
ИМО2022 

 

 
 

 



Problem 1. The Bank of Oslo issues two types of coin: aluminium (denoted A) and bronze
(denoted B). Marianne has n aluminium coins and n bronze coins, arranged in a row in some
arbitrary initial order. A chain is any subsequence of consecutive coins of the same type. Given a
fixed positive integer k 6 2n, Marianne repeatedly performs the following operation: she identifies
the longest chain containing the kth coin from the left, and moves all coins in that chain to the left end
of the row. For example, if n = 4 and k = 4, the process starting from the ordering AABBBABA
would be

AABBBABA → BBBAAABA → AAABBBBA → BBBBAAAA → BBBBAAAA → · · · .

Find all pairs (n, k) with 1 6 k 6 2n such that for every initial ordering, at some moment during
the process, the leftmost n coins will all be of the same type.

Problem 2. Let R+ denote the set of positive real numbers. Find all functions f : R+ → R+ such
that for each x ∈ R+, there is exactly one y ∈ R+ satisfying

xf(y) + yf(x) 6 2.

Problem 3. Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that
there is at most one way (up to rotation and reflection) to place the elements of S around a circle
such that the product of any two neighbours is of the form x2 + x+ k for some positive integer x.

Problem 4. Let ABCDE be a convex pentagon such that BC = DE. Assume that there is a
point T inside ABCDE with TB = TD, TC = TE and ∠ABT = ∠TEA. Let line AB intersect
lines CD and CT at points P and Q, respectively. Assume that the points P , B, A, Q occur on their
line in that order. Let line AE intersect lines CD and DT at points R and S, respectively. Assume
that the points R, E, A, S occur on their line in that order. Prove that the points P , S, Q, R lie on
a circle.

Problem 5. Find all triples (a, b, p) of positive integers with p prime and

ap = b! + p.

Problem 6. Let n be a positive integer. A Nordic square is an n×n board containing all the integers
from 1 to n2 so that each cell contains exactly one number. Two different cells are considered adjacent
if they share a common side. Every cell that is adjacent only to cells containing larger numbers is
called a valley. An uphill path is a sequence of one or more cells such that:

(i) the first cell in the sequence is a valley,

(ii) each subsequent cell in the sequence is adjacent to the previous cell, and

(iii) the numbers written in the cells in the sequence are in increasing order.

Find, as a function of n, the smallest possible total number of uphill paths in a Nordic square.



The Bank of Oslo issues coins made out of two types of metal: aluminium (denoted
A) and copper (denoted C). Morgane has n aluminium coins, and n copper coins, and arranges
her 2n coins in a row in some arbitrary initial order. Given a fixed positive integer k ď 2n, she
repeatedly performs the following operation: identify the largest subsequence containing the
k-th coin from the left which consists of consecutive coins made of the same metal, and move
all coins in that subsequence to the left end of the row. For example, if n “ 4 and k “ 4, the
process starting from the configuration AACCCACA would be

AACCCACAÑ CCCAAACAÑ AAACCCCAÑ CCCCAAAAÑ ¨ ¨ ¨ .

Find all pairs pn, kq with 1 ď k ď 2n such that for every initial configuration, at some point
of the process there will be at most one aluminium coin adjacent to a copper coin.

(France)

Answer: All pairs pn, kq such that n ď k ď 3n`1
2

.

Solution. Define a block to be a maximal subsequence of consecutive coins made out of the
same metal, and let M b denote a block of b coins of metal M . The property that there is at
most one aluminium coin adjacent to a copper coin is clearly equivalent to the configuration
having two blocks, one consisting of all A-s and one consisting of all C-s.

First, notice that if k ă n, the sequence An´1Cn´1AC remains fixed under the operation,
and will therefore always have 4 blocks. Next, if k ą 3n`1

2
, let a “ k ´ n ´ 1, b “ 2n ´ k ` 1.

Then k ą 2a` b, k ą 2b` a, so the configuration AaCbAbCa will always have four blocks:

AaCbAbCa
Ñ CaAaCbAb Ñ AbCaAaCb

Ñ CbAbCaAa Ñ AaCbAbCa
Ñ . . .

Therefore a pair pn, kq can have the desired property only if n ď k ď 3n`1
2

. We claim that all
such pairs in fact do have the desired property. Clearly, the number of blocks in a configuration
cannot increase, so whenever the operation is applied, it either decreases or remains constant.
We show that unless there are only two blocks, after a finite amount of steps the number of
blocks will decrease.

