
The 14th Romanian Master of Mathematics Competition

Day 1: Wednesday, March 1st, 2023, Bucharest

Language: English

Problem 1. Determine all prime numbers p and all positive integers x
and y satisfying

x3 + y3 = p(xy + p).

Problem 2. Fix an integer n ⩾ 3. Let S be a set of n points in the plane,
no three of which are collinear. Given different points A,B,C in S, the
triangle ABC is nice for AB if Area(ABC) ⩽ Area(ABX) for all X in S
different from A and B. (Note that for a segment AB there could be several
nice triangles.) A triangle is beautiful if its vertices are all in S and it is nice
for at least two of its sides.

Prove that there are at least 1
2(n− 1) beautiful triangles.

Problem 3. Let n ⩾ 2 be an integer, and let f be a 4n-variable polynomial
with real coefficients. Assume that, for any 2n points (x1, y1), . . . , (x2n, y2n)
in the Cartesian plane, f(x1, y1, . . . , x2n, y2n) = 0 if and only if the points
form the vertices of a regular 2n-gon in some order, or are all equal.

Determine the smallest possible degree of f .

(Note, for example, that the degree of the polynomial

g(x, y) = 4x3y4 + yx+ x− 2

is 7 because 7 = 3 + 4.)

Each problem is worth 7 marks.

Time allowed: 4 1
2 hours.



Problem 1. Determine all prime numbers p and all positive integers x and y satisfying x3+y3 =
p(xy + p).

Serbia, Dushan Djukitch

Solution 1. Up to a swap of the first two en-
tries, the only solutions are (x, y, p) = (1, 8, 19),
(x, y, p) = (2, 7, 13) and (x, y, p) = (4, 5, 7). The
verification is routine.

Set s = x+ y. Rewrite the equation in the form
s(s2 − 3xy) = p(p+ xy), and express xy :

xy =
s3 − p2

3s+ p
. (∗)

In particular,

s2 ≥ 4xy =
4(s3 − p2)

3s+ p
,

or

(s− 2p)(s2 + sp+ 2p2) ≤ p2 − p3 < 0,

so s < 2p.
If p | s, then s = p and xy = p(p − 1)/4

which is impossible for x + y = p (the equation
t2 − pt+ p(p− 1)/4 = 0 has no integer solutions).

If p ∤ s, rewrite (∗) in the form

27xy = (9s2 − 3sp+ p2)− p2(p+ 27)

3s+ p
.

Since p ∤ s, this could be integer only if 3s + p |
p+ 27, and hence 3s+ p | 27− s.

If s ̸= 9, then |3s − 27| ≥ 3s + p, so 27 − 3s ≥
3s + p, or 27 − p ≥ 6s, whence s ≤ 4. These cases
are ruled out by hand.

If s = x + y = 9, then (∗) yields xy = 27 − p.
Up to a swap of x and y, all such triples (x, y, p)
are (1, 8, 19), (2, 7, 13), and (4, 5, 7).

Solution 2. Set again s = x + y. It is readily
checked that s ≤ 8 provides no solutions, so as-
sume s ≥ 9. Notice that x3+y3 = s(x2−xy+y2) ≥
1
4
s3 and xy ≤ 1

4
s2. The condition in the statement

then implies s2(s− p) ≤ 4p2, so s < p+ 4.
Notice that p divides one of s and x2 − xy+ y2.

The case p | s is easily ruled out by the con-
dition s < p + 4: The latter forces s = p,

so x2 − xy + y2 = xy + p, i. e., (x− y)2 = p, which
is impossible.

Hence p | x2 − xy + y2, so x2 − xy + y2 = kp
and xy+ p = ks for some positive integer k, imply-
ing

s2 + 3p = k(3s+ p). (∗∗)

Recall that p ∤ s to infer that 3k ≡ s (mod p). We
now present two approaches.

1st Approach. Write 3k = s + mp for some
integer m and plug k = 1

3
(s + mp) into (∗∗) to

get s = (9 − mp)/(3m + 1). The condition s ≥ 9
then forces m = 0, so s = 9, in which case, up to a
swap of the first two entries, the solutions turn out
to be (x, y, p) = (1, 8, 19), (x, y, p) = (2, 7, 13) and
(x, y, p) = (4, 5, 7).

2nd Approach. Notice that k = s2+3p
3s+p

= 3 +
s(s−9)
3s+p

≤ 3+ 1
3
(s−9) = 1

3
s ≤ 1

3
(p+3), since s < p+4.

Hence 3k ≤ p + 3, and the congruence 3k ≡ s
(mod p) then forces either 3k = s− p or 3k = s.

The case 3k = s− p is easily ruled out: Other-
wise, (∗∗) boils down to 2s + p + 9 = 0, which is
clearly impossible.

