
  EGMOnd aan Zee
  Netherlands  2020

European Girls’ Mathematical Olympiad

Април 2020

Задача 1. За природните броеви a0, a1, a2, . . . , a3030 важи следнава релациjа

2an+2 = an+1 + 4an, n = 0, 1, 2, . . . , 3028.

Докажи дека наjмалку еден од броевите a0, a1, a2, . . . , a3030 е делив со 22020.

Задача 2. Наjди ги сите подредени 2020-торки (x1, x2, . . . , x2020) од ненегативни реални броеви,
за кои истовремено важат следните три услови:

(i) x1 ≤ x2 ≤ . . . ≤ x2020;

(ii) x2020 ≤ x1 + 1;

(iii) Постои пермутациjа (y1, y2, . . . , y2020) на 2020-торката (x1, x2, . . . , x2020) така што

2020∑

i=1

(
(xi + 1)(yi + 1)

)2
= 8

2020∑

i=1

x3i .

Забелешка: Пермутациjа на подредена n-торка е нова n-торка, со истата должина, коjа ги
содржи истите вредности, но запишани во произволен редослед. На пример, (2, 1, 2) е пермута-
циjа на (1, 2, 2), а и двете троjки се пермутации на троjката (2, 2, 1). Секоjа подредена n-торка
е пермутациjа самата на себе.

Задача 3. Нека ABCDEF е конвексен шестаголник таков што ∠A = ∠C = ∠E, ∠B = ∠D =
∠F и симетралите на внатрешните агли ∠A, ∠C и ∠E минуваат низ иста точка.

Докажи дека симетралите на останатите три внатрешни агли ∠B, ∠D и ∠F исто така минуваат
низ иста точка.

Забелешка: ∠A = ∠FAB и слично за останатите внатрешни агли на шестаголникот.

Language: Macedonian Време: 4 часа и 30 минути
Секоjа задача носи 7 поени

За да осигураме фер натпревар вреден за паметење, Ве молиме не зборуваjте и не
се повикуваjте на задачите на интернет, ниту пак на социjалните мрежи, заклучно
со сабота, 18 Април, 23:59 часот.

Language: Macedonian

Day: 1
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Задача 4. Една пермутациjа на броевите 1, 2, . . . , m се нарекува „свежа“ ако не постои при-
роден броj k < m, таков што првите k броеви во пермутациjата се броевите 1, 2, . . . , k, во некоj
редослед. Нека fm е броjот на свежи пермутации на природните броеви 1, 2, . . . , m.

Докажи дека за секоj n ≥ 3 важи fn ≥ n · fn−1.

Забелешка: За m = 4, пермутациjата e (3, 1, 4, 2) е свежа, додека пермутациjата (2, 3, 1, 4) не
е свежа.

Задача 5. Даден е триаголник ABC во коj ∠BCA > 90◦. Опишаната кружница Γ околу три-
аголникот ABC има радиус R. Во внатрешноста на отсечката AB постои точка P за коjа што
должините на отсечките PB и PC се еднакви, а должината на отсечката PA е R. Симетралата
на отсечката PB jа сече опишаната кружница Γ во точките D и E.

Докажи дека точката P е центар на впишаната кружница во триаголникот CDE.

Задача 6. Нека m > 1 е природен броj. Низата a1, a2, a3, . . . е дефинирана со: a1 = a2 = 1,
a3 = 4, и за секоj n ≥ 4, важи

an = m(an−1 + an−2) − an−3.

Одреди ги сите природни броеви m за кои секоj член на низата е полн квадрат.

Language: Macedonian Време: 4 часа и 30 минути
Секоjа задача носи 7 поени

За да осигураме фер натпревар вреден за паметење, Ве молиме не зборуваjте и не
се повикуваjте на задачите на интернет, ниту пак на социjалните мрежи, заклучно
со сабота, 18 Април, 23:59 часот.

Language: Macedonian

Day: 2



Solutions of EGMO 2020
Problem 1. The positive integers a0, a1, a2, . . . , a3030 satisfy

2an+2 = an+1 + 4an for n = 0, 1, 2, . . . , 3028.

Prove that at least one of the numbers a0, a1, a2, . . . , a3030 is divisible by 22020.

Problem 2. Find all lists (x1, x2, . . . , x2020) of non-negative real numbers such that the fol-
lowing three conditions are all satisfied:

(i) x1 ≤ x2 ≤ . . . ≤ x2020;

(ii) x2020 ≤ x1 + 1;

(iii) there is a permutation (y1, y2, . . . , y2020) of (x1, x2, . . . , x2020) such that

2020∑
i=1

(
(xi + 1)(yi + 1)

)2 = 8
2020∑
i=1

x3
i .

A permutation of a list is a list of the same length, with the same entries, but the entries are
allowed to be in any order. For example, (2, 1, 2) is a permutation of (1, 2, 2), and they are both
permutations of (2, 2, 1). Note that any list is a permutation of itself.

Problem 3. Let ABCDEF be a convex hexagon such that ∠A = ∠C = ∠E and ∠B = ∠D =
∠F and the (interior) angle bisectors of ∠A, ∠C, and ∠E are concurrent.
Prove that the (interior) angle bisectors of ∠B, ∠D, and ∠F must also be concurrent.

Note that ∠A = ∠FAB. The other interior angles of the hexagon are similarly described.

Problem 4. A permutation of the integers 1, 2, . . . , m is called fresh if there exists no positive
integer k < m such that the first k numbers in the permutation are 1, 2, . . . , k in some order.
Let fm be the number of fresh permutations of the integers 1, 2, . . . , m.
Prove that fn ≥ n · fn−1 for all n ≥ 3.

For example, if m = 4, then the permutation (3, 1, 4, 2) is fresh, whereas the permutation
(2, 3, 1, 4) is not.

Problem 5. Consider the triangle ABC with ∠BCA > 90◦. The circumcircle Γ of ABC has
radius R. There is a point P in the interior of the line segment AB such that PB = PC and
the length of PA is R. The perpendicular bisector of PB intersects Γ at the points D and E.
Prove that P is the incentre of triangle CDE.

Problem 6. Let m > 1 be an integer. A sequence a1, a2, a3, . . . is defined by a1 = a2 = 1,
a3 = 4, and for all n ≥ 4,

an = m(an−1 + an−2)− an−3.

Determine all integers m such that every term of the sequence is a square.
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Solutions to Problem 1
There are different ways of solving the problem. All of these use some induction argument.
Most of these proofs use one of the following two lemmas. In many places, they can be used
interchangeably.

Lemma. If a, b, c, d are integers with 2c = b+ 4a and 2d = c+ 4b, then 4 | b.

Proof: From 2d = c+ 4b we have that c is even, and then from 2c = b+ 4a it follows that b is
divisible by 4.

Lemma’. For 0 ≤ n ≤ 3030, denote by vn the largest integer such that 2vn divides an. We claim
the following:

(∗) vn+1 ≥ min(vn + 2, vn+2 + 1) for n = 0, 1, . . . , 3028.

Proof: Let 0 ≤ n ≤ 3028 and let s = min(vn + 2, vn+2 + 1). Then s ≤ vn + 2 implies 2s | 4an
and s ≤ vn+2 + 1 implies 2s | 2an+2. It follows that an+1 = 2an+2 − 4an is also divisible by 2s,
hence s ≤ vn+1, which proves (∗).

Here are different ways of working out the induction argument that is crucial in the proofs.

Induction part, alternative A.