Consider an arbitrary configuration with c ě 3 blocks. We note that as k ě n, the leftmost
block cannot be moved, because in this case all n coins of one type are in the leftmost block,
meaning there are only two blocks. If a block which is not the leftmost or rightmost block is
moved, its neighbor blocks will be merged, causing the number of blocks to decrease.

Hence the only case in which the number of blocks does not decrease in the next step is if
the rightmost block is moved. If c is odd, the leftmost and the rightmost blocks are made of
the same metal, so this would merge two blocks. Hence c ě 4 must be even. Suppose there is a
configuration of c blocks with the i-th block having size ai so that the operation always moves
the rightmost block:

Aa1 . . . Aac´1Cac Ñ CacAa1 . . . Aac´1 Ñ Aac´1CacAa1 . . . Cac´2 Ñ . . .

Because the rightmost block is always moved, k ě 2n` 1´ ai for all i. Because
ř

ai “ 2n,
summing this over all i we get ck ě 2cn` c´

ř

ai “ 2cn` c´ 2n, so k ě 2n` 1´ 2n
c
ě 3n

2
` 1.

But this contradicts k ď 3n`1
2

. Hence at some point the operation will not move the rightmost
block, meaning that the number of blocks will decrease, as desired.
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Let Rą0 be the set of positive real numbers. Find all functions f : Rą0 Ñ Rą0 such
that, for every x P Rą0, there exists a unique y P Rą0 satisfying

xfpyq ` yfpxq ď 2.

(Netherlands)

Answer: The function fpxq “ 1{x is the only solution.

Solution 1. First we prove that the function fpxq “ 1{x satisfies the condition of the problem
statement. The AM-GM inequality gives

x

y
`
y

x
ě 2

for every x, y ą 0, with equality if and only if x “ y. This means that, for every x ą 0, there
exists a unique y ą 0 such that

x

y
`
y

x
ď 2,

namely y “ x.
Let now f : Rą0 Ñ Rą0 be a function that satisfies the condition of the problem statement.

We say that a pair of positive real numbers px, yq is good if xfpyq ` yfpxq ď 2. Observe that
if px, yq is good, then so is py, xq.
Lemma 1.0. If px, yq is good, then x “ y.
Proof. Assume that there exist positive real numbers x ‰ y such that px, yq is good. The
uniqueness assumption says that y is the unique positive real number such that px, yq is good.
In particular, px, xq is not a good pair. This means that

xfpxq ` xfpxq ą 2

and thus xfpxq ą 1. Similarly, py, xq is a good pair , so py, yq is not a good pair, which implies
yfpyq ą 1. We apply the AM-GM inequality to obtain

xfpyq ` yfpxq ě 2
a

xfpyq ¨ yfpxq “ 2
a

xfpxq ¨ yfpyq ą 2.

This is a contradiction, since px, yq is a good pair.
By assumption, for any x ą 0, there always exists a good pair containing x, however Lemma

1 implies that the only good pair that can contain x is px, xq, so

xfpxq ď 1 ðñ fpxq ď
1

x
,

for every x ą 0.
In particular, with x “ 1{fptq for t ą 0, we obtain

1

fptq
¨ f

ˆ

1

fptq

˙

ď 1.

Hence
t ¨ f

ˆ

1

fptq

˙

ď tfptq ď 1.

We claim that pt, 1{fptqq is a good pair for every t ą 0. Indeed,

t ¨ f

ˆ

1

fptq

˙

`
1

fptq
fptq “ t ¨ f

ˆ

1

fptq

˙

` 1 ď 2.

Lemma 1 implies that t “ 1{fptq ðñ fptq “ 1{t for every t ą 0.
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Solution 1.1. We give an alternative way to prove that fpxq “ 1{x assuming fpxq ď 1{x for
every x ą 0.

Indeed, if fpxq ă 1{x then for every a ą 0 with fpxq ă 1{a ă 1{x (and there are at least
two of them), we have

afpxq ` xfpaq ă 1`
x

a
ă 2.

Hence px, aq is a good pair for every such a, a contradiction. We conclude that fpxq “ 1{x.

