XIII Asian Pacific Mathematics Olympiad
March, 2001

Time allowed: 4 hours
No calculators to be used

Each question is worth 7 points

Problem 1.

For a positive integer n let S(n) be the sum of digits in the decimal representation of n. Any positive
integer obtained by removing several (at least one) digits from the right-hand end of the decimal
representation of n is called a stump of n. Let T(n) be the sum of all stumps of n. Prove that
n=5S(n)+97(n).

Problem 2.
Find the largest positive integer N so that the number of integers in the set {1,2,..., N} which are
divisible by 3 is equal to the number of integers which are divisible by 5 or 7 (or both).

Problem 3.
Let two equal regular n-gons S and 7" be located in the plane such that their intersection is a 2n-gon
(n > 3). The sides of the polygon S are coloured in red and the sides of T" in blue.

Prove that the sum of the lengths of the blue sides of the polygon S N 7T is equal to the sum of the
lengths of its red sides.

Problem 4.

A point in the plane with a cartesian coordinate system is called a mized point if one of its coordinates
is rational and the other one is irrational. Find all polynomials with real coefficients such that their
graphs do not contain any mixed point.

Problem 5.

Find the greatest integer n, such that there are n+4 points 4, B, C, D, X4, ..., X,, in the plane with
AB # CD that satisfy the following condition: for each ¢ = 1,2,...,n triangles ABX; and CDX; are
equal.



XI APMO - SOLUTIONS AND MARKING SCHEMES

Problem 1.
First solution.
Let us prove that n = S(n) + 97(n) proceding by induction over the number of digits of n.

1 POINT.

If n has one digit then the result is trivial. Suppose that n = S(n) + 9T(n) is true for any integer n

of k digits. Now any number m of k + 1 digits can be writen as m = 10n + a where n is a number of
k digits. Obviously,

T(m)=n+T(n) and (m)=S(n)+a.

2 POINTS (1 POINT for each of the last equalities).

Therefore
m—-S8(m) = 1l0n+a-S(n)—a
= 10n - S(n)
= (n—S(n))+9n
= 97(n)+9n
9T'(m),
as required.
4 POINTS.
Second solution.
Let n = arar—i - aias = 10%a; + 10F~Yag_y +... + 10a; + ag, where ai, ak_1, ..., a1, ao are digits.
The stumps of n are
Zmero o = 108 lag +1052a5_ +... +10a2 + a1
aplg_1...-09 = 10"‘2ak + 10k'3ak_1 +...4+ag
axar—1 = 10ak +ak-1
ar = 0.
1 POINT.
Since 10™~ ! +10™ 2 4+ ...+ 10+1= L";“—l then the sum of all stumps of n is
T(n)_lok—1a +10’°—1—1 L opl-1p
= 3 k 9 Qr—1 imy 9 1s



v ' 8 POINTS.

and hence

9T(n) = 10kak + 1Ok—1ak_1 +...4+10a; +ap — (ap +ag—1 + ...+ a1+ ao)
= n— S(n).

Consequently n = S(n) + 9T'(n).

3 POINTS.
Third Solution.

Let k(n) be the number of zeros at the end of the decimal representation of n or, which is the same,
the largest power of 10 which divides n. The the following two observations are straightforward:

1. S(n) = S(n~-1) = (9%(n) - 1),
2. k(1) +k(2)+... + k(n) = T(n).

4 POINTS (2 POINTS for each of these equalities).

Then summing the following equalities up

S(1) = S(0) - (9k(1) = 1),
S@2) = S(1)-(9%(2) - 1),

S(n—1) = S(n —2) = (9k(n - 1) = 1),
S(n—1) - (9k(n-1) - 1)

o2
&
I

we get S(n) =n — (k(1) + k(2) +... + k(n)) =n - 9T(n).

3 POINT for concluding.

Problem 2.
First Solution.

This is equivalent to find the largest positive integer solution of the equation

5]~ 151+ [7]- =)
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1 POINT for equality (1).
For N to be a solution of (1) it is necessary that

N=2 N=3# N
5

¥ g Z 2
3 3% — 5 7

+

2

which simplifies to N < 86.

1 POINTS for finding that N < 86.
However, if N > 70 then because N < 86, (1) implies that

N—2+N—16 <_]\£+_]\_7
3 3 T 5 7
which simplifies to N < 59, contradicting N > 70. it follows that N must be at most 69.

