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Задача 1. Два различни цели броjа u и v се запишани на табла. Изведуваме низа од чекори.
Во секоj чекор користиме една од следниве две постапки:

(i) Ако a и b се различни цели броеви на таблата, тогаш го запишуваме и броjот a+b на таблата,
доколку претходно не е веќе запишан.

(ii) Ако a, b и c се три различни цели броеви на таблата, и ако цел броj x го задоволува равен-
ството ax2 + bx+ c = 0, тогаш го запишуваме и броjот x на таблата, доколку претходно не
е веќе запишан.

Одреди ги сите парови на почетни броеви (u, v) за кои секоj цел броj, по конечна низа од чекори,
може да биде запишан на таблата.

Задача 2. Нека ABC е триаголник каj коj за должините на страните важи AC > AB. Нека Ω
е опишаната кружница околу триаголникот, а I е центарот на впишаната кружница. Впишаната
кружница ги допира страните BC,CA,AB во точки D,E, F соодветно. Нека X и Y се две точки,
на помалите по должина лаци D̃F и D̃E од впишаната кружница, соодветно, такви што ∠BXD =
∠DY C. Правите XY и BC се сечат во точка K. Нека T е точка од Ω таква што права KT е
тангента на Ω при што T и A се наоѓаат на иста страна од правата BC. Докажи дека правите
TD и AI се сечат на кружницата Ω.

Задача 3. Природен броj n го нарекуваме чуден ако, за секоj позитивен делител d на n, броjот
d(d+1) го дели броjот n(n+1). Докажи дека за било кои четири различни чудни природни броеви
A, B, C и D, важи:

gcd(A,B,C,D) = 1.

Со gcd(A,B,C,D) е означен наjголемиот заеднички делител на броевите A,B,C и D.
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Задача 4. За низа од цели броеви a1 < a2 < · · · < an, парот (ai, aj) со индекси 1 ≤ i < j ≤ n се
нарекува интересен, ако постои пар цели броеви (ak, aℓ) со индекси 1 ≤ k < ℓ ≤ n, така што

aℓ − ak
aj − ai

= 2.

За секоj n ≥ 3, одреди го наjголемиот можен броj интересни парови, во низа од цели броеви со
должина n.

Задача 5. Со N е означено множеството природни броеви. Одреди ги сите функции f : N → N
такви што следните два услови важат за секоj пар природни броеви (x, y):

(i) Броевите x и f(x) имаат еднаков броj на позитивни делители.

(ii) Ако x не е делител на y и y не е делител на x, тогаш

gcd(f(x), f(y)) > f(gcd(x, y)).

Со gcd(m,n) е означен наjголемиот заеднички делител на броевите m и n.

Задача 6. Одреди ги сите природни броеви d за кои постои полином P од степен d, со коефи-
циенти реални броеви, таков што меѓу вредностите P (0), P (1), P (2), . . . , P (d2 − d) наjмногу d од
нив се различни.

Language: Macedonian Време: 4 часа и 30 минути
Секоjа задача носи 7 поени

Language: Macedonian

Day: 2



EGMO 2024 - Problems and Solutions

Problems

Problem 1. Two different integers u and v are written on a board. We perform a
sequence of steps. At each step we do one of the following two operations:

(i) If a and b are different integers on the board, then we can write a + b on the board,
if it is not already there.

(ii) If a, b and c are three different integers on the board, and if an integer x satisfies
ax2 + bx + c = 0, then we can write x on the board, if it is not already there.

Determine all pairs of starting numbers (u, v) from which any integer can eventually be
written on the board after a finite sequence of steps.

Problem 2. Let ABC be a triangle with AC > AB, and denote its circumcircle by Ω
and incentre by I. Let its incircle meet sides BC, CA, AB at D, E, F respectively. Let X

and Y be two points on minor arcs D̃F and D̃E of the incircle, respectively, such that
∠BXD = ∠DY C. Let line XY meet line BC at K. Let T be the point on Ω such that
KT is tangent to Ω and T is on the same side of line BC as A. Prove that lines TD and
AI meet on Ω.

Problem 3. We call a positive integer n peculiar if, for any positive divisor d of n, the
integer d(d+1) divides n(n+1). Prove that for any four different peculiar positive integers
A, B, C and D, the following holds:

gcd(A, B, C, D) = 1.

Here gcd(A, B, C, D) is the largest positive integer that divides all of A,B,C and D.

Problem 4. For a sequence a1 < a2 < · · · < an of integers, a pair (ai, aj) with 1 ≤ i <
j ≤ n is called interesting if there exists a pair (ak, al) of integers with 1 ≤ k < l ≤ n
such that

al − ak

aj − ai

= 2.

For each n ≥ 3, find the largest possible number of interesting pairs in a sequence of
length n.

Problem 5. Let N denote the set of positive integers. Find all functions f : N → N such
that the following assertions are true for every pair of positive integers (x, y):

• x and f(x) have the same number of positive divisors.
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• If x does not divide y and y does not divide x, then

gcd(f(x), f(y)) > f(gcd(x, y)).

Here gcd(m, n) is the largest positive integer that divides both m and n.

Problem 6. Find all positive integers d for which there exists a degree d polynomial P
with real coefficients such that there are at most d different values among P (0), P (1), . . . , P (d2−
d).

Solutions

Problem 1 (SVK)

Problem. Two different integers u and v are written on a board. We perform a sequence
of steps. At each step we do one of the following two operations:

(i) If a and b are different integers on the board, then we can write a + b on the board,
if it is not already there.

(ii) If a, b and c are three different integers on the board, and if an integer x satisfies
ax2 + bx + c = 0, then we can write x on the board, if it is not already there.

Determine all pairs of starting numbers (u, v) from which any integer can eventually be
written on the board after a finite sequence of steps.