Solution 1.2. We can also conclude from Lemma 1 and fpxq ď 1{x as follows.
Lemma 2. The function f is decreasing.
Proof. Let y ą x ą 0. Lemma 1 says that px, yq is not a good pair, but py, yq is. Hence

xfpyq ` yfpxq ą 2 ě 2yfpyq ą yfpyq ` xfpyq,

where we used y ą x (and fpyq ą 0) in the last inequality. This implies that fpxq ą fpyq,
showing that f is decreasing.

We now prove that fpxq “ 1{x for all x. Fix a value of x and note that for y ą x we must
have xfpxq ` yfpxq ą xfpyq ` yfpxq ą 2 (using that f is decreasing for the first step), hence
fpxq ą 2

x`y
. The last inequality is true for every y ą x ą 0. If we fix x and look for the

supremum of the expression 2
x`y

over all y ą x, we get

fpxq ě
2

x` x
“

1

x
.

Since we already know that fpxq ď 1{x, we conclude that fpxq “ 1{x.

Solution 2.0. As in the first solution, we note that fpxq “ 1{x is a solution, and we set out
to prove that it is the only one. We write gpxq for the unique positive real number such that
px, gpxqq is a good pair. In this solution, we prove Lemma 2 without assuming Lemma 1.
Lemma 2. The function f is decreasing.
Proof. Consider x ă y. It holds that yfpgpyqq ` gpyqfpyq ď 2. Moreover, because y is the only
positive real number such that pgpyq, yq is a good pair and x ‰ y, we have xfpgpyqq`gpyqfpxq ą
2. Combining these two inequalities yields

xfpgpyqq ` gpyqfpxq ą 2 ě yfpgpyqq ` gpyqfpyq,

or fpgpyqqpx´ yq ą gpyqpfpyq ´ fpxqq. Because gpyq and fpgpyqq are both positive while x´ y
is negative, it follows that fpyq ă fpxq, showing that f is decreasing.

We now prove Lemma 1 using Lemma 2. Suppose that x ‰ y but xfpyq ` yfpxq ď 2.
As in the first solution, we get xfpxq ` xfpxq ą 2 and yfpyq ` yfpyq ą 2, which implies
xfpxq ` yfpyq ą 2. Now

xfpxq ` yfpyq ą 2 ě xfpyq ` yfpxq

implies px ´ yqpfpxq ´ fpyqq ą 0, which contradicts the fact that f is decreasing. So y “ x is
the unique y such that px, yq is a good pair, and in particular we have fpxq ď 1{x.

We can now conclude the proof as in any of the Solutions 1.x.

Solution 3.0. As in the other solutions we verify that the function fpxq “ 1{x is a solution.
We first want to prove the following lemma:
Lemma 3. For all x P Rą0 we actually have xfpgpxqq ` gpxqfpxq “ 2 (that is: the inequality
is actually an equality).



Proof. We proceed by contradiction: Assume there exists some number x ą 0 such that for
y “ gpxq we have xfpyq`yfpxq ă 2. Then for any 0 ă ε ă 2´xfpyq´yfpxq

2fpxq
we have, by uniqueness

of y, that xfpy ` εq ` py ` εqfpxq ą 2. Therefore

fpy ` εq ą
2´ py ` εqfpxq

x
“

2´ yfpxq ´ εfpxq

x

ą
2´ yfpxq ´ 2´xfpyq´yfpxq

2

x

“
2´ xfpyq ´ yfpxq

2x
` fpyq ą fpyq. (1)

Furthermore, for every such ε we have gpy ` εqfpy ` εq ` py ` εqfpgpy ` εqq ď 2 and
gpy ` εqfpyq ` yfpgpy ` εqq ą 2 (since y ‰ y ` ε “ gpgpy ` εqq). This gives us the two
inequalities

fpgpy ` εqq ď
2´ gpy ` εqfpy ` εq

y ` ε
and fpgpy ` εqq ą

2´ gpy ` εqfpyq

y
.

Combining these two inequalities and rearranging the terms leads to the inequality

2ε ă gpy ` εqrpy ` εqfpyq ´ yfpy ` εqs.

Moreover combining with the inequality (1) we obtain

2ε ă gpy`εq

„

py ` εqfpyq ´ y

ˆ

2´ xfpyq ´ yfpxq

2x
` fpyq

˙

“ gpy`εq

„

εfpyq ´ y
2´ xfpyq ´ yfpxq

2x



.

We now reach the desired contradiction, since for ε sufficiently small we have that the left
hand side is positive while the right hand side is negative.

