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Problem 1. Which of the following claims are true, and which of them are false? If a fact is true you should
prove it, if it isn’t, find a counterexample.

a) Let a, b, c be real numbers such that a2013 + b2013 + c2013 = 0. Then a2014 + b2014 + c2014 = 0.

b) Let a, b, c be real numbers such that a2014 + b2014 + c2014 = 0. Then a2015 + b2015 + c2015 = 0.

c) Let a, b, c be real numbers such that a2013 + b2013 + c2013 = 0 and a2015 + b2015 + c2015 = 0. Then
a2014 + b2014 + c2014 = 0.

(Matko Ljulj)

Solution. Firstly, we know that for every real number x, x2 > 0 holds.
The key idea in this problem is to realize that the expression a2014 + b2014 + c2014 is a sum of squares (which are
nonnegative numbers). Thus a2014 + b2014 + c2014 = 0 ⇐⇒ a = b = c = 0.

a) NO: It is sufficient to find three real numbers whose sum equals 0, and then take their 2013th roots. For example:
a = 2013

√
1, b = 2013

√
2, c = 2013

√
−3.

b) YES: From the key idea we conclude a = b = c = 0, and then we conclude a2015 + b2015 + c2015 = 0 + 0 + 0 = 0.

c) NO: Again we have to find a counterexample, for instance a = 1, b = 0, c = −1.

Problem 2. In each vertex of a regular n-gon A1A2...An there is a unique pawn. In each step it is allowed:

1. to move all pawns one step in the clockwise direction or

2. to swap the pawns at vertices A1 and A2.

Prove that by a finite series of such steps it is possible to swap the pawns at vertices:

a) Ai and Ai+1 for any 1 6 i < n while leaving all other pawns in their initial place

b) Ai and Aj for any 1 6 i < j 6 n leaving all other pawns in their initial place.

(Matija Bucić)

Solution. We denote a pawn that was initially at point Ai as i. We will prove part a) and then use it to show part b).

a) We apply first operation i− 1 times which will bring i and i+ 1 to points A1 and A2 and move every other pawn
i− 1 steps in clockwise direction.
We can now apply second operation to swap i and i+ 1 as they are at points A1 and A2. This does not affect the
position of any other pawn.
We now apply first operation n− i+ 1 times returning pawn k 6= i, i+ 1 to point Ak while moving pawn i to Ai+1

and pawn i+ 1 to Ai which is exactly what we wanted.

b) We present 2 possible solutions, one using induction and one not using induction.
Solution 1: By using the previous problem we can swap pawns (i, i + 1) as they are at points (Ai, Ai+1) then
(i, i+2) as they are at points (Ai+1, Ai+2) and carry on until we swap (i, j) as they were at points (Aj−1, Aj). This
brings us to the state where i is at Aj and each i+ 1 6 k 6 j is at point Ak−1.
We can now apply part a to swap j with j − 1 and similarly carry on till we swap j with i+1. This will place j at
Ai and move each i+ 1 6 k 6 j − 1 to Ak.
This brings us to the state where we swapped pawns i and j leaving others where they were just as was desired.
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Solution 2: We use induction on n for the following claim:
We can swap any two pawns 1 6 i < j 6 k.
We note that the basis is exactly part a.
We assume we the claim holds for some k.
Hence we can swap any pawns 1 6 i < j 6 k and only need to show that we can swap i and k+1 for any 1 6 i 6 k.
This follows as we can swap i and k then k and k+ 1 by part a). then again k+ 1 and i as they are now on points
Ak and Ai.

Problem 3. Let ABC be a triangle. The external and internal angle bisectors of ∠CAB intersect side BC at
D and E, respectively. Let F be a point on the segment BC. The circumcircle of triangle ADF intersects AB
and AC at I and J , respectively. Let N be the mid-point of IJ and H the foot of E on DN . Prove that E is
the incenter of triangle AHF .

(Steve Dinh)

Solution. Denote by ω the circumcircle of 4AHF .

