889, 5120939, 7722467, 266239,
693809, 3931783, 1322317, 100469, 13913, 74419, 23977, 1361, 62983, 935021, 512657, 1394849, 216259, 45827,
31393, 100787, 1193989, 600979, 209543, 357661, 545141, 19681, 10691, 28867, 165089, 2118023, 6271891, 12626693,
21182429, 1100467, 413089, 772867, 1244423, 1827757, 55889, 1558873, 5110711, 1024427, 601759, 290869, 91757
951109, 452033, 136471, 190031, 4423, 9239, 15809, 24133, 115811, 275911, 34211, 877, 6653, 88001, 46261, 317741,
121523, 232439, 379009, 17827, 2699, 15937, 497729, 335539, 205223, 106781, 1394413, 4140947, 8346383, 43984757
14010721, 21133961, 729451, 4997297, 1908223, 278051, 520747, 40213, 768107, 456821, 1325351, 225961, 1501921
562763, 75527, 5519, 9337, 14153, 499, 1399, 2753, 14401, 94583, 245107, 35171, 397093, 195907, 2505623, 34680911,
18542791, 7415917, 144797293, 455529251, 86675291, 252704911, 43385123, 109207907, 204884269, 330414209,
14926789, 1300289, 486769, 2723989, 907757, 1458871, 65063, 4561, 124427, 81343, 252887, 2980139, 1496779,
3779057, 519193, 47381, 135283, 268267, 446333, 669481, 22541, 54167, 99439, 158357, 6823, 32497, 1390709,
998029, 670343, 5180017, 13936673, 2123491, 4391941, 407651, 209953, 77249, 867653, 427117, 141079, 9539, 227
1439, 18679, 9749, 25453, 3697, 42139, 122327, 712303, 244261, 20873, 52051, 589997, 4310569, 1711069, 291563
3731527, 11045429, 129098443, 64620427, 162661963, 22233269, 37295047, 1936969, 5033449, 725537, 1353973,
6964457, 2176871, 97231, 7001, 11351, 55673, 16747, 169003, 1218571, 479957, 2779783, 949609, 4975787, 1577959,
2365007, 3310753, 79349, 23189, 107209, 688907, 252583, 30677, 523, 941, 25981, 205103, 85087, 1011233, 509659,
178259, 950479, 6262847, 2333693, 305497, 3199319, 9148267, 1527563, 466801, 17033, 9967, 323003, 4724099,
14278309, 2576557, 1075021, 6462593, 2266021, 63922471, 209814503, 42117791, 131659867, 270892249, 24845153,
12104557, 3896003, 219491, 135913, 406397, 72269, 191689, 2197697, 1091273, 2727311, 368227, 1911661, 601883
892657, 28559, 4783, 60497, 31259, 80909, 457697, 153733, 11587, 1481, 26161, 15193, 7187, 2143, 21517, 10079
207643, 1604381, 657661, 126227, 372313, 2176331, 748337, 64969, 844867, 2507291, 29317943, 14677801, 36952793,
69332267, 111816223, 5052241, 8479717, 441263, 3020431, 1152751, 13179611, 38280013, 6536771, 16319657,
91442699, 30501409, 49082027, 72061511, 2199433, 167597, 317963, 23869, 2927, 3833, 17327, 110879, 285517,
40543, 4861, 21683, 50527, 565319, 277829, 687917, 3846023, 25542677, 174261149, 66370753, 9565711, 1280791,
91393, 6011, 7283, 31859, 8677, 10193, 43987, 11831, 13591, 127843, 358229, 58067, 15473, 65839, 17477, 74099
19603, 82847, 21851, 61



Let ABCDE be a convex pentagon such that BC' = DFE. Assume there is a point
T inside ABCDFE with TB =TD, TC = TFE and LTBA = ZAFET. Let lines CD and CT
intersect line AB at points P and (), respectively, and let lines C'D and DT intersect line AF
at points R and S, respectively. Assume that points P, B, A,Q and R, E, A, S respectively, are
collinear and occur on their lines in this order. Prove that the points P, S, (), R are concyclic.

(Slovakia)

Solution 1. By the conditions we have BC = DE, C'T' = ET and T'B = T'D, so the triangles
TBC and TDFE are congruent, in particular Z/BTC = ZDTE.

In triangles T'BQ and T'E'S we have ZTBQ = ZSET and ZQTB = 180°— 2/ BTC = 180°—
/DTE = ZFETS, so these triangles are similar to each other. It follows that Z/TSE = ZBQT

and
TD TB TE TC

TQ TQ TS TS
By rearranging this relation we get TD - TS =TC - TQ, so C, D, () and S are concyclic.
(Alternatively, we can get ZCQD = £CSD from the similar triangles TC'S and T'D().) Hence,
/DCQ = £DSQ.
Finally, from the angles of triangle CQP we get

LRPQ = /ZRCQ — LPQC = £DSQ — LDSR = ZRSQ,

which proves that P, @, R and S are concyclic.