With this lemma it then follows that for all x, y P Rą0 we have

xfpyq ` yfpxq ě 2,

since for y “ gpxq we have equality and by uniqueness for y ‰ gpxq the inequality is strict.
In particular for every x P Rą0 and for y “ x we have 2xfpxq ě 2, or equivalently fpxq ě 1{x

for all x P Rą0. With this inequality we obtain for all x P Rą0

2 ě xfpgpxqq ` gpxqfpxq ě
x

gpxq
`
gpxq

x
ě 2,

where the first inequality comes from the problem statement. Consequently each of these
inequalities must actually be an equality, and in particular we obtain fpxq “ 1{x for all x P Rą0.

Solution 4. Again, let us prove that fpxq “ 1{x is the only solution. Let again gpxq be the
unique positive real number such that px, gpxqq is a good pair.
Lemma 4. The function f is strictly convex.
Proof. Consider the function qspxq “ fpxq ` sx for some real number s. If f is not strictly
convex, then there exist u ă v and t P p0, 1q such that

fptu` p1´ tqvq ě tfpuq ` p1´ tqfpvq.

Hence

qsptu` p1´ tqvq ě tfpuq ` p1´ tqfpvq ` sptu` p1´ tqvq

“ tqspuq ` p1´ tqqspvq.



Let w “ tu`p1´tqv and consider the case s “ fpgpwqq{gpwq. For that particular choice of s,
the function qspxq has a unique minimum at x “ w. However, since qspwq ě tqspuq`p1´tqqspvq,
it must hold qspuq ď qspwq or qspvq ď qspwq, a contradiction.
Lemma 5. The function f is continuous.
Proof. Since f is strictly convex and defined on an open interval, it is also continuous.

As in Solution 1, we can prove that fpxq ď 1{x. If fpxq ă 1{x, then we consider the function
hpyq “ xfpyq ` yfpxq which is continuous. Since hpxq ă 2, there exist at least two distinct
z ‰ x such that hpzq ă 2 giving that px, zq is good pair for both values of z, a contradiction.
We conclude that fpxq “ 1{x as desired.

Comment. Lemma 5 implies Lemma 3, using an argument similar as in the end of Solution 4.



Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that
there is at most one way (modulo rotation and reflection) to place the elements of S around a
circle such that the product of any two neighbors is of the form x2 ` x ` k for some positive
integer x.

(U.S.A.)

Solution. Let us allow the value x “ 0 as well; we prove the same statement under this more
general constraint. Obviously that implies the statement with the original conditions.

Call a pair tp, qu of primes with p ‰ q special if pq “ x2 ` x ` k for some nonnegative
integer x. The following claim is the key mechanism of the problem:
Claim.

(a) For every prime r, there are at most two primes less than r forming a special pair with r.

(b) If such p and q exist, then tp, qu is itself special.

We present two proofs of the claim.
Proof 1. We are interested in integers 1 ď x ă r satsfying

x2 ` x` k ” 0 pmod rq. p1q

Since there are at most two residues modulo r that can satisfy that quadratic congruence, there
are at most two possible values of x. That proves (a).

Now suppose there are primes p, q with p ă q ă r and nonnegative integers x, y such that

x2 ` x` k “ pr

y2 ` y ` k “ qr.

From p ă q ă r we can see that 0 ď x ă y ď r ´ 1. The numbers x, y are the two solutions of
p1q; by Vieta’s formulas, we should have x` y ” ´1 pmod rq, so x` y “ r ´ 1.

Letting K “ 4k ´ 1, X “ 2x` 1, and Y “ 2y ` 1, we obtain

4pr “ X2
`K,

4qr “ Y 2
`K

with X ` Y “ 2r. Multiplying the two above equations,

16pqr2 “ pX2
`KqpY 2

`Kq

“ pXY ´Kq2 `KpX ` Y q2

“ pXY ´Kq2 ` 4Kr2,

4pq “

ˆ

XY ´K

2r

˙2

`K.

In particular, the number Z “ XY´K
2r

should be an integer, and so 4pq “ Z2 `K. By parity,
Z is odd, and thus

pq “ z2 ` z ` k where z “
Z ´ 1

2
,

so tp, qu is special. l
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Proof 2. As before, we suppose that

x2 ` x` k “ pr

y2 ` y ` k “ qr.