Statement: For k = 0, 1, . . . , 1010, the terms ak, ak+1, . . . , a3030−2k are all divisible by 22k.

Reformulation of the statement using notation vn is the largest integer such that 2vn divides an:
we have vn ≥ k for any n satisfying d 1

2ke ≤ n ≤ 3030− k. Here dxe denotes the smallest integer
not smaller than x.

Proof 1: We proceed by induction on k. For k = 0 the statement is obvious, so, for the inductive
step, suppose that ak, ak+1, . . . , a3030−2k are all divisible by 22k. Apply the Lemma with

(a, b, c, d) =
(ai−1

22k ,
ai
22k ,

ai+1

22k ,
ai+2

22k

)
for i = k + 1, k + 2, . . . , 3030 − 2k − 2. We obtain that ai

22k is divisible by 4 (and hence ai is
divisible by 22k+2) for i = k + 1, k + 2, . . . , i = 3030− 2k − 2. This completes the induction.
For k = 1010 we obtain that a1010 is divisible by 22020, and the solution is complete. �

Remark. Remark, notice that by replacing 1010 with n (and hence, 2n with 2020 and 3n with
3030, this argument works, too. Then the claim is the following: if a0, a1, . . . , a3n are integers
that satisfy the recursion in the problem, then an is divisible by 22n.

Proof 2: We will show by two step induction to k ≥ 0: we have vn ≥ k for any n satisfying
d 1

2ke ≤ n ≤ 3030 − k. Here dxe denotes the smallest integer not smaller than x. Plugging in
k = 2020 and n = 1010 will give the desired result.
The case k = 0 is trivial, since the vn are non-negative. For the case k = 1, let 1 ≤ n ≤ 3029,
then vn ≥ min(vn−1 + 2, vn+1 + 1) ≥ 1.
Suppose we have it proven for some k ≥ 1 and for k − 1. Let d 1

2 (k + 1)e ≤ n ≤ 3030− (k + 1).
Then d 1

2 (k − 1)e ≤ n − 1 ≤ 3030 − (k − 1) and also d 1
2ke ≤ n + 1 ≤ 3030 − k. By induction

hypothesis we have vn−1 ≥ k−1 and vn+1 ≥ k. Then vn ≥ min(vn−1 +2, vn+1 +1) ≥ k, finishing
the induction. �

Proof 3: The notation is the same as in alternative A1, but the induction step has two steps.
We use the lemma stated in the beginning as the first step. Assume now that 22k | ak, . . . , a3030−2k
for some k ≥ 1. We claim that then 22k+2 | ak+1, . . . , a3030−2(k+1). Notice first that any i on
the interval [k + 1, 3030 − 2k − 1] satisfies the equation 2ai+1 = ai + 4ai−2, we have 22k+1 | ai.
Furthermore, if i ∈ [k + 1, 3030 − 2k − 2], we have 22k+2 | ai since 22k+1 | ai+1 and hence
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22k+2 | 2ai+1 and 22k+2 | 4ai−1. �

Induction part, alternative B.

Statement: if a0, a1, . . . , a3n are integers that satisfy the recursion in the problem, then an is
divisible by 22n. The problem statement follows for n = 1010.

Proof: The base case of the induction is exactly the Lemma we just proved. Now, for the
inductive step, suppose that the statement holds for n = k − 1, and consider integers a0, a1,
. . . , a3k that satisfy the recursion. By applying the induction hypothesis to the four sequences
(a0, a1, . . . , a3k−3), (a1, a2, . . . , a3k−2), (a2, a3, . . . , a3k−1) and (a3, a4, . . . , a3k), we find that ak−1,
ak, ak+1 and ak+2 are all divisible by 22k−2. If we now apply the lemma to ak−1/22k−2, ak/22k−2,
ak+1/22k−2 and ak+2/22k−2, we find that ak/22k−2 is divisible by 4, so ak is divisible by 22k, as
desired. �

Induction part, alternative C.

Statement: Given positive integers a0, a1, a2, . . . , a3k such that

2an+2 = an+1 + 4an for n = 0, 1, 2, . . . , 3k − 2,

then 22k divides at least one of the numbers a0, a1, a2, . . . , a3k.

Proof: The case k = 1 is obtained from Lemma.

Suppose that for some k ≥ 1, our claim is true for any sequence of 3k + 1 positive integers that
satisfy similar defining relations. Then consider a sequence of 3(k + 1) + 1 = 3k + 4 positive
integers a0, a1, a2, . . . , a3k+3 such that

2an+2 = an+1 + 4an for n = 0, 1, 2, . . . , 3k + 1.

Then, we see that all numbers a1, a2,. . . , a3k+2 are even, and so we may set ai = 2bi for some
positive integers bi for i = 1, 2, . . . , 3k + 2. Then 2a2 = a1 + 4a0 becomes

2b2 = b1 + 2a0.

Note that
2bn+2 = bn+1 + 4bn for n = 1, 2, . . . , 3k.

Hence the positive integers b1, b2, . . . , b3k+1 are even, and so we may write bi = 2ci for some
positive integers ci for i = 1, 2, . . . , 3k + 1. Then 2b2 = b1 + 2a0 becomes 2c2 = c1 + a0, which
does not give us anything. However, we have

2cn+2 = cn+1 + 4cn for n = 1, 2, . . . , 3k − 1.

So the sequence of positive integers c1, c2, . . . , c3k+1 is a sequence of 3k+1 positive integers that
satisfy the defining relations. By the inductive hypothesis, 22k divides at least one of the numbers
c1, c2, . . . , c3k+1. Since ai = 4ci for all i = 1, 2, . . . , 3k+1, it follows that 4 ·22k = 22(k+1) divides
at least one of the numbers a1, . . . , a3k+1. This completes the induction, and hence the proof. �

Induction part, alternative D.

Statement: If v0, v1, . . . , v3030 is a sequence of non-negative integers satisfying (∗), there must
be a k such that vk ≥ 2020. In fact, we will show that v1010 ≥ 2020.

These proofs use Lemma’.
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Proof 1: We will show by induction on k that vn ≥ 2k for k ≤ n ≤ 3030− 2k and vn ≥ 2k+ 1
for k + 1 ≤ n ≤ 3030− 2k − 1. For k = 1010, the first statement implies that v1010 ≥ 2020.
For k = 0 the first statement vn ≥ 0 is obvious, and the second statement follows using (∗): we
have vn ≥ vn+1 + 1 ≥ 1 for 1 ≤ n ≤ 3029.
Now suppose that the inductive hypothesis holds for k = `: we have vn ≥ 2` for ` ≤ n ≤ 3030−2`
and vn ≥ 2` + 1 for ` + 1 ≤ n ≤ 3030 − 2` − 1. For the first statement, consider an n with
`+ 1 ≤ n ≤ 3030− 2`− 2. Then using (∗) and the inductive hypothesis, we obtain

vn ≥ min(vn−1 + 2, vn+1 + 1) ≥ min(2`+ 2, 2`+ 2) = 2`+ 2

because vn−1 ≥ 2` (as ` ≤ n−1 ≤ 3030−2`) and vn+1 ≥ 2`+1 (as `+1 ≤ n+1 ≤ 3030−2`−1).
Similarly, for `+ 2 ≤ n ≤ 3030− 2`− 3 we find

vn ≥ min(vn−1 + 2, vn+1 + 1) ≥ min(2`+ 3, 2`+ 3) = 2`+ 3

because vn−1 ≥ 2` + 1 (as ` + 1 ≤ n − 1 ≤ 3030 − 2` − 1) and vn+1 ≥ 2` + 2 (as ` + 1 ≤ n ≤
3030− 2`− 2). This completes the induction. �

Proof 2: The inequality v1010 ≥ min(v1009 + 2, v1011 + 1) gives us two cases to consider: either
v1010 ≥ v1009 + 2 or v1010 ≥ v1011 + 1.
Suppose first that v1010 ≥ v1009 + 2. In this case we will show by induction on k that v1010−k ≥
v1009−k + 2 for 0 ≤ k ≤ 1009. The case k = 0 is assumed, so suppose that v1010−` ≥ v1009−` + 2
holds for some 0 ≤ ` < 1009. We obtain

v1009−` ≥ min(v1010−` + 1, v1008−` + 2) ≥ min(v1009−` + 3, v1008−` + 2).