Solution 1. We will show that the answer are the integer pairs (u, v) such that u ̸= 0,
v ̸= 0, {u, v} ≠ {−1, 1} and u > 0 or v > 0.

If u = 0 or v = 0, then (i) will never yield a new number and we cannot use (ii) with only
two numbers. Hence, if u = 0 or v = 0, we cannot reach every possible y. From now on,
assume u ̸= 0 and v ̸= 0.

If both numbers u, v were negative, we will show that there can only be negative numbers
on the board. With negative numbers a, b, operation (i) will only yield a negative number.
The same holds for operation (ii), because for a non-negative x and negative a, b, c, we
have ax2 + bx + c < 0. Hence, if both u < 0 and v < 0, then we cannot reach every
possible y. From now on, assume that at least one of u, v is positive. Without loss of
generality take u < v, and so v > 0.

After one step, we can have the numbers u, v, u + v, which are mutually distinct due to
u, v being nonzero. Notice that the equation ux2 + (u + v)x + v = 0 has a root −1, and
so we can have −1 on the board.
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We now check two cases: case v = 1, and case v > 1.

If v = 1, then u < 0. Further split the case of v = 1 based on whether u = −1 or u < −1.

If v = 1 and u = −1, we can only additionally write number 0 on the board using
operation (i); and no additional numbers using (ii) because setting {a, b, c} to {−1, 0, 1}
in any order only has solutions for x in {−1, 0, 1}. Hence, if {u, v} = {−1, 1}, then we
cannot reach every possible y.

If v = 1 and u < −1, we can use operation (i) on numbers u, −1 (and then repeat choosing
the obtained result and −1) to get any negative number smaller than u, and operation (i)
on numbers (u, 1) (and then repeat choosing the obtained result and 1) to get any negative
number larger than u, as well as 0. Then, we set (a, b, c) = (0, 1, −2) and apply operation
(ii) to additionally get number 2. Applying (i) on (2, 1) (and then repeat choosing the
obtained result and 1), we can get all the remaining integers too.

From now on, assume v > 1. Recall that we can make u + v and −1.

We will now apply operation (i). First, (v, −1) gives v − 1. Next, (v, v − 1) gives 2v − 1.
Since v > 1, we know v ̸= 2v − 1, so we can apply operation (i) on (v, 2v − 1) to get
3v − 1, and then continue adding (v, kv − 1) to get (k + 1)v − 1 for any positive k. Since
v > 1, we can get an arbitrarily large integer by repeating this.

If a is any positive number on the board, applying (i) to (a, −1) gives a − 1. By repeating
this, we have that we can get all numbers smaller than a and larger than or equal to −1.
Together with previously having found a way to get an arbitrarily large integer, we have
that we can get any integer l ≥ −1 on the board.

Now, we set (a, b, c) = (0, 1, 2) and apply operation (ii) to additionally get number −2.
Then we can repeat operation (i) on (−1, −2) (and afterwards on −1 and the obtained
result) to get any negative number.

Therefore, if u ̸= 0, v ̸= 0, {u, v} ≠ {−1, 1} and u > 0 or v > 0, we can write every
integer on the board.

Remark. There are of course many other ways to create all integers in case of (u, v) that
satisfies all the requirements. Basically you will always use (i) to create arbitrarily large
numbers and then (ii) to create a number in a range that you didn’t have before.

Solution 2. If u = 0 or v = 0 then we can only get {u, v}.

Proof. If u = 0 or v = 0, then (i) will never yield a new number and we cannot use (ii)
with only two numbers.

If max(u, v) < 0, we cannot get non-negative numbers.

Proof. For a, b, c < 0 :
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(i) cannot generate a non-negative number as a + b < 0 .

(ii) cannot generate a non-negative number as for x ≥ 0 : ax2 + bx + c ≤ c < 0.

If u + v ̸= 0, u, v ̸= 0 and max(u, v) > 0, we can get every number.

Proof. u ̸= v → u + v can be written. u ̸= 0, so u + v ̸= v → u + 2v can be written.
v ̸= 0, so u + 2v ̸= u, meaning that 2u + 2v can be written. If for n > 1, n(u + v) can be
written then (n + 1)(u + v) = n(u + v) + (u + v) can also be written, because u + v ̸= 0,
so n(u + v) ̸= (u + v). Therefore, by induction for all n > 0 the number n(u + v) can be
written.

Taking n = 2, 3, . . . and (u + v)(x + 1)(x + n) = (u + v)x2 + (u + v)(n + 1)x + (u + v)n = 0
gives x = −1 and x = −n → for all n > 0 we can get −n (we can get all the negative
numbers). Additionally, we can get u + (−u) = 0.

For n ≥ 1 we can take 0 · x2 + ux + (−un) = 0 as u ̸= 0 → u, −nu, 0 are all distinct,
therefore we can get n. Thus, we can get all the numbers.

If u + v = 0 and max(u, v) > 1 we can get all the numbers.

Proof. We can get 0 = u + v as u ̸= v. Take 0 · x2 + ux − u = 0 so we can get 1 written
on the board. Take (u′, v′) = (1, max(u, v)) and then use the result from claim 3. As
0 < u′ = 1 < max(u, v) = v′ and u′ + v′ > 0 we can get all the numbers.

Remaining case: If v = 1 and u = −1, we can only additionally write number 0 on the
board using operation (i); and no additional numbers using (ii) because setting {a, b, c} to
{−1, 0, 1} in any order only has solutions for x in {−1, 0, 1}. Hence, if {u, v} = {−1, 1},
then we cannot reach every possible y.

Solution 3. We show none of the initial number can be 0, as in Solution 1. Then, we
split into three cases: initial numbers having different signs, both being positive, and both
being negative.

Case 1. Suppose we have two numbers u, v with different signs such that gcd(u, v) = k
for some k ∈ Z+. Without loss of generality assume that u > 0 and v < 0.

Case 1.1. v < −k:

We can generate all numbers y such that k | y and y ≤ u.

