
The 8th Romanian Master of Mathematics Competition

Day 1 — Solutions

Problem 1. Let ABC be a triangle and let D be a point on the segment BC, D 6= B and
D 6= C. The circle ABD meets the segment AC again at an interior point E. The circle ACD
meets the segment AB again at an interior point F . Let A′ be the reflection of A in the line BC.
The lines A′C and DE meet at P , and the lines A′B and DF meet at Q. Prove that the lines
AD, BP and CQ are concurrent (or all parallel).

Solution 1. (Ilya Bogdanov) Let σ denote reflection in the line BC. Since ∠BDF = ∠BAC =
∠CDE, by concyclicity, the lines DE and DF are images of one another under σ, so the lines
AC and DF meet at P ′ = σ(P ), and the lines AB and DE meet at Q′ = σ(Q). Consequently,
the lines PQ and P ′Q′ = σ(PQ) meet at some (possibly ideal) point R on the line BC.

Since the pairs of lines (CA,QD), (AB,DP ), (BC,PQ) meet at three collinear points, namely
P ′, Q′, R respectively, the triangles ABC and DPQ are perspective, i.e., the lines AD, BP , CQ
are concurrent, by the Desargues theorem.
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Solution 2. As in the first solution, σ denotes reflection in the line BC, the lines DE and DF
are images of one another under σ, the lines AC and DF meet at P ′ = σ(P ), and the lines AB
and DE meet at Q′ = σ(Q).

Let the line AD meet the circle ABC again at M . Letting M ′ = σ(M), it is sufficient to
prove that the lines DM ′ = σ(AD), BP ′ = σ(BP ) and CQ′ = σ(CQ) are concurrent.
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Begin by noticing that ∠(BM ′,M ′D) = −∠(BM,MA) = −∠(BC,CA) = ∠(BF,FD), to
infer that M ′ lies on the circle BDF . Similarly, M ′ lies on the circle CDE, so the line DM ′ is
the radical axis of the circles BDF and CDE.

Since P ′ lies on the lines AC and DF , it is the radical centre of the circles ABC, ADC, and
BDF ; hence the line BP ′ is the radical axis of the circles BDF and ABC. Similarly, the line
CQ′ is the radical axis of the circles CDE and ABC. So the conclusion follows: the lines DM ′,
BP ′ and CQ′ are concurrent at the radical centre of the circles ABC, BDF and CDE; thus the
lines DM , BP ′ and CQ′ are also concurrent.

Solution 3. (Ilya Bogdanov) As in the previous solutions, σ denotes reflection in the line BC.
Let the lines BE and CF meet at X. Due to the circles BDEA and CDFA, we have ∠XBD =
∠EAD = ∠XFD, so the quadrilateral BFXD is cyclic; similarly, the quadrilateral CEXD is
cyclic. Hence ∠XDB = ∠CFA = ∠CDA, the lines DX and DA are therefore images of one
another under σ, and X ′ = σ(X) lies on the line AD. Let E′ = σ(E) and F ′ = σ(F ), and apply
the Pappus theorem to the hexagon BPF ′CQE′ to infer that X ′, D, and BP ∩CQ are collinear.
The conclusion follows.
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Remark. In fact, the point X in Solution 3 and the point M in Solution 2 coincide.

Problem 2. Given positive integers m and n ≥ m, determine the largest number of dominoes
(1×2 or 2×1 rectangles) that can be placed on a rectangular board with m rows and 2n columns
consisting of cells (1× 1 squares) so that:

(i) each domino covers exactly two adjacent cells of the board;
(ii) no two dominoes overlap;
(iii) no two form a 2× 2 square; and
(iv) the bottom row of the board is completely covered by n dominoes.

Solution 1. The required maximum is mn− bm/2c and is achieved by the brick-like vertically
symmetric arrangement of blocks of n and n − 1 horizontal dominoes placed on alternate rows,
so that the bottom row of the board is completely covered by n dominoes.

To show that the number of dominoes in an arrangement satisfying the conditions in the
statement does not exceed mn − bm/2c, label the rows upwards 0, 1, . . ., m − 1, and, for each
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i in this range, draw a vertically symmetric block of n − i fictitious horizontal dominoes in the
i-th row (so the block on the i-th row leaves out i cells on either side) — Figure 4 illustrates
the case m = n = 6. A fictitious domino is good if it is completely covered by a domino in the
arrangement; otherwise, it is bad.

