KLAMKIN'S INEQUALITY
 AND ITS APPLICATION

Šefket Arslanagić, Daniela Zubović
University of Sarajevo (Bosnia and Herzegovina)

Abstract

In this paper we consider a very useful inequality that Murray Klamkin ${ }^{1)}$ proved in 1975 (Uldmkin, 1975). The inequality has many applications, proving new inequalities included. A proof and some applications are proposed.

Keywords: Klamkin‘s inequality; triangle sides; scalar product; law of cosines; application; examples

Theorem 1. (Klamkin's inequality). Let x, y and z be real numbers such that $x+y+z>0$. Then for any point P in the plane of the triangle $\triangle A B C$ the following inequality holds true:

$$
\begin{equation*}
x|P A|^{2}+y|P B|^{2}+z|P C|^{2} \geq \frac{y z a^{2}+z x b^{2}+x y c^{2}}{x+y+z}, \tag{1}
\end{equation*}
$$

where a, b, c are the lengts of the sides of the triangle $\triangle A B C$.
The equality in (1) holds if and only if the point P satisfies the equality

$$
\begin{equation*}
\overrightarrow{A P}=\frac{y}{x+y+z} \overrightarrow{A B}+\frac{z}{x+y+z} \overrightarrow{A C} . \tag{2}
\end{equation*}
$$

Proof: Observe the vector $x \overrightarrow{P A}+y \overrightarrow{P B}+z \overrightarrow{P C}$. Evidently, the next inequality
holds true.

$$
\begin{equation*}
(x \overrightarrow{P A}+y \overrightarrow{P B}+z \overrightarrow{P C})^{2} \geq 0 \tag{3}
\end{equation*}
$$

Because of the properties of the scalar product, this inequality (3) has the form

$$
\begin{equation*}
x^{2}|P A|^{2}+y^{2}|P B|^{2}+z^{2}|P C|^{2}+2 x y \overrightarrow{P A} \cdot \overrightarrow{P B}+2 y z \overrightarrow{P B} \cdot \overrightarrow{P C}+2 z x \overrightarrow{P C} \cdot \overrightarrow{P A} \geq 0 \tag{4}
\end{equation*}
$$

By using the law of cosines, we get the equalities

$$
\left.\begin{array}{l}
2 \overrightarrow{P A} \cdot \overrightarrow{P B}=|P A|^{2}+|P B|^{2}-c^{2}, \\
2 \overrightarrow{P B} \cdot \overrightarrow{P C}=|P B|^{2}+|P C|^{2}-a^{2}, \tag{5}\\
2 \overrightarrow{P C} \cdot \overrightarrow{P A}=|P C|^{2}+|P A|^{2}-b^{2}
\end{array}\right\}
$$

Now from (4) and (5), we obtain:
$\left(x^{2}+x y+x z\right)|P A|^{2}+\left(y^{2}+y x+y z\right)|P B|^{2}+\left(z^{2}+z x+z y\right)|P C|^{2}-y z a^{2}-z x b^{2}-x y c^{2} \geq 0$.
Finally, if we divide the inequality (6) by $x+y+z>0$, we get the inequality (1).
Evidently, the equality holds if and only if $x \overrightarrow{P A}+y \overrightarrow{P B}+z \overrightarrow{P C}=\overrightarrow{0}$, i.e. $x \overrightarrow{P A}+y(\overrightarrow{P A}+\overrightarrow{A B})+z(\overrightarrow{P A}+\overrightarrow{A C})=\overrightarrow{0}$, and from here we get (2) after arrangment.

In the sequel we propose several examples of application of the inequality (1).
Example 1. For any point P in the plane of the triangle $\triangle A B C$ the following inequality holds true:

$$
\begin{equation*}
|P A|^{2}+|P B|^{2}+|P C|^{2} \geq \frac{a^{2}+b^{2}+c^{2}}{3} . \tag{7}
\end{equation*}
$$

Solution: This inequality follows directly from (1) when $x=y=z=1$.
Accounting for (2), the equality holds in (7) if and only if

$$
\overrightarrow{A P}=\frac{1}{3} \overrightarrow{A B}+\frac{1}{3} \overrightarrow{A C}=\frac{2}{3} \overrightarrow{A A_{1}},
$$

where A_{l} is the middpoint of the side $B C$. It means that the point divides the median $A A_{l}$ in ratio $2: 1$ computed from the vertex of the triangle, i.e. the point M is the centroid of the triangle.

Example 2. In every triangle $\triangle A B C$ the following inequality holds true:

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \leq 9 R^{2} . \tag{8}
\end{equation*}
$$

Solution: Put $P \equiv O$ in inequality (1), where the point O is the circumcenter of the triangle $\triangle A B C$. Since $|O A|=|O B|=|O C|=R$, now it follows from (7) that

$$
\begin{gathered}
3 R^{2} \geq \frac{a^{2}+b^{2}+c^{2}}{3}, \text { i.e. } \\
a^{2}+b^{2}+c^{2} \leq 9 R^{2}, \text { q.e.d. }
\end{gathered}
$$

The equality holds in (8) if and only if $a=b=c$, i.e. for equilateral triangle.
Example 3. For anyone point P in the plane of the triangle $\triangle A B C$ the followng inequality holds true:

$$
\begin{equation*}
a|P A|^{2}+b|P B|^{2}+c|P C|^{2} \geq a b c \tag{9}
\end{equation*}
$$

Solution: The proof follows directly from (1) when $x=a, y=b, z=c$. Because of (2), the equality in (9) holds if and only if

$$
\overrightarrow{A P}=\frac{b}{a+b+c} \overrightarrow{A B}+\frac{c}{a+b+c}=\frac{b c}{a+b+c}\left(\frac{\overrightarrow{A B}}{c}+\frac{\overrightarrow{A C}}{b}\right)
$$

It follows now that the vector $\overrightarrow{A P}$ is collinear with the angular bisector. Analogously, it follows that the vectors $\overrightarrow{B P}$ and $\overrightarrow{C P}$ are collinear with the corresponding angular bisectors. Therefore, $P \equiv I$, where I is the incenter.