Because v1009−` < v1009−` + 3 we must have v1009−` ≥ v1008−` + 2, completing the induction.
We conclude that

v1010 ≥ v1009 + 2 ≥ v1008 + 4 ≥ · · · ≥ v0 + 2020 ≥ 2020.

In the second case, we show by induction on k that v1010+k ≥ v1011+k + 1 for 0 ≤ k ≤ 2019.
Again, the base case k = 0 is assumed, so suppose that v1010+` ≥ v1011+` + 1 holds for some
0 ≤ ` < 2019. We obtain

v1011+` ≥ min(v1010+` + 2, v1012+` + 1) ≥ min(v1011+` + 3, v1012+` + 1).

Because v1011+` < v1011+` + 3, we must have v1011+` ≥ v1012+` + 1, completing the induction.
We conclude that

v1010 ≥ v1011 + 1 ≥ v1012 + 2 ≥ · · · ≥ v3030 + 2020 ≥ 2020,

as desired. �

Alternative E.

This solution is different from the other solutions. Shift the sequence so that it starts at a−1010
and ends at a2020. We will show that a0 is divisible by 22020. Consider a0. It either has at least as
many factors 2 as 2a1, or at least as many factors 2 as 4a−1 (this follows from 2a1 = a0 + 4a−1).
Consider the first case, so e2(a0) ≥ e2(2a1). By multiplying the original recursion by 2n−1, we
note that bn = 2nan satisfies the recursion bn = bn−1 + 8bn−2. Furthermore, we assumed that
e2(b0) ≥ e2(b1). This implies that e2(bn) is constant for n ≥ 1. Furthermore, clearly 22020 | b2020,
so 22020 | b1 and hence 22020 | a0. The case where e2(a0) ≥ e2(4a−1) is similar; we then look
at bn = 4na−n which satisfies bn = 8bn−2 − bn−1 and use that 22020 | b1010. The rest of the
argument is the same. �
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Solutions to Problem 2
Answer. There are two solutions: (0, 0, . . . , 0︸ ︷︷ ︸

1010

, 1, 1, . . . , 1︸ ︷︷ ︸
1010

) and (1, 1, . . . , 1︸ ︷︷ ︸
1010

, 2, 2, . . . , 2︸ ︷︷ ︸
1010

).

Solution A. We first prove the inequality

((x+ 1)(y + 1))2 ≥ 4(x3 + y3) (1)

for real numbers x, y ≥ 0 satisfying |x − y| ≤ 1, with equality if and only if {x, y} = {0, 1} or
{x, y} = {1, 2}.
Indeed,

4(x3 + y3) = 4(x+ y)(x2 − xy + y2)
≤ ((x+ y) + (x2 − xy + y2))2

= (xy + x+ y + (x− y)2)2

≤ (xy + x+ y + 1)2

= ((x+ 1)(y + 1))2,

where the first inequality follows by applying the AM-GM inequality on x+ y and x2 − xy + y2

(which are clearly nonnegative). Equality holds in the first inequality precisely if x + y =
x2−xy+ y2 and in the second one if and only if |x− y| = 1. Combining these equalities we have
x+ y = (x− y)2 + xy = 1 + xy or (x− 1)(y − 1) = 0, which yields the solutions {x, y} = {0, 1}
or {x, y} = {1, 2}. Now, let (x1, x2, . . . , x2020) be any sequence satisfying conditions (i) and
(ii) and let (y1, y2, . . . , y2020) be any permutation of (x1, x2, . . . , x2020). As 0 ≤ min(xi, yi) ≤
max(xi, yi) ≤ min(xi, yi) + 1, we can applying inequality (1) to the pair (xi, yi) and sum over all
1 ≤ i ≤ 2020 to conclude that

2020∑
i=1

((xi + 1)(yi + 1))2 ≥ 4
2020∑
i=1

(x3
i + y3

i ) = 8
2020∑
i=1

x3
i .

Therefore, in order to satisfy condition (iii), every inequality must be an equality. Hence, for
every 1 ≤ i ≤ 2020 we must have {xi, yi} = {0, 1} or {xi, yi} = {1, 2}. By condition (ii) ,we see
that either {xi, yi} = {0, 1} for all i or {xi, yi} = {1, 2} for all i.
If {xi, yi} = {0, 1} for every 1 ≤ i ≤ 2020, this implies that the sequences (x1, x2, . . . , x2020) and
(y1, y2, . . . , y2020) together have 2020 zeroes and 2020 ones. As (y1, y2, . . . , y2020) is a permuta-
tion of (x1, x2, . . . , x2020) this implies that (x1, x2, . . . , x2020) = (0, 0, . . . , 0, 1, 1, . . . , 1) with 1010
zeroes and 1010 ones. Conversely, note that this sequence satisfies conditions (i), (ii), and (iii)
(in (iii), we take (y1, y2, . . . , y2020) = (x2020, x2019, . . . , x1)), showing that this sequence indeed
works. The same reasoning holds for the case that {xi, yi} = {1, 2} for all i. �

Comment. There are multiple ways to show the main inequality (1):

• Write

((x+ 1)(y + 1))2 ≥ ((x+ 1)(y + 1))2 − ((x− 1)(y − 1))2

= 4(x+ y)(xy + 1)
≥ 4(x+ y)(xy + (x− y)2)
= 4(x3 + y3),

where equality holds precisely if |x− y| = 1 and (x− 1)(y − 1) = 0.

• Write

(x+ 1)2(y + 1)2 − 4x3 − 4y3 = (x− 1)2(y − 1)2 + 4(x+ y)
(
1− (x− y)2) ≥ 0,

where equality holds precisely if (x− 1)(y − 1) = 0 and (x− y)2 = 1.
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• One can rewrite the difference between the two sides as a sum of nonnegative expressions.
One such way is to assume that y ≥ x and then to rewrite the difference as

x2(y − 2)2 + (x+ 1− y)(4y2 − 4x2 + 2xy + x+ 3y + 1),

where x2(y−2)2 ≥ 0, x+ 1−y ≥ 0 and 4y2−4x2 + 2xy+x+ 3y+ 1 > 0, so in the equality
case we must have x+ 1− y = 0 and x(y − 2) = 0.

• Again assume y ≥ x; substitute y = x+ u with 0 ≤ u ≤ 1 and rewrite the difference as

x2(x+ u− 2)2 + x2(2− 2u) + (4 + 6u− 10u2)x+ (1 + 2u+ u2 − 4u3),

of which each summand is nonnegative, with equality case u = 1 and x ∈ {0, 1}.

