
APMO 2021 Solution

1. Prove that for each real number r > 2, there are exactly two or three positive real numbers x satisfying
the equation x2 = rbxc.
Note: bxc denotes the largest integer less than or equal to x

Solution 1 Let r > 2 be a real number. Let x be a positive real number such that x2 = rbxc
with bxc = k. Since x > 0 and x2 = rk, we also have k > 0. From k ≤ x < k + 1, we get
k2 ≤ x2 = rk < k2 + 2k + 1 ≤ k2 + 3k, hence k ≤ r < k + 3, or r − 3 < k ≤ r. There are at most
three positive integers in the interval (r − 3, r]. Thus there are at most three possible values for k.
Consequently, there are at most three positive solutions to the given equation.

Now suppose that k is a positive integer in the interval [r − 2, r]. There are at least two such positive
integer. Observe that k ≤

√
rk ≤

√
(k + 2)k < k + 1 and so rk = rb

√
rkc. We conclude that the

equation x2 = rbxc has at least two positive solutions, namely x =
√
rk with k ∈ [r − 2, r].

Marking Scheme

Solution 1

(+5 points) Proving that there are at most three positive solutions to the equation.

• (+1 point) Showing that bxc ≤ r.
• (+3 point) Showing that bxc ≥ r − 3.

(+2 points) Proving that there are at least two positive solutions to the equation.

• (+1 point) Showing that x =
√
rbrc satisfy the equation.

• (+1 point) Showing that x =
√
r(brc − 1) satisfy the equation.

Partial Point

(+1 point) Proving that there are exactly three positive solutions for each integer r.

2. For a polynomial P and a positive integer n, define Pn as the number of positive integer pairs (a, b)
such that a < b ≤ n and |P (a)| − |P (b)| is divisible by n.

Determine all polynomial P with integer coefficients such that for all positive integers n, Pn ≤ 2021.

Solution There are two possible families of solutions:

• P (x) = x+ d, for some integer d ≥ −2022.

• P (x) = −x+ d, for some integer d ≤ 2022.

Suppose P satisfies the problem conditions. Clearly P cannot be a constant polynomial. Notice that
a polynomial P satifies the conditions if and only if −P also satisfies them. Hence, we may assume
the leading coefficient of P is positive. Then, there exists positive integer M such that P (x) > 0 for
x ≥M .

Lemma 1. For any positive integer n, the integers P (1), P (2), . . . , P (n) leave pairwise distinct re-
mainders upon division by n.
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Proof. Assume for contradiction that this is not the case. Then, for some 1 ≤ y < z ≤ n, there exists
0 ≤ r ≤ n − 1 such that P (y) ≡ P (z) ≡ r (mod n). Since P (an + b) ≡ P (b) (mod n) for all a, b
integers, we have P (an + y) ≡ P (an + z) ≡ r (mod n) for any integer a. Let A be a positive integer
such that An ≥ M , and let k be a positive integer such that k > 2A + 2021. Each of the 2(k − A)
integers P (An+ y), P (An+ z), P ((A+ 1)n+ y), P ((A+ 1)n+ z), . . . , P ((k− 1)n+ y), P ((k− 1)n+ z)
leaves one of the k remainders

r, n+ r, 2n+ r, . . . , (k − 1)n+ r

upon division by kn. This implies that at least 2(k − A) − k = k − 2A (possibly overlapping) pairs
leave the same remainder upon division by kn. Since k − 2A > 2021 and all of the 2(k − A) integers
are positive, we find more than 2021 pairs a, b with a < b ≤ kn for which |P (b)| − |P (a)| is divisible by
kn - hence, Pkn > 2021, a contradiction.

�

Next, we show that P is linear. Assume that this is not the case, i.e., degP ≥ 2. Then we
can find a positive integer k such that P (k) − P (1) ≥ k. This means that among the integers
P (1), P (2), . . . , P (P (k)− P (1)), two of them, namely P (k) and P (1), leave the same remainder upon
division by P (k) − P (1) - contradicting the lemma (by taking n = P (k) − P (1)). Hence, P must be
linear.