Subtracting, we have
px` y ` 1qpx´ yq “ rpp´ qq.

As before, we have x` y “ r ´ 1, so x´ y “ p´ q, and

x “ 1
2
pr ` p´ q ´ 1q

y “ 1
2
pr ` q ´ p´ 1q.

Then,

k “ pr ´ x2 ´ x “ 1
4
p4pr ´ pr ` p´ q ´ 1q2 ´ 2pr ` p´ q ´ 1qq

“ 1
4
p4pr ´ pr ` p´ qq2 ` 1q

“ 1
4
p2pq ` 2pr ` 2qr ´ p2 ´ q2 ´ r2 ` 1q,

which is symmetric in p, q, r, so

pq “ z2 ` z ` k where z “ 1
2
pp` q ´ r ´ 1q,

and tp, qu is special. l

Now we settle the problem by induction on |S|, with |S| ď 3 clear.
Suppose we have proven it for |S| “ n and consider |S| “ n` 1. Let r be the largest prime

in S; the claim tells us that in any valid cycle of primes:

• the neighbors of r are uniquely determined, and

• removing r from the cycle results in a smaller valid cycle.

It follows that there is at most one valid cycle, completing the inductive step.

Comment. The statement is not as inapplicable as it might seem. For example, for k “ 41, the
following 385 primes form a valid cycle of primes:

53, 4357, 104173, 65921, 36383, 99527, 193789, 2089123, 1010357, 2465263, 319169, 15559, 3449, 2647, 1951, 152297,
542189, 119773, 91151, 66431, 222137, 1336799, 469069, 45613, 1047941, 656291, 355867, 146669, 874879, 2213327,
305119, 3336209, 1623467, 520963, 794201, 1124833, 28697, 15683, 42557, 6571, 39607, 1238833, 835421, 2653681,
5494387, 9357539, 511223, 1515317, 8868173, 114079681, 59334071, 22324807, 3051889, 5120939, 7722467, 266239,
693809, 3931783, 1322317, 100469, 13913, 74419, 23977, 1361, 62983, 935021, 512657, 1394849, 216259, 45827,
31393, 100787, 1193989, 600979, 209543, 357661, 545141, 19681, 10691, 28867, 165089, 2118023, 6271891, 12626693,
21182429, 1100467, 413089, 772867, 1244423, 1827757, 55889, 1558873, 5110711, 1024427, 601759, 290869, 91757,
951109, 452033, 136471, 190031, 4423, 9239, 15809, 24133, 115811, 275911, 34211, 877, 6653, 88001, 46261, 317741,
121523, 232439, 379009, 17827, 2699, 15937, 497729, 335539, 205223, 106781, 1394413, 4140947, 8346383, 43984757,
14010721, 21133961, 729451, 4997297, 1908223, 278051, 529747, 40213, 768107, 456821, 1325351, 225961, 1501921,
562763, 75527, 5519, 9337, 14153, 499, 1399, 2753, 14401, 94583, 245107, 35171, 397093, 195907, 2505623, 34680911,
18542791, 7415917, 144797293, 455529251, 86675291, 252704911, 43385123, 109207907, 204884269, 330414209,
14926789, 1300289, 486769, 2723989, 907757, 1458871, 65063, 4561, 124427, 81343, 252887, 2980139, 1496779,
3779057, 519193, 47381, 135283, 268267, 446333, 669481, 22541, 54167, 99439, 158357, 6823, 32497, 1390709,
998029, 670343, 5180017, 13936673, 2123491, 4391941, 407651, 209953, 77249, 867653, 427117, 141079, 9539, 227,
1439, 18679, 9749, 25453, 3697, 42139, 122327, 712303, 244261, 20873, 52051, 589997, 4310569, 1711069, 291563,
3731527, 11045429, 129098443, 64620427, 162661963, 22233269, 37295047, 1936969, 5033449, 725537, 1353973,
6964457, 2176871, 97231, 7001, 11351, 55673, 16747, 169003, 1218571, 479957, 2779783, 949609, 4975787, 1577959,
2365007, 3310753, 79349, 23189, 107209, 688907, 252583, 30677, 523, 941, 25981, 205103, 85087, 1011233, 509659,
178259, 950479, 6262847, 2333693, 305497, 3199319, 9148267, 1527563, 466801, 17033, 9967, 323003, 4724099,
14278309, 2576557, 1075021, 6462593, 2266021, 63922471, 209814503, 42117791, 131659867, 270892249, 24845153,
12104557, 3896003, 219491, 135913, 406397, 72269, 191689, 2197697, 1091273, 2727311, 368227, 1911661, 601883,
892657, 28559, 4783, 60497, 31259, 80909, 457697, 153733, 11587, 1481, 26161, 15193, 7187, 2143, 21517, 10079,
207643, 1604381, 657661, 126227, 372313, 2176331, 748337, 64969, 844867, 2507291, 29317943, 14677801, 36952793,
69332267, 111816223, 5052241, 8479717, 441263, 3020431, 1152751, 13179611, 38280013, 6536771, 16319657,
91442699, 30501409, 49082027, 72061511, 2199433, 167597, 317963, 23869, 2927, 3833, 17327, 110879, 285517,
40543, 4861, 21683, 50527, 565319, 277829, 687917, 3846023, 25542677, 174261149, 66370753, 9565711, 1280791,
91393, 6011, 7283, 31859, 8677, 10193, 43987, 11831, 13591, 127843, 358229, 58067, 15473, 65839, 17477, 74099,
19603, 82847, 21851, 61.