If the fictitious dominoes are all good, then the dominoes in the arrangement that cover no
fictitious domino, if any, all lie in two triangular regions of side-length m − 1 at the upper-left
and upper-right corners of the board. Colour the cells of the board chess-like and notice that in
each of the two triangular regions the number of black cells and the number of white cells differ
by bm/2c. Since each domino covers two cells of different colours, at least bm/2c cells are not
covered in each of these regions, and the conclusion follows.
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To deal with the remaining case where bad fictitious dominoes are present, we show that
an arrangement satisfying the conditions in the statement can be transformed into another such
with at least as many dominoes, but fewer bad fictitious dominoes. A finite number of such
transformations eventually leads to an arrangement of at least as many dominoes all of whose
fictitious dominoes are good, and the conclusion follows by the preceding.

Consider the row of minimal rank containing bad fictitious dominoes — this is certainly not
the bottom row — and let D be one such. Let `, respectively r, be the left, respectively right,
cell of D and notice that the cell below `, respectively r, is the right, respectively left, cell of a
domino D1, respectively D2, in the arrangement.

If ` is covered by a domino D` in the arrangement, since D is bad and no two dominoes in
the arrangement form a square, it follows that D` is vertical. If r were also covered by a domino
Dr in the arrangement, then Dr would also be vertical, and would therefore form a square with
D` — a contradiction. Hence r is not covered, and there is room for D` to be placed so as to
cover D, to obtain a new arrangement satisfying the conditions in the statement; the latter has
as many dominoes as the former, but fewer bad fictitious dominoes. The case where r is covered
is dealt with similarly.

Finally, if neither cell of D is covered, addition of an extra domino to cover D and, if necessary,
removal of the domino aboveD to avoid formation of a square, yields a new arrangement satisfying
the conditions in the statement; the latter has at least as many dominoes as the former, but fewer
bad fictitious dominoes. (Figure 5 illustrates the two cases.)

Solution 2. (sketch by Ilya Bogdanov) We present an alternative proof of the bound.
Label the rows upwards 0, 1, . . . ,m − 1, and the columns from the left to the right by

0, 1, . . . , 2n − 1; label each cell by the pair of its column’s and row’s numbers, so that (1, 0)
is the second left cell in the bottom row. Colour the cells chess-like so that (0, 0) is white. For
0 ≤ i ≤ n− 1, we say that the ith white diagonal is the set of cells of the form (2i+ k, k), where
k ranges over all appropriate indices. Similarly, the ith black diagonal is the set of cells of the
form (2i + 1 − k, k). (Notice that the white cells in the upper-left corner and the black cells in
the upper-right corner are not covered by these diagonals.)

Claim. Assume that K lowest cells of some white diagonal are all covered by dominoes. Then all
these K dominoes face right or up from the diagonal. (In other words, the black cell of any such
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domino is to the right or to the top of its white cell.) Similarly, if K lowest cells of some black
diagonal are covered by dominoes, then all these dominoes face left or up from the diagonal.

Proof. By symmetry, it suffices to prove the first statement. Assume that K lowest cells of the
ith white diagonal is completely covered. We prove by induction on k < K that the required
claim holds for the domino covering (2i + k, k). The base case k = 0 holds due to the problem
condition. To establish the step, one observes that if (2i + k, k) is covered by a domino facing
up of right, while (2i + k + 1, k + 1) is covered by a domino facing down or left, then these two
dominoes form a square.

We turn to the solution. We will prove that there are at least d = bm/2c empty white cells.
Since each domino covers exactly one white cell, the required bound follows.

If each of the first d white diagonals contains an empty cell, the result is clear. Otherwise,
let i < d be the least index of a completely covered white diagonal. We say that the dominoes
covering our diagonal are distinguished. After removing the distinguished dominoes, the board
splits into two parts; the left part L contains i empty white cells on the previous diagonals. So,
it suffices to prove that the right part R contains at least d− i empty white cells.

Let j be the number of distinguished dominoes facing up. Then at least j−i of these dominoes
cover some cells of (distinct) black diagonals (the relation m ≤ n is used). Each such domino
faces down from the corresponding black diagonal — so, by the Claim, each such black diagonal
contains an empty cell in R. Thus, R contains at least j − i empty black cells.