We can now write P (x) = cx+ d with c > 0. We prove that c = 1 by two ways.

Solution 1 If c ≥ 2, then P (1) and P (2) leave the same remainder upon division by c, contradicting
the Lemma. Hence c = 1.

�

Solution 2 Suppose c ≥ 2. Let n be a positive integer such that n > 2cM , n

(
1− 3

2c

)
> 2022 and

2c|n. Notice that for any positive integers i such that
3n

2c
+ i < n, P

(
3n

2c
+ i

)
− P

( n
2c

+ i
)

= n.

Hence,

(
n

2c
+ i,

3n

2c
+ i

)
satifies the condition in the question for all positive integers i such that

3n

2c
+ i < n. Hence, Pn > 2021, a contradiction. Then, c = 1.

�

If d ≤ −2023, then there are at least 2022 pairs a < b such that P (a) = P (b), namely (a, b) =
(1,−2d− 1), (2,−2d− 2), ..., (−d− 1,−d+ 1). This implies that d ≥ −2022.

Finally, we verify that P (x) = x + d satisfies the condition for any d ≥ −2022. Fix a positive integer
n. Note that ||P (b)| − |P (a)|| < n for all positive integers a < b ≤ n, so the only pairs a, b for which
|P (b)| − |P (a)| could be divisible by n are those for which |P (a)| = |P (b)|. When d ≥ −2022, there are
indeed at most 2021 such pairs.

Marking Scheme

(+5 points) Proving all P that satisfy the solution must be linear.

• (+3 point) Proving the lemma.

(+2 points) Finding all linear solutions.

• (+1 point) Proving that if P is linear, P is of the form:

– P (x) = x+ d, for some integer d ≥ −2022.

– P (x) = −x+ d, for some integer d ≤ 2022.

• (+1 point) Verifying all linear solutions.
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3. Let ABCD be a cyclic convex quadrilateral and Γ be its circumcircle. Let E be the intersection of the
diagonals AC and BD, let L be the center of the circle tangent to sides AB,BC, and CD, and let M
be the midpoint of the arc BC of Γ not containing A and D. Prove that the excenter of triangle BCE
opposite E lies on the line LM .

Solution 1

Let L be the intersection of the bisectors of ∠ABC and ∠BCD. Let N be the E-excenter of 4BCE.
Let ∠BAC = ∠BDC = α,∠DBC = β and ∠ACB = γ.

We have the following:

∠CBL =
1

2
∠ABC = 90◦ − 1

2
α− 1

2
γ and ∠BCL = 90◦ − 1

2
α− 1

2
β,

∠CBN = 90◦ − 1

2
β and ∠BCN = 90◦ − 1

2
γ,

∠MBL = ∠MBC + ∠CBL = 90◦ − 1

2
γ and ∠MCL = 90◦ − 1

2
β,

∠LCN = ∠LBN = 180◦ − 1

2
(α+ β + γ) .

Applying the sine rule to 4MBL and 4MCL we obtain

MB

ML
=
MC

ML
=

sin∠BLM
sin∠MBL

=
sin∠CLM
sin∠MCL

.

It follows that
sin∠BLM
sin∠CLM

=
sin∠MBL

sin∠MCL
=

cos(γ/2)

cos(β/2)
. (1)

Now
sin∠BLM
sin∠MLC

· sin∠LCN
sin∠NCB

· sin∠NBC
sin∠NBL

=
cos(γ/2)

cos(β/2)
·

sin(90◦ − 1
2β)

sin(90◦ − 1
2γ)

= 1.

Hence LM,BN,CN are concurrent and therefore L,M,N are collinear.

Alternative proof

We proceed similarly as above until the equation (1).

We use the following lemma.

Lemma: If π > α, β, γ, δ > 0, α+ β = γ + δ < π, and sinα
sin β = sin γ

sin δ , then α = γ and β = δ.

Proof of Lemma: Let θ = α+ β = γ + δ. Then sin(θ−β)
sin β = sin(θ−δ)

sin δ .