4 POINTS for finding that N < 69.
Checking (1) for N < 69 we find that

when N =69, (1)is 23+1=13+9, false:
when N =68,67,66, (1)is 22+1=13+9, false
when N =65, (1)is 214+1=13+9, true

Thus the answer is N = 65.
1 POINT for concluding.

Second solution.

This is equivalent to find the largest positive integer solution of the equation
N N N N
il e k) ] e 1
2] =151+17] = .

1 POINT for equality (1).
Let N =35k 4+ r (0 < r < 35) be a solution of (1). Then (1) can be writen as

t35k3+rj i e EJ + H .




1 POINT.

W 35/:434—2 o [351§+rJ, |Z] < £ and |}] < L. Therefore -

<nk+r+r__12r
= 57 35’

which implies that 70k < r + 70 < 35 + 70 = 105. Then k < 1 or equivalently N < 69.

35k +r —2
3

4 POINTS for finding that N < 69.
As in the first solution, checking (1) for N < 69 we find the answer N = 65.

1 POINT for concluding.
Remark.

2 POINTS can be given for finding a good upper bound for ezample N < 100 (in the first solution we
found n < 86). 6 POINTS for proving that N < 69.

1 POINT can be given for the correct answer.
Problem 3.
First Solution.

It is easy to see that the intersection S NT has 2n sides only if the sides of SNT alternate: blue, red,
blue, red, etc.

1 POINT.
Denote the vertices of SNT clockwise as C;D1CoD3 . .. Cy Dy, so that the sides C1D,, C2Ds, ... CrDn
are blue. Denote the vertices of S by A;, Asg,..., An and the vertices of T by B1, Ba,..., Bn so

that C1D; C B1Bs,... CnDy € BaB) and D,C; C A1A,,... Dn-1Cy € AR AL
It is easy to check that all the triangles D, B1Ch, D1B5Cs,...,Dy—1BnCr and C1 A2 Dy, CyA3Ds,...,CrA1Dy

are similar.

1 POINT.
Therefore,
DnCh ol D,C; o 1 I Dp-1Cn i
D,.B, + B:Cy L DBy + By (s Lo D,_1B, + B;Cy
_ CiD, a C1D- l & CrDy
T CiAy + AsDy  CoAs+A3Dy 1 CrAi+AiDn
1 POINT.
Hence,

D,C, +D1Co + ... 4 Dy 30y _
D.B;, + B;C1 + D1By+ ByCo+ ... + D,_1B, + B, Chy




_ ClD1+C1D2+...+CnDn (1)
CrAz + AgDy + CoAs + AsDy + ...+ CrA1 + A1Dn
Let 2 = D,Cy+ D1Ca+ ...+ Dyp_1Cp and y = C1 Dy + C1Dy + ... + CpDp then z is the sum of the

blue sides of SN T and y is the sum of the red sides. If a is the length of a side of S (or T'), then the
equality (1) can be written in the following form

r Y

na—vy mna—=1z

It follows that

nex — 2 = nay—-y2
na(z —y) = (@+y)z-y)
(na-z-y)z-y) = 0

Since the perimeter £ + y of SN T is strictly less than the perimeter na of SorT,na—z—y >0
We obtain z —y =0 and z = y q.e.d.

4 POINTS for concluding.
Second Solution.
As in the first solution, S N T has 2n sides only if the sides of § NT alternate.

1 POINT.

Label the vertices of the red n-gon Ri, Rp,... R, and the vertices of the blue n-gon B, Ba,...,Bn.
Place the n-gons so that the vertices are in the following clockwise order: By, R1, Ba, R, ..., Bn, Ra.

Each of these vertices together with the opposite side determines a triangle and all these triangles are
similar.

i POINT.

For each i = 1,...,n, we let the lengths of the sides of the triangle determined by B; be biuicpd; if
the clockwise order where b; is the side opposite B; such that b;/b; = ci/c1 = difdi = p;. We also
let the lengths of the sides of the triangle determined by R; be 7y, si,t; in the counter clockwise order
such that 7;/by = si/c1 = ti/d1 = ¢;.

i POINT.