Proof. Define u′ = u
k
, v′ = v

k
. Note that by definition, gcd(u′, v′) = 1. If starting with

numbers u′, v′, we can make a sequence of applications of only the (i) rule to write a
number y = p · u′ + q · v′ on the board, then we can apply the same sequence of moves to
u, v to write k · y = p · u + q · v on the board.
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Therefore, we will prove instead that if v′ < −1, we can write all numbers y < u′ on the
board, which is equivalent to the lemma.

We attempt to write numbers u′ + q · v′ for q ∈ Z+ on the board by repeatedly adding
v′ to u′. This process can only ever halt if we reach a point where u′ + q · v′ = v′. That
cannot occur, as it would imply u′ = (1 − q) · v′. Taking into account that u′, v′ ̸= 0, that
implies gcd(u′, v′) = |v′|. That is a contradiction, as |v′| > 1.

Therefore, we can write all numbers of the form u′ + q · v′ on the board for q ∈ Z+. We
will use these numbers to construct an arbitrary integer y.

If we want to write a number y < u′ on the board, and we already have a number n < y
on the board such that y ≡ n (mod u′), then we can construct y by repeatedly adding
u′ to n until we reach y, skipping all numbers that are already on the board. As y < u′,
none of the numbers we attempt to add u′ to will be equal to u′.

Suppose we fix any number y < u′. As gcd(u′, v′) = 1, q ·v′ takes all residues modulo u′ as
q runs through the positive integers. Therefore, we will always be able to find a number
n of the form u′ + q · v′ such that y ≡ n mod u′. We can generate an arbitrarily small n′

by taking n′ = n + l · u′ · v′ = u′ + (q + l · u′) · v′ for large enough l, making both n′ < y
and n′ ≡ y mod u′ true.

Therefore, we can write all numbers y < u′ on the board. Thus, starting from u and v,
we can get all numbers y ≤ u s.t. k | y.

The numbers k, 0 and all negative multiples of k are a subset of the integers y ≤ u s.t.
k | y. Therefore, we have all of those numbers on the board.

We can now get an arbitrary nonzero number by applying (ii) to the polynomial k · (x −
n)(x + n) = k · x2 + 0 · x − n2 · k. The coefficients of this polynomial are distinct for all
integers n ̸= 0, and they are from the set {k, 0} ∪ {q · k | q < 0}, which we have on the
board. Therefore the rule application is valid.

As this works for all integers n ∈ Z \ {0}, and 0 is already on the board, we have proven
that we can write all integers on the board.

Case 1.2.: v = −k:

Case 1.2.1.: k ̸= 1.

If k ̸= 1, we can generate −1 from the polynomial u · x2 + (u + v)x + v. We can now
repeatedly add −1 to v = −k until we reach −2k on the board. Now, we can appeal to
Case 1.1.

Case 1.2.2. k = 1.

To restate the conditions of this sub-case, v = −k = −1, and u is an arbitrary positive
number.
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Case 1.2.2.1. u = 1.

If u = 1, we are only ever able to construct the numbers −1, 0, 1, no matter how we apply
the rules.

Case 1.2.2.2. u ̸= 1.

We can subtract 1 from u until we reach 0. This procedure also generates 1. We now add
1 to u until we get all positive numbers.

Now, we find an arbitrary polynomial with different positive coefficients that have a
negative root smaller than −1. An example is (x + 3)2.

We will now keep adding −1 to −3 to get all the negative numbers y ≤ −3. To get −2,
we can add −3 to 1, generating all integers.

Case 2 Suppose that both of u, v are positive.

We can now use any method from the previous solutions to generate a negative number,
and then appeal to Case 1.

Case 3 Suppose u < 0, v < 0.

Then there can only be negative numbers on the board. With negative numbers a, b,
operation (i) will only yield a negative number. The same holds for operation (ii), because
for a non-negative x and negative a, b, c, we have ax2 + bx + c < 0. Hence, if both u < 0
and v < 0, then we cannot reach every possible y.

Problem 2 (UNK)

Problem. Let ABC be a triangle with AC > AB, and denote its circumcircle by Ω and
incentre by I. Let its incircle meet sides BC, CA, AB at D, E, F respectively. Let X

and Y be two points on minor arcs D̃F and D̃E of the incircle, respectively, such that
∠BXD = ∠DY C. Let line XY meet line BC at K. Let T be the point on Ω such that
KT is tangent to Ω and T is on the same side of line BC as A. Prove that lines TD and
AI meet on Ω.

Solution 1. By the alternate segment theorem we have that:

180◦ = ∠DCY + ∠CY D + ∠Y DC = ∠DCY + ∠DXB + ∠Y XD = ∠DCY + ∠Y XB.

Therefore opposite angle of BXY C are supplementary and so CY XB cyclic.

One can apply power of a point at K:

KT 2 = KB · KC = KX · KY = KD2 =⇒ KT = KD.
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Figure 1: The proposer’s solution using a new point Q

(Alternatively you can sidestep power of a point by observing that K is the radical centre
of the incircle DEF , the circumcircle Γ and the circle CY XB and so KT 2 = KD2.)

Now let AI meet Ω at M , the midpoint of B̂C not containing A. Let the tangent at M
meet KT at Q. Observe that QM ∥ KD so ∠TKD = ∠TQM and also KT = KD,
QT = QM hence △TKD ∼ △TQM . As T, K, Q are collinear, this means that T, D, M
are collinear so TD and AI meet at M which lies on Ω.

Solution 2. The role of X and Y in this problem is secondary. Draw any circle through
B and C which meets the incircle at X and Y and you determine the same point K.
This is because K is the radical centre of the three circles in play. Therefore K is the
intersection of BC with the radical axis of the circumcircle Ω and the incircle DEF , and
so is independent of the choice of circle through B and C which gives rise to X and Y .
In the problem as posed, this is disguised, with angle properties of X and Y giving rise
the the circle BXY C.