• Fix x ≥ 0. We aim to show that the function

f(y) = ((x+ 1)(y + 1))2 − 4(x3 + y3),

viewed as polynomial in y, is nonnegative on the interval [x, x + 1]. First note that for
y = x and y = x+ 1 the function equals

(x2 − 2x)2 + 2x2 + 4x+ 1 > 0 and (x2 − x)2 ≥ 0

respectively. The derivative of f with respect to y equals

2(x+ 1)2 + 2(x+ 1)2y − 12y2,

which is a quadratic with negative leading coefficient that evaluates as 2(x + 1)2 > 0
for y = 0. Therefore, this quadratic has one positive and one negative root. Therefore,
on [0,∞), the function f will be initially increasing and eventually decreasing, hence the
minimum on the interval [x, x + 1] will be achieved on one of the endpoints. To have
equality, we must have x2 − x = 0, hence x ∈ {0, 1}.

• Observe that ((x+ 1)(y + 1))2 − 4(x3 + y3) is the discriminant of

p(z) = (x2 − xy + y2)z2 − (x+ 1)(y + 1)z + (x+ y).

Note that the leading coefficient x2 − xy+ y2 = (x− y)2 + xy is positive unless x = y = 0,
in which case ((0 + 1)2(0 + 1)2) > 4 · 03 + 4 · 03. Substituting z = 1, we get

p(1) = (x2 − xy + y2)− (x+ 1)(y + 1) + (x+ y) = (x− y)2 − 1 ≤ 0.

It follows that the discriminant is non-negative. It equals zero if and only if |x−y| = 1 and
p(z) attains its minimum at z = 1. Without loss of generality y = x+ 1. The minimum is
attained at

1 = (x+ 1)(y + 1)
2(x2 − xy + y2) = x2 + 3x+ 2

2x2 + 2x+ 2 ,

which reduces to x2 = x. Therefore, the only critical points are (x, y) = (0, 1) and (x, y) =
(1, 2).

• Without loss of generality y ≥ x. Let z = x+y
2 and a = y − z. Note that z ≥ 0 and

0 ≤ a ≤ min{ 1
2 , z}. We can rewrite the inequality in terms of z and a.

((x+ 1)(y + 1))2 − 4x3 − 4y3 = ((z + 1 + a)(z + 1− a))2 − 4(z − a)3 − 4(z + a)3

= ((z + 1)2 − a2)2 − 8z3 − 24za2

= a4 − (24z + 2(z + 1)2)a2 + ((z + 1)4 − 8z3)

This is a quadratic in a2. It attains its minimum at a2 = 12z + (z + 1)2 ≥ 1. Therefore it
is strictly decreasing in a on the interval [0,min{ 1

2 , z}]. If a = 1
2 , then y = x+ 1. It follows

that

((x+ 1)(y + 1))2 − 4x3 − 4y3 = ((x+ 1)(x+ 2))2 − 4x3 − 4(x+ 1)3 = x2(x− 1)2 ≥ 0

with equality if and only if x = 0 or x = 1. If a = z, then x = 0. It follows that

((x+ 1)(y + 1))2 − 4x3 − 4y3 = (y + 1)2 − 4y3 = y2(1− y) + 2y(1− y2) + (1− y3) ≥ 0

with equality if and only if y = 1. Therefore (0, 1) and (1, 2) are the only critical points.
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Solutions to Problem 3
Solution A. Denote the angle bisector of A by a and similarly for the other bisectors. Thus,
given that a, c, e have a common point M , we need to prove that b, d, f are concurrent. We
write ∠(x, y) for the value of the directed angle between the lines x and y, i.e. the angle of the
counterclockwise rotation from x to y (defined (mod 180◦)).
Since the sum of the angles of a convex hexagon is 720◦, from the angle conditions we get
that the sum of any two consecutive angles is equal to 240◦. In particular, it now follows that
∠(b, a) = ∠(c, b) = ∠(d, c) = ∠(e, d) = ∠(f, e) = ∠(a, f) = 60◦ (assuming the hexagon is
clockwise oriented).
LetX = AB∩CD, Y = CD∩EF and Z = EF∩AB. Similarly, let P = BC∩DE, Q = DE∩FA
and R = FA ∩ BC. From ∠B + ∠C = 240◦ it follows that ∠(ZX,XY ) = ∠(BX,XC) = 60◦.
Similarly we have ∠(XY, Y Z) = ∠(Y Z,ZX) = 60◦, so triangle XY Z (and similarly triangle
PQR) is equilateral. We see that the hexagon ABCDEF is obtained by intersecting the two
equilateral triangles XY Z and PQR.
We have ∠(AM,MC) = ∠(a, c) = ∠(a, b) + ∠(b, c) = 60◦, and since

∠(AM,MC) = ∠(AX,XC) = ∠(AR,RC) = 60◦,

A, C,M,X,R are concyclic. Because M lies on the bisector of angle ∠XAR, we must have
MR = MX, so triangle MRX is isosceles. Moreover, we have ∠(MR,MX) = ∠(CR,CX) =
∠(BC,CD), which is angle C of the hexagon. We now see that the triangles MRX, MPY and
MQZ are isosceles and similar. This implies that there is a rotation centered at M that sends
X, Y and Z to R, P and Q respectively. In particular, the equilateral triangles XY Z and PQR
are congruent.
It follows that there also exists a rotation sending X,Y, Z to P,Q,R respectively. Define N as
the center of this rotation. Triangles NXZ and NPR are congruent and equally oriented, hence
N is equidistant from XZ and PR and lies on the inner bisector b of ∠B (we know N lies on
the inner, not the outer bisector because the rotation centered at N is clockwise). In the same
way we can show that N is on d and on f , so b, d, f are concurrent at N . �

Remark. The key observation (a rotation centered at M sends 4XY Z to 4RQP ) can be estab-
lished in slightly different ways. E.g., since A,M,R,X are concyclic and A,M,Q,Z are concyclic,
M is the Miquel point of the lines XZ, RQ, XR, ZQ, hence it is the center of similitude s send-
ing ~XZ to ~RQ. Repeating the same argument for the other pairs of vectors, we obtain that s
sends 4XY Z to 4RQP . Moreover, s is a rotation, since M is equidistant from XZ and RQ.

Remark. The reverse argument can be derived in a different way, e.g., defining N as the common
point of the circles BXPD, DYQF , FZRB, and showing that 4NXZ = 4NPR, etc.
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Solution B. As in Solution A, we prove that the hexagon ABCDEF is the intersection of the
equilateral triangles PQR and XY Z.
Let d(S,AB) denote the signed distance from the point S to the line AB, where the neg-
ative sign is taken if AB separates S and the hexagon. We define similarly the other dis-
tances (d(S,BC), etc). Since M ∈ a, we have d(M,ZX) = d(M,QR). In the same way, we
have d(M,XY ) = d(M,RP ) and d(M,Y Z) = d(M,PQ). Therefore d(M,ZX) + d(M,XY ) +
d(M,Y Z) = d(M,QR) + d(M,RP ) + d(M,PQ).
We now use of the following well-known lemma (which can be easily proved using areas) to de-
duce that triangles PQR and XY Z are congruent.

Lemma. The sum of the signed distances from any point to the sidelines of an equilateral triangle
(where the signs are taken such that all distances are positive inside the triangle) is constant and
equals the length of the altitude.

For N = b ∩ d we now find d(N,ZX) = d(N,RP ) and d(N,XY ) = d(N,PQ). Using again the
lemma for the point N , we get d(N,ZX) + d(N,XY ) + d(N,Y Z) = d(N,QR) + d(N,RP ) +
d(N,PQ). Therefore d(N,Y Z) = d(N,QR), thus N ∈ f . �

Remark. Instead of using the lemma, it is possible to use some equivalent observation in terms
of signed areas.