The key idea in the problem is to introduce a new point X which we define as the second intersection of DN and ω.
We now note that the ∠JAD = ∠CAD = 90◦ ± α

2
and ∠IAD = ∠BAD = 90◦ ± α

2
where α = ∠CAB. As AD is an

external bisector of ∠CAB.
The ± signs depend on the picture and student shouldn’t be deducted any points for not noticing this.
Hence we have either ∠JAD = ∠BAD or ∠JAD + ∠IAD = 180◦ so in both cases DI = DJ .
Now as N is midpoint of IJ this means that DN is bisector of IJ and hence pasess through the centre of the. This
shows that DX is a diameter of ω and EH||IJ .
We also notice that ∠EAD = 90◦ as angle between bisectors and ∠XAD = 90◦ as DX is a diameter. Hence X,A,E are
collinear.
Now this gives us ∠DHE = ∠XHE = 90◦ and ∠XFE = ∠DFE = 90◦ as DX is a diameter of ω and finally again
∠EAD = 90◦. All this gives us that quadrilaterals XFEH and ADEH are cyclic.
Final step is to use some angle chasing to get ∠AHE = ∠ADH = ∠AXF = ∠EXF = ∠EHF where first, second and
fourth equalities are due to cyclicity of ADEH, ADXF and XFEH respectively. Also ∠DFH = ∠EFH = ∠EXH =
∠AFD = ∠AFE where the second and forth equalities are due to cyclicity of XFEH and ADXF respectively. This
shows E is the incenter of 4AFH as desired.

Problem 4. Find all infinite sequences a1, a2, a3, . . . of positive integers such that

a) anm = anam, for all positive integers n,m, and

b) there are infinitely many positive integers n such that {1, 2, . . . , n} = {a1, a2, . . . , an}.
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(Matko Ljulj)

Solution. Instead of sequence an, we’ll use notation with the function f(n) with same properties.
There exists only one such function: f(n) = n. We’ll solve the problem with many separate facts.
Fact 1: f(1) = 1.
Proof: According to a) it holds f(1) = f(1)f(1) = f(1)2. Since f(1) is positive integer, it can’t be f(1) = 0, so it must
be f(1) = 1.
Fact 2: Function f is bijective.
Proof: Firstly, we’ll show that f is injective. Let a 6= b be two arbitrary positive integers and let’s assume f(a) = f(b).
Since {1, 2, . . . , n} = {f(1), f(2), . . . , f(n)} holds for infinitely many positive integers n, it holds for some integer greater
than a and b. Then, since f(a) = f(b), set {f(1), f(2), . . . , f(n)} contains n−1 or less (different) elements, but according
to b), it contains n elements.
Secondly, we’ll show that f is surjective. Let c be arbitrary integer and let’s assume that f(n) 6= c for all positive integers
n. Similarly as in first part of proof, let’s take positive integer n such that {1, 2, . . . , n} = {f(1), f(2), . . . , f(n)} holds.
Since c ∈ {1, 2, . . . , n}, c is also element of the set {f(1), f(2), . . . , f(n)}, so there exists positive integer m 6 n such that
f(m) = c.
Fact 3: Positive integer n is prime if and only if f(n) is prime.
Proof: Let’s assume that n is prime, but f(n) isn’t. Then it must be f(n) = a′b′ = f(a)f(b) = f(ab), where a′, b′ are
positive integers greater than 1, and a, b are unique positive integers such that f(a) = a′, f(b) = b′ (they exist since f
is bijective). Since f is injective, f(1) = 1 and a′, b′ are not equal to 1, integers a, b are also not equal to 1. Since f is
injective and f(n) = f(ab), we have n = ab, so n is composite.
Let’s assume that f(n) is prime, but n isn’t. Then there exist positive integers a, b greater than one such that n = ab.
From there we have f(n) = f(ab) = f(a)f(b). Again from injectivity of f and f(1) = 1, we see that f(n) is product of
two integers greater than 1.
Fact 4: If n = pa11 pa22 . . . p

ak
k is unique factorization of positive integer n, then

f(n) = f(p1)
a1f(p2)

a2 . . . f(pk)
ak

is unique factorization of positive integer f(n).
Proof: From multiple use of the condition a) we get identity f(n) = f(p1)

a1f(p2)
a2 . . . f(pk)

ak . From Fact 3, numbers
f(pi) are prime. Since f is injective, none of two numbers f(pi) and f(pj) are equal.
Fact 5: (Technical result) For all positive integers y < x there exist positive integer n0 such that for all positive integers
n > n0 holds inequality

yn+1 < xn.

