THE REARRANGEMENT INEQUALITY

Šefket Arslanagić
University of Sarajevo (Bosnia and Herzegovina)

Abstract

In this paper we consider a really very useful inequality, the so called rearrangement inequality, which has may applications and could be used in proving other inequalities. The paper contains a proof of the rearrangement inequality and several examples of its application.

Keywords: equality; inequality; rearrangement inequality; permutation; sequence; corollary; example

AMS Subject classification (2010): 97 F 50

ZDM Subject classifiction (2010): F50, N 50
Theorem 1. Consider two collections of real numbers in increasing order:

$$
a_{1} \leq a_{2} \leq \ldots \leq a_{n} \text { and } b_{1} \leq b_{2} \leq \ldots \leq b_{n} .
$$

For any permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, it happens that

$$
\begin{gather*}
a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n} \geq a_{l}^{\prime} b_{1}+a_{2}^{\prime} b_{2}+\ldots+a_{n}^{\prime} b_{n} \tag{1}\\
\geq a_{n} b_{1}+a_{n-1} b_{2}+\ldots+a_{l} b_{n} . \tag{2}
\end{gather*}
$$

Moreover, the equality in (1) holds true iff $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and the equality in (2) holds true iff $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)=\left(a_{n}, a_{n-1}, \ldots, a_{1}\right)$. (1) is known to be the rearrangement inequality.

Proof of the rearrangement inequality: Suppose that $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$. Let

$$
\begin{aligned}
& S=a_{l} b_{1}+a_{2} b_{2}+\ldots+a_{r} b_{r}+\ldots+a_{s} b_{s}+\ldots+a_{n} b_{n}, \\
& S^{\prime}=a_{l} b_{1}+a_{2} b_{2}+\ldots+a_{s} b_{r}+\ldots+a_{r} b_{s}+\ldots+a_{n} b_{n} .
\end{aligned}
$$

The difference between S and S^{\prime} is that the coefficients of b_{r} and b_{s}, where $r<s$, are switched. Hence,

$$
S-S^{\prime}=a_{r} b_{r}+a_{s} b_{s}-a_{s} b_{r}-a_{r} b_{s}=\left(b_{s}-b_{r}\right)\left(a_{s}-a_{r}\right) .
$$

Thus, we have that $S \geq S^{\prime}$ iff $a_{s} \geq a_{r}$. Repeating this process we get as a result that the sum S is maximal when $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$.

Corollary 1. For any permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, we have that

$$
a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2} \geq a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}+\ldots+a_{n} a_{n}^{\prime} .
$$

Corollary 2. For any permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, we have that

$$
\frac{a_{1}^{\prime}}{a_{1}}+\frac{a_{2}^{\prime}}{a_{2}}+\ldots+\frac{a_{n}^{\prime}}{a_{n}} \geq n .
$$

In the sequel we propose several examples of application of the rearrangement inequality.

Example 1. Let a, b and c be positive real numbers. Prove Nesbitt's inequality

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} .
$$

Solution: Without loss of generality, we may assume that $a \geq b \geq c$. Then clearly

$$
\frac{1}{b+c} \geq \frac{1}{c+a} \geq \frac{1}{a+b} .
$$

By the rearrangement inequality we deduce
and

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}
$$

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b} .
$$

Adding the last two inequalities we obtain that
or

$$
\begin{aligned}
& 2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right) \geq 3 \\
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}, \text { q.e.d. }
\end{aligned}
$$

Equality holds true iff $a=b=c$.
Example 2. (IMO 1978.) Let $x_{1}, x_{2}, \ldots, x_{n}$ be different positive integers. Prove the inequality

$$
\frac{x_{1}}{1^{2}}+\frac{x_{2}}{2^{2}}+\ldots+\frac{x_{n}}{n^{2}} \geq \frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{n}
$$

Solution: Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a permutation of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(\frac{1}{n^{2}}, \frac{1}{(n-1)^{2}}, \ldots, \frac{1}{1^{2}}\right)$, that is $b_{i}=\frac{1}{(n+1-i)^{2}}$ for $i=1,2, \ldots, n$.