! E

Solution 2. Aspn the previous solution, we note that triangles TBC and T'DFE are congruent.
Denote the intersection point of DT and BA by V, and the intersection point of CT and EFA
by W. From triangles BC'Q) and DES we then have

JVSW = /DSE = 180°Y /SED — /EDS = 180° — PAET — /TED — /EDT
= 180° — ZTBA — /TCB — /CBT = 180° — ZQCB — /CBQ = /BQC = /VQW,

meaning that V.SQW is cyclic, and in particular ZWVQ = ZW SQ. Since
/VTB=180°—-/BTC — /CTD =180° - ZCTD — /DTE = ZETW,

and /TBV = /W ET by assumption, we have that the triangles VT'B and WTFE are similar,
hence

VI BT DT
WT ET COT
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Thus C'D || VW, and angle chasing yields
LRPQ =/WVQ =/LWSQ = LRSQ,

concluding the proof.



Find all triples of positive integers (a, b, p) with p prime and

a?’ = bl + p.
(Belgium,)
Answer: (2,2,2) and (3,4, 3).

Solution 1. Clearly, a > 1. We consider three cases.

Case 1: We have a < p. Then we either have a < b which implies a | a? — b! = p leading to
a contradiction, or a > b which is also impossible since in this case we have b! < a! < a? — p,
where the last inequality is true for any p > a > 1.

Case 2: We have a > p. In this case bl = a? —p > p» — p = p! so b > p which means that
a? = b! + p is divisible by p. Hence, a is divisible by p and b! = a? — p is not divisible by p?.
This means that b < 2p. If @ < p? then a/p < p divides both a? and b! and hence it also divides
p = aP — b! which is impossible. On the other hand, the case a > p? is also impossible since
then a? > (p?)’ > 2p— D! +p = b + p.

Comment. The inequality p* > (2p — 1)! + p can be shown e.g. by using

where the inequality comes from applying AM-GM to each of the terms in square brackets.

Case 3: We have a = p. In this case b! = p? — p. One can check that the values p = 2, 3 lead
to the claimed solutions and p = 5 does not lead to a solution. So we now assume that p > 7.
We have b! = p? — p > p! and so b > p + 1 which implies that

v ((p+ 1)) < vp () = va(p = 1) "2 205(p—1) +0a(p+ 1) — 1 = 1)2(” ; !

(p—=1)-(p+ 1)),

where in the middle we used lifting-the-exponent lemma. On the RHS we have three factors of
(p+1)!. But, due to p+ 1 = 8, there are at least 4 even numbers among 1,2,...,p+ 1, so this
case is not possible.

Solution 2. The cases a # p are covered as in solution 1, as are p = 2,3. For p > 5 we have
bl = p(pP~! —1). By Zsigmondy’s Theorem there exists some prime ¢ that divides pP~! — 1
but does not divide p* — 1 for k < p — 1. It follows that ord,(p) = p — 1, and hence ¢ = 1
mod (p — 1). Note that p # ¢. But then we must have ¢ > 2p — 1, giving

Bz (2p-1)!=[1-(2p-1)]-[2-(2p=2)] - [(p= 1) - (p+ D]-p>2p-1)""p>p’ > p’—p,
a contradiction.

Solution 3. The cases a # p are covered as in solution 1, as are p = 2,3. Also b > p, as
pP > p! + p for p > 2. The cases p = 5,7, 11 are also checked manually, so assume p > 13.
Let g|p + 1 be an odd prime. By LTE

ve(P” = p) = vg ((pg)p%l - 1) = v0,(p* — 1) + v, (]%1) = vy(p+ 1),

But b > p + 1, so then v,(b!) > v,(p + 1), since ¢ < p + 1, a contradiction. This means that
p + 1 has no odd prime divisor, i.e. p + 1 = 2¥ for some k.
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Now let ¢|p — 1 be an odd prime. By LTE
vg(P” = p) = 204(p — 1)
Let d = vy(p—1). Thenp =1+ ¢%, so
V(b)) = v,(p!) = vy(q™) > ¢ = 2d

provided d > 2 and ¢ > 3, or d > 3.
If g =3,d=2and p > 13 then v,(b!) = v,(p!) = v,(13!) = 5 > 2d. Either way, d < 1.
If p>2¢+1(sop>3q asq|p—1) then

0y (b!) = vy((3¢)1) = 3,

so we must have ¢ > &, in other words, p—1 = 2¢. This implies that p = 2" —1 and ¢ = 21 —1
are both prime, but it is not possible to have two consecutive Mersenne primes.