Then we want to prove that by 4+ -+ 4+ by, = 71 + -+ + 75 or bi(p1 + -+~ +pn) = bi(@ + - + gn),
where p, = 1, or p = g where p = (p1 +--- +pn)yg = (@1 + - + gn). The perimeter of the blue
n-goniscy +di+7r 4+ -+ +dp+7Th =pa Tt pdy + gby. Likewise the perimeter of the red n-
gon is pb; +qc1 +qd;. Equating the two we have pley+dy —by) = gler +di —b1), which implies p = q as



required.

4 POINTS for concluding.
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Problem 4.

Answer. All the polynomials of degree 1 with rational coefficients.
First Solution. :
Note that a polynomial that satisfies the conditions of the problem takes rational values for rational

numbers and irrational values for irrational numbers. Let f(z) be a polynomial of degree n such that

f(r) € Q for every r € Q. For distinct rational numbers rg, r1,...,7n, where n = deg f(z) let us
define the polynomial

g(z) = clz—r)(z—12)...(x—mp)+c(z—ro)(z—r2)...(T~TH)+...
el =) o [F = Piaa}lE — ) - 2 — ) F o
el = rp){m = ri). « (8=Pp-); (1)
where ¢g, €1, ..., ¢, are real numbers.
Suppose that g(r;) = f(r;), i =0,1,...,n. Since g(r;) = ¢;i(ri — 7o) ... (ri = 7i—1) (T —7iy1) ... (ri—7n)
c @ £(r:)
- AT - i . (2)
O ri=ro) . (ri— ) (ri — 1) (i = 70)- .. (rs = Tima) (ri — Ti1)
Clearly ¢; is a rational number for i = 0,1,...,n and therefore the coefficients of g(z) are rational.

The polynomial g(x) defined in (1) with coefficients cg, c1, ..., cp satisfying (2) coincides with f(z) in
n+ 1 points and both polynomials f and g have degree n. It follows that for every real z, f(z) = glxz)-
Therefore the coefficients of f(z) are rational.

o

Thus if a polynomial satisfies the conditions, all its coefficients are rational.

1 POINT for proving that the polinomial has rational coefficients.

It is easy to see that all the polynomials of first degree with rational coefficients satisfy the conditions

of the problem and polynomials of degree 0 do not satisfy it. Let us prove that no other polynomials
exist.



Suppose that f(z) = ag+ a1z + ...+ a,z" is a polynomial with rational coefficients and degree n > 2
that satisfies the conditions of the problem. We may assume that the coefficients of f(z) are integers,
because the sets of solutions of equations f(z) = r and af(z) = ar, where a is an integer, coincide.
Moreover let us denote g(z) = ap~' (). g(z) is a polynomial with integer coefficients whose leading

coefficient is 1. The equation f(z) = r has an irrational root if and only if g(z) = a’lr has an

irrational root. Therefore, we may assume WLOG that f(z) has integer coefficients and an = 1.

1 POINT more for proving that it is suficient to consider polinomials with integer and leading
coefficient equal to 1.

Let r be a sufficiently large prime, such that

r > max{f(1) — f(0),z1,22,..., Tk},

where {z1,Z2,...,zx} denote the set of all real roots of f(z) — f(0) —z = 0. Putting g = r+ f(0) € Z,
and considering the equality

flz)—qg=f(z) - f(0)—r
we then have _
f1)—g=f(1)-f(0) -7 <O,
On the other hand, by the choice of r, we have

fQ)—g=f(r)=f(0)—r>0.

It follows from the intermediate value theorem that there is at least one real root p of f(z) —¢ =0
between 1 and r. Notice that from the criterion theorem for rational roots, the possible positive
rational roots of the equation f(z) — ¢ = f(z) — f(0) —r = 0 are 1 and . Thus p must be irrational.

5 POINTS for concluding.
Second Solution.

As in the first solution we may assume WLOG that f(z) has integer coefficients and the leading
coefficient is a, = 1.

2 POINTS.

Observing the graph of f(z), it is easy to see that there exists a sufficiently great integer r such that
f(z) = r has one possitive root zo and for £ > z¢ the derivative f'(z) is greater than 1. The equation
f(z) = r + 1 has also one positive root z; > zo. Since a, = 1, rational roots o and z; must be
integers. Then z; — 29 > 1 and

flz1) = flzo)

T1 — Lo
It follows that f'(z) < 1 for z € [zg,71]. This contradiction proves that f (z) = r necessarily has an
irrational root for at least one integer r.

5 POINTS for concluding.

Remark.
No points can be given just for the answer.