Proof: It is sufficient to prove the fact only for consecutive integers y and y+1 (because we’ll have yn+1 < (y+1)n 6 xn).
By binomial theorem we have

(y + 1)n > yn + nyn−1 = yn−1(y + n).

Thus if we define n0 = y2 − y + 1, then for all n > n0 we have

(y + 1)n > yn−1(y + n) > yn−1(y + n0) = yn−1(y2 + 1) > yn+1.

Another proof: Inequality is equivalent to (
x

y

)n
> y.

The fact follows from the fact that the expression on the left hand side is increasing and it is unbounded, while the right
hand side is fixed.
Fact 6: For all prime numbers p we have f(p) 6 p.
Proof: Let p1, p2, . . . , pn, . . . be the increasing sequence 2, 3, 5, 7, . . . of all prime numbers. Let’s take arbitrary prime
number pn. From the Fact 3 we have that f(pn) is also a prime. Let’s take positive integer n0 as the integer from
the Fact 5, for positive integers y = pn < pn+1 = x. Since b) holds for infinitely many positive integers, it holds for
some positive integer N such that {1, 2, . . . , N} = {f(1), f(2), . . . , f(N)}, and such that N > pn0

n . Let α be the greatest
positive integer such that pαn 6 N . From definitions of N and α we have α > n0.
In set {1, 2, . . . , N} we’ll observe all positive integers which are αth power of a prime number. Since N > pαn, we have
that pαn is in that set. It is easy to see that all numbers pα1 , . . . , pαn−1 are also in that set. On the contrary, number pαn+1

is not in that set, because from the definition of α and N respectively we have N < pα+1
n 6 pαn+1 (remember Fact 5 and

α > n0). Similarly, neither of the numbers pαm (for m > n) is not in the set {1, 2, . . . , N}.
Let us now observe all positive integers which are αth power of a prime and they are in the set {f(1), f(2), . . . , f(N)}.
According to Fact 4, we have that f(n) is αth power of a prime if and only if n is αth power of a prime. From that and
from previous paragraph we conclude that only such numbers are f(pα1 ), . . . , f(pαn).
Now we have {pα1 , . . . , pαn} = {f(pα1 ), . . . , f(pαn)}. Thus f(pαn) ∈ {pα1 , . . . , pαn}, so f(pαn) = pαi for some 1 6 i 6 n, which
implies f(pn)α = pαi , for some 1 6 i 6 n =⇒ f(pn) = pi 6 pn, which completes the proof.
Fact 7: For every positive integer we have f(n) = n.
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Proof: From Fact 3 we have that f(p) if and only if p is prime. Let p1, p2, . . . , pn, . . . be the increasing sequence 2, 3, 5, 7, . . .
of all prime numbers. From Fact 6 we have f(p1) 6 p1 =⇒ f(2) = 2. For n > 2, inductively and from injectivity of f
we have f(pn) > pn−1 and from Fact 6 we have f(pn) 6 pn, thus is must be f(pn) = pn, for all positive integers n.
Now for arbitrary positive integer n from Fact 4 we have

f(n) = f(p1)
a1f(p2)

a2 . . . f(pk)
ak = pa11 pa22 . . . p

ak
k = n,

which completes our proof.
Remark: We can prove Fact 6 differently (without using Fact 5). We observe numbers 1·2·. . .·n and f(1)·f(2)·. . .·f(n),
and their unique factorizations. They coincide for infinitely many positive integers n. For fixed primes p, q, if we take
sufficiently great n, we can use well-known formula for νp(n!) to prove that νp(n!) > νq(n!) for all q > p (here positive
integer n depends on p, q).
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Problem 1. Prove that there are infinitely many positive integers which can’t be expressed as ad(a) + bd(b)

where a and b are positive integers.

For positive integer a expression d(a) denotes the number of positive divisors of a. (Borna Vukorepa)

Solution. We will show that ad(a) is a square of an integer for every positive integer a.
If a is a square of an integer, any its power is also a square of an integer.
If a is not a perfect square, number of it’s positive divisors is even. We can prove this by pairing divisiors of a as d and
a
d
. A divisor d won’t be paired with itself because that would imply a = d2. This proves that d(a) is even and hence

ad(a) is a perfect square for every positive integer a.
The expression in the problem is hence a sum of two squares. Every number of the form 4t+3 can’t be written as a sum
of two squares because 0 and 1 are the only quadratic residues modulo 4, so it is impossible for a sum of two squares to
give remainder 3 modulo 4.