Now, let w be the number of white cells in R. Then the number of black cells in R is
w − d+ j, and at least i− j of those are empty. Thus, the number of dominoes in R is at most
(w − d+ j)− (j − i) = w − (d− i), so R contains at least d− i empty white cells, as we wanted
to show.

Remark. The conclusion still holds if some row, not necessarily the bottom row, is completely
covered by n dominoes — apply the result in the problem to the upper and lower parts of the
board overlapping along a row completely covered by n dominoes.

However, omission of the condition that the bottom row be covered by n dominoes re-
duces the minimal number of uncovered cells dramatically. For instance, all but two cells of a
(2k + 1)× (4k + 2) board can be covered by dominoes no two of which form a 2× 2 square.

Problem 3. A cubic sequence is a sequence of integers given by an = n3 + bn2 + cn+ d, where
b, c and d are integer constants and n ranges over all integers, including negative integers.

(a) Show that there exists a cubic sequence such that the only terms of the sequence which
are squares of integers are a2015 and a2016.

(b) Determine the possible values of a2015 ·a2016 for a cubic sequence satisfying the condition
in part (a).

Solution. The only possible value of a2015 ·a2016 is 0. For simplicity, by performing a translation
of the sequence (which may change the defining constants b, c and d), we may instead concern
ourselves with the values a0 and a1, rather than a2015 and a2016.

Suppose now that we have a cubic sequence an with a0 = p2 and a1 = q2 square numbers. We
will show that p = 0 or q = 0. Consider the line y = (q−p)x+p passing through (0, p) and (1, q);
the latter are two points the line under consideration and the cubic y2 = x3 + bx2 + cx+ d share.
Hence the two must share a third point whose x-coordinate is the third root of the polynomial
t3 + (b− (q−p)2)t2 + (c−2(q−p)p)t+ (d−p2) (it may well happen that this third point coincide
with one of the other two points the line and the cubic share).

Notice that the sum of the three roots is (q − p)2 − b, so the third intersection has integral
x-coordinate X = (q−p)2− b−1. Its y-coordinate Y = (q−p)X+p is also an integer, and hence
aX = X3 + bX2 + cX + d = Y 2 is a square. This contradicts our assumption on the sequence
unless X = 0 or X = 1, i.e. unless (q − p)2 = b+ 1 or (q − p)2 = b+ 2.
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Applying the same argument to the line through (0,−p) and (1, q), we find that (q+p)2 = b+1
or b + 2 also. Since (q − p)2 and (q + p)2 have the same parity, they must be equal, and hence
pq = 0, as desired.

It remains to show that such sequences exist, say when p = 0. Consider the sequence an =
n3 +(q2−2)n2 +n, chosen to satisfy a0 = 0 and a1 = q2. We will show that when q = 1, the only
square terms of the sequence are a0 = 0 and a1 = 1. Indeed, suppose that an = n(n2 − n + 1)
is square. Since the second factor is positive, and the two factors are coprime, both must be
squares; in particular, n ≥ 0. The case n = 0 is clear, so let n ≥ 1. Finally, if n > 1, then
(n− 1)2 < n2 − n+ 1 < n2, so n2 − n+ 1 is not a square. Consequently, n = 0 or n = 1, and the
conclusion follows.

Remark. The values q = 3 and q = 4 work as well. In the former case, the only square terms
of the sequence an = n(n2 + 7n + 1) are a0 = 0 and a1 = 9. In the other case, the only square
terms of the sequence an = n(n2 + 14n+ 1) are a0 = 0 and a1 = 16.
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The 8th Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. Let x and y be positive real numbers such that x+y2016 ≥ 1. Prove that x2016+y >
1− 1/100.

Solution. If x ≥ 1− 1/(100 · 2016), then

x2016 ≥
(

1− 1

100 · 2016

)2016

> 1− 2016 · 1

100 · 2016
= 1− 1

100

by Bernoulli’s inequality, whence the conclusion.
If x < 1 − 1/(100 · 2016), then y ≥ (1 − x)1/2016 > (100 · 2016)−1/2016, and it is sufficient to

show that the latter is greater than 1− 1/100 = 99/100; alternatively, but equivalently, that(
1 +

1

99

)2016

> 100 · 2016.