Finally, if 3k = s, then (∗∗) reduces to s = 9.
In this case, up to a swap of the first two en-
tries, the only solutions are (x, y, p) = (1, 8, 19),
(x, y, p) = (2, 7, 13) and (x, y, p) = (4, 5, 7).

Remark. The upper bound for k can equally
well be established by considering the variation
of (s2 + 3p)/(3s+ p) for 1 ≤ s ≤ p+ 3. The maxi-
mum is achieved at s = p+ 3:

max
1≤s≤p+3

s2 + 3p

3s+ p
=

(p+ 3)2 + 3p

3(p+ 3) + p
=

p2 + 9p+ 9

4p+ 9

<
p+ 4

3
,

so the integer 3k ≤ p + 3 < p + 9 ≤ p + s and the
remainder of the proof now goes along the few final
lines above.



Problem 2. Fix an integer n ⩾ 3. Let S be a set of n points in the plane, no three of
which are collinear. Given different points A,B,C in S, the triangle ABC is nice for AB if
Area(ABC) ⩽ Area(ABX) for all X in S different from A and B. (Note that for a segment AB
there could be several nice triangles.) A triangle is beautiful if its vertices are all in S and it is
nice for at least two of its sides.

Prove that there are at least 1
2
(n− 1) beautiful triangles.

Bulgaria, Alexander Ivanov

Solution. For convenience, a triangle whose
vertices all lie in S will be referred to as a triangle
in S. The argument hinges on the following obser-
vation:

Given any partition of S, amongst all triangles
in S with at least one vertex in each part, those of
minimal area are all adequate.

Indeed, amongst the triangles under considera-
tion, one of minimal area is suitable for both sides
with endpoints in different parts.

We now present two approaches for the lower
bound.

1st Approach. By the above observation, the 3-
uniform hypergraph of adequate triangles is con-
nected. It is a well-known fact that such a hyper-
graph has at least 1

2
(n− 1) hyperedges, whence the

required lower bound

2nd Approach. For a partition S = A⊔B, an area
minimising triangle as above will be called (A,B)-
minimal. Thus, (A,B)-minimal triangles are all ad-
equate.

Consider now a partition of S = A ⊔ B, where
|A| = 1. Choose an (A,B)-minimal triangle and
add to A its vertices from B to obtain a new par-
tition also written S = A ⊔ B. Continuing, choose
an (A,B)-minimal triangle and add to A its ver-
tices/vertex from B and so on and so forth all the
way down for at least another 1

2
(n−5) steps — this

works at least as many times, since at each step, B
loses at most two points. Clearly, each step provides
a new adequate triangle, so the overall number of
adequate triangles is at least 1

2
(n− 1), as required.

Remark. In fact, ⌊n/2⌋ is the smallest possible
number of adequate triangles, as shown by the the
configurations described below.

Let first n = 2k − 1. Consider a regular n-gon

P = A1A2 . . . An. Choose a point Bi on the perpen-
dicular bisector of AiAi+1 outside P and sufficiently
close to the segment AiAi+1. We claim that there
are exactly k− 1 = ⌊n/2⌋ adequate triangles in the
set

S = {A1, A2, . . . , Ak, B1, B2, . . . , Bk−1}.

Notice here that the arc A1A2 . . . Ak is less than half
of the circumcircle of P , so the angles ∠AuAvAw,
1 ≤ u < v < w ≤ k, are all obtuse.

Ai

Bi

Ai+1 Aj

Bj

Aj+1

To prove the claim, list the suitable triangles for
each segment.

For segments AiAi+1, AiBi, and BiAi+1, it is
AiBiAi+1.

For segment AiAj+1, j ≥ i + 1, those are
AiBiAj+1 and AiBjAj+1.

For segment AiBj, j ≥ i+ 1, it is AiBiBj.
For segment BiAj+1, j ≥ i+ 1, it is BiBjAj+1.
For segment BiBj, i < j, those are BiAi+1Bj

and BiAjBj.
It is easily seen that the only triangles occur-

ring twice are AiBiAi+1, hence they are the only
adequate triangles.

For n = 2k − 2, just remove Ak from the
above example. This removes the adequate trian-
gle Ak−1Bk−1Ak and provides only one new such in-
stead, namely, Bk−2Ak−1Bk−1. Consequently, there
are exactly k− 1 = ⌊n/2⌋ adequate triangles in the
set

S = {A1, A2, . . . , Ak−1, B1, B2, . . . , Bk−1}.



Problem 3. Let n ⩾ 2 be an integer, and let f be a 4n-variable polynomial with real coefficients.
Assume that, for any 2n points (x1, y1), . . . , (x2n, y2n) in the plane, f(x1, y1, . . . , x2n, y2n) = 0 if
and only if the points form the vertices of a regular 2n-gon in some order, or are all equal.

