
THE 1991 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

Question 1

Let G be the centroid of triangle ABC and M be the midpoint of BC. Let X be on AB
and Y on AC such that the points X, Y , and G are collinear and XY and BC are parallel.
Suppose that XC and GB intersect at Q and Y B and GC intersect at P . Show that triangle
MPQ is similar to triangle ABC.

Question 2

Suppose there are 997 points given in a plane. If every two points are joined by a line
segment with its midpoint coloured in red, show that there are at least 1991 red points in
the plane. Can you find a special case with exactly 1991 red points?

Question 3

Let a1, a2, . . . , an, b1, b2, . . . , bn be positive real numbers such that a1 + a2 + · · · + an =
b1 + b2 + · · ·+ bn. Show that
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Question 4

During a break, n children at school sit in a circle around their teacher to play a game.
The teacher walks clockwise close to the children and hands out candies to some of them
according to the following rule. He selects one child and gives him a candy, then he skips the
next child and gives a candy to the next one, then he skips 2 and gives a candy to the next
one, then he skips 3, and so on. Determine the values of n for which eventually, perhaps
after many rounds, all children will have at least one candy each.

Question 5

Given are two tangent circles and a point P on their common tangent perpendicular to the
lines joining their centres. Construct with ruler and compass all the circles that are tangent
to these two circles and pass through the point P .



THE 1991 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

SOLUTION

Lee Yiu Sing

1 Solution

Problem 1. As XY ||BC, by Ceva’s theorem, AM , BY and CX are concur-

rent. By sine law,
BP
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. Let M

be the midpoint of AB. Using the similar arguments, we have
BM

AM
= 1 =

BCsin∠BCP

ACsin∠ACP
. Hence,

BP

PY
= 3. From Ceva’s theorem, it follows

that QP ||BC||XY . Hence,
BQ

QC
= 3. Let N be the midpoint of AC. It follows

that Q is the midpoint of BN . Hence, QM ||AC. Using similar arguments
PM ||AB, it follows that ∆ABC and ∆MPQ have parallel sides. Therefore,
they are similar. ■

Problem 2. Consider a rectangular coordinate system on the set of points such
that all the points have distinct y-coordinates. Denote these points y1, y2, · · · , y997
in increasing order. Let Ai be the point with y-coordinate yi.
Now, consider the midpoints of AiAi+1 for 1 ≤ i ≤ 996. There are 996 such
midpoints. By order all of them have distinct y-coordinate. Hence, they do
not coincide. Consider the midpoints of AiAi+2 for 1 ≤ i ≤ 995. These points
cannot coincide with any of the former midpoints as all yi are distinct. This
yeids 996 + 995 = 1991 distinct midpoints.

Problem 3. Solution 1. By Cauchy-Schwarz Inequality, we have
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By dividing each side by
n∑

i=1

(ai + bi) each side and

a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn, it follows that
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2
which completes the proof. ■

Solution 2. By Titu’s Lemma, we have
a21
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+

a22
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+ · · ·+ a2n
an + bn

≥ (a1 + a2 + · · ·+ an)
2

a1 + a2 + · · ·+ an + b1 + b2 + · · ·+ bn
Since a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn, we get
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which completes the proof. ■

Problem 4. Denote each child the number of the set 0, 1, 2, · · · , n− 1 in
closewise direction. The first child which receive a candy is 1. The k-th is the

remainder when
k(k + 1)

2
is divided by n.

If n is an odd number, then
(n+ 1)(n+ 2)

2
≡ 1 (mod n). This implies that

(n+ 1)-th child is the first one so that the teacher will take the same steps. It
is obvious that the (n− 1)-th and n-th children are the same child. Therefore,
there is one child who didn’t take a candy as there is one who took two on the
first round.
Consider the case that n is an even number. Let C(1,i) = {i, i + n

2
}, for each

i ∈ {1, 2, . . . , n
2
}. Consider a circle with C(1,i) written in clockwise direction.

Note that the steps taken on the circle with n children will be seen as if the

teacher had
n

2
children on the latter circle.. Hence,

n

2
must be an even number.

Otherwise, there exist a set C(1,i) which wasn’t awarded with a candy.

If
n

2
is an even number, call C(2,i) = {C(1,i), C(1,i+n

4 )
}. The same argument can

be taken. Following this, the only possibility for each child to get a candy is
n = 2k where k ∈ Z and k ≥ 0.

Problem 5. Let C be the intersection of two circles. Let l be one of the
common external tangents. The circle we are searching for is the inverse of the
line l with respect to circle (P,CP ). We can obtain one more circle if we use
the other external common tangent.
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