⇐⇒ sin(θ − β) sin δ = sin(θ − δ) sinβ

⇐⇒ (sin θ cosβ − sinβ cos θ) sin δ = (sin θ cos δ − sin δ cos θ) sinβ

⇐⇒ sin θ cosβ sin δ = sin θ cos δ sinβ

⇐⇒ sin θ sin(β − δ) = 0

Since 0 < θ < π, then sin θ 6= 0. Therefore, sin(β − δ) = 0, and we must have β = δ.

Applying the sine rule to 4NBL and 4NCL we obtain

NB

NL
=

sin∠BLN
sin∠LBN

,

NC

NL
=

sin∠CLN
sin∠LCN

.
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Since ∠LBN = ∠LCN , it follows that

sin∠BLN
sin∠CLN

=
NB

NC
=

sin∠BCN
sin∠CBN

=
cos(γ/2)

cos(β/2)
=

sin∠BLM
sin∠CLM

.

By the lemma, it is concluded that ∠BLM = ∠BLN and ∠CLM = ∠CLN . Therefore, L,M,N are
collinear.

Solution 2

Denote by N the excenter of triangle BCE opposite E. Since BL bisects ∠ABC, we have ∠CBL =
∠ABC

2
. Since M is the midpoint of arc BC, we have ∠MBC =

1

2
(∠MBC + ∠MCB) It follows by

angle chasing that

∠MBL = ∠MBC + ∠CBL =
1

2
(∠MBC + ∠MCB + ∠ABC)

=
1

2
(∠MBA+ ∠MCB) = 90◦ − ∠BCE

2
= ∠BCN.

Denote by X and Y the second intersections of lines BM and CM with the circumcircle of BCL,
respectively. Since ∠MBC = ∠MCB, we have BC ‖ XY . It suffices to show that BN ‖ XL and
CN ‖ Y L. Indeed, from this it follows that 4BCN ∼ 4XY L, and therefore a homothety with center
M that maps B to X and C to Y also maps N to L, implying that N lies on the line LM .

By symmetry, it suffices to show that CN ‖ Y L, which is equivalent to showing that ∠BCN = ∠XY L.
But we have ∠BCN = ∠MBL = ∠XBL = ∠XY L, completing the proof.

Marking Scheme

Solution 1

(+2 point) Showing the equalities: ∠MBL = ∠BCN,∠CBN = ∠MCL,∠LBN = ∠LCN .

(+5 points) Proving L,M,N are collinear.

• (+5 point) Proving that sin∠BLM
sin∠MLC ·

sin∠LCN
sin∠NCB ·

sin∠NBC
sin∠NBL = 1.

or

• (+1 point) Proving the lemma.

• (+3 point) Proving that sin∠BLM
sin∠MLC = sin∠BLN

sin∠NLC .

• (+1 point) Concluding that L,M,N are collinear from the previous equation.

(-1 point) For every minor important details

Solution 2

(+2 points) Showing the equalities: ∠LBM = ∠BCN or ∠CBN = ∠LCM .
(+1 point) Constructing X,Y as described in the solution .
(+4 points) Proving that 4XY L is homotethic with 4BCN .
(-1 point) For every minor important details.

Partial Solution: (+2 point) Claiming 4XY L homotethic with 4BCN , or similar statement.

4. Given a 32 × 32 table, we put a mouse (facing up) at the bottom left cell and a piece of cheese at
several other cells. The mouse then starts moving. It moves forward except that when it reaches a
piece of cheese, it eats a part of it, turns right, and continues moving forward. We say that a subset
of cells containing cheese is good if, during this process, the mouse tastes each piece of cheese exactly
once and then falls off the table. Show that:

4



(a) No good subset consists of 888 cells.

(b) There exists a good subset consisting of at least 666 cells.

Solution.

(a) For the sake of contradiction, assume a good subset consisting of 888 cells exists. We call those
cheese-cells and the other ones gap-cells. Observe that since each cheese-cell is visited once, each
gap-cell is visited at most twice (once vertically and once horizontally). Define a finite sequence s
whose i-th element is C if the i-th step of the mouse was onto a cheese-cell, and G if it was onto a
gap-cell. By assumption, s contains 888 C’s. Note that s does not contain a contiguous block of
4 (or more) C’s. Hence s contains at least 888/3 = 296 such C-blocks and thus at least 295 G’s.
But since each gap-cell is traversed at most twice, this implies there are at least d295/2e = 148
gap-cells, for a total of 888 + 148 = 1036 > 322 cells, a contradiction.