Determine the smallest possible degree of f .

USA

Solution. The smallest possible degree is 2n.
In what follows, we will frequently write Ai =
(xi, yi), and abbreviate P (x1, y1, . . . , x2n, y2n) to
P (A1, . . . , A2n) or as a function of any 2n points.

Suppose that f is valid. First, we note a key
property:

Claim (Sign of f). f attains wither only nonneg-
ative values, or only nonpositive values.

Proof. This follows from the fact that the zero-set
of f is very sparse: if f takes on a positive and a
negative value, we can move A1, . . . , A2n from the
negative value to the positive value without ever
having them form a regular 2n-gon — a contradic-
tion. □

The strategy for showing deg f ≥ 2n is the fol-
lowing. We will animate the points A1, . . . , A2n

linearly in a variable t; then g(t) = f(A1, . . . , A2n)
will have degree at most deg f (assuming it is not
zero). The claim above then establishes that any
root of g must be a multiple root, so if we can show
that there are at least n roots, we will have shown
deg g ≥ 2n, and so deg f ≥ 2n.

Geometrically, our goal is to exhibit 2n linearly
moving points so that they form a regular 2n-gon a
total of n times, but not always form one.

We will do this as follows. Draw n mirrors
through the origin, as lines making angles of π

n with
each other. Then, any point P has a total of 2n
reflections in the mirrors, as shown below for n = 5.
(Some of these reflections may overlap.)

Draw the n angle bisectors of adjacent mirrors.
Observe that the reflections of P form a regular 2n-
gon if and only if P lies on one of the bisectors.

We will animate P on any line ℓ which intersects
all n bisectors (but does not pass through the ori-
gin), and let P1, . . . , P2n be its reflections. Clearly,
these are also all linearly animated, and because of
the reasons above, they will form a regular 2n-gon
exactly n times, when ℓ meets each bisector. So this
establishes deg f ≥ 2n for the reasons described pre-
viously.

Now we pass to constructing a polynomial f of
degree 2n having the desired property. First of all,
we will instead find a polynomial g which has this
property, but only when points with sum zero are
input. This still solves the problem, because then

we can choose

f(A1, A2, . . . , A2n) = g(A1 − Ā, . . . , A2n − Ā),

where Ā is the centroid of A1, . . . , A2n. This
has the upshot that we can now always assume
A1 + · · · + A2n = 0, which will simplify the ensu-
ing discussion.

ℓ

P = P1

P2

P3P4

P5

P6

P7

P8

P9 P10

P11

P12

We will now construct a suitable g as a sum of
squares. This means that, if we write g = g21 + g22 +
· · ·+g2m, then g = 0 if and only if g1 = · · · = gm = 0,
and that if their degrees are d1, . . . , dm, then g has
degree at most 2max(d1, . . . , dm).

Thus, it is sufficient to exhibit several polyno-
mials, all of degree at most n, such that 2n points
with zero sum are the vertices of a regular 2n-gon
if and only if the polynomials are all zero at those
points.



First, we will impose the constraints that all
|Ai|2 = x2i + y2i are equal. This uses multiple de-
gree 2 constraints.

Now, we may assume that the points
A1, . . . , A2n all lie on a circle with centre 0, and
A1 + · · ·+A2n = 0. If this circle has radius 0, then
all Ai coincide, and we may ignore this case.

Otherwise, the circle has positive radius. We
will use the following lemma.

Lemma. Suppose that a1, . . . , a2n are complex
numbers of the same non-zero magnitude, and sup-
pose that ak1 + · · · + ak2n = 0, k = 1, . . . , n. Then
a1, . . . , a2n form a regular 2n-gon centred at the
origin. (Conversely, this is easily seen to be suffi-
cient.)

Proof. Since all the hypotheses are homoge-
nous, we may assume (mostly for convenience) that
a1, . . . , a2n lie on the unit circle. By Newton’s
sums, the k-th symmetric sums of a1, . . . , a2n are
all zero for k in the range 1, . . ., n.

Taking conjugates yields a−k
1 + · · · + a−k

2n = 0,
k = 1, . . . , n. Thus, we can repeat the above
logic to obtain that the k-th symmetric sums of
a−1
1 , . . . , a−1

2n are also all zero for k = 1, . . . , n.
However, these are simply the (2n− k)-th symmet-
ric sums of a1, . . . , a2n (divided by a1 · · · a2n), so
the first 2n−1 symmetric sums of a1, . . . , a2n are all
zero. This implies that a1, . . . , a2n form a regular
2n-gon centred at the origin. □

We will encode all of these constraints into our
polynomial. More explicitly, write ar = xr + yri;
then the constraint ak1 + · · · + ak2n = 0 can be ex-
pressed as pk + qki = 0, where pk and qk are real
polynomials in the coordinates. To incorporate this,
simply impose the constraints pk = 0 and qk = 0;
these are conditions of degree k ≤ n, so their squares
are all of degree at most 2n.