To establish the latter, refer again to Bernoulli’s inequality to write(
1 +

1

99

)2016

>

(
1 +

1

99

)99·20
>

(
1 + 99 · 1

99

)20

= 220 > 100 · 2016.

Remarks. (1) Although the constant 1/100 is not sharp, it cannot be replaced by the smaller
constant 1/400, as the values x = 1− 1/210 and y = 1− 1/380 show.

(2) It is natural to ask whether xn +y ≥ 1−1/k, whenever x and y are positive real numbers

such that x + yn ≥ 1, and k and n are large. Using the inequality
(

1 + 1
k−1

)k
> e, it can be

shown along the lines in the solution that this is indeed the case if k ≤ n
2 logn(1 + o(1)). It seems

that this estimate differs from the best one by a constant factor.

Problem 5. A convex hexagon A1B1A2B2A3B3 is inscribed in a circle Ω of radius R. The
diagonals A1B2, A2B3, and A3B1 concur at X. For i = 1, 2, 3, let ωi be the circle tangent to the
segments XAi and XBi, and to the arc AiBi of Ω not containing other vertices of the hexagon;
let ri be the radius of ωi.

(a) Prove that R ≥ r1 + r2 + r3.

(b) If R = r1 + r2 + r3, prove that the six points where the circles ωi touch the diagonals
A1B2, A2B3, A3B1 are concyclic.

Solution. (a) Let `1 be the tangent to Ω parallel to A2B3, lying on the same side of A2B3 as
ω1. The tangents `2 and `3 are defined similarly. The lines `1 and `2, `2 and `3, `3 and `1 meet
at C3, C1, C2, respectively (see Fig. 1). Finally, the line C2C3 meets the rays XA1 and XB1

emanating from X at S1 and T1, respectively; the points S2, T2, and S3, T3 are defined similarly.
Each of the triangles ∆1 = 4XS1T1, ∆2 = 4T2XS2, and ∆3 = 4S3T3X is similar to

∆ = 4C1C2C3, since their corresponding sides are parallel. Let ki be the ratio of similitude of
∆i and ∆ (e.g., k1 = XS1/C1C2 and the like). Since S1X = C2T3 and XT2 = S3C1, it follows
that k1 + k2 + k3 = 1, so, if ρi is the inradius of ∆i, then ρ1 + ρ2 + ρ3 = R.

Finally, notice that ωi is interior to ∆i, so ri ≤ ρi, and the conclusion follows by the preceding.

1



X
A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2

B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3

C1C2

C3

S1

S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2

S3

T1

T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2

T3

`1

`2

`3

Ω

X

C1C2

C3

M1

M2

M3

K1

K2L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1

L2
S1

S2

T1

T2

Fig. 1 Fig. 2

(b) By part (a), the equality R = r1 + r2 + r3 holds if and only if ri = ρi for all i, which implies
in turn that ωi is the incircle of ∆i. Let Ki, Li, Mi be the points where ωi touches the sides
XSi, XTi, SiTi, respectively. We claim that the six points Ki and Li (i = 1, 2, 3) are equidistant
from X.

Clearly, XKi = XLi, and we are to prove that XK2 = XL1 and XK3 = XL2. By similarity,
∠T1M1L1 = ∠C3M1M2 and ∠S2M2K2 = ∠C3M2M1, so the points M1, M2, L1, K2 are collinear.
Consequently, ∠XK2L1 = ∠C3M1M2 = ∠C3M2M1 = ∠XL1K2, so XK2 = XL1. Similarly,
XK3 = XL2.

Remark. Under the assumption in part (b), the point Mi is the centre of a homothety mapping
ωi to Ω. Since this homothety maps X to Ci, the points Mi, Ci, X are collinear, so X is the
Gergonne point of the triangle C1C2C3. This condition is in fact equivalent to R = r1 + r2 + r3.

Problem 6. A set of n points in Euclidean 3-dimensional space, no four of which are coplanar,
is partitioned into two subsets A and B. An AB-tree is a configuration of n− 1 segments, each of
which has an endpoint in A and the other in B, and such that no segments form a closed polyline.
An AB-tree is transformed into another as follows: choose three distinct segments A1B1, B1A2

and A2B2 in the AB-tree such that A1 is in A and A1B1 + A2B2 > A1B2 + A2B1, and remove
the segment A1B1 to replace it by the segment A1B2. Given any AB-tree, prove that every
sequence of successive transformations comes to an end (no further transformation is possible)
after finitely many steps.

