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Abstract. In this paper we consider a very useful inequality that Murray 
Klamkin1) proved in 1975 (Uldmkin, 1975). The inequality has many applications, 
proving new inequalities included. A proof and some applications are proposed.
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Theorem 1. (Klamkin‘s inequality). Let x, y  and z  be real numbers such that 
x y z 0+ + > . Then for any point P  in the plane of the triangle ABC∆  the following 
inequality holds true:

 
2 2 2

2 2 2 yza zxb xycx PA y PB z PC
x y z
+ +

+ + ≥
+ +

 , (1)

where a,b,c  are the lengts of the sides of the triangle ABC∆ .
The equality in (1) holds if and only if  the point P satisfies the equality

 y zAP AB AC
x y z x y z

= +
+ + + +

  

. (2)

Proof: Observe the vector xPA yPB zPC+ +
  

. Evidently, the next inequality

 ( )2xPA yPB zPC 0+ + ≥
  

  (3)
holds true.
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Because of the properties of the scalar product, this inequality (3) has the form

 2 2 22 2 2x PA y PB z PC 2xyPA PB 2yzPB PC 2zxPC PA 0+ + + ⋅ + ⋅ + ⋅ ≥
     

 . (4)

By using the law of cosines, we get the equalities
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2PB PC PB PC a ,

2PC PA PC PA b .

⋅ = + −

⋅ = + − 


⋅ = + − 

 

 

 

  (5)

Now from (4) and (5), we obtain:

( ) ( ) ( )2 2 22 2 2 2 2 2x xy xz PA y yx yz PB z zx zy PC yza zxb xyc 0+ + + + + + + + − − − ≥ .   (6)

Finally, if we divide the inequality (6) by x y z 0+ + > , we get the inequality (1).
Evidently, the equality holds if and only if  xPA yPB zPC 0+ + =

   

, i.e. 
( ) ( )xPA y PA AB z PA AC 0+ + + + =

     

, and from here we get (2) after arrangment.
In the sequel we propose several examples of application of the inequality (1).

Example 1. For any point P  in the plane of the triangle ABC∆  the following 
inequality holds true:

 
2 2 2

2 2 2 a b cPA PB PC
3

+ +
+ + ≥ . (7)

Solution: This inequality follows directly from (1) when x y z 1= = = .
Accounting for (2), the equality holds in (7) if and only if 

 1
1 1 2AP AB AC AA
3 3 3

= + =
   

,

where 1A  is the middpoint of the side BC . It means that the point divides the 
median 1AA  in ratio 2 : 1 computed from the vertex of the triangle, i.e. the point 
M is the centroid of the triangle.

Example 2. In every triangle ABC∆  the following inequality holds true:

 2 2 2 2a b c 9R+ + ≤ . (8)

Solution: Put P O≡ in inequality (1), where the point O  is the circumcenter of 
the triangle ABC∆ . Since OA OB OC R= = = , now it follows from (7) that



 
2 2 2

2 a b c3R
3

+ +
≥ , i.e.

 2 2 2 2a b c 9R+ + ≤ , q.e.d.

The equality holds in (8) if and only if a b c= = , i.e. for equilateral triangle.
Example 3. For anyone point P in the plane of the triangle ABC∆  the followng 

inequality holds true:

 2 2 2a PA b PB c PC abc+ + ≥ . (9)

Solution: The proof follows directly from (1) when x a, y b, z c= = = .
Because of (2), the equality in (9) holds if and only if 

 b c bc AB ACAP AB
a b c a b c a b c c b

 
= + = +  + + + + + +  

 

 

.

It follows now that the vector AP


 is collinear with the angular bisector. Analo-
gously, it follows that the vectors BP



 and CP


 are collinear with the corresponding 
angular bisectors. Therefore,  P I≡ , where I  is the incenter.

Example 4. (Euler’s inequality) In every triangle ABC∆  the following ine-
quality holds true:

 R 2r≥ . (10)

Solution: Let P O≡ , where O  is the circumcenter, i.e. PA OA R= = , 
PB OB R= =   and PC OC R= = . Now it follows from (9) that

 
( )2

2

R a b c abc

abcR ,
a b c

+ + ≥

⇒ ≥
+ +

 

and from here using the formulas abc 4RF 4Rrs= =  and a b c 2s+ + =  we obtain:

 2 4RrsR
2s

≥ , i.e.

 R 2r≥ , q.e.d. 

The equality in (10) holds for a b c= = , i.e. for the equilateral triangle.

Example 5. For any point P  in the plane of the triangle ABC∆  the followng 
inequality holds true:



 2 2 2sin2 PA sin2 PB sin2 PC 2Fα β γ+ + ≥ . (11)

Solution: Put  x sin2 , y sin2 , z sin2α β γ= = = in (1). The right hand side of the 
inequality (1) takes the form:

 
2 2 2a sin2 sin2 b sin2 sin2 c sin2 sin2

sin2 sin2 sin2
β γ γ α α β

α β γ
+ +

+ +
, 

Applying the law of sines formulas sin2 2 sin cosα α α= , sin2 2 sin cosβ β β= , 
sin2 2 sin cosγ γ γ=

 ( )216R sin sin sin sin cos cos cos sin cos cos cos sin
sin2 sin2 sin2

α β γ α β γ α β γ α β γ
α β γ

+ +
+ +

 
and the identities
 sin2 sin2 sin2 4 sin sin sinα β γ α β γ+ + =  
and
 sin cos cos cos sin cos cos cos sin sin sin sinα β γ α β γ α β γ α β γ+ + = ,

the right hand side of the inequality (1) takes the form 
 24R sin sin sinα β γ .
Finally, observe that
 2 a b c abc4R 2F

2R 2R 2R 2R
⋅ ⋅ ⋅ = = .

Consequently, the inequality (11) is true because it follows from the inequality (1).
The equality in (11) holds if and only if  P O≡ , which is left from for the reader 

to prove it.

Example 6. Let P  be an arbitrary point in the interior of the trinagle ABC∆ . 
Prove the inequality

 
2 2 2PA PB PC1 1 1 1 1 1 2

c a b a b c b c a
     + + + + + ≥     
     

. (12)

Solution: This inequality is evidently equivalent to the inequality

 ( ) ( ) ( )2 2 2a b PA b c PB a c PC 2abc+ + + + + ≥ . (13)

We will now use the inequality (1).
If x a, y b, z c= = =  and x b, y c, z a= = = , we obtain two inequalities:

 2 2 2a PA b PB c PC abc+ + ≥  
and
 2 2 2b PA c PB a PC abc+ + ≥ .



Summing the two inequalites, we obtain the following inequality

 ( ) ( ) ( )2 2 2PA a b PB b c PC a c 2abc+ + + + + ≥ , 

Which in fact is the inequality (13), thas proving (12).
The equality holds in (12) if and only if is a b c= =  , i.e. for equilateral triangle.

NOTES
1. Murray Klamkin (1921 – 2004) is a Canadian mathematician, born in USA
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