Example 4. (Euler's inequality) In every triangle $\triangle A B C$ the following inequality holds true:

$$
\begin{equation*}
R \geq 2 r \tag{10}
\end{equation*}
$$

Solution: Let $P \equiv O$, where O is the circumcenter, i.e. $|P A|=|O A|=R$, $|P B|=|O B|=R$ and $|P C|=|O C|=R$. Now it follows from (9) that

$$
\begin{aligned}
& R^{2}(a+b+c) \geq a b c \\
& \Rightarrow R^{2} \geq \frac{a b c}{a+b+c}
\end{aligned}
$$

and from here using the formulas $a b c=4 R F=4 R r s$ and $a+b+c=2 s$ we obtain:

$$
\begin{gathered}
R^{2} \geq \frac{4 R r s}{2 s}, \text { i.e. } \\
R \geq 2 r, \text { q.e.d. }
\end{gathered}
$$

The equality in (10) holds for $a=b=c$, i.e. for the equilateral triangle.
Example 5. For any point P in the plane of the triangle $\triangle A B C$ the followng inequality holds true:

$$
\begin{equation*}
\sin 2 \alpha|P A|^{2}+\sin 2 \beta|P B|^{2}+\sin 2 \gamma|P C|^{2} \geq 2 F \tag{11}
\end{equation*}
$$

Solution: Put $x=\sin 2 \alpha, y=\sin 2 \beta, z=\sin 2 \gamma$ in (1). The right hand side of the inequality (1) takes the form:

$$
\frac{a^{2} \sin 2 \beta \sin 2 \gamma+b^{2} \sin 2 \gamma \sin 2 \alpha+c^{2} \sin 2 \alpha \sin 2 \beta}{\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma}
$$

Applying the law of sines formulas $\sin 2 \alpha=2 \sin \alpha \cos \alpha, \sin 2 \beta=2 \sin \beta \cos \beta$, $\sin 2 \gamma=2 \sin \gamma \cos \gamma$

$$
\underline{16 R^{2} \sin \alpha \sin \beta \sin \gamma(\sin \alpha \cos \beta \cos \gamma+\cos \alpha \sin \beta \cos \gamma+\cos \alpha \cos \beta \sin \gamma)}
$$

and the identities $\quad \sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma$

$$
\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=4 \sin \alpha \sin \beta \sin \gamma
$$

and

$$
\sin \alpha \cos \beta \cos \gamma+\cos \alpha \sin \beta \cos \gamma+\cos \alpha \cos \beta \sin \gamma=\sin \alpha \sin \beta \sin \gamma
$$

the right hand side of the inequality (1) takes the form

$$
4 R^{2} \sin \alpha \sin \beta \sin \gamma
$$

Finally, observe that

$$
4 R^{2} \cdot \frac{a}{2 R} \cdot \frac{b}{2 R} \cdot \frac{c}{2 R}=\frac{a b c}{2 R}=2 F .
$$

Consequently, the inequality (11) is true because it follows from the inequality (1).
The equality in (11) holds if and only if $P \equiv O$, which is left from for the reader to prove it.

Example 6. Let P be an arbitrary point in the interior of the trinagle $\triangle A B C$. Prove the inequality

$$
\begin{equation*}
\frac{|P A|^{2}}{c}\left(\frac{1}{a}+\frac{l}{b}\right)+\frac{|P B|^{2}}{a}\left(\frac{1}{b}+\frac{l}{c}\right)+\frac{|P C|^{2}}{b}\left(\frac{1}{c}+\frac{l}{a}\right) \geq 2 . \tag{12}
\end{equation*}
$$

Solution: This inequality is evidently equivalent to the inequality

$$
\begin{equation*}
(a+b)|P A|^{2}+(b+c)|P B|^{2}+(a+c)|P C|^{2} \geq 2 a b c \tag{13}
\end{equation*}
$$

We will now use the inequality (1).
If $x=a, y=b, z=c$ and $x=b, y=c, z=a$, we obtain two inequalities:
and

$$
a|P A|^{2}+b|P B|^{2}+c|P C|^{2} \geq a b c
$$

$$
b|P A|^{2}+c|P B|^{2}+a|P C|^{2} \geq a b c
$$

Summing the two inequalites, we obtain the following inequality

$$
|P A|^{2}(a+b)+|P B|^{2}(b+c)+|P C|^{2}(a+c) \geq 2 a b c,
$$

Which in fact is the inequality (13), thas proving (12).
The equality holds in (12) if and only if is $a=b=c$, i.e. for equilateral triangle.

NOTES

1. Murray Klamkin (1921-2004) is a Canadian mathematician, born in USA

REFERENCES

Arslanagić, Š. (2005). Matematika za nadarene. Sarajevo: Bosanska riječ. Bottema, O., R. Ž. Djordjević, R. R. Janić, D. S. Mitrinović \&P. M. Vasić. (1969). Geometric Inequalities. Groningen: (The Netherlands)WoltersNoordhoff Publishing.
Grozdev, S. (2007). For High Achievements in Mathematics: The Bulgaria Experience (Theory and Practice). Sofia: ADE (ISBN 978-954-92139-1-1).
Klamkin, M. S. (1975). Geometric Inequalities via the Polar moment of Inertia. Math. Mag., 48, $44-46$.
Sergeeva, T., M. Shabanova \& S. Grozdev (2014). Foundations of Dynamic Geometry. Moscow: ASOU (in Russian).