Consider the permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ defined by $a_{i}^{\prime}=x_{n+1-i}$, for $i=1,2, \ldots, n$. Using inequality (2) we may claim that

$$
\begin{gathered}
\frac{x_{1}}{1^{2}}+\frac{x_{2}}{2^{2}}+\ldots+\frac{x_{n}}{n^{2}}=a_{1}^{\prime} b_{1}+a_{2}^{\prime} b_{2}+\ldots+a_{n}^{\prime} b_{n} \\
\geq a_{n} b_{1}+a_{n-1} b_{2}+\ldots+a_{1} b_{n} \\
=a_{l} b_{n}+a_{2} b_{n-1}+\ldots+a_{n} b_{1} \\
=\frac{a_{1}}{1^{2}}+\frac{a_{2}}{2^{2}}+\ldots+\frac{a_{n}}{n^{2}}
\end{gathered}
$$

Since $1 \leq a_{1}, 2 \leq a_{2}, \ldots, n \leq a_{n}$ we have that

$$
\frac{x_{I}}{1^{2}}+\frac{x_{2}}{2^{2}}+\ldots+\frac{x_{n}}{n^{2}} \geq \frac{a_{1}}{1^{2}}+\frac{a_{2}}{2^{2}}+\ldots+\frac{a_{n}}{n^{2}} \geq \frac{1}{1^{2}}+\frac{2}{2^{2}}+\ldots+\frac{n}{n^{2}}=\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{n}, \text { q.e.d. }
$$

Equality holds true iff $x_{1}=1, x_{2}=2, \ldots, x_{n}=n$.
Example 3. Let a, b, c be positive real numbers. Prove the inequality

$$
\frac{a^{2}+c^{2}}{b}+\frac{b^{2}+a^{2}}{c}+\frac{c^{2}+b^{2}}{a} \geq 2(a+b+c) .
$$

Solution: Since the given inequality is symmetric, without loss of generality we may assume that $a \geq b \geq c$. Then clearly

$$
\begin{aligned}
& \text { hen clearly } \\
& a^{2} \geq b^{2} \geq c^{2}
\end{aligned} \text { and } \frac{1}{c} \geq \frac{1}{b} \geq \frac{1}{a} .
$$

By the rearrangement inequality we have
and

$$
\begin{align*}
& \frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}=a^{2} \cdot \frac{1}{b}+b^{2} \cdot \frac{1}{c}+c^{2} \cdot \frac{1}{a} \geq a^{2} \cdot \frac{1}{a}+b^{2} \cdot \frac{1}{b}+c^{2} \cdot \frac{1}{c}=a+b+c, \tag{3}\\
& \frac{a^{2}}{c}+\frac{b^{2}}{a}+\frac{c^{2}}{b}=a^{2} \cdot \frac{1}{c}+b^{2} \cdot \frac{1}{a}+c^{2} \cdot \frac{1}{b} \geq a^{2} \cdot \frac{1}{a}+b^{2} \cdot \frac{1}{b}+c^{2} \cdot \frac{1}{c}=a+b+c . \tag{4}
\end{align*}
$$

Adding (3) and (4) yields the required inequality. The equality occurs iff $a=b=c$.

Example 4. Let x, y, z be positive real numbers. Prove the inequality

$$
\frac{x^{3}}{y z}+\frac{y^{3}}{z x}+\frac{z^{3}}{x y} \geq x+y+z
$$

Solution: Since the given inequality is symmetric we may assume that $x \geq y \geq z$. Then

$$
x^{3} \geq y^{3} \geq z^{3} \text { and } \frac{1}{y z} \geq \frac{1}{z x} \geq \frac{1}{x y} .
$$