Solution. The configurations of segments under consideration are all bipartite geometric trees
on the points n whose vertex-parts are A and B, and transforming one into another preserves
the degree of any vertex in A, but not necessarily that of a vertex in B.

The idea is to devise a strict semi-invariant of the process, i.e., assign each AB-tree a real
number strictly decreasing under a transformation. Since the number of trees on the n points is
finite, the conclusion follows.

To describe the assignment, consider an AB-tree T = (A t B, E). Removal of an edge e of
T splits the graph into exactly two components. Let pT (e) be the number of vertices in A lying
in the component of T − e containing the A-endpoint of e; since T is a tree, pT (e) counts the
number of paths in T − e from the A-endpoint of e to vertices in A (including the one-vertex
path). Define f(T ) =

∑
e∈E pT (e)|e|, where |e| is the Euclidean length of e.

We claim that f strictly decreases under a transformation. To prove this, let T ′ be obtained
from T by a transformation involving the polyline A1B1A2B2; that is, A1 and A2 are in A, B1
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and B2 are in B, A1B1 +A2B2 > A1B2 +A2B1, and T ′ = T −A1B1 +A1B2. It is readily checked
that pT ′(e) = pT (e) for every edge e of T different from A1B1, A2B1 and A2B2, pT ′(A1B2) =
pT (A1B1), pT ′(A2B1) = pT (A2B1) + pT (A1B1), and pT ′(A2Bb2) = pT (A2B2)− pT (A1B1). Con-
sequently,

f(T ′)− f(T ) = pT ′(A1B2) ·A1B2 + (pT ′(A2B1)− pT (A2B1)) ·A2B1+

(pT ′(A2B2)− pT (A2B2)) ·A2B2 − pT (A1B1) ·A1B1

= pT (A1B1) (A1B2 +A2B1 −A2B2 −A1B1) < 0.

Remarks. (1) The solution above does not involve the geometric structure of the configurations,
so the conclusion still holds if the Euclidean length (distance) is replaced by any real-valued
function on A× B.

(2) There are infinitely many strict semi-invariants that can be used to establish the con-
clusion, as we are presently going to show. The idea is to devise a non-strict real-valued semi-
invariant fA for each A in A (i.e., fA does not increase under a transformation) such that∑

A∈A fA = f . It then follows that any linear combination of the fA with positive coefficients is
a strict semi-invariant.

To describe fA, where A is a fixed vertex in A, let T be an AB-tree. Since T is a tree, by
orienting all paths in T with an endpoint at A away from A, every edge of T comes out with a
unique orientation so that the in-degree of every vertex of T other than A is 1. Define fA(T ) to
be the sum of the Euclidean lengths of all out-going edges from A. It can be shown that fA does
not increase under a transformation, and it strictly decreases if the paths from A to each of A1,
A2, B1, B2 all pass through A1 — i.e., of these four vertices, A1 is combinatorially nearest to A.
In particular, this is the case if A1 = A, i.e., the edge-switch in the transformation occurs at A.
It is not hard to prove that

∑
A∈A fA(T ) = f(T ).

The conclusion of the problem can also be established by resorting to a single carefully chosen
fA. Suppose, if possible, that the process is infinite, so some tree T occurs (at least) twice. Let A
be the vertex in A at which the edge-switch occurs in the transformation of the first occurrence
of T . By the preceding paragraph, consideration of fA shows that T can never occur again.

(3) Recall that the degree of any vertex in A is invariant under a transformation, so the
linear combination

∑
A∈A(degA − 1)fA is a strict semi-invariant for AB-trees T whose vertices

in A all have degrees exceeding 1. Up to a factor, this semi-invariant can alternatively, but
equivalently be described as follows. Fix a vertex ∗ and assign each vertex X a number g(X) so
that g(∗) = 0, and g(A)−g(B) = AB for every A in A and every B in B joined by an edge. Next,
let β(T ) = 1

|B|
∑

B∈B g(B), let α(T ) = 1
|E|−|A|

∑
A∈A(degA−1)g(A), where E is the edge-set of T ,

and set µ(T ) = β(T )− α(T ). It can be shown that µ strictly decreases under a transformation;
in fact, µ and

∑
A∈A(degA− 1)fA are proportional to one another.
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