Solution C. We use the same notations as in Solution A. We will show that a, c and e are
concurrent if and only if

AB + CD + EF = BC +DE + FA,

which clearly implies the problem statement by symmetry.
Let ~a be the vector of unit length parallel to a directed from A towards the interior of the
hexagon. We define analogously ~b, etc. The angle conditions imply that opposite bisectors of the
hexagon are parallel, so we have ~a ‖ ~d, ~b ‖ ~e and ~c ‖ ~f . Moreover, as in the previous solutions,
we know that ~a, ~c and ~e make angles of 120◦ with each other. Let MA = c ∩ e, MC = e ∩ a and
ME = a ∩ c. Then MA, MC , ME form an equilateral triangle with side length denoted by s.
Note that the case s = 0 is equivalent to a, c and e being concurrent.
Projecting ~MEA+ ~AB = ~MEB = ~MEC + ~CB onto ~e = −~b, we obtain

~AB ·~b− ~CB ·~b = ~MEC ·~b− ~MEA ·~b = ~MEA · ~e− ~MEC · ~e.
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Writing ϕ = 1
2∠B = 1

2∠D = 1
2∠F , we know that ~AB ·~b = −AB · cos(ϕ), and similarly ~CB ·~b =

−CB · cos(ϕ). Because MEA and MEC intersect e at 120◦ angles, we have ~MEA · ~e = 1
2MEA

and ~MEC · ~e = 1
2MEC. We conclude that

2 cos(ϕ)(AB − CB) = MEC −MEA.

Adding the analogous equalities 2 cos(ϕ)(CD−ED) = MAE−MAC and 2 cos(ϕ)(EF −AF ) =
MCA−MCE, we obtain

2 cos(ϕ)(AB +CD +EF −CB −ED −AF ) = MEC −MEA+MAE −MAC +MCA−MCE.

Because MA, MC and ME form an equilateral triangle with side length s, we have MEC −
MAC = ±s, MCA − MEA = ±s, and MAE − MCE = ±s. Therefore, the right hand side
MEC−MEA+MAE−MAC+MCA−MCE equals ±s±s±s, which (irrespective of the choices
of the ±-signs) is 0 if and only if s = 0. Because cos(ϕ) 6= 0, we conclude that

AB + CD + EF = CB + ED +AF ⇐⇒ s = 0 ⇐⇒ a, c, e concurrent,

as desired. �

Remark. Equalities used in the solution could appear in different forms, in particular, in terms
of signed lengths.

Remark. Similar solutions could be obtained by projecting onto the line perpendicular to b
instead of b.

Solution D. We use the the same notations as in previous solutions and the fact that a ‖ d,
b ‖ e and c ‖ f make angles of 120◦. Also, we may assume that E and C are not symmetric in a
(if they are, the entire figure is symmetric and the conclusion is immediate).
We consider two mappings: the first one s : a→ BC → d sending A′ 7→ B′ 7→ S is defined such
that A′B′ ‖ AB and B′S ‖ b, and the second one t : a→ EF → d sending A′ 7→ F ′ 7→ T is defined
such that A′F ′ ‖ AF and F ′T ‖ f . Both maps are affine linear since they are compositions of
affine tranformations. We will prove that they coincide by finding two distinct points A′, A′′ ∈ a
for which s(A′) = t(A′) and s(A′′) = t(A′′). Then we will obtain that s(A) = t(A), which by
construction implies that the bisectors of ∠B, ∠D and ∠F are concurrent.
We will choose A′ to be the reflection of C in e and A′′ to be the reflection of E in c. They are dis-
tinct since otherwise C and E would be symmetric in a. Applying the above maps a→ BC and
a→ EF to A′, we get points B′ and F ′ such that A′B′CDEF ′ satisfies the problem statement.
However, this hexagon is symmetric in e, hence the bisectors of ∠B′, ∠D, ∠F ′ are concurrent
and s(A′) = t(A′). The same reasoning yields s(A′′) = t(A′′), which finishes the solution. �

Remark. This solution is based on the fact that that two specific affine linear maps coincide.
Here it was proved by exhibiting two points where they coincide. One could prove it in another
way, exhibiting one such point and proving that the ‘slopes’ are equal.

Remark. There are similar solutions where claims and proofs could be presented in more ‘ele-
mentary’ terms. For example, an elementary reformulation of the ‘slopes’ being equal is: if b′
passes through B′ parallel to b, and f ′ passes through F ′ parallel to f , then the line through
b ∩ f and b′ ∩ f ′ is parallel to a (which is parallel to d).

Solution E. We use the same notations as in previous solutions.
Since the sum of the angles of a convex hexagon is 720◦, from the angle conditions we get
∠B + ∠C = 720◦/3 = 240◦. From ∠B + ∠C = 240◦ it follows that the angle between c and b
equals 60◦. The same is analogously true for other pairs of bisectors of neighboring angles.
Consider the points Oa ∈ a, Oc ∈ c, Oe ∈ e, each at the same distance d′ from M , where
d′ > max{MA,MC,ME}, and such that the rays AOa, COc, EOe point out of the hexagon. By
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construcion, Oa and Oc are symmetrical in e, hence OaOc ⊥ b. Similarly, OcOe ⊥ d, OeOa ⊥ f .
Thus it suffices to prove that perpendiculars from B, D, F to the sidelines of 4OaOcOe are
concurrent. By a well-known criteria, this condition is equivalent to equality

OaB
2 −OcB2 +OcD

2 −OeD2 +OeF
2 −OaF 2 = 0. (∗)

To prove (∗) consider a circle ωa centered at Oa and tangent to AB and AF and define circles
ωc and ωe in the same way. Rewrite OaB2 as r2

a +BaB
2, where ra is the radius of ωa, and Ba is

the touch point of ωa with AB. Using similar notation for the other tangent points, transform
(∗) into

BaB
2 −BcB2 +DcD

2 −DeD
2 + FeF

2 − FaF 2 = 0. (∗∗)

Furthermore, ∠OcOaBa = ∠MOaBa + ∠OcOaM = (90◦ − ϕ) + 30◦ = 120◦ − ϕ, where ϕ =
1
2∠A. (Note that ϕ > 30◦, since ABCDEF is convex.) By analogous arguments, ∠OaOcBc =
∠OeOcDc = ∠OcOeDe = ∠OaOeFe = ∠OeOaFa = 120◦−ϕ. It follows that rays OaBa and OcBc
(being symmetrical in e) intersect at Ue ∈ e forming an isosceles triangle 4OaUeOc. Similarly
define 4OcUaOe and 4OeUcOa. These triangles are congruent (equal bases and corresponding
angles). Therefore we have OaUc = UcOe = OeUa = UaOc = OcUe = UeOa. Moreover, we
also have BaUe = OaUe − ra = OaUc − ra = FaUc = x, and thus similarly DcUa = BcUe = y,
FeUc = DeUa = z.
Now from quadrilateral BBaUeBc with two opposite right angles BaB2−BcB2 = BcU

2
e−BaU2

e =
y2−x2. Similarly DcD

2−DeD
2 = DeU

2
a −DcU

2
a = z2−y2 and FeF 2−FaF 2 = FaU

2
c −FeU2

c =
x2 − z2. Finally, we substitute this into (∗∗), and the claim is proved. �

Remark. Circles ωa, ωc and ωe could be helpful in some other solutions. In particular, the
movement of A along a in Solution D is equivalent to varying ra.
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Solutions to Problem 4
Solution A. Let σ = (σ1, . . . , σn−1) be a fresh permutation of the integers 1, 2, . . . , n − 1. We
claim that for any 1 ≤ i ≤ n− 1 the permutation