By the rearrangment inequality we have

$$
\begin{equation*}
\frac{x^{3}}{y z}+\frac{y^{3}}{z x}+\frac{z^{3}}{x y}=x^{3} \cdot \frac{1}{y z}+y^{3} \cdot \frac{1}{z x}+z^{3} \cdot \frac{1}{x y} \geq x^{3} \cdot \frac{1}{x y}+y^{3} \cdot \frac{1}{y z}+z^{3} \cdot \frac{1}{z x}=\frac{x^{2}}{y}+\frac{y^{2}}{z}+\frac{z^{2}}{x} . \tag{5}
\end{equation*}
$$

We will prove that

$$
\begin{equation*}
\frac{x^{2}}{y}+\frac{y^{2}}{z}+\frac{z^{2}}{x} \geq x+y+z \tag{6}
\end{equation*}
$$

Let $x \geq y \geq z$. Then $x^{2} \geq y^{2} \geq z^{2}$ and $\frac{1}{z} \geq \frac{1}{y} \geq \frac{1}{x}$ (since inequality (6) is cyclic, we need to consider the case $z \geq y \geq x)$.

By the rearrangment inequality we obtain

$$
\frac{x^{2}}{y}+\frac{y^{2}}{z}+\frac{z^{2}}{x} \geq \frac{x^{2}}{x}+\frac{y^{2}}{y}+\frac{z^{2}}{z}=x+y+z .
$$

The case when $z \geq y \geq z$ is analogous to the previous one.
Now by (5) and (6) we obtain

$$
\frac{x^{3}}{y z}+\frac{y^{3}}{z x}+\frac{z^{3}}{x y} \geq x+y+z, \text { q.e.d. }
$$

Equality occurs iff $x=y=z$.
Example 5. (IMO 1964). Suppose that a, b, c are the lenghts of the sides of a triangle. Prove that

$$
a^{2}(b+c-a)+b^{2}(a+c-b)+c^{2}(a+b-c) \leq 3 a b c .
$$

Solution: Since the expression is a symmetric function of a, b and c, we can assume, without loss of generality, that $c \leq b \leq a$. In this case, $a(b+c-a) \leq b(a+c-b) \leq c(a+b-c)$. For instance, the first inequality could be proved in the following way:

$$
a(b+c-a) \leq b(a+c-b) \Leftrightarrow a b+a c-a^{2} \leq a b+b c-b^{2}
$$

$$
\begin{aligned}
\Leftrightarrow & (a-b) c \leq(a+b)(a-b) \\
& \Leftrightarrow(a-b)(a+b-c) \geq 0 .
\end{aligned}
$$

By (2) of the rearrangement inequality, we have

$$
\begin{aligned}
& a^{2}(b+c-a)+b^{2}(c+a-b)+c^{2}(a+b-c) \leq b c(b+c-a)+c b(c+a-b)+a c(a+b-c) \\
& a^{2}(b+c-a)+b^{2}(c+a-b)+c^{2}(a+b-c) \leq c a(b+c-a)+a b(c+a-b)+b c(a+b-c)
\end{aligned}
$$

Therefore, if follows after summing these inequalities, that:
i.e.

$$
2\left[a^{2}(b+c-a)+b^{2}(c+a-b)+c^{2}(a+b-c)\right] \leq 6 a b c
$$

$$
a^{2}(b+c-a)+b^{2}(a+c-b)+c^{2}(a+b-c) \leq 3 a b c, \text { q.e.d. }
$$

Equality holds iff $a=b=c$ (equilateral triangle).
Example 6. (IMO 1983). Let a, b and c be the lengths of the sides of a triangle. Prove that

$$
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0 .
$$

Solution: Consider the case $c \leq b \leq a$ (the other casses are similar). As in the previous example, we have that

$$
a(b+c-a) \leq b(a+c-b) \leq c(a+b-c)
$$

and since $\frac{1}{a} \leq \frac{1}{b} \leq \frac{1}{c}$, using the inequality (1), we deduce, that:

$$
\frac{1}{a} \cdot a(b+c-a)+\frac{1}{b} \cdot b(c+a-b)+\frac{1}{c} \cdot c(a+b-c) \geq \frac{1}{c} \cdot a(b+c-a)+\frac{1}{a} \cdot b(c+a-b)+\frac{1}{b} \cdot c(a+b-c) .
$$