Problem 2. Jeck and Lisa are playing a game on an m × n board, with m,n > 2. Lisa starts by putting a
knight onto the board. Then in turn Jeck and Lisa put a new piece onto the board according to the following
rules:

1. Jeck puts a queen on an empty square that is two squares horizontally and one square vertically, or
alternatively one square horizontally and two squares vertically, away from Lisa’s last knight.

2. Lisa puts a knight on an empty square that is on the same, row, column or diagonal as Jeck’s last queen.

The one who is unable to put a piece on the board loses the game. For which pairs (m,n) does Lisa have a
winning strategy?

(Stijn Cambie)

Solution. We shall show that Lisa has a winning strategy if and only if m and n are both odd.
Lisa’s winning strategy
Suppose the game is played on an m × n board with m and n both odd. Then Lisa puts her first knight in a corner
and partitions the remaining squares of the board into ‘dominoes’. In each turn Jeck has to put a queen in one of these
dominoes and Lisa puts a knight on the other square of the domino. As the board is finite, Jeck can’t keep finding new
dominoes and so Lisa will win.
Jeck’s winning strategy
Suppose the game is played on an m×n board with m or n even. We shall show that Jeck is able to partition the board
into pairs of squares that are two squares horizontally and one square vertically, or alternatively one square horizontally
and two squares vertically, away from each other. In each turn Lisa has to put a knight in one of these and Jeck puts
a queen on the other square of the pair. As the board is finite, Lisa can’t keep finding new pairs and so Jeck will win.
Now we prove that Jeck can make the required partition.
Case 1. Suppose 4|m or 4|n. We know that any k× 4l board (k ≥ 2) can be divided into 2× 4 and 3× 4 boards (firstly
divide k× 4l board in l boards of dimensions k× 4; after that every k× 4 board divide in k

2
boards of dimensions 2× 4,

or in k−3
2

boards of dimensions 2 × 4 and one 3 × 4 board, dependently on parity of k). The following diagrams show
that every 2× 4 and every 3× 4 board allows a required partition.

1 2 3 4

3 4 1 2

1 2 3 4

3 5 1 6

2 6 4 5

1 point.
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Case 2. Suppose m,n ≡ 1, 2 (mod 4) . Any (5 + 4k)× (6 + 4l) board can be divided into a 5× 6 board, a 4k× 6 board,
a 5× 4l board and a 4k × 4l board. The following diagram shows that a 5× 6 board allows a required partition.

1 2 14 13 12 11

3 4 12 11 14 15

2 1 13 15 7 8

4 3 5 6 9 10

5 6 9 10 8 7

According to case 1 a 4k × 6 board, a 5× 4l board and a 4k × 4l board also allow a partition.
Case 3. Suppose m,n ≡ 2, 3 (mod 4). Any (3 + 4k)× (6 + 4l) board can be divided into a 3× 6 board, a 4k × 6 board,
a 3× 4l board and a 4k × 4l board. The following diagram shows that a 3× 6 board allows a required partition.

1 2 3 4 7 8

3 4 1 6 9 5

2 6 9 5 8 7

According to case 1 a 4k × 6 board, a 3× 4l board and a 4k × 4l board also allow a partition.
Case 4. Suppose m,n ≡ 2 (mod 4) .Any (6 + 4k)× (6 + 4l) board can be divided into a 6× 6 board, a 4k × 6 board, a
6 × 4l board and a 4k × 4l board. The 6 × 6 board can be partitioned in two 3 × 6 boards, which were already solved.
According to case 1 a 4k × 6 board, a 6× 4l board and a 4k × 4l board also allow a partition.

Problem 3. Let ABCD be a cyclic quadrilateral with the intersection of internal angle bisectors of ∠ABC
and ∠ADC lying on the diagonal AC. Let M be the midpoint of AC. The line parallel to BC that passes
through D intersects the line BM in E and the circumcircle of ABCD at F where F 6= D. Prove that BCEF
is a parallelogram.

(Steve Dinh)

Solution. We prove the problem in reverse as this is much more natural in this problem.