To recap, taking the sum of squares of all of these
constraints gives a polynomial f of degree at most
2n which works whenever A1 + · · · + A2n = 0. Fi-
nally, the centroid-shifting trick gives a polynomial
which works in general, as wanted.

Remark 1. Here is a more detailed approach of the
mirror-reflection argument. Let reiθ be the polar
representation of the point P . The polar represen-
tations of its mirrored images are then

reiθ, re−iθ, rei(
2π
n
+θ), rei(

2π
n
−θ),

. . . , re
i
(

2(n−1)π
n

+θ
)
, re

i
(

2(n−1)π
n

−θ
)
.

Clearly, they are all linear with respect to P and lie
on the circle of radius r centred at the origin. As
listed above, the 2n images are not necessarily in

circular order around the circle. For convenience,
assume 0 ≤ θ ≤ π

n , so the list now displays them
in circular order. These images form the vertices of
a regular 2n-gon if and only if the angle between
every two consecutive terms in the list (read circu-
larly) is π

n . This is clearly the case if and only if
θ = π

2n . Consequently, the images are the vertices
of a regular 2n-gon if and only if P lies on the in-
ternal bisector of the angle formed by some pair of
consecutive mirrors.

Remark 2. We sketch here some versions of the
arguments in the solution above.

To show that deg f ≥ 2n, we use the same con-
stancy of sign claim and the convention that the
polynomial is a function of points (= pairs of coor-
dinates) A1, A2, . . . , A2n. Assume that the values of
f are all non-negative.

Write B(ϕ) = (cosϕ, sinϕ). Choose a sub-
stitution A2i−1 = B

(
(2i− 1)πn + ϕ

)
and A2i =

B
(
2iπn − ϕ

)
, i = 1, 2, . . . , n. Notice that the co-

ordinates of the points A1, A2, . . . , A2n are all linear
functions in c = cosϕ and s = sinϕ, so, substituting
these expressions into f , we get a polynomial g(c, s)
with deg g ≤ deg f .

Now, the values of g are all non-negative (each
being one of f), and, on the circle c2 + s2 = 1,
it vanishes at exactly 2n points, namely, (c, s) =(
cos π

nk, sin
π
nk

)
, k = 1, . . . , 2n. We show that these

properties already yield deg g ≥ 2n.
Obviously, if g(c, s) possesses the properties

listed above, then so does g(c,−s), and hence so
does ḡ(c, s) = g(c, s) + g(c,−s).

The polynomial ḡ is even in s, so it in fact de-
pends only on s2, and we may plug s2 = 1− c2 into
it, to obtain a polynomial h(c) with deg h ≤ deg g
which is non-negative on [−1, 1] and vanishes on this
segment exactly at c = cos π

nk. These are n+1 such
points, and, except c = ±1, they should all be roots
of h of even multiplicity, due to sign conservation.
All in all, this provides 2n roots of h, counted with
multiplicity, hence deg f ≥ deg g ≥ deg h ≥ 2n, as
desired.

For a bit alternative construction of a suitable f ,
one may notice that the Lemma in the above solu-
tion can be changed to impose vanishing of the ele-
mentary symmetric polynomials σi(a1, a2, . . . , a2n),
i = 1, 2, . . . , n, instead of Newton sums. Indeed, if
the σi all vanish, then so do the polynomials

σi(ā1, a2, . . . , ā2n) =
|a1|2iσ2n−i(a1, a2, . . . , a2n)

ā1ā2 . . . ā2n
,

so σi(a1, . . . , a2n) also vanishes for i = n+1, . . . , 2n−
1. Hence a1, a2, . . . , a2n are the roots of z2n − |a1|n,
as desired.



The 14th Romanian Master of Mathematics Competition

Day 2: Thursday, March 2nd, 2023, Bucharest

Language: English

Problem 4. Given an acute triangle ABC, let H and O be its ortho-
centre and circumcentre, respectively. Let K be the midpoint of the line
segment AH. Also let ℓ be a line through O, and let P and Q be the
orthogonal projections of B and C onto ℓ, respectively.

Prove that KP +KQ ⩾ BC.

Problem 5. Let P (x), Q(x), R(x) and S(x) be non-constant polynomials
with real coefficients such that P (Q(x)) = R(S(x)). Suppose that the degree
of P (x) is divisible by the degree of R(x).