Let ABCDE be a convex pentagon such that BC “ DE. Assume there is a point
T inside ABCDE with TB “ TD, TC “ TE and =TBA “ =AET . Let lines CD and CT
intersect line AB at points P and Q, respectively, and let lines CD and DT intersect line AE
at points R and S, respectively. Assume that points P,B,A,Q and R,E,A, S respectively, are
collinear and occur on their lines in this order. Prove that the points P , S, Q, R are concyclic.

(Slovakia)

Solution 1. By the conditions we have BC “ DE, CT “ ET and TB “ TD, so the triangles
TBC and TDE are congruent, in particular =BTC “ =DTE.

In triangles TBQ and TES we have =TBQ “ =SET and =QTB “ 180˝´=BTC “ 180˝´
=DTE “ =ETS, so these triangles are similar to each other. It follows that =TSE “ =BQT
and

TD

TQ
“
TB

TQ
“
TE

TS
“
TC

TS
.

By rearranging this relation we get TD ¨ TS “ TC ¨ TQ, so C, D, Q and S are concyclic.
(Alternatively, we can get =CQD “ =CSD from the similar triangles TCS and TDQ.) Hence,
=DCQ “ =DSQ.

Finally, from the angles of triangle CQP we get

=RPQ “ =RCQ´=PQC “ =DSQ´=DSR “ =RSQ,

which proves that P , Q, R and S are concyclic.

Solution 2. As in the previous solution, we note that triangles TBC and TDE are congruent.
Denote the intersection point of DT and BA by V , and the intersection point of CT and EA
by W . From triangles BCQ and DES we then have

=V SW “ =DSE “ 180˝ ´=SED ´=EDS “ 180˝ ´=AET ´=TED ´=EDT

“ 180˝ ´=TBA´=TCB ´=CBT “ 180˝ ´=QCB ´=CBQ “ =BQC “ =V QW,

meaning that V SQW is cyclic, and in particular =WVQ “ =WSQ. Since

=V TB “ 180˝ ´=BTC ´=CTD “ 180˝ ´=CTD ´=DTE “ =ETW,

and =TBV “ =WET by assumption, we have that the triangles V TB and WTE are similar,
hence

V T

WT
“
BT

ET
“
DT

CT
.

V W

S

Q

T

CP R

B

E

A

D
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Thus CD ‖ VW , and angle chasing yields

=RPQ “ =WVQ “ =WSQ “ =RSQ,

concluding the proof.



Find all triples of positive integers pa, b, pq with p prime and

ap “ b!` p.

(Belgium)

Answer: p2, 2, 2q and p3, 4, 3q.

Solution 1. Clearly, a ą 1. We consider three cases.

Case 1: We have a ă p. Then we either have a ď b which implies a | ap ´ b! “ p leading to
a contradiction, or a ą b which is also impossible since in this case we have b! ď a! ă ap ´ p,
where the last inequality is true for any p ą a ą 1.