You can now work with the simplified diagram shown in Figure 2.

Somehow we must use a characterization of M in order to finish. In the proposer’s
solution, we used the tangent to the circumcircle Ω at M being parallel to BC. In this
alternative, we use the fact that the internal angle bisector of angle ∠CTB meets Ω again
at M .

Triangle TKD is isosceles with apex K so

∠KDT = ∠DTK = ∠DTB + ∠BTK.
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Figure 2: Illustration of an angle chase

By the alternate segment theorem, ∠BTK = ∠BCT = ∠DCT . Now angle ∠KDT is an
exterior angle of triangle DCT so ∠CTD = ∠DTB.

Therefore the line TD is the internal angle bisector of angle ∠CTB and so must pass
through M , the midpoint of the arc B̂C of Ω which does not contain T .

Observation This affords a construction of the radical axis of the incircle and circumcircle
of triangle ABC: M and D determine T and the tangent at T meets BC at a point on
the required radical axis. See Figure 3. Now do a cyclic change of letters of ABC and
find a point on CA which is also on the radical axis (the dashed magenta line).

Solution 3. The centre of direct enlargement from the incircle to the circumcircle gives
another way to finish the proof. This enlargement carries D to M since the tangent lines
to their associated circles are parallel. The centre of enlargement therefore lies on the line
MD. Let MD meet the incircle again at U and the circumcircle again at V . Draw the
tangent to the incircle at U to meet BC at W so triangle WDU is isosceles with apex W
and has equal base angles ∠WDU and ∠DUW . The enlargement carries the line WU to
the tangent line to the circumcircle at V which meets BC at S. Enlargements carry lines
to parallel lines, so ∠DV K ′ = ∠DUW = ∠WDU = ∠K ′DV . Therefore triangle K ′DV
is isosceles with apex K ′.
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Figure 3: The three points K on the radical axis.
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Figure 4: The enlargement of W gives K ′.

This identifies S as the intersection of the radical axis of the two circles with BC, so
K ′ = K and V = T and the proof is complete.

Solution 4. Let ϕ be the inversion with center K and radius KD. Note that this
inversion maps incirlce of ABC to itself and K, X, Y are collinear, hence ϕ(X) = Y .
Also ϕ(D) = D, so ϕ maps circle XBD to cicle Y DB′, where B′ := ϕ(B) is the point on
BC different from B such that ∠BXD = ∠DY B′, hence ϕ(B) = C. From ϕ(B) = C we
get that KD = KT as KD2 = KB · KC = KT 2 since KD is the radius of inversion.

The rest of the solutions is the same as in the other solutions.

Problem 3 (NLD)

Problem. We call a positive integer n peculiar if, for any positive divisor d of n, the
integer d(d+1) divides n(n+1). Prove that for any four different peculiar positive integers
A, B, C and D, the following holds:

gcd(A, B, C, D) = 1.

Here gcd(A, B, C, D) is the largest positive integer that divides all of A,B,C and D.

First part of the solution, option 1

Observe that n = 1 is peculiar and that every prime is peculiar. Consider n
d
, where d > 1
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is a divisor of n. Then n
d

(
n
d

+ 1
)

divides n(n + 1), equivalent to n + d dividing d2(n + 1).
Since n ≡ −d (mod n+d), we obtain that n+d divides d3 −d2, hence n+d ≤ d3 −d2 and
in particular n < d3. Now taking d to be the smallest prime divisor of n, we deduce that
n cannot have more than two prime factors, counting multiplicities. Hence from now on
we work with n = pq, where p and q are primes. In fact, p ̸= q, as otherwise p + 1 | p2 − p,
i.e. p + 1 | 2, contradiction.

First part of the solution, option 2

Let us first prove that n is square-free. Assume that n = pkh, where gcd(p, h) = 1. Now
pk−1h(pk−1h + 1) | pkh(kkh + 1), which is equivalent to (pk−1h + 1) | p(pkh + 1). Since
gcd(p, pk−1h + 1) = 1, we must have

(pk−1h + 1) | (pkh + 1) = pkh + p − p + 1,

so (pk−1h + 1) | (p − 1). If k ≥ 2, this is a contradiction. Hence, n is square-free.

Let us now show that n has at most 2 different prime factors. Write n = p1p2 · · · pk. Now
we must have

p2 · · · pk(p2 · · · pk + 1) | p1 · · · pk(p1 · · · pk + 1),
which is equivalent to

(p2 · · · pk + 1) | p1(p1 · · · pk + 1).
Now

p1(p1 · · · pk + 1) − p2
1(p2 · · · pk + 1) = p1 − p2

1.

Hence,
(p2 · · · pk + 1) | p2

1 − p1.

Pick p1 to be the smallest prime factor of n. Then p2 · · · pk > p2
1 if k > 2, which is a

contradiction.

Second part of the solution, option 1

The only relations of concern are p(p + 1) | n(n + 1) and q(q + 1) | n(n + 1). The former
yields p(p + 1) | pq(pq + 1), i.e. p + 1 | q(pq + 1), that is, p + 1 | q(q − 1); analogously
q + 1 | p(p − 1). Without loss of generality assume p > q. If q does not divide p + 1, then
since p + 1 and q are relatively prime, we obtain from p + 1 | q(q − 1) that p + 1 divides
q − 1 and hence p < p + 1 ≤ q − 1 < q, contradiction. Hence q divides p + 1. Also, p does
not divide q + 1 due to p > q (unless p = q + 1, i.e. p = 3, q = 2, but then p + 1 ∤ q(q − 1))
and now from q + 1 | p(p − 1) we deduce that q + 1 divides p − 1.