Prove that there is a polynomial T (x) with real coefficients such that

P (x) = R(T (x)).

Problem 6. Let r, g, b be non-negative integers. Let Γ be a connected
graph on r+ g+ b+1 vertices. The edges of Γ are each coloured red, green
or blue. It turns out that Γ has

� a spanning tree in which exactly r of the edges are red,

� a spanning tree in which exactly g of the edges are green and

� a spanning tree in which exactly b of the edges are blue.

Prove that Γ has a spanning tree in which exactly r of the edges are red,
exactly g of the edges are green and exactly b of the edges are blue.

(A spanning tree of Γ is a graph which has the same vertices as Γ, with
edges which are also edges of Γ, for which there is exactly one path between
each pair of different vertices.)

Each problem is worth 7 marks.

Time allowed: 4 1
2 hours.



Problem 4. Given a triangle ABC, letH and O be its orthocentre and circumcentre, respectively.
Let K be the midpoint of the line segment AH. Let further ℓ be a line through O, and let P
and Q be the orthogonal projections of B and C onto ℓ, respectively. Prove that KP +KQ ≥ BC.

Russia, Vasily Mokin

Solution 1. Fix the origin at O and the real axis
along ℓ. A lower case letter denotes the complex
coordinate of the corresponding point in the config-
uration. For convenience, let |a| = |b| = |c| = 1.

Clearly, k = a+ 1
2(b+ c), p = a+ 1

2

(
b+ 1

b

)
and

q = a+ 1
2

(
c+ 1

c

)
.

Then |k− p| =
∣∣a+ 1

2

(
c− 1

b

)∣∣ = 1
2 |2ab+ bc− 1|,

since |b| = 1.
Similarly, |k − q| = 1

2 |2ac + bc − 1|, so, since
|a| = 1,

|k − p|+ |k − q| = 1

2
|2ab+ bc− 1|+ 1

2
|2ac+ bc− 1|

≥ 1

2
|2a(b− c)| = |b− c|,

as required.

Solution 2. Let M be the midpoint of BC, and
let R be the projection of M onto ℓ. In other words,
R is the midpoint of PQ. Since ∠BPO = ∠BMO =
90◦, the points B, P , O, and M are concyclic, so
∠(OM,OB) = ∠(PM,PB) = ∠(PM,MR), so the
right trianglesMRP andOMB are similar and have
different orientation. Similarly, the triangles MRQ
and OMC are similar and have different orientation,
hence so are the triangles OBC and MPQ.

A

B C

P

Q
K

H

O

M

R

L

Recall that
−−→
AH = 2

−−→
OM , so

−−→
OM =

−−→
AK. Hence

AOMK is a parallelogram, so MK = OA = OB =
OC.

Consider the rotation through ∠(
−−→
OC,

−−→
OB)

about M . It maps P to Q; let it map K to some
point L. Then MK = ML = OB = OC and
∠LMK = ∠BOC, so the triangles OBC and MKL
are congruent. Hence BC = KL ≤ KQ + LQ =
KQ+KP , as required.

Solution 3. Let α = ∠(PB,BC) = ∠(QC,BC).
Since P lies on the circle of diameter OB,
∠(OP,OM) = α. Since also Q lies on the cir-
cle of diameter OC, it immediately follows that

MP = MQ = R sinα by sine theorem in triangles
△OPM and △OQM .

Because PQ is the projection of BC on line ℓ,
it follows that PQ = BC sinα. Just like in the first
solution, KM = AO = R (the circumradius of tri-
angle △ABC).

Now apply Ptolemy’s inequality for the quadri-
lateral KPMQ: KP ·MQ+KQ ·MP ≥ PQ ·KM ,
and now substitute the relations from above, leading
to

R sinα(KP +KQ) ≥ R sinα ·BC,

which is precisely the conclusion whenever sinα ̸= 0.
The case when sinα = 0 can be treated either di-
rectly, or via a limit argument.

Solution 4. Denote by R and O the circumradius
and the circumcentre of triangle ABC, respectively.
As in Solution 1, we see that MK = R.

Assume now that ℓ is fixed, while A moves along
the fixed circle (ABC). Then K will move along
a cricle centred at M with radius R. We must
show that for each point K on this circle we have
BC ≤ KP + KQ. In doing so, we prove that the
afore-mentioned circle contains an ellipse with foci
at Q and P with distance BC.

Let S be the foot of the perpendicular from M
to PQ, it is easy to verify that S is the center of
the ellipse. We shall then consider it as the origin.
Let u = BC

2 and t = PQ
2 ; notice that u is the major

semi-axis of the ellipse and
√
u2 − t2 is the minor

one. Assume X(x, y) is a point on this ellipse. We
now need to prove MX ≤ R.