We note that if BCEF is a parallelogram then its diagonals are bisecting each other so the point G ≡ BE ∩CF should
be the midpoint of CF .
If G is the midpoint of CF then 4GBC and 4GEF are congruent as CG = GF and FE||BC gives ∠GEF = ∠GBC
and ∠GFE = ∠GCB. Hence this implies BG = GE and in particular BCEF is a paralelogram as its diagonals bisect
each other. Hence G being midpoint of CF is equivalent to our problem.
As M is the midpoint of AC by the midline theorem applied to triangle ACF we have G is the midpoint of CG if and
only if MG||AF . Hence we only need to prove BM ||AF .
Now we further notice that, using FD||BC, this is equivalent to ∠AFD = ∠MBC.
We further see that ∠AFD = ∠ABD as they are angles over the same chord. So our claim is equivalent to ∠ABD =
∠MBC.
We add that here depending on the relative position of F on the circles we might have π − ∠AFD = ∠MBC but then
π − ∠AFD = ∠ABD so the final conclusion still holds.
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We know that ∠BDA = ∠BCM as they are angles over the same chord. Now this gives us that our claim is equivalent
to the claim 4BCM ∼ 4BDA.
The same angle equality shows that this is equivalent to BC

CM
= AD

BD
. Using the fact M is the midpoint of AC we have

CM = AC
2

so our claim is equivalent to 2AD ·BC = BD ·AC.
We further have by the angle bisector theorem applied to 4ABC and 4CDA:

AB

BC
=
AI

CI
=
AD

CD

So using this our claim is equivalent to AB · CD + AD · BC = BD · AC which we can recognise to be the Ptolomeys
theorem for cyclic quadrilaterals.

Problem 4. Find all functions f : R→ R such that for all x, y ∈ R the following holds:

f
(
x2

)
+ f

(
2y2

)
= (f(x+ y) + f(y))(f(x− y) + f(y)).

(Matija Bucić)

Solution. Let P (x, y) be the assertion f
(
x2
)
+ f

(
2y2
)
= (f(x+ y) + f(y)) (f(x− y) + f(y)).

P (0, x) gives us
f(0) + f

(
2x2
)
= 2f(x) (f(x) + f(−x)) (1)

and P (0,−x) gives us
f(0) + f

(
2x2
)
= 2f(−x) (f(x) + f(−x)) . (2)

By combining (1) and (2) we get
f(x)2 = f(−x)2. (3)

P (0, 0) gives us 2f(0) = 4f(0)2, thus we have two cases:

1. f(0) = 1
2
.

P (x, 0) gives us

f(x2) =

(
f(x) +

1

2

)2

− 1

2
, (4)

while P (−x, 0) gives us

f(x2) =

(
f(−x) + 1

2

)2

− 1

2
. (5)

Combining (4) and (5) and using (3) we get
f(x) = f(−x). (6)

The assertion P
(
x2, x2

)
can be written as

f
(
x4
)
+ f

(
2x4
)
=
(
f
(
2x2
)
+ f

(
x2
))(1

2
+ f

(
x2
))

. (7)

For an arbitrary x ∈ R, let us denote a = f(x). Using (4) we get:

f
(
x2
)
=

(
a+

1

2

)2

− 1

2
,

f
(
x4
)
=

(
f
(
x2
)
+

1

2

)2

− 1

2
=

(
a+

1

2

)4

− 1

2
.

Using (1) and (6) we get:

f
(
2x2
)
= 4f(x)2 − 1

2
= 4a2 − 1

2
,

f(2x4) = 4f(x2)2 − 1

2
= 4

((
a+

1

2

)2

− 1

2

)2

− 1

2
.

Plugging the last 4 equations in (7) we get:(
a+

1

2

)4

+ 4

((
a+

1

2

)2

− 1

2

)2

− 1 =

(
4a2 − 1 +

(
a+

1

2

)2
)(

a+
1

2

)2

,

which is equivalent to (
a+

1

2

)2

(4a− 2) = 0.
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Therefore a = ± 1
2
and f(x) = ± 1

2
. Now if we use (6) in (1) we get

f(0) + f
(
2x2
)
= 4(f(x))2 = 1

so f
(
2x2
)
= 1

2
for every x, now using (6) we conclude f(x) = 1

2
for all x which is easily checked to be a solution.

2. f(0) = 0.
We immediately see using P (x, 0) that

f(x2) = f(x)2. (8)

By comparing P (x, y) and P (x,−y) and using (3) we get:

(f(y)− f(−y)) (f(x+ y) + f(x− y)) = 0.