Write p + 1 = mq for some positive integer m. Then q + 1 divides p − 1 = mq − 2 =
m(q + 1) − m − 2, so q + 1 divides m + 2. On the other hand, p + 1 | q(q − 1) implies
that m divides q − 1. If the ratio of the latter is greater than 1, then m ≤ q−1

2 , but q + 1
dividing m + 2 from above insists on q ≤ m + 1, so m ≤ q−1

2 ≤ m
2 , contradiction. Hence

m = q − 1 and we have proven the following: if n > 1 is composite and peculiar, then
n = pq, where p > q are primes and p = q2 − q − 1.

Second part of the solution, option 2
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Hence from now on we work with n = ab, with a < b primes. The only relations of concern
are a(a + 1) | n(n + 1) and b(b + 1) | n(n + 1). The former yields a(a + 1) | ab(ab + 1),
i.e. a + 1 | b(ab + 1), that is, a + 1 | b(b − 1); analogously b + 1 | a(a − 1). If a does not
divide b + 1, then since b + 1 and a are relatively prime, we obtain from b + 1 | a(a − 1)
that b + 1 divides a − 1 and hence b < b + 1 ≤ a − 1 < a, contradiction. Hence a divides
b + 1. Writing b + 1 = ac, from b + 1 | a(a − 1) we have that c divides a − 1.

Now from b + 1 = ac with c | a − 1 and a + 1 | b(b − 1) we derive that b = a2 − a − 1 in a
different (and longer) manner, without using the primality of b until the final step. Note
that since b = ac − 1 ≡ −c − 2 (mod a + 1), we have a + 1 | (c + 1)(c + 2). Since c | a − 1,
we may write a − 1 = cd, and note that cd ≡ −2 (mod a + 1). We then have

0 ≡ −d(c + 1)(c + 2) = −c2d − 3cd − 2d ≡ 2(c − d) + 6 (mod a + 1) (1)

Since 1 ≤ c, d ≤ a − 1, we have |2(c − d) + 6| ≤ 2(a − 2) + 6 = 2a + 2. Furthermore,
we have c ≥ 2 (otherwise b = ac − 1 < a, contradiction), and so d ≤ a−1

2 , thus 2(c −
d) + 6 ≥ 11 − a > −(a + 1). From these inequalities and equivalence (1), we obtain
2(c−d)+6 ∈ {0, a+1, 2(a+1)}. It is immediate to verify that these three possible values
correspond to the following three cases, respectively:

(i) d = c + 3 and a = c2 + 3c + 1;

(ii) d = 2, c = a−1
2 , a = 2c + 1; and

(iii) d = 1, c = a − 1.

Substituting these values in b = ac − 1, we obtain in case (i), b = c3 + 3c2 + c − 1 =
(c + 1)(c2 + 2c − 1), and in case (ii), b = 2c2 + c − 1 = (c + 1)(2c − 1). In both cases these
decompositions contradict the primality of b, as c ≥ 2. Thus we are left only with case
(iii), where b = a2 − a + 1, as claimed.

End of the solution (joint for different approaches)

In conclusion, a prime p can only divide the peculiar numbers p, p(p2 −p−1) (if p2 −p−1
is prime) and pq where p = q2 − q − 1 (if q is prime). In particular, the greatest common
divisor of more than three peculiar numbers must be 1. (Note that three peculiar numbers
may indeed have a common divisor, e.g. 5, 15 = 3 · 5 and 95 = 5 · 19 are all peculiar.)

Problem 4 (UKR)

Problem. For a sequence a1 < a2 < · · · < an of integers, a pair (ai, aj) with 1 ≤ i < j ≤ n
is called interesting if there exists a pair (ak, al) of integers with 1 ≤ k < l ≤ n such that

al − ak

aj − ai

= 2.

For each n ≥ 3, find the largest possible number of interesting pairs in a sequence of
length n.

12



Answer. 1
2(n − 1)(n − 2) + 1.

Solution. Consider the numbers ai = 2i for 2 ≤ i ≤ n and a1 = 0, and choose any pair
(i, j) with 1 ≤ i < j ≤ n.

If i = 1, the pair (1, j) is interesting for all 2 ≤ j ≤ n − 1, as aj+1 − a1

aj − a1
= 2j+1

2j
= 2.

If i ≥ 2, the pair (i, j) is also interesting for all j such that i + 1 ≤ j ≤ n − 1, since
aj+1 − ai+1

aj − ai

= 2j+1 − 2i+1

2j − 2i
= 2.

In addition, the pair (n − 1, n) is interesting, as an − a0

an − an−1
= 2.

Hence, all pairs in which j ≤ n − 1, and additionally the pair (n − 1, n), are interesting,
giving 1

2(n − 1)(n − 2) + 1 pairs in total.

Now, let’s show that there can’t be more interesting pairs. To this end we show that at
least 1

2n(n − 1) −
(

1
2(n − 1)(n − 2) + 1

)
= n − 2 pairs are not interesting. Clearly, the

pair (1, n) is not interesting.

Let’s make the following observation: if a pair (i, j) is interesting and it’s not (1, n), then
aj − ai can’t exceed 1

2(an − a1). (Since, if (i, j) is interesting then al − ak = 2(aj − ai) for
some pair (k, l). If then 2(aj − ai) > an − a1 we would have al − ak > an − a1, which is
not possible.)

Finally, for any 2 ≤ i ≤ n−1 consider pairs (1, i) and (i, n). If both of them are interesting,
then, following the observation above, the only possibility is ai − a1 = an − ai = an − a1

2 .
Clearly, this is possible for at most one i, so for all other n − 3 values of i, at least one
of pairs (1, i) and (i, n) is not interesting. Combining with the pair (1, n), we get at least
n − 2 not interesting pairs in total, as desired.

Comment: The originally proposed formulation considered a sequence a1 < a2 < · · · <
an of n real numbers, rather than integers. The conclusion is however the same and the
solution is identical.