Since X is on the ellipse, we can write (x, y) =
(u cos θ,

√
u2 − t2 sin θ), for some θ ∈ (0, 2π). Since

MX2 = x2+(y+MS)2, we can expand and obtain

MX2 = u2+MS2−t2 ·sin2 θ+2MS ·
√
u2 − t2 ·sin θ.

Add and subtract MS2(u2 − t2)/t2 in order to
obtain a square on the right hand side: MX2 = u2+

MS2 + MS2(u2−t2)
t2

−
(
t sin θ − MS

√
u2−t2

t

)2
. It now

suffices to show that u2 +MS2 +
MS2(u2 − t2)

t2
=

R2, since then it would immediately follow that
MX2 ≤ R2.

Applying Pythagorean theorem in triangles
OBM and OSM , we obtain R2 = u2 + OM2 and
OM2 = MS2 + OS2, so it remains to prove that

OS2 = MS2(u2−t2)
t2

. Let α = ∠(OP,BM), then
OS/MS = tanα and t/u = cosα, so OS2 =

MS2 tan2 α = MS2
(
1−cos2 α
cos2 α

)
= MS2 · u2−t2

t2
, which

is the desired result.



Problem 5. Let P (x), Q(x), R(x) and S(x) be non-constant polynomials with real coefficients
such that P (Q(x)) = R(S(x)). Suppose that the degree of P (x) is divisible by the degree of R(x).

Prove that there is a polynomial T (x) with real coefficients such that P (x) = R(T (x)).

Iran, Navid Safaei

Solution 1. Degree comparison of P (Q(x)) and
R(S(x)) implies that q = degQ | degS = s. We
will show that S(x) = T (Q(x)) for some polynomial
T . Then P (Q(x)) = R(S(x)) = R(T (Q(x))), so the
polynomial P (t)− R(T (t)) vanishes upon substitu-
tion t = S(x); it therefore vanishes identically, as
desired.

Choose the polynomials T (x) and M(x) such
that

S(x) = T (Q(x)) +M(x), (∗)
where degM is minimised; if M = 0, then we get
the desired result. For the sake of contradiction,
suppose M ̸= 0. Then q ∤ m = degM ; other-
wise, M(x) = βQ(x)m/q +M1(x), where β is some
number and degM1 < degM , contradicting the
choice of M . In particular, 0 < m < s and hence
deg T (Q(x)) = s.

Substitute now (∗) into R(S(x)) − P (Q(x)) =
0; let α be the leading coefficient of R(x) and
let r = degR(x). Expand the brackets to
get a sum of powers of Q(x) and other terms
including powers of M(x) as well. Amongst
the latter, the unique term of highest degree
is αrM(x)T (Q(x))r−1. So, for some polyno-
mial N(x), N(Q(x)) = αrM(x)T (Q(x))r−1 +
a polynomial of lower degree.

This is impossible, since q divides the degree of
the left-hand member, but not that of the right-
hand member.

Solution 2. All polynomials in the solution have
real coefficients. As usual, the degree of a polyno-
mial f(x) is denoted deg f(x).

Of all pairs of polynomials P (x), R(x), satis-
fying the conditions in the statement, choose one,
say, P0(x), R0(x), so that P0(Q(x)) = R0(S(x))
has a minimal (positive) degree. We will show
that degR0(x) = 1, say, R0(x) = αx + β for some
real numbers α ̸= 0 and β, so P0(Q(x)) = αS(x)+β.
Hence S(x) = T (Q(x)) for some polynomial T (x).

Now, if P (x) and R(x) are polynomials sat-
isfying P (Q(x)) = R(S(x)), then P (Q(x)) =
R(T (Q(x))). Since Q(x) is not constant, it takes
infinitely many values, so P (x) and R(T (x)) agree
at infinitely many points, implying that P (x) =
R(T (x)), as required.

It is therefore sufficient to solve the problem
in the particular case where F (x) = P (Q(x)) =
R(S(x)) has a minimal degree. Let d =
gcd(degQ(x),degS(x)) to write degQ(x) = ad
and degS(x) = bd, where gcd(a, b) = 1. Then

degP (x) = bc, degR(x) = ac and degF (x) = abcd
for some positive integer c. We will show that mini-
mality of degF (x) forces c = 1, so degP (x) = b,
degR(x) = a and degF (x) = abd. The condi-
tions a = degR(x) | degP (x) = b and gcd(a, b) = 1
then force a = 1, as stated above.

Consequently, the only thing we are left with is
the proof of the fact that c = 1. For convenience, we
may and will assume that P (x), Q(x), R(x), S(x)
are all monic; hence so is F (x). The argument
hinges on the lemma below.