If there exists c ∈ R such that f(c) 6= f(−c) we have for all x

f(x+ c) = −f(x− c),

Plugging in x+ c in x here gives us:
f(x+ 2c) = −f(x). (9)

Specially, f(2c) = 0. Now, P (2c− y, y):

f((2c− y)2) + f(2y2) = (f(2c) + f(y))(f(2c− 2y) + f(y)),

(−f(−y))2 + f(2y2) = f(y)f(2c− 2y) + f(y)2,

f(2y2) = f(y)f(2c− 2y) = −f(y)f(−2y) (10)

Let S(x) denote the statement (x 6= 0)∧(f(x) = f(−x) 6= 0). If there is no d ∈ R such that S(d) then f(x) = −f(−x)
for all x ∈ R. P (0, x) gives us

f(2x2) = 2f(x)(f(x) + f(−x)) = 0,

which gives us another solution f(x) = 0. Now, let us assume that there exists d ∈ R such that S(d) holds.
Obviously, S(−d) holds, as well. P (0, d) gives us

f(2d2) = 4f(d)2

and (10) gives us

f(2d2) = −f(d)f(−2d)
f(−2d) = −4f(d)
f(2d) = −4f(−d) = −4f(d) = f(−2d)

Therefore, S(2d) also holds. Inductively, we deduce that S(2nd) holds for every n ∈ N. Also, f(2nd) = (−4)nf(d),
which means that f is unbounded.
P (x, c), using the fact f(x2) = f(x)2:

f(x)2 + f(2c2) = f(x+ c)f(x− c) + f(c)(f(x+ c) + f(x− c)) + f(c)2,

and since f(x+ c) = −f(x− c) and f(2c2) = 0 (this follows from P (0, c)) we have

f(x)2 + f(x+ c)2 = f(c)2,

which implies that f is bounded and that is contradiction. Therefore, there is no c ∈ R such that f(c) = −f(c)
and therefore

f(x) = f(−x), for all x ∈ R. (11)

P (0, x):
f(2x2) = 4f(x)2 = 4f(x2).

Therefore, using (11)
f(2x) = 4f(x), for all x ∈ R. (12)

P (x, y) can now be written as follows:

f(x)2 + 3f(y)2 = f(y)(f(x+ y) + f(x− y)) + f(x+ y)f(x− y),

and similarly, P (y, x) can be written as

f(y)2 + 3f(x)2 = f(x)(f(x+ y) + f(x− y)) + f(x+ y)f(x− y).

subtracting the previous two equalities

(f(x)− f(y))(2f(x) + 2f(y)− f(x+ y)− f(x− y)) = 0. (13)

Assume that for some x, y ∈ R f(x) = f(y) = a. Let f(x+ y) = b and f(x− y) = c.

4



Now we have:
4a2 = bc+ ab+ ac (14)

P (x+ y, x− y):
f(x+ y)2 + 4f(x− y)2 = (f(2x) + f(x− y))(f(2y) + f(x− y)),

i.e.
b2 + 4c2 = (4a+ c)2 (15)

If we plug in x→ x+ y, y → x− y in (13) we get

(f(x+ y)− f(x− y))(2f(x+ y) + 2f(x− y)− f(2x)− f(2y)) = 0

i.e.
(b− c)(2b+ 2c− 8a) = 0.

If b = c (15) gives us

5b2 = (4a+ b)2,

b2 = 4a2 + 2ab

while (14) gives us
4a2 = b2 + 2ab

Thus, ab = 0 and a = b = c = 0 which implies 2a + 2a − b − c = 0. On the other hand, if b 6= c we also have
2a+ 2a− b− c = 0

Therefore, f(x) = f(y) implies 2f(x) + 2f(y) = f(x + y) + f(x − y) while f(x) 6= f(y), using (13) also implies
2f(x) + 2f(y) = f(x+ y) + f(x− y).
Therefore, for all x, y:

2f(x) + 2f(y) = f(x+ y) + f(x− y) (16)

Now we have:

f(x)2 + 3f(y)2 = f(x+ y)f(x− y) + f(y)(f(x+ y) + f(x− y))
= f(x+ y)f(x− y) + f(y)(2f(x) + 2f(y)),

(f(x)− f(y))2 = f(x+ y)f(x− y). (17)

Combining (16) i (17) gives us
(f(x+ y)− f(x)− f(y))2 = 4f(x)f(y). (18)

Let g : R → R+
0 be the function such that f(x) = g(x)2. Equations (8), (11) and (12) imply that g(x2) = g(x)2,

g(−x) = g(x) and g(2x) = 2g(x), respectively.
Equation (16) can be written as

f(x+ y)− f(x)− f(y) = −(f(x− y)− f(x)− f(y)).