Case 2: We have a ą p. In this case b! “ ap ´ p ą pp ´ p ě p! so b ą p which means that
ap “ b! ` p is divisible by p. Hence, a is divisible by p and b! “ ap ´ p is not divisible by p2.
This means that b ă 2p. If a ă p2 then a{p ă p divides both ap and b! and hence it also divides
p “ ap ´ b! which is impossible. On the other hand, the case a ě p2 is also impossible since
then ap ě pp2qp ą p2p´ 1q!` p ě b!` p.

Comment. The inequality p2p ą p2p´ 1q!` p can be shown e.g. by using

p2p´ 1q! “ r1 ¨ p2p´ 1qs ¨ r2 ¨ p2p´ 2qs ¨ ¨ ¨ ¨ ¨ rpp´ 1qpp` 1qs ¨ p ă

˜

ˆ

2p

2

˙2
¸p´1

¨ p “ p2p´1,

where the inequality comes from applying AM-GM to each of the terms in square brackets.

Case 3: We have a “ p. In this case b! “ pp ´ p. One can check that the values p “ 2, 3 lead
to the claimed solutions and p “ 5 does not lead to a solution. So we now assume that p ě 7.
We have b! “ pp ´ p ą p! and so b ě p` 1 which implies that

v2
`

pp` 1q!q ď v2pb!q “ v2pp
p´1
´ 1q

LTE
“ 2v2pp´ 1q` v2pp` 1q´ 1 “ v2

ˆ

p´ 1

2
¨ pp´ 1q ¨ pp` 1q

˙

,

where in the middle we used lifting-the-exponent lemma. On the RHS we have three factors of
pp` 1q!. But, due to p` 1 ě 8, there are at least 4 even numbers among 1, 2, . . . , p` 1, so this
case is not possible.

Solution 2. The cases a ‰ p are covered as in solution 1, as are p “ 2, 3. For p ě 5 we have
b! “ pppp´1 ´ 1q. By Zsigmondy’s Theorem there exists some prime q that divides pp´1 ´ 1
but does not divide pk ´ 1 for k ă p ´ 1. It follows that ordqppq “ p ´ 1, and hence q ” 1
mod pp´ 1q. Note that p ‰ q. But then we must have q ě 2p´ 1, giving

b! ě p2p´1q! “ r1 ¨ p2p´1qs ¨ r2 ¨ p2p´2qs ¨ ¨ ¨ ¨ ¨ rpp´ 1q ¨ pp` 1qs ¨p ą p2p´1qp´1p ą pp ą pp´p,

a contradiction.

Solution 3. The cases a ‰ p are covered as in solution 1, as are p “ 2, 3. Also b ą p, as
pp ą p!` p for p ą 2. The cases p “ 5, 7, 11 are also checked manually, so assume p ě 13.
Let q|p` 1 be an odd prime. By LTE

vqpp
p
´ pq “ vq

´

pp2q
p´1
2 ´ 1

¯

“ vqpp
2
´ 1q ` vq

ˆ

p´ 1

2

˙

“ vqpp` 1q.

But b ě p ` 1, so then vqpb!q ą vqpp ` 1q, since q ă p ` 1, a contradiction. This means that
p` 1 has no odd prime divisor, i.e. p` 1 “ 2k for some k.
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Now let q|p´ 1 be an odd prime. By LTE

vqpp
p
´ pq “ 2vqpp´ 1q.

Let d “ vqpp´ 1q. Then p ě 1` qd, so

vqpb!q ě vqpp!q ě vqpq
d!q ą qd´1 ě 2d

provided d ě 2 and q ą 3, or d ě 3.
If q “ 3, d “ 2 and p ě 13 then vqpb!q ě vqpp!q ě vqp13!q “ 5 ą 2d. Either way, d ď 1.
If p ą 2q ` 1 (so p ą 3q, as q|p´ 1) then

vqpb!q ě vqpp3qq!q “ 3,

so we must have q ě p
2
, in other words, p´1 “ 2q. This implies that p “ 2k´1 and q “ 2k´1´1

are both prime, but it is not possible to have two consecutive Mersenne primes.

Solution 4. Let a “ p, b ą p and p ě 5 (the remaining cases are dealt with as in solution 3).
Modulo pp` 1q2 it holds that

pp´p “ pp`1´1qp´p ”

ˆ

p

1

˙

pp`1qp´1qp´1`p´1qp´p “ ppp`1q´1´p “ p2´1 ı 0 mod
`

pp` 1q2
˘

.