Problem 5 (HRV)

Problem. Let N denote the set of positive integers. Find all functions f : N → N such
that the following assertions are true for every pair of positive integers (x, y):
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• x and f(x) have the same number of positive divisors.

• If x does not divide y and y does not divide x, then

gcd(f(x), f(y)) > f(gcd(x, y)).

Here gcd(m, n) is the largest positive integer that divides both m and n.

Solution 1. Throughout this proof, when we write divisors we mean positive divisors.

Let f be a function satisfying these properties. From the first one, it follows that f(1) = 1
and for each prime number p, f(p) = qp for some prime number qp. Assume p ̸= 2, the
pair (2, p) in property 2 gives

gcd(q2, qp) = gcd(f(2), f(p)) > f(gcd(2, p)) = f(1) = 1,

so qp = q2 for all p. Set q = q2.

Denote by d(n) the number of divisors of a positive integer n.

We will prove the following claim by induction on k ≥ 0, the number of distinct prime
divisors of n: For a positive integer n, f(n) is a power of q.

The claim, together with the first property, imply that f(n) = qd(n)−1.

For k = 0 the claim is already proved.

For k = 1, we need to prove that f(pm) is a power of q for all positive m. The case m = 1
was already proved. Assume now the result being proved for all positive integers ≤ m.
As d(pt) = t + 1, we then know f(pt) = qt for all t ≤ m. Now we consider t = m + 1.

Let r ̸= p be a prime. Plug the pair (pm−1r, pm) into the second property:

gcd(f(pm−1r), qm) = gcd(f(pm−1r), f(pm)) > f(pm−1) = qm−1.

This implies qm divides f(pm−1r). Since f(pm−1r) has 2m divisors, and vq(f(pm−1r)) ≥ m,
it follows that f(pm−1r) does not have prime divisors other than q, since it would then
have at least 2 · (vq(f(pm−1r)) + 1) > 2m divisors. Thus, f(pm−1r) is a power of q. And
since it has 2m divisors, we must have f(pm−1r) = q2m−1.

Now, plug the pair (pm+1, pm−1r) into the second property. We have

gcd(f(pm+1), q2m−1) = gcd(f(pm+1), f(pm−1r)) > f(pm−1) = qm−1.

Then f(pm+1) is divisible by qm. If f(pm+1) had a prime factor other than q, it would
have at least 2(m + 1) divisors, but it has m + 2 divisors and 2(m + 1) > m + 2 since
m ≥ 1. Hence, f(pm+1) must also be a power of q. By induction, the proof is finished for
k = 1.

Suppose the claim is true for all integers n with at most k distinct prime factors, for some
k ≥ 1. In order to prove the claim for integers with k + 1 distinct prime factors, it suffices
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to show that for every positive integer N with k distinct prime factors, every positive
integer m and every prime p which does not divide N , the number f(Npm) is a power
of q. We will prove this by induction on m. The case m = 0 follows from the previous
induction hypothesis. Now suppose it has already been proved for a certain m ≥ 0.

Let s be a prime divisor of N . Consider the numbers (Npm+1, Nspm). By the second
property,

gcd(f(Npm+1), qd(Nspm)−1) = gcd(f(Npm+1), f(Nspm)) > f(Npm) = qd(Npm)−1.

Then qd(Npm) divides f(Npm+1). If f(Npm+1) has a prime factor other than q, it would
have at least 2(d(Npm) + 1) = 2((m + 1)d(N) + 1) = (2m + 2)d(N) + 2 divisors, but it
has only (m + 2)d(N) divisors. Hence, f(Npm+1) must also be a power of q.

Finally, let us check that the function f(n) = qd(n)−1 does satisfy the properties of the
problem for any prime number q. The first property obviously holds. To check the second
one, note that

gcd(f(x), f(y)) = qmin(d(x),d(y)) > qd(gcd(x,y)) = f(gcd(x, y))

whenever x ∤ y and y ∤ x.

Solution 2. Firstly, one can prove that for any prime p and any m ≥ 0, f(pm) = qm, in
the same way as in the first solution.

We will prove the claim this time by induction on k = d(n). We notice again that the
claim implies that f(n) = qd(n)−1.

The cases k = 1, 2, 3 are then already proved. Now suppose that for some k ≥ 3 we have
proved the claim for all positive integers n with at most k divisors.

Consider a positive integer n with k + 1 divisors. If n is a power of a prime, then it is
already proved that f(n) is a power of q. Suppose n is not a power of a prime. Consider
distinct prime numbers p1 and p2 which divide n, such that vp1(n) ≤ vp2(n). Consider the
number np2

p1
: its number of divisors is vp1 (n)(vp2 (n)+2)

(vp1 (n)+1)(vp2 (n)+1)d(n), which is strictly less than the
number of divisors of n. Thus, by induction hypothesis, f(np2

p1
) is a power of q.

By applying the second property to the pair (n, np2
p1

), we have

gcd(f(n), q
d
(

np2
p1

)
−1) = gcd(f(n), f

Å
np2

p1

ã
) > f

Å
n

p1

ã
= q

d( n
p1

)−1
.

This implies that q
d( n

p1
) divides f(n). Again, if other primes than q divided f(n), it would

have at least 2(d( n
p1

) + 1) divisors. But 2(d( n
p1

) + 1) = 2( vp1 (n)
vp1 (n)+1d(n) + 1) > d(n). So f(n)

is a power of q and the Claim is proved.

We finally check as in the first solution that f(n) = qd(n)−1 satisfies the 2 properties for
all prime q.

15



Problem 6 (LUX+BEL)

Problem. Find all positive integers d for which there exists a degree d polynomial P with
real coefficients such that there are at most d different values among P (0), P (1), . . . , P (d2−
d).

Remark 1 You can add a constant to a polynomial satisfying the conditions and obtain
another polynomial satisfying the conditions.