Solution 4. Let a = p, b > p and p > 5 (the remaining cases are dealt with as in solution 3).
Modulo (p + 1)? it holds that

P—p=(p+1-1)’—p= (11)

>(p—|—1)(—1)p1+(—1)p—p =p(p+1)—1-p=p°—1#0 mod ((p+1)*).

Since p = 5, the numbers 2 and ’%1 are distinct and less than or equal to p. Therefore, p+1|p!,
and so (p+ 1)?|(p + 1)
Butb>p+1,50b =0%p’ —p mod (p+ 1)?, a contradiction.



Alice fills the fields of an n x n board with numbers from 1 to n?, each number being used
exactly once. She then counts the total number of good paths on the board. A good path is a
sequence of fields of arbitrary length (including 1) such that:

(i) The first field in the sequence is one that is only adjacent to fields with larger numbers,
(ii) Each subsequent field in the sequence is adjacent to the previous field,
(iii) The numbers written on the fields in the sequence are in increasing order.

Two fields are considered adjacent if they share a common side. Find the smallest possible
number of good paths Alice can obtain, as a function of n.

(Serbia)
Answer: 2n? — 2n + 1.

Solution.

We will call any field that is only adjacent to fields with larger numbers a well. Other fields
will be called non-wells. Let us make a second n x n board B where in each field we will write
the number of good sequences which end on the corresponding field in the original board A.
We will thus look for the minimal possible value of the sum of all entries in B.

We note that any well has just one good path ending in it, consisting of just the well, and
that any other field has the number of good paths ending in it equal to the sum of this quantity
for all the adjacent fields with smaller values, since a good path can only come into the field
from a field of lower value. Therefore, if we fill in the fields in B in increasing order with respect
to their values in A, it follows that each field not adjacent to any already filled field will receive
a 1, while each field adjacent to already filled fields will receive the sum of the numbers already
written on these adjacent fields.

We note that there is at least one well in A, that corresponding with the field with the entry
1 in A. Hence, the sum of values of fields in B corresponding to wells in A is at least 1. We
will now try to minimize the sum of the non-well entries, i.e. of the entries in B corresponding
to the non-wells in A. We note that we can ascribe to each pair of adjacent fields the value of
the lower assigned number and that the sum of non-well entries will then equal to the sum of
the ascribed numbers. Since the lower number is still at least 1, the sum of non-well entries
will at least equal the number of pairs of adjacent fields, which is 2n(n — 1). Hence, the total
minimum sum of entries in B is at least 2n(n—1) +1 = 2n? —2n + 1. The necessary conditions
for the minimum to be achieved is for there to be only one well and for no two entries in B
larger than 1 to be adjacent to each other.

We will now prove that the lower limit of 2n —2n + 1 entries can be achieved. This amounts
to finding a way of marking a certain set of squares, those that have a value of 1 in B, such
that no two unmarked squares are adjacent and that the marked squares form a connected tree
with respect to adjacency.

For n = 1 and n = 2 the markings are respectively the lone field and the L-trimino. Now,
forn>2,let s=2forn=0,2 mod 3and s =1forn=1 mod 3. We will take indices k£ and
[ to be arbitrary non-negative integers. For n > 3 we will construct a path of marked squares
in the first two columns consisting of all squares of the form (1,4) where i is not of the form
6k + s and (2, j) where j is of the form 6k + s — 1, 6k + s or 6 + s + 1. Obviously, this path is
connected. Now, let us consider the fields (2,6k + s) and (1,6k + s + 3). For each considered
field (i, 7) we will mark all squares of the form (,j) for [ > i and (i + 2k, j £ 1). One can easily
see that no set of marked fields will produce a cycle, that the only fields of the unmarked form
(1,6k+s), (2+20+1,6k+s+1)and (2+2[,6k+ s+ 3+ 1) and that no two are adjacent, since
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the consecutive considered fields are in columns of opposite parity. Examples of markings are
given for n = 3,4,5,6,7, and the corresponding constructions for A and B are given for n = 5.

n =0 e|lo/o|o|0e n=5:
n=3> ° ° ° oo ° ° A B
n= 4 o o o |0 e oo o o o [ ] [ ] ] 12 {13 |14 | 15|16 11111
n = 3 o oo [ ] [ ] ° ] e e L] ] 1124 |17]25|18 1141411
oo ° o0 [} L] [ L] L] L] 10 228 (23 1114113
° ° oo ° oo |e oo ° ° 2113141516 3l1]1]1]1
° o [ ] [ ] e o o o o o 11219720 1(1]3]1]2

Common remarks.

e The construction can be achieved in different ways. For example, it can also be done
recursively; we can complete any construction for n to a construction for n + 1.

e It is a natural idea to change the direction of the path: that way it can start anywhere,
but only can end in a well, which exactly means that we cannot extend the path. This is
just a reformulation of the problem, but can give some intuitions.
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