Lemma. If f(x) is a monic polynomial of degree
mn, then there exists a degree n monic polyno-
mial g(x) such that deg

(
f(x)− g(x)m

)
< (m− 1)n.

(If m = 0 or 1, or n = 0, the conclusion is still
consistent with the usual convention that the iden-
tically zero polynomial has degree −∞.)

Proof. Write f(x) =
∑mn

k=0 αkx
k, αmn = 1, and

seek g(x) =
∑n

k=0 βkx
k, βn = 1, so as to fit the

bill. To this end, notice that, for each positive inte-
ger k ≤ n, the coefficient of xmn−k in the expansion
of g(x)m is of the form mβn−k+φk(βn, . . . , βn−k+1),
where φk(βn, . . . , βn−k+1) is an algebraic expression
in βn, . . . , βn−k+1. Recall that βn = 1 to de-
termine the βn−k recursively by requiring βn−k =
1
m

(
amn−k − φk(βn, . . . , βn−k+1)

)
, k = 1, . . . , n.

The outcome is then the desired polyno-
mial g(x).

We are now in a position to prove that c =
1. Suppose, if possible, that c > 1. By the
lemma, there exist monic polynomials U(x) and
V (x) of degree b and a, respectively, such that
deg

(
P (x) − U(x)c

)
< (c − 1)b and deg

(
R(x) −

V (x)c
)
< (c − 1)a. Then deg

(
F (x) − U(Q(x))c

)
=

deg
(
P (Q(x))−U(Q(x))c

)
< (c−1)abd, deg

(
F (x)−

V (S(x))c
)
= deg

(
R(S(x))−V (S(x))c

)
< (c−1)abd,

so deg
(
U(Q(x))c − V (S(x))c

)
= deg

((
F (x) −

V (S(x))c
)
−
(
F (x)− U(Q(x))c

))
< (c− 1)abd.

On the other hand, U(Q(x))c − V (S(x))c =(
U(Q(x)) − V (S(x))

)(
U(Q(x))c−1 + · · · +

V (S(x))c−1
)
.

By the preceding, the degree of the left-hand
member is (strictly) less than (c − 1)abd which is
precisely the degree of the second factor in the right-
hand member. This forces U(Q(x)) = V (S(x)),
so U(Q(x)) = V (S(x)) has degree abd < abcd =
degF (x) — a contradiction. Consequently, c = 1.
This completes the argument and concludes the
proof.



Problem 6. Let r, g, b be non-negative integers. Let Γ be a connected graph on r + g + b + 1
vertices. The edges of Γ are each coloured red, green or blue. It turns out that Γ has

� a spanning tree in which exactly r of the edges are red,

� a spanning tree in which exactly g of the edges are green and

� a spanning tree in which exactly b of the edges are blue.

Prove that Γ has a spanning tree in which exactly r of the edges are red, exactly g of the edges
are green and exactly b of the edges are blue.

Russia, Vasily Mokin

Solution 1. Induct on n = r + g + b. The base
case, n = 1, is clear.

Let now n > 1. Let V denote the vertex set
of Γ, and let Tr, Tg, and Tb be the trees with ex-
actly r red edges, g green edges, and b blue edges,
respectively. Consider two cases.

Case 1: There exists a partition V = A ⊔ B of
the vertex set into two non-empty parts such that
the edges joining the parts all bear the same colour,
say, blue.

Since Γ is connected, it has a (necessarily blue)
edge connecting A and B. Let e be one such.

Assume that T , one of the three trees, does not
contain e. Then the graph T ∪ {e} has a cycle C
through e. The cycle C should contain another
edge e′ connecting A and B; the edge e′ is also
blue. Replace e′ by e in T to get another tree T ′

with the same number of edges of each colour as
in T , but containing e.

Performing such an operation to all three trees,
we arrive at the situation where the three trees T ′

r,
T ′
g, and T ′

b all contain e. Now shrink e by identi-
fying its endpoints to obtain a graph Γ∗, and set
r∗ = r, g∗ = g, and b∗ = b − 1. The new graph
satisfies the conditions in the statement for those
new values — indeed, under the shrinking, each of
the trees T ′

r, T
′
g, and T ′

b loses a blue edge. So Γ∗

has a spanning tree with exactly r red, exactly g

green, and exactly b − 1 blue edges. Finally, pass
back to Γ by restoring e, to obtain the a desired
spanning tree in Γ.

Case 2: There is no such a partition.

Consider all possible collections (R,G,B),
where R, G and B are acyclic sets consisting of r
red edges, g green edges, and b blue edges, respec-
tively. By the problem assumptions, there is at
least one such collection. Amongst all such collec-
tions, consider one such that the graph on V with
edge set R ∪ G ∪ B has the smallest number k of
components. If k = 1, then the collection provides
the edges of a desired tree (the number of edges is
one less than the number of vertices).