Remark 2 This problem is equivalent to: Find all positive integers d for which there
exists a polynomial P of degree d that takes at most d different values at members of a
an arithmetic progression with d2 − d + 1 (different) terms.
The answer to this EGMO problem implies a solution to this more general problem by
scaling and translating, and the general result solves the EGMO problem as a special case.
This means that instead of working with 0, 1, . . . , d2 − d we have the option of working
with a region that is symmetric about the origin. Irrespective of the parity of d we can
use the d2 − d + 1 integers which run from −(d2 − d)/2 to (d2 − d)/2 inclusive.

The advantage of using an arithmetic progression which is symmetric about the 0 is that
P (X) is a polynomial which works for the problem if, and only if, P (−X) is a polynomial
which works for the problem. This means that working at one end of the run of integers
is the reflection of the activity at the other end. T Remarks dismissing the cases at the
other end of the run as similar now become obviously correct rather than having to be
studied separately.

Solution. We claim that such polynomials exist if and only if d ≤ 3. The following
examples show that such polynomials do exist for d ≤ 3:

d = 1 : d2 − d = 0, P1(x) = x, P (0) = 0;

d = 2 : d2 − d = 2, P2(x) = x(x − 1),
ß

P (0) = P (1) = 0,
P (2) = 2;

d = 3 : d2 − d = 6, P3(x) = x(x − 4)(x − 5),

 P (0) = P (4) = P (5) = 0,
P (1) = P (2) = P (6) = 12,
P (3) = 6.

We can make more examples by adding constants.

Now we will show that there are no examples of degree greater than 3.

From now on we assume (without loss of generality) that the leading coefficient
of our polynomial P is positive and that all values P (i) are positive (by adding
a constant if necessary) for integers i in the range 0 ≤ i ≤ d2 − d + 1.

Assume (for contradiction) that P is a polynomial of degree d ≥ 4 that satisfies the
conditions of the problem and let P (0), . . . , P (d2 − d) take values among p1 < · · · < pd.
For i = 1, . . . , d, let ni ≥ 0 be the number of appearances of pi among P (0), . . . , P (d2 −d).
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By definition n1 + · · ·+nd = d2 −d+1. Since P has degree d, ni ≤ d. The key observation
is now the following.

Claim 1 Make the convention that n0 = nd+1 = 0. If ni = d for some i in the range
1 ≤ i ≤ d, then ni±1 ≤ d − 2.

Proof. Up to scaling and hence without loss of generality, P has leading coefficient +1.
Since ni = d, there exist non-negative integers a1,i < · · · < ad,i ≤ d2 − d such that

P (X) = (X − a1,i) · · · (X − ad,i) + pi.

By construction, each of the d − 1 intervals Ij = [aj,i, aj+1,i] contains at least one local
extremum of P , so contains exactly one such extremum because P , having degree d, has
at most d − 1 such extrema. Suppose that i ≤ d − 1 and that P (m) = pi+1 > pi for some
m ∈ {0, . . . , d2 − d}. Since P has positive leading coefficient,

m ∈ (ad,i, ∞) ∪ (ad−2,i, ad−1,i) ∪ · · · ∪ (ai,1, a2,i)

if d is odd or
m ∈ (ad,i, ∞) ∪ (ad−2,i, ad−1,i) ∪ · · · ∪ (−∞, a1,i)

if d is even.

Suppose that aj,i < m < aj+1,i, for some j ∈ {1, . . . , d − 1}. If aj,i + 1 < m < aj+1,i − 1,
then, because Ij contains exactly one local extremum (which is a maximum),

Either pi+1 = P (m) > P (aj,i + 1) or pi+1 = P (m) > P (aj+1,i − 1). Since P (aj,i + 1) >
P (aj,i) = pi and P (aj,i − 1) > P (aj+1,i) = pi, this contradicts the requirement that
P (aj,i + 1), P (aj+1,i − 1) ∈ {p1, . . . , pd}. Hence m = aj,i + 1 or m = aj,i − 1. Similarly,
if m > ad,i, then m = ad,i + 1, but if m < ai,1 (which may arise when d is even), then
m = ai,1 − 1. This shows that m belongs to this list:

ad,i + 1, ad−1,i − 1, . . . , a2,i + (−1)d, a1,i − (−1)d.

This list contains at most d different integers. It follows in particular that, if ni+1 > d−2,
then either

P (ad,i + 1) = pi+1 = P (ad−1,i − 1)
or

P (a2,i + (−1)d) = pi+1 = P (a1,i − (−1)d)
with, additionally, a2,i + (−1)d ̸= a1,i − (−1)d.

We have
|P (a1,i ± 1) − pi| = 1 · |a1,i ± 1 − a2,i| ·

d∏
j=3

|a1,i ± 1 − aj,i|

and
|P (a2,i ∓ 1) − pi| = |a2,i ∓ 1 − a1,i| · 1 ·

d∏
j=3

|a2,i ∓ 1 − aj,i|.
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As a1,i < a2,i < a3,i < . . . < ad,i we have |a1,i ± 1 − aj,i| ≥ |a2,i ∓ 1 − aj,i| with equality
possible only if a1,i +1 = a2,i −1. We also have |a1,i ±1−a2,i| = |a2,i ∓1−a1,i|, which can
be zero only if a1,i + 1 = a2,i − 1. We conclude that |P (a1,i ± 1) − pi| > |P (a2,i ∓ 1) − pi|
or a1,i + 1 = a2,i − 1.

Looking at the other end of the list of (aj,i) as j varies, we have

|P (ad−1,i − 1) − pi| = 1 · |ad−1,i − 1 − ad,i| ·
d−2∏
j=1

|ad−1,i − 1 − aj,i|

and
|P (ad,i + 1) − pi| = |ad,i + 1 − ad−1,i| · 1 ·

d−2∏
j=1

|ad,i + 1 − aj,i|.