σ(i) = (σ1, . . . , σi−1, n, σi, . . . , σn−1)

is a fresh permutation of the integers 1, 2, . . . , n. Indeed, let 1 ≤ k ≤ n − 1. If k ≥ i then
we have n ∈ {σ(i)

1 , . . . , σ
(i)
k }, but n 6∈ {1, 2, . . . , k}. And if k < i we have k < n − 1, and

{σ(i)
1 , . . . , σ

(i)
k } = {σ1, . . . , σk} 6= {1, 2, . . . , k}, since σ is fresh. Moreover, it is easy to see that

when we apply this construction to all fresh permutations of 1, 2, . . . , n−1, we obtain (n−1)·fn−1
distinct fresh permutations of 1, 2, . . . , n.
Note that a fresh permutation of 1, 2, . . . , n − 1 cannot end in n − 1, and hence none of the
previously constructed fresh permutations of 1, 2, . . . , n will end in n − 1 either. Therefore, we
will complete the proof by finding fn−1 fresh permutations of 1, 2, . . . , n that end in n − 1. To
do this, let σ = (σ1, . . . , σn−1) be a fresh permutation of 1, 2, . . . , n − 1 and let j be such that
σj = n− 1. Define

σ′ = (σ1, . . . , σj−1, n, σj+1, . . . , σn−1, n− 1),

then clearly σ′ is a permutation of 1, 2, . . . , n that ends in n − 1. We show that σ′ is fresh, so
let 1 ≤ k ≤ n− 1. If k ≥ j then n ∈ {σ′1, . . . , σ′k} but n 6∈ {1, 2, . . . , k}; if k < j, then k < n− 1
and {σ′1, . . . , σ′k} = {σ1, . . . , σk} 6= {1, 2, . . . , k}, since σ is fresh. So we have constructed fn−1
additional fresh permutations of 1, 2, . . . , n (which again are all different), and the total number
fn of fresh permutations of 1, 2, . . . , n must at least be (n−1)fn−1 +fn−1 = nfn−1, as required.
�

Comment. A similar way to construct n fresh permutations of 1, 2, . . . , n for each fresh
permutation σ of 1, 2, . . . , n − 1 is as follows: increase all entries of σ by 1, and then add the
number 1 anywhere; all these permutations are fresh, except the ones where 1 is added at the
front, which can be made fresh by swapping the 1 and the 2. It is again straightforward to check
that we obtain nfn−1 permutations that are fresh and distinct, although a little extra care is
needed to account for the fact that we increased the entries of our original permutation.

Solution B. Assuming n ≥ 3, we construct fn−1 · n different fresh permutations.
Consider a fresh permutation of the n − 1 numbers 1, 3, 4, . . . , n (the number 2 has been re-
moved), by which we mean a permutation (x1, . . . , xn−1) such that x1 6= 1 and {x1, . . . , xk} 6=
{1, 3, . . . , k + 1} for all k with 2 ≤ k ≤ n− 2. There are exactly fn−1 such permutations.
By inserting 2 anywhere in such a permutation, i.e. before or after all entries, or between two
entries xi, xi+1, we generate the following list of n distinct permutations of 1, 2, . . . , n, which we
claim are all fresh:

(2, x1, . . . , xn−1), . . . , (x1, . . . , xi−1, 2, xi, . . . , xn−1), . . . , (x1, . . . , xn−1, 2).

In order to verify freshness, suppose that some permutation above is not fresh, that is, for some
1 ≤ k ≤ n− 1, the first k elements are 1, . . . , k. If k = 1 then the first element is 1; but the first
element is either 2 or x1 and x1 6= 2, so this is not possible. If k ≥ 2 then the first k elements
must contain 2 and x1, . . . , xk−1, so {x1, . . . , xk−1} = {1, 3, . . . , k}, in contradiction to the fact
that (x1, . . . , xn−1) is fresh.
We have thus constructed fn−1 · n different fresh permutations, so fn ≥ fn−1 · n. �

Comment. Note that the construction from solution B can also be performed by placing n−1
instead of 2, or indeed any k between 2 and n− 1 (in which case it will work for n ≥ k + 1).
Moreover, similar arguments can be made while choosing to work with non-fresh permutations
rather than fresh permutations. Indeed, in order to show that n!−fn ≤ n((n−1)!−fn−1) for all
n ≥ 3, which is equivalent to the problem statement, one can argue as follows. Given a non-fresh
permutation (σ1, . . . , σn) of 1, 2, . . . , n, erasing n − 1 from it and changing n to n − 1 yields a
permutation which cannot be fresh. Moreover, each non-fresh permutation of 1, 2, . . . , n− 1 can
be obtained in this way from at most n different non-fresh permutations of 1, 2, . . . , n. This type
of argument would essentially mirror the one carried out in Solution B.
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Solution C. By considering all permutations of 1, 2, . . . , n and considering the smallest k for
which the first k numbers are 1, 2, . . . , k in some order, one can deduce the recursion

n∑
k=1

(n− k)! · fk = n!,

which holds for any n ≥ 1.
Therefore, if n ≥ 3 we have

0 = n!− (n+ 1)(n− 1)! + (n− 1)(n− 2)!

=
n∑
k=1

(n− k)! · fk − (n+ 1)
n−1∑
k=1

(n− 1− k)! · fk + (n− 1)
n−2∑
k=1

(n− 2− k)! · fk

= fn − nfn−1 +
n−2∑
k=1

(n− 2− k)! · ((n− k)(n− k − 1)− (n+ 1)(n− k − 1) + (n− 1)) · fk

= fn − nfn−1 +
n−2∑
k=1

(n− 2− k)! · k(k + 2− n) · fk ≤ fn − nfn−1,

which rewrites as fn ≥ nfn−1. �

Solution D. We first show that for any n ≥ 2 we have

fn =
n−1∑
k=1

k(n− 1− k)! · fk.

To deduce this relation, we imagine obtaining permutations of 1, 2, . . . , n by inserting n into a
permutation of the numbers 1, 2, . . . , n − 1. Specifically, let (σ1, . . . , σn−1) be any permutation
of 1, 2, . . . , n− 1, and let 1 ≤ k ≤ n− 1 be minimal with {σ1, . . . , σk} = {1, 2, . . . , k}. Note that
there are (n− 1− k)! · fk such permutations. Furthermore, inserting n in this permutation will
give a fresh permutation if and only if n is inserted before σk, so there are k options to do so.
Consequently, if n ≥ 3,

fn =
n−1∑
k=1

k(n− 1− k)! · fk

= (n− 1) · fn−1 +
n−2∑
k=1

k(n− 1− k)! · fk

≥ (n− 1) · fn−1 +
n−2∑
k=1

k(n− 2− k)! · fk

= (n− 1) · fn−1 + fn−1 = n · fn−1,

completing the proof. �

Comment. Fresh permutations are known as indecomposable permutations or irreducible per-
mutations in the literature. The problem asks to prove that the probability that a randomly
chosen permutation of 1, 2, . . . , n is indecomposable is a non-decreasing function of n. In fact,
it turns out that this probability goes to 1 as n→∞: for large n, almost all permutations of 1,
2, . . . , n are indecomposable. More can be found in:
Y. Koh & S. Ree. Connected permutation graphs. Discrete Mathematics 307 (21):2628–2635,
2007.
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Solutions to Problem 5
Solution A. The angle bisector of ∠ECD intersects the circumcircle of CDE (which is Γ) at
the midpoint M of arc DBE. It is well-known that the incentre is the intersection of the angle
bisector segment CM and the circle with centre at M and passing through D,E. We will verify
this property for P .