(b) Let Li, Xi be two 2i × 2i tiles that allow the mouse to “turn left” and “cross”, respectively. In
detail, the “turn left” tiles allow the mouse to enter at its bottom left cell facing up and to leave
at its bottom left cell facing left. The “cross” tiles allow the mouse to enter at its top right facing
down and leave at its bottom left facing left, while also to enter at its bottom left facing up and
leave at its top right facing right.

Xi Li

LiLi Li

LiXi

Xi

Li+1 Xi+1

L1 X1

(a) Basic tiles (b) Inductive construction (c) 16× 16

Note that given two 2i × 2i tiles Li, Xi we can construct larger 2i+1 × 2i+1 tiles Li+1, Xi+1

inductively as shown on in (b). The construction works because the path intersects itself (or the
other path) only inside the smaller X-tiles where it works by induction.

For a tile T , let |T | be the number of pieces of cheese in it. By straightforward induction,
|Li| = |Xi| + 1 and |Li+1| = 4 · |Li| − 1. From the initial condition |L1| = 3. We now easily
compute |L2| = 11, |L3| = 43, |L4| = 171, and |L5| = 683. Hence we get the desired subset.

Another proof of (a).

Let XN be the largest possible density of cheese-cells in a good subset on an N×N table. We will show
that XN ≤ 4/5 + o(1). Specifically, this gives X32 ≤ 817/1024. We look at the (discrete analogue) of
the winding number of the trajectory of the mouse. Since the mouse enters and leaves the table, for
every 4 right turns in its trajectory there has to be a self-crossing. But each self-crossing requires a
different empty square, hence XN ≤ 4/5.

Marking Scheme

(+2 points) Proving there is no good subset consists of 888 cells.

(+5 points) Proving there exists a good subset consisting of at least 666 cells.

• (+1 point) Constructing two 2× 2 tiles that allow the mouse to “turn left” and “cross”.

• (+3 points) Showing inductive construction.

• (+1 point) Finishing calculation.
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5. Determine all functions f : Z→ Z such that f (f(a)− b) + bf(2a) is a perfect square for all integers a
and b.

Solution 1.
There are two families of functions which satisfy the condition:

(1) f(n) =

{
0 if n is even, and

any perfect square if n is odd

(2) f(n) = n2, for every integer n.

It is straightforward to verify that the two families of functions are indeed solutions. Now, suppose
that f is any function which satisfies the condition that f(f(a) − b) + bf(2a) is a perfect square for
every pair (a, b) of integers. We denote this condition by (*). We will show that f must belong to
either Family (1) or Family (2).

Claim 1. f(0) = 0 and f(n) is a perfect square for every integer n.

Proof. Plugging (a, b) → (0, f(0)) in (*) shows that f(0)(f(0) + 1) = z2 for some integer z. Thus,
(2f(0) + 1− 2z)(2f(0) + 1 + 2z) = 1. Therefore, f(0) is either -1 or 0.

Suppose, for sake of contradiction, that f(0) = −1. For any integer a, plugging (a, b)→ (a, f(a)) implies
that f(a)f(2a)− 1 is a square. Thus, for each a ∈ Z, there exists x ∈ Z such that f(a)f(2a) = x2 + 1
This implies that any prime divisor of f(a) is either 2 or is congruent to 1 (mod 4), and that 4 - f(a),
for every a ∈ Z.

Plugging (a, b) → (0, 3) in (*) shows that f(−4) − 3 is a square. Thus, there is y ∈ Z such that
f(−4) = y2 + 3. Since 4 - f(−4), we note that f(−4) is a positive integer congruent to 3 (mod 4),
but any prime dividing f(−4) is either 2 or is congruent to 1 (mod 4). This gives a contradiction.
Therefore, f(0) must be 0.