In these two formulas the shared factor outside the product is at least 2 and so is not 0.
Now look at the factors behind the product symbols. As a1,i < a2,i < a3,i < . . . < ad,i, for
j ≤ d − 2 we have |ad,i + 1 − aj,i| > |ad−1,i − 1 − aj,i|. We conclude that |P (ad,i + 1) − pi| >
|P (ad−1,i − 1) − pi|. Claim 1 is proved. ■

For each i ∈ {1, . . . , d − 1}, there are three possibilities:

• ni, ni+1 ≤ d − 1

• ni = d and ni+1 ≤ d − 2

• ni+1 = d and ni ≤ d − 2.

In all three cases, ni + ni+1 ≤ 2(d − 1). If n is even, this leads to the contradiction

d2 − d + 1 = (n1 + n2) + · · · + (nd−1 + nd) ≤ (d/2)[2(d − 1)] = d2 − d.

This is an important staging point in the argument because we have eliminated the
possibility of a polynomial of even degree d satisfying the conditions of the problem if
d ≥ 4.

From now on we assume that d ≥ 5 is odd, and

d2 − d + 1 = (n1 + n2) + · · · + (nd−2 + nd−1) + nd ≤ [(d − 1)/2][2(d − 1)] + d = d2 − d + 1.

Equality must therefore hold throughout. Since the sum can also be grouped as

n1 + (n2 + n3) + · · · + (nd−1 + nd),

this requires n1 = nd = d, ni + ni+1 = 2(d − 1) for i = 1, 2, . . . , d − 1 i.e. ni = d for odd i
and ni = d − 2 for even i.

We are interested in the degree of P being d ≥ 5 and odd, and showing that no polynomial
P satisfying the conditions of the problem can exist. There are d − 1 ≥ 4 extremal points
points which alternate between local maxima and minima (in that order) as you read from
left to right (we normalize so that P is monic). For any pi with i odd, the line y = pi (with
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i odd) crosses the graph of P in d places with x-coordinates in the real closed interval
[0, d2 − d] at points (z, pi) so each z must be an integer. Suppose that J is a real interval
on the x-axis ending at adjacent local extrema. The function defined by P is monotonic
on each J . The line y = pi (i odd) meets the graph at most once on J . Therefore it meets
the graph of P exactly once in the interior of each J (there are d − 2 such intervals) and
at the only two possible places outside the union of these intervals.

Now consider pj when j is even (so nj = d − 2). These d − 2 intervals J afford d − 2 real
values at which P will take pj as a value where j is fixed and even. The question is, are the
corresponding arguments integers? The proof of Claim 1 tells us that in the middle of the
run {0, 1, . . . , d2 − d + 1} all is well: the polynomial is assuming the value pj at an integer
where the polynomial assumes the values pj−1 and pj+1 at adjacent integers in some order.
The problem is at the ends of the run where |P (a1,i + 1) − pi| > |P (a2,i − 1) − pi| and
|P (ad,i + 1) − pi| > |P (ad−1,i − 1) − pi|. When j is even, two of the roots of P (x) − pj

are not integers, and we now know approximately where this trouble is happening (at the
ends).

At this point we could finish if d ≥ 7, because the run of regular behaviour in the middle
is sufficiently long that we could obtain a contradiction. However we have to work a little
harder to include the case d = 5. We now show that the run of regular behaviour is
slightly longer than we have currently established. We do this using Claim 2.

Claim 2. If d is odd, and ni = d, ni±1 = d − 2 for some i, then P attains
pi±1 precisely at the d − 2 integers

a2,i − 1, a3,i + 1, · · · , ad−2,i − 1, ad−1,i + 1.

Proof Suppose (for contradiction) a1,i + 1 ̸= a2,i − 1 and P (a1,i + 1) = pi+1.
Now a1,i < a2,i so either a1,i + 1 < a2,i − 1 or a1,i = a2,i − 1. In the latter case,
P (a1,i + 1) = P (a2,i) = pi, a contradiction. In the former case, the proof of
Claim 1 shows that

|P (a2,i − 1) − pi| < |P (a1,i + 1) − pi| = |pi+1 − pi| = pi+1 − pi

so P (a2,i − 1) < pi+1. The polynomial is decreasing on the interval (a2,d, a2,1)
so pi < P (a2,i − 1) < pi+1 which is absurd because P (a2,i − 1) = pj for some
j. Therefore P (a2,i − 1) = pi+1 for all odd i. A similar argument shows that
P (ad−1,i + 1) = pi+1 so Claim 2 is established. ■

Now we have n sequence of alternating falling then rising then falling etc. full runs starting
at (a2,d, pd) and ending at (ad−1,1, p1) so the initial run of 3d+1 terms of this run of values
is

pd, pd−1, · · · p1, p1, p2, . . . , pd, pd, pd−1, · · · p1, p1 (∗)
which starts at (a2,d, pd) and ends at (a4,1 + 1, p1) which is fine because 4 ≤ d − 1.

There are now various ways we can finish.
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(a) Consider the run of length 2d consecutive values

pd, pd−1, · · · p1, p1, p2, . . . , pd.

The first d+1 points determine P (x). The last d+1 values also determine P but the
values are in the reverse order, so P (X) = P (c − X) for some constant c. However,
the coefficients of Xd are have opposite signs (d is odd) so this is absurd.

(b) The idea in (a) can be expressed in terms of Lagrange interpolation to obtain essen-
tially the same contradiction. Construct P in two ways using Lagrange interpolation
on both the first d+1 and the last d+1 points. The symmetry in the data forces the
graph of P to have a vertical axis of symmetry. This is absurd because the degree
of P is odd.

(c) The initial fragment length 3d+1 mentioned above at (∗) includes two identical runs
of values of P (in the same order) of length d + 1. The polynomial P is determined
by each of them and so P (X) = P (X +c) for some constant c and so the polynomial
defines a bounded function which is absurd.

■
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