By the conditions we have AP = OA = OB = OC = OD = OE = R. Both lines OM
and APB are perpendicular to ED, therefore AP‖OM ; in the quadrilateral AOMP we have
AP = OA = AM = R and AP‖OM , so AOMP is a rhombus and its fourth side is PM = R.
In the convex quadrilateral OMBP we have OM‖PB, so OMBP is a symmetric trapezoid;
the perpendicular bisector of its bases AO and PB coincide. From this symmetry we obtain
MD = OD = R and ME = OE = R. (Note that the triangles OEM ad OMD are equilateral.)
We already have MP = MD = ME = R, so P indeed lies on the circle with center M and
passing through D,E. (Notice that this circle is the reflection of Γ about DE.)

From PB = PC and OB = OC we know that B and C are symmetrical about OP ; from the
rhombus AOMP we find that A and M are also symmetrical about OP . By reflecting the
collinear points B,P,A (with P lying in the middle) we get that C,P,M are collinear (and P is
in the middle). Hence, P lies on the line segments CM . �
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Solution B. Let X be the second intersection of CP with Γ. Using the power of the point P in
the circle Γ and the fact that PB = PC, we find that PX = PA = R. The quadrilateral AOXP
has four sides of equal length, so it is a rhombus and in particular OX is parallel to AP . This
proves that OXBP is a trapezoid, and because the diagonals PX and OB have equal length,
this is even an isosceles trapezoid. Because of that, DE is not only the perpendicular bisector
of PB, but also of OX.

In particular we have XD = XP = XO = XE = R, which proves that X is the middle of the
arc DE and P belongs to the circle with center X going through D and E. These properties,
together with the fact that C,P,X are collinear, determine uniquely the incenter of CDE.

�
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Solution C. Let Y be the circumcenter of triangle BPC. Then from Y B = Y P it follows that
Y lies on DE (we assume D lies in between Y and E), and from Y B = Y C it follows that Y
lies on OP , where O is the center of Γ.
From ∠AOC = 2∠ABC = ∠APC (because ∠PBC = ∠PCB) we deduce that AOPC is a cyclic
quadrilateral, and from AP = R it follows that AOPC is an isosceles trapezoid. We now find
that ∠Y CP = ∠Y PC = 180◦ − ∠OPC = 180◦ − ∠ACP , so Y lies on AC.

P
A B

C
D

E

O

Y

Power of a point gives Y O · Y P = Y C · Y A = Y D · Y E, so D, P , O and E are concyclic. It
follows that 2∠DAE = ∠DOE = ∠DPE = ∠DBE = 180◦ −∠DAE, so ∠DAE = 60◦. We can
now finish the proof by angle chasing.
From AB ⊥ DE we have ∠AOD + ∠BOE = 180◦ and from ∠DOE = 2∠DAE = 120◦ it
follows that ∠BOD + ∠BOE = 120◦. It follows that ∠AOD − ∠BOD = 180◦ − 120◦ = 60◦.
Let ∠OAB = ∠OBA = 2β; then ∠AOD + ∠BOD = ∠AOB = 180◦ − 4β. Together with
∠AOD − ∠BOD = 60◦, this yields ∠AOD = 120◦ − 2β and ∠BOD = 60◦ − 2β. We now find
∠AED = 1

2∠AOD = 60◦ − β, which together with ∠DAE = 60◦ yields ∠ADE = 60◦ + β.
From the isosceles trapezoid AOPC we have ∠CDA = ∠CBA = 1

2∠CPA = 1
2∠PAO = β, so

∠CDE = ∠CDA+ ∠ADE = β + 60◦ + β = 60◦ + 2β.
From ∠BOD = 60◦ − 2β we deduce that ∠BED = 30◦ − β; together with ∠DBE = 120◦ this
yields ∠EDB = 30◦ + β. We now see that ∠PDE = ∠BDE = 30◦ + β = 1

2∠CDE, so P is
on the angle bisector of ∠CDE. Similarly, P lies on the angle bisector of ∠CED, so P is the
incenter of CDE. �
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Solution D. We draw the lines DP and EP and let D′ resp. E′ be the second intersection
point with Γ.

The triangles APD′ and DPB are similar, and the triangles APE′ and EPB are also similar,
hence they are all isosceles and it follows that E′, O, P,D′ lie on a circle with center A. In
particular AOD′ and AOE′ are equilateral triangles. Angle chasing gives

∠CDP = ∠CDD′ = 1
2∠COD

′ = 1
2(60◦ + ∠COA)

∠EDP = ∠EDD′ = ∠EE′D′ = ∠PE′D′ = 1
2∠PAD

′ = 1
2(60◦ + ∠PAO)

Similarly we prove ∠CEP = 1
2 (60◦ −∠COA) and ∠DEP = 1

2 (60◦ −∠PAO) so if we can prove
that ∠COA = ∠PAO, we will have proven that P belongs to the angle bisector of ∠CED and
to the angle bisector of ∠CDE, which is enough to prove that P is the incenter of the triangle
CDE.
Let β = ∠ABC = ∠PCB. We have ∠APC = 2β and ∠AOC = 2β, so AOPC is an inscribed
quadrilateral. Moreover, since the diagonals AP and CO have equal length, this is actually an
isosceles trapezoid, and hence ∠PAO = ∠CPA = ∠COA which concludes the proof.

�
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Solution E. Without loss of generality we assume that D and C are in the same half-plane
regarding line AB.
Since PC = BP and ABCD is inscribed quadrilateral we have ∠PCB = ∠CBP = ∠CEA = α.
As in the other solutions, AOPC is an isosceles trapezoid and 2α = ∠CPA = ∠PCO

Let K be intersection of EO and Γ. Then ∠KDE = 90o, AB‖DK and KDBA is isosceles
trapezoid. We obtain DP = BD = AK, which implies that DPAK is a parallelogram and
hence DK = PA = R = OD = OK. We see that DOK is an equilateral triangle. Then
∠ECD = ∠EKD = 60o.
Further we prove that PC bisects ∠ECD using ∠DCB = ∠DKB = ∠KDA (from isosceles
trapeziod DKAB) and that ∠KEC = ∠OEC = ∠OCE (from isosceles triangle OCE):

∠DCP = ∠DCB + ∠BCP = ∠KDA+ α = ∠KEC + ∠CEA+ α = ∠OCE + 2α = ∠PCE

Further by ∠DCP = ∠PCE = 1
2∠ECD = 30◦ distances between P and sides 4CDE are

1
2PC = 1

2PB (as ratio between cathetus and hypotenuse in right triangle with angles 60o and
30o). So, we have found incentre. �
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Solution F. Let F,G,H be the projections of P on the sides DE, DC resp. CE. If P is indeed
the incenter, then the three line segments PF , PG, PH have the same length. This means
that the problem is equivalent to proving that PG = PH = PF = 1

2PB = 1
2PC and thus

trigonometry in the right-angled triangles CPG and CPH tells us that it is enough to prove
that ∠DCP = ∠ECP = 30◦.