If f(x+y)−f(x)−f(y) > 0, from (18) we conclude that g(x+y) = g(x)+g(y). Otherwise, f(x−y)−f(x)−f(y) > 0
and equation (18) can be rewritten as

(f(x− y)− f(x)− f(y))2 = 4f(x)f(y).

From the last equation we can conclude that g(x− y) = g(x) + g(y).
Therefore

g(x+ y) = g(x) + g(y) or g(x− y) = g(x) + g(y) (19)

and thus one of the following two equations hold:

g(x2 + y2) + 2g(xy) = g(x2 + y2 + 2xy) = g(x+ y)2 (20)

or
g(x2 + y2) + 2g(xy) = g(x2 + y2 − 2xy) = g(x− y)2 (21)

From (18) we conclude:
g(x+ y) = g(x) + g(y) or g(x+ y) = |g(x)− g(y)|. (22)

By putting −y instead of y in (22) and using g(−y) = g(y) we get:

g(x− y) = g(x) + g(y) or g(x− y) = |g(x)− g(y)|. (23)

Equations (22) and (23) imply that each of g(x − y)2 and g(x + y)2 can be written as either (g(x) + g(y))2 or
(g(x)− g(y))2. Thus, no matter whether (20) or (21) holds, one of the following equations must hold:

g(x2 + y2) + 2g(xy) = (g(x) + g(y))2 (24)
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or
g(x2 + y2) + 2g(xy) = (g(x)− g(y))2 (25)

Without loss of generality we may assume that g(x) > g(y). If g(x2+y2) = g(x)2+g(y)2 then equations (24) i (25)
imply that g(xy) = g(x)g(y) or g(xy) = −g(x)g(y) and because g is non-negative we conclude that g(xy) = g(x)g(y).
Otherwise, g(x2 + y2) = |g(x2)− g(y2)| = g(x)2 − g(y)2 and we have

g(x)2 + g(y)2 ± 2g(x)g(y) = g(x)2 − g(y)2 + 2g(xy)

and
g(y)2 ± g(x)g(y) = g(xy).

However, since g(x) > g(y) and g(xy) > 0 we get

g(y)2 + g(x)g(y) = g(xy).

Therefore, we conclude that

g(xy) = g(y)2 + g(x)g(y) (for g(y) 6 g(x)) or g(xy) = g(x)g(y). (26)

Thus,
g(xy) > g(x)g(y). (27)

If for some a, b it holds that g(a2 + b2) 6= g(a)2 + g(b)2 we may assume that g(a) > g(b) and we have g(a2 + b2) =
g(a)2 − g(b)2, and

g(ab) = g(b)2 + g(a)g(b).

Let us denote a′ = 2a and b′ = 1
2
b. We have g(a′) = 2g(a) and g(b′) = 1

2
g(b). Therefore, g(a′) > g(a) > g(b) > g(b′).

Note that g(a′b′) = g(ab) and g(a′)g(b′) = g(a)g(b). From (26) we conclude that either g(a′b′) = g(a′)g(b′) or
g(a′b′) = g(b′)2 + g(a′)g(b′). Each of these two cases is only possible when g(b) = 0. However, this implies that
g(a2 + b2) = g(a2)− g(b2) = g(a2) + g(b2) which is a contradiction.
Therefore, there are no a, b such that g(a2 + b2) 6= g(a)2 + g(b)2 and for all x, y > 0 g(x+ y) = g(x) + g(y) which,
together with the fact that g is non-negative, means that g satisfies a Cauchy functional equation whose only
solution is g(x) = g(1)x. Since g(1) = g(1)2 we get that g(1) = 1 and f(x) = x2 for all x.

Therefore there are 3 solutions which are given by

• f(x) = 0 ∀x ∈ R,
• f(x) = 1

2
∀x ∈ R and

• f(x) = x2 ∀x ∈ R.
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