Since p ě 5, the numbers 2 and p`1
2

are distinct and less than or equal to p. Therefore, p`1|p!,
and so pp` 1q2|pp` 1q!.
But b ě p` 1, so b! ” 0 ı pp ´ p mod pp` 1q2, a contradiction.



Alice fills the fields of an nˆ n board with numbers from 1 to n2, each number being used
exactly once. She then counts the total number of good paths on the board. A good path is a
sequence of fields of arbitrary length (including 1) such that:

(i) The first field in the sequence is one that is only adjacent to fields with larger numbers,

(ii) Each subsequent field in the sequence is adjacent to the previous field,

(iii) The numbers written on the fields in the sequence are in increasing order.

Two fields are considered adjacent if they share a common side. Find the smallest possible
number of good paths Alice can obtain, as a function of n.

(Serbia)

Answer: 2n2 ´ 2n` 1.

Solution.
We will call any field that is only adjacent to fields with larger numbers a well. Other fields

will be called non-wells. Let us make a second nˆ n board B where in each field we will write
the number of good sequences which end on the corresponding field in the original board A.
We will thus look for the minimal possible value of the sum of all entries in B.

We note that any well has just one good path ending in it, consisting of just the well, and
that any other field has the number of good paths ending in it equal to the sum of this quantity
for all the adjacent fields with smaller values, since a good path can only come into the field
from a field of lower value. Therefore, if we fill in the fields in B in increasing order with respect
to their values in A, it follows that each field not adjacent to any already filled field will receive
a 1, while each field adjacent to already filled fields will receive the sum of the numbers already
written on these adjacent fields.

We note that there is at least one well in A, that corresponding with the field with the entry
1 in A. Hence, the sum of values of fields in B corresponding to wells in A is at least 1. We
will now try to minimize the sum of the non-well entries, i.e. of the entries in B corresponding
to the non-wells in A. We note that we can ascribe to each pair of adjacent fields the value of
the lower assigned number and that the sum of non-well entries will then equal to the sum of
the ascribed numbers. Since the lower number is still at least 1, the sum of non-well entries
will at least equal the number of pairs of adjacent fields, which is 2npn ´ 1q. Hence, the total
minimum sum of entries in B is at least 2npn´1q`1 “ 2n2´2n`1. The necessary conditions
for the minimum to be achieved is for there to be only one well and for no two entries in B
larger than 1 to be adjacent to each other.

We will now prove that the lower limit of 2n2´2n`1 entries can be achieved. This amounts
to finding a way of marking a certain set of squares, those that have a value of 1 in B, such
that no two unmarked squares are adjacent and that the marked squares form a connected tree
with respect to adjacency.

For n “ 1 and n “ 2 the markings are respectively the lone field and the L-trimino. Now,
for n ą 2, let s “ 2 for n ” 0, 2 mod 3 and s “ 1 for n ” 1 mod 3. We will take indices k and
l to be arbitrary non-negative integers. For n ě 3 we will construct a path of marked squares
in the first two columns consisting of all squares of the form p1, iq where i is not of the form
6k ` s and p2, jq where j is of the form 6k ` s´ 1, 6k ` s or 6` s` 1. Obviously, this path is
connected. Now, let us consider the fields p2, 6k ` sq and p1, 6k ` s ` 3q. For each considered
field pi, jq we will mark all squares of the form pl, jq for l ą i and pi` 2k, j˘ 1q. One can easily
see that no set of marked fields will produce a cycle, that the only fields of the unmarked form
p1, 6k`sq, p2`2l`1, 6k`s˘1q and p2`2l, 6k`s`3˘1q and that no two are adjacent, since
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the consecutive considered fields are in columns of opposite parity. Examples of markings are
given for n “ 3, 4, 5, 6, 7, and the corresponding constructions for A and B are given for n “ 5.

1 1 1 1 1

1

3

1

2

1

1

111

1

1

3 1 1

1 4

4 41

1 2

3 4

7

5

12 13

24

9 8

6

23

18

15 1614

11 25

10

19 20

21

A : B :

n = 5 :

n = 3
n = 4

n = 5
n = 6

n = 7

3

17

22

Common remarks.

• The construction can be achieved in different ways. For example, it can also be done
recursively; we can complete any construction for n to a construction for n` 1.

• It is a natural idea to change the direction of the path: that way it can start anywhere,
but only can end in a well, which exactly means that we cannot extend the path. This is
just a reformulation of the problem, but can give some intuitions.
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