Problem 5.
First Solution. »

One of the sides AX; or BX; is equal to C'D, thus X; is on one of the circles of radius CD and center
A or B. In the same way X; is on one of circles of radius AB with center C or D. The intersection
of these four circles has no more than 8 points so that n < 8.

1 POINT for finding that n < 8.

Suppose that circle Sp with center B and radius CD intersects circle S¢ with center C' and radius
AB in two points X; and X, which satisfy the conditions of the problem. Then in triangles ABX;
and CDX; we have BX; = CD and CX; = AB. Since these triangles are congruent then AX; =
DX, therefore X; and X, are on the perpendicular bisector of AD. On the other hand X; X, is

perpendicular to segment BC. Then BC||AD and AB and CD are the diagonals or nonparallel sides
of a trapezoid.

~ X
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Suppose that AB < CD. Then BX; = CD > AB = CX;. It follows that the distance from A to the
perpendicular bisector of BC must be less than the distance from D to this line otherwise we obtain a
contradiction to the condition AB < CD. Then for any point X in the perpendicular bisector of BC
we have AX < DX and it is not possible to have AX = CD, DX = AB. Thus if the circle with center
A and radius CD intersects the circle with center D and radius AB, then the points of intersection do
not satisfy the condition of congruence. Therefore if the points of intersection of Sg with S¢ satisfy
the condition of congruence, then the points of intersection of S4 with Sp do not. Thus no more than
half of the 8 points of intersection of these circles can satisfy the condition of congruence, i.e. n < 4.

4 POINTS for proving that n < 4.

If n = 4 we have the following example of a regular hexagon.

4. — . B
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2 POINTS for proving that n > 4.



Second Solution.

The greatest possible value of n is 4. First we will prove that n > 4 and finally we will prove that
n < 4.

e To prove that n > 4 it is enough to show a configuration of 8 points that satisfies the conditions
of the problem. Let us choose 6 points A, B, Y, C, D, X on a circle such that triangle
AY D is equilateral and B, C, X are points on arcs AY, YD, DA respectively, such that arcs

AB, YC, DX are equal and less than 60°. Then it is easy to see that AB,CD and XY are
parallel and /DXY = /CY X = 60°.

4___ B
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If XY intersects AC and BD at X', Y, respectively, then X,Y, X'Y" satisfy the conditions of
the problem.

2 POINTS for proving that n > 4.

e To show that n < 4 let us consider the following figure.

S,m
Supposethat AB < C'D. The trace of point K such that (ABK) = (CDK) is two lines [ and m

through the point of intersection O of AB with CD. (If AB||CD then the trace of K is formed
by two parallel lines.)

If X is a point such that AABX = ACDX then X must be on one or more of the perpendicular
bisectors of the segments AC, AD, BC, BD. Since X lies on [ or m, on each of the perpendicular
bisectors of AC, AD, BC, BD there can be no more than 2 intersection points, i.e. n < 8.

1 POINT for proving that n < 8.

We will prove that at most one point on each perpendicular bisector satisfies the conditions of
the problem.



WLOG Suposse that X; and X, are points on the perpendicular bisector of BC such that
AABX; = ACDX, and AABX; = ACDX, with Xy €land X5 € m.

Let us prove that AX; = CD. Since AB # CD one of the segments AX; or BX; is equal to

CD. If BX; = CD then CX; = CD by construction, and ACDX; has two sides equal to CD,
thus AX; = CD.

In the same way we have DX = AB

The same argument can be used if we consider the point X;. In this case we conclude that AX; =
AXjand DX, = DX, then AD and XX, are perpendicular. But BC and X; X, perpendicular
and therefore AD||BC. We are considering the case when AD and BC are diagonals of a
cuadrilateral, therefore they are not parallel. This is a contradiction.

If we consider the perpendicular bisector of BD, the same argument allows us to conclude
that AC and BD are parallel. Therefore a point X on [ or m (i.e (XAB) = (XCD)) satisfies
(XOB) = (XOD) because triangles OAC and OBD are similar. Thus, the points of intersection
of AC with [ and BD with | are midpoints of the respective segments. Then X;X, C [ and,
since [ is the perpendicular bisector and median, triangle ABD is isosceles with OB = OC'. So,
AB = CD, which is a contradiction. Therefore n < 4.

4 POINT for proving that n < 4.



