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KLAMKIN’S INEQUALITY
AND ITS APPLICATION
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Abstract. In this paper we consider a very useful inequality that Murray
Klamkin" proved in 1975 (Uldmkin, 1975). The inequality has many applications,
proving new inequalities included. A proof and some applications are proposed.
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Theorem 1. (Klamkin‘s inequality). Let x, y and z be real numbers such that
x+y+z>0. Then for any point P in the plane of the triangle A4BC the following
inequality holds true:
yza® +zxb’ +xyc?

x|PAf +y|PB[ +z|PC| 2 (1)
x+y+z
where a,b,c are the lengts of the sides of the triangle A44BC .
The equality in (1) holds if and only if the point P satisfies the equality
AP=—2 4B+ UC. )
xX+y+z xX+y+z
Proof: Observe the vector xPA+yPB+zPC . Evidently, the next inequality
— . —2
(xPA+yPB+zPC) >0 3)
holds true.
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Because of the properties of the scalar product, this inequality (3) has the form
2| PA[ +?|PB +2°|PC[ +2xyPA-PB+2yzPB-PC+22xPC-PA20 . (4)
By using the law of cosines, we get the equalities
2PA-PB=|PA[ +|PB] —¢*,
2PB-PC=|PB[ +|PC[’ -d’, (5)
2PC-PA=|PC[ +|PA[ -b°.
Now from (4) and (5), we obtain:
P 2 2 2 2 2 2 2 2
(x +xy+xz)|PA| +(y +yx+yz)|PB| +(z +zx+zy)|PC| —yza® —zxb* —xyc® 20 . (6)

Finally, if we divide the inequality (6) by x+y+z>0, we get the inequality (1).

Evidently, the equality holds if and only if xPA+yPB+zPC=0, i.e.
xﬁ+y(ﬂ+@)+z(ﬂ+7@)=5 , and from here we get (2) after arrangment.

In the sequel we propose several examples of application of the inequality (1).

Example 1. For any point P in the plane of the triangle A4BC the following

inequality holds true:

2 2 2
\PAF +|PBJ +|pc 2“0 FE )

Solution: This inequality follows directly from (1) when x=y=z=1.
Accounting for (2), the equality holds in (7) if and only if

ap=Lap+lac-2ux,
3 3 3

where 4, is the middpoint of the side BC . It means that the point divides the
median A4, in ratio 2 : 1 computed from the vertex of the triangle, i.e. the point
M is the centroid of the triangle.
Example 2. In every triangle A4BC the following inequality holds true:
a’+b’ +c? <9R. (8)

Solution: Put P=0 in inequality (1), where the point O is the circumcenter of
the triangle A4BC . Since |OA|=|OB|:|OC|:R , now it follows from (7) that



2,32, 2
a’+b° +c
3R’ 2—3 , L.e.

a’+b’ +c? <9R?, q.e.d.

The equality holds in (8) if and only if a=b=c, i.e. for equilateral triangle.
Example 3. For anyone point P in the plane of the triangle A4ABC the followng
inequality holds true:

a|PA|2+b|PB|2+c|PC|22abc. )

Solution: The proof follows directly from (1) when x=a,y=>b, z=c.
Because of (2), the equality in (9) holds if and only if

Bt gt b (BB T,
a+b+c a+b+c a+b+c| ¢ b

It follows now that the vector AP is collinear with the angular bisector. Analo-
gously, it follows that the vectors BP and CP are collinear with the corresponding
angular bisectors. Therefore, P=1, where I is the incenter.

Example 4. (Euler’s inequality) In every triangle A4BC the following ine-
quality holds true:
R>2r. (10)

Solution: Let P=0, where O is the circumcenter, i.e. |P4|=|04|=R,
|PB|=|OB|=R and |PC|=|OC|=R . Now it follows from (9) that

Rz(a+b+c)2abc

abc
SR>
a+b+c

and from here using the formulas abc=4RF=4Rrs and a+b+c=2s we obtain:

4Rrs

s
R>2r,q.ed.

R’ >

The equality in (10) holds for a=b=c, i.e. for the equilateral triangle.

Example 5. For any point P in the plane of the triangle A4BC the followng
inequality holds true:



sin2a|PA|2+sin2ﬁ|PB|2+sin27/|PC|222F . (11)

Solution: Put x=sin2a, y=sin2f, z=sin2y in (1). The right hand side of the
inequality (1) takes the form:

a’ sin2Bsin2y+b’ sin2y sin2a+c’ sin2a sin2

b

sin2a+sin2 B+sin2y

Applying the law of sines formulas sin2a=2sinacosa, sin2f=2sinficosf,
sin2y=2sinycosy

I6R? Sinasin,Bsinj/(sinacosﬁcos}/+cosasin/)’cosy+cosacos,8sin7/)

and the identities sin2a.+sin2f+sin2y

sin2a+sin2 f+sin2y=4sina sin fsiny
and
sina cos fcosy+cosasinBcosy+cosacos fsiny=sinasinfsiny ,

the right hand side of the inequality (1) takes the form
4R’ sina sin fsiny .

Finally, observe that
>, a b ¢ abc

Consequently, the inequality (11) is true because it follows from the inequality (1).
The equality in (11) holds if and only if P=0, which is left from for the reader
to prove it.

Example 6. Let P be an arbitrary point in the interior of the trinagle A4BC.
Prove the inequality

2 2 2
ﬂ(;z}ﬂ[;z}&(gi)y- (12)

c \a b a \b ¢ b \c¢ a

Solution: This inequality is evidently equivalent to the inequality
(a+b)|PA|2+(b+c)|PB|2+(a+c)|PC|222abc. (13)

We will now use the inequality (1).
If x=qa, y=b, z=c and x=b, y=c, z=a, we obtain two inequalities:

a|PA|2 +b|PB|2 -i—c|PC|2 >abc
and
b|PA|2 +c|PB|2 +a|PC|2 >abc .



Summing the two inequalites, we obtain the following inequality
|\PA[* (a+b)+|PB[ (b+c)+|PC[ (a+c)>2abe

Which in fact is the inequality (13), thas proving (12).
The equality holds in (12) if and only if is a=b=c , i.e. for equilateral triangle.

NOTES
1. Murray Klamkin (1921 —2004) is a Canadian mathematician, born in USA
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