We introduce the point X as the second intersection of the line CP with Γ. Because O is the
center of Γ we can reduce the problem to proving that ∠XOD = ∠XOE = 60◦, or equivalently
that XOD and XOE are equilateral triangles. This last condition is equivalent to X being the
reflection of O on the line DE. Following the chain of equivalences, we see therefore that in
order to solve the problem it is enough to prove that X is the reflection of O on DE. We prove
this property as in Solution B, using the fact that OXBP is an isosceles trapezoid.

�

Solution G. Assume AB is parallel to the horizontal axis, and that Γ is the unit circle. Write
f(θ) for the point (cos(θ), sin(θ)) on Γ. As in Solution C, assume that ∠AOB = 180◦− 4β; then
we can take B = f(2β) and A = f(180◦ − 2β). As in Solution C, we observe that AOPC is an
isosceles trapezoid, which we use to deduce that ∠ABC = 1

2∠APC = 1
2∠OAB = β. We now

know that C = f(180◦ − 4β).
The point P lies on AB with AP = R = 1, so P = (cos(180◦ − 2β) + 1, sin(2β)) = (1 −
cos(2β), sin(2β)). The midpoint of BP therefore has coordinates ( 1

2 , sin(2β)), so D and E have
x-coordinate 1

2 . Without loss of generality, we take D = f(60◦) and E = f(−60◦).
We have now obtained coordinates for all points in the problem, with one free parameter (β).
To show that P is the incenter of CDE, we will show that P lies on the bisector of ∠CDE;
analogously, one can show that P lies on the bisector of angle CED. The bisector of angle CDE
passes through the midpoint M of the arc CE not containing DE; because C = f(180◦ − 4β)
and E = f(−60◦), we have M = f(240◦ − 2β).
It remains to show that P = (1 − cos(2β), sin(2β)) lies on the line connecting the points D =
(cos(60◦), sin(60◦)) andM = (cos(240◦−2β), sin(240◦−2β)) = (− cos(60◦−2β),− sin(60◦−2β)).
The equation for the line DM is

(Y + sin(60◦ − 2β))(cos(60◦) + cos(60◦ − 2β)) = (sin(60◦) + sin(60◦ − 2β)) (X + cos(60◦ − 2β)) ,

which, using the fact that cos(60◦)+cos(60◦−2β) = 2 cos(β) cos(60◦−β) and sin(60◦)+sin(60◦−
2β) = 2 cos(β) sin(60◦ − β), simplifies to

(Y + sin(60◦ − 2β)) cos(60◦ − β) = (X + cos(60◦ − 2β)) sin(60◦ − β).

Because cos(60◦ − 2β) sin(60◦ − β) − sin(60◦ − 2β) cos(60◦ − β) = sin(β), this equation further
simplifies to

Y cos(60◦ − β)−X sin(60◦ − β) = sin(β).
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Plugging in the coordinates of P , i.e., X = 1 − cos(2β) and Y = sin(2β), shows that P is on
this line: for this choice of X and Y , the left hand side equals sin(60◦ + β) − sin(60◦ − β) =
2 cos(60◦) sin(β), which is indeed equal to sin(β). So P lies on the bisector DM of ∠CDE, as
desired. �

Solution H. Let Γ be the complex unit circle and let AB be parallel with the real line and
0 < ϕ = arg b < π

2 . Then

|b| = 1, a = −b, p = a+ 1 = 1− b.

From Re d = Re e = Re p+b
2 = 1

2 we get that d = 1
2 +

√
3

2 i and e = 1
2 −

√
3

2 i are conjugate 6th
roots of unity; d3 = e3 = −1, d+ e = 1, d2 = −e, e2 = −d etc.
Point C is the reflection of B in line OP . From arg p = arg(1 − b) = 1

2 (π − ϕ), we can get
arg c = 2 arg p− arg b = π − 2ϕ, so c = −b2.
Now we can verify that EP bisects ∠CED. This happens if and only if (p− e)2(c− e)(d− e) is
real. Since d− e = −

√
3i, this is equivalent with Re

[
(p− e)2(c− e)

]
= 0. Here

(p− e)2(c− e) = (1− b− e)2(−b2 − d) = (d− b)2(−b2 − d)

= −|b|4 + 2d|b|2b− d2b2 − db2 + 2d2b− d3

= −1− 2db+ db2 − db2 − 2db+ 1

= −2(db− db) + (db2 − db2),

whose real part is zero. It can be proved similarly that DP bisects ∠EDC. �
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Solutions to Problem 6
Answer. The only such m are m = 2 and m = 10.

Solution A. Consider an integerm > 1 for which the sequence defined in the problem statement
contains only perfect squares. We shall first show that m− 1 is a power of 3.
Suppose thatm−1 is even. Then a4 = 5m−1 should be divisible by 4 and hencem ≡ 1 (mod 4).
But then a5 = 5m2 + 3m− 1 ≡ 3 (mod 4) cannot be a square, a contradiction. Therefore m− 1
is odd.
Suppose that an odd prime p 6= 3 divides m− 1. Note that an − an−1 ≡ an−2 − an−3 (mod p).
It follows that modulo p the sequence takes the form 1, 1, 4, 4, 7, 7, 10, 10, . . . ; indeed, a simple
induction shows that a2k ≡ a2k−1 ≡ 3k − 2 (mod p) for k ≥ 1. Since gcd(p, 3) = 1 we get that
the sequence an (mod p) contains all the residues modulo p, a contradiction since only (p+ 1)/2
residues modulo p are squares. This shows that m− 1 is a power of 3.
Let h, k be integers such that m = 3k + 1 and a4 = h2. We then have 5 · 3k = (h − 2)(h + 2).
Since gcd(h− 2, h+ 2) = 1, it follows that h− 2 equals either 1, 3k or 5, and h+ 2 equals either
5 · 3k, 5 or 3k, respectively. In the first two cases we get k = 0 and in the last case we get k = 2.
This implies that either m = 2 or m = 10.
We now show the converse. Suppose thatm = 2 orm = 10. Let t = 1 or t = 3 so thatm = t2 +1.
Let b1, b2, b3, . . . be a sequence of integers defined by b1 = 1, b2 = 1, b3 = 2, and

bn = tbn−1 + bn−2 , for all n ≥ 4 .

Clearly, an = b2
n for n = 1, 2, 3. Note that if m = 2 then a4 = 9 and b4 = 3, and if m = 10 then

a4 = 49 and b4 = 7. In both the cases we have a4 = b2
4.

If n ≥ 5 then we have

b2
n + b2

n−3 = (tbn−1 + bn−2)2 + (bn−1 − tbn−2)2 = (t2 + 1)(b2
n−1 + b2

n−2) = m(b2
n−1 + b2

n−2) .

Therefore, it follows by induction that an = b2
n for all n ≥ 1. This completes the solution. �

Solution B. We present an alternate proof that m = 2 and m = 10 are the only possible values
of m with the required property.
Note that

a4 = 5m− 1 ,
a5 = 5m2 + 3m− 1 ,
a6 = 5m3 + 8m2 − 2m− 4 .

Since a4 and a6 are squares, so is a4a6. We have

4a4a6 = 100m4 + 140m3 − 72m2 − 72m+ 16 .

Notice that

(10m2 + 7m− 7)2 = 100m4 + 140m3 − 91m2 − 98m+ 49 < 4a4a6 ,

(10m2 + 7m− 5)2 = 100m4 + 140m3 − 51m2 − 70m+ 25 > 4a4a6 ,

so we must have

4a4a6 = (10m2 + 7m− 6)2 = 100m4 + 140m3 − 71m2 − 84m+ 36 .

This implies that m2 − 12m+ 20 = 0, so m = 2 or m = 10. �
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