For every integer n, plugging (a, b)→ (0,−n) in (*) shows that f(n) is a square.

Replacing b with f(a)− b, we find that for all integers a and b,

f(b) + (f(a)− b)f(2a) is a square. (**)

Now, let S be the set of all integers n such that f(n) = 0. We have two cases:

• Case 1: S is unbounded from above.

We claim that f(2n) = 0 for any integer n. Fix some integer n, and let k ∈ S with k > f(n).
Then, plugging (a, b) 7→ (n, k) in (**) gives us that f(k) + (f(n)− k)f(2n) = (f(n)− k)f(2n) is
a square. But f(n)− k < 0 and f(2n) is a square by Claim 1. This is possible only if f(2n) = 0.

In summary, f(n) = 0 whenever n is even and Claim 1 shows that f(n) is a square whenever n is
odd.

• Case 2: S is bounded from above.

Let T be the set of all integers n such that f(n) = n2. We show that T is unbounded from above.
In fact, we show that p+1

2 ∈ T for all primes p big enough.

Fix a prime number p big enough, and let n = p+1
2 . Plugging (a, b) 7→ (n, 2n) in (**) shows us

that f(2n)(f(n) − 2n + 1) is a square for any integer n. For p big enough, we have 2n 6∈ S, so
f(2n) is a non-zero square. As a result, when p is big enough, f(n) and f(n)− 2n+ 1 = f(n)− p
are both squares. Writing f(n) = k2 and f(n)− p = m2 for some k,m ≥ 0, we have

(k +m)(k −m) = k2 −m2 = p =⇒ k +m = p, k −m = 1 =⇒ k = n,m = n− 1.

Thus, f(n) = k2 = n2, giving us n = p+1
2 ∈ T .

Next, for all k ∈ T and n ∈ Z, plugging (a, b) 7→ (n, k) in (**) shows us that k2 + (f(n)− k)f(2n)
is a square. But that means (2k − f(2n))2 − (f(2n)2 − 4f(n)f(2n)) = 4(k2 + (f(n)− k)f(2n)) is
also a square. When k is large enough, we have |f(2n)2 − 4f(n)f(2n)| + 1 < |2k − f(2n)|. As a
result, we must have f(2n)2 = 4f(n)f(2n) and thus f(2n) ∈ {0, 4f(n)} for all integers n.

6



Finally, we prove that f(n) = n2 for all integers n. Fix n, and take k ∈ T big enough such that
2k 6∈ S. Then, we have f(k) = k2 and f(2k) = 4f(k) = 4k2. Plugging (a, b) 7→ (k, n) to (**)
shows us that f(n) + (k2 − n)4k2 = (2k2 − n)2 + (f(n)− n2) is a square. Since T is unbounded
from above, we can take k ∈ T such that 2k 6∈ S and also |2k2 − n| > |f(n) − n2|. This forces
f(n) = n2, giving us the second family of solution.

Another approach of Case 1.

Claim 2. One of the following is true.

(i) For every integer n, f(2n) = 0.

(ii) There exists an integer K > 0 such that for every integer n ≥ K, f(n) > 0.

Proof. Suppose that there exists an integer α 6= 0 such that f(2α) > 0. We claim that for every integer
n ≥ f(α) + 1, we have f(n) > 0.

For every n ≥ f(α) + 1, plugging (a, b)→ (α, f(α)− n) in (*) shows that f(n) + (f(α)− n)f(2α) is a
square, and in particular, is non-negative. Hence, f(n) ≥ (n− f(α))f(2α) > 0, as desired.

If f belongs to Case (i), Claim 1 shows that f belongs to Family (1).

If f belongs to Case (ii), then S is bounded from above. From Case 2 we get f(n) = n2.

Marking Scheme

(+1 point) Proving that f(n) is a perfect square for every integer n.

(+2 point) Proving Case 1 or Claim 2.

(+4 points) Proving f(n) = n2 when S is bounded from above.

• (+1 point) Proving T = {n : f(n) = n2} is unbounded.

• (+1 point) Proving f(2n) = 4f(n).
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