Assume now that k ≥ 2; then in the result-
ing graph some component K contains a cycle C.
Since R, G, and B are acyclic, C contains edges of
at least two colours, say, red and green. By assump-
tion, the edges joining V (K) to V ∖ V (K) bear at
least two colours; so one of these edges is either red
or green. Without loss of generality, consider a red
such edge e.

Let e′ be a red edge in C and set R′ = R∖{e′}∪
{e}. Then (R′, G,B) is a valid collection providing
a smaller number of components. This contradicts
minimality of the choice above and concludes the
proof.
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Solution 2. For a spanning tree T in Γ, denote by
r(T ), g(T ), and b(T ) the number of red, green, and
blue edges in T , respectively.

Assume that C is some collection of spanning
trees in Γ. Write

r(C) = min
T∈C

r(T ), g(C) = min
T∈C

g(T ),

b(C) = min
T∈C

b(T ), R(C) = max
T∈C

(T ),

G(C) = max
T∈C

g(T ), B(C) = max
T∈C

b(T ).

Say that a collection C is good if r ∈ [r(C, R(C)],
g ∈ [g(C, G(C)], and b ∈ [b(C, B(C)]. By the prob-
lem conditions, the collection of all spanning trees
in Γ is good.

For a good collection C, say that an edge e of Γ
is suspicious if e belongs to some tree in C but not
to all trees in C. Choose now a good collection C
minimizing the number of suspicious edges. If C
contains a desired tree, we are done. Otherwise,
without loss of generality, r(C) < r and G(C) > g.

We now distinguish two cases.

Case 1: B(C) = b.
Let T 0 be a tree in C with g(T 0) = g(C) ≤ g.

Since G(C) > g, there exists a green edge e con-
tained in some tree in C but not in T 0; clearly, e is
suspicious. Fix one such green edge e.

Now, for every T in C, define a spanning tree
T1 of Γ as follows. If T does not contain e, then
T1 = T ; in particular, (T 0)1 = T 0. Otherwise, the
graph T ∖ {e} falls into two components. The tree
T0 contains some edge e′ joining those components;
this edge is necessarily suspicious. Choose one such
edge and define T1 = T ∖ {e} ∪ {e′}.

Let C1 = {T1 : T ∈ C}. All edges suspicious for
C1 are also suspicious for C, but no tree in C1 con-

tains e. So the number of suspicious edges for C1 is
strictly smaller than that for C.

We now show that C1 is good, reaching thereby
a contradiction with the choice of C. For every T
in C, the tree T1 either coincides with T or is
obtained from it by removing a green edge and
adding an edge of some colour. This already shows
that g(C1) ≤ g(C) ≤ g, G(C1) ≥ G(C) − 1 ≥ g,
R(C1) ≥ R(C) ≥ r, r(C1) ≤ r(C) + 1 ≤ r, and
B(C1) ≥ B(C) ≥ b. Finally, we get b(T 0) ≤
B(C) = b; since C1 contains T 0, it follows that
b(C1) ≤ b(T 0) ≤ b, which concludes the proof.

Case 2: B(C) > b.

Consider a tree T 0 in C satisfying r(T 0) =
R(C) ≥ r. Since r(C) < r, the tree T 0 contains
a suspicious red edge. Fix one such edge e.

Now, for every T in C, define a spanning tree T2

of Γ as follows. If T contains e, then T2 = T ; in par-
ticular, (T 0)2 = T 0. Otherwise, the graph T ∪ {e}
contains a cycle C through e. This cycle contains
an edge e′ absent from T 0 (otherwise T 0 would con-
tain the cycle C), so e′ is suspicious. Choose one
such edge and define T2 = T ∖ {e′} ∪ {e}.

Let C2 = {T2 : T ∈ C}. All edges suspicious
for C2 are also suspicious for C, but all trees in C2
contain e. So the number of suspicious edges for C2
is strictly smaller than that for C.

We now show that C2 is good, reaching again a
contradiction. For every T in C, the tree T2 either
coincides with T or is obtained from it by remov-
ing some edge and adding a red edge. This shows
that r(C2) ≤ r(C) + 1 ≤ r, R(C2) ≥ R(C) ≥ r,
G(C2) ≥ G(C) − 1 ≥ g, g(C2) ≤ g(C) ≤ g,
b(C1) ≤ b(C) ≤ b and B(C2) ≥ B(C) − 1 ≥ b. This
concludes the proof.


	2023 RMM P1
	2023 RMM P2
	2023 RMM P3
	2023 RMM P4
	2023 RMM P5
	2023 RMM P6