Therefore,

$$
a+b+c \geq \frac{a(b-a)}{c}+\frac{b(c-b)}{a}+\frac{c(a-c)}{b}+a+b+c .
$$

It follows that

$$
\frac{a(b-a)}{c}+\frac{b(c-b)}{a}+\frac{c(a-c)}{b} \leq 0 .
$$

Multiplying by $a b c$, we obtain

$$
a^{2} b(b-a)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0, \text { q.e.d. }
$$

Remark 1. Four different proofs of this inequality could be found in (Arslanagić, 2005).

Example 7. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers. Show that

$$
\frac{a_{1}}{2}+\frac{a_{2}}{8}+\ldots+\frac{a_{n}}{n \cdot 2^{n}} \geq 1-\frac{1}{2^{n}} .
$$

Solution: Arrange $a_{1}, a_{2}, \ldots, a_{n}$ in increasing order as $b_{1}, b_{2}, \ldots, b_{n}$. Then $b_{m} \geq n$ because we have distinct positive integers. Since $\frac{1}{2}, \frac{1}{8}, \ldots, \frac{1}{n \cdot 2^{n}}$, by the rearrangement inequality it follows that:

$$
\begin{aligned}
& \frac{a_{1}}{2}+\frac{a_{2}}{8}+\ldots+\frac{a_{n}}{n \cdot 2^{n}} \geq \frac{b_{1}}{2}+\frac{b_{2}}{8}+\ldots+\frac{b_{n}}{n \cdot 2^{n}} \\
& \geq \frac{1}{2}+\frac{2}{8}+\ldots+\frac{n}{n \cdot 2^{n}} \\
&=\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^{n}} \\
&= \frac{1}{2}\left(1+\frac{1}{2}+\ldots+\frac{1}{2^{n-1}}\right) \\
&= \frac{1}{2} \cdot \frac{1-\frac{1}{2^{n}}}{1-\frac{1}{2}}=1-\frac{1}{2^{n}}, \text { q.e.d. }
\end{aligned}
$$

Equality holds true iff $a_{1}=1, a_{2}=2, \ldots, a_{n}=n$.
Example 8. (West German Math Olympiad, 1982). If $a_{1}, a_{2}, \ldots, a_{n}>0$ and $a=a_{1}+a_{2}+\ldots+a_{n}$; then

$$
\sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}} \geq \frac{n}{2 n-1} .
$$

Solution: By symmetry we may assume that $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$. Then

$$
\frac{1}{2 a-a_{n}} \leq \ldots \leq \frac{1}{2 a-a_{1}}
$$

For convenience let $a_{i}=a_{j}$ if $i \equiv j(\bmod n)$. For $m=0,1, \ldots, n-1$ by the rearrangement inequality we get

$$
\sum_{i=1}^{n} \frac{a_{m+i}}{2 a-a_{i}} \leq \sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}} .
$$

Adding these n inequalities we have

$$
\sum_{i=1}^{n} \frac{a}{2 a-a_{i}} \leq \sum_{i=1}^{n} \frac{n a_{i}}{2 a-a_{i}} .
$$

Since

$$
\frac{a}{2 a-a_{i}}=\frac{1}{2}+\frac{1}{2} \cdot \frac{a_{i}}{2 a-a_{i}},
$$

we get

$$
\frac{n}{2}+\frac{1}{2} \sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}} \leq n \sum_{i=1}^{n} \frac{a_{i}}{2 a-a_{i}} .
$$

From here we obtain the desired inequality.
Equality holds iff $a_{1}=a_{2}=\ldots=a_{n}=1$.
Example 9. If $a, b, c>0$, prove tha

$$
\frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b} \geq \frac{a^{2}+b^{2}+c^{2}}{2}
$$

Solution: By symmetry we may assume that $a \leq b \leq c$. Then $a+b \leq c+a \leq b+c$. So, we have

$$
\frac{1}{b+c} \leq \frac{1}{c+a} \leq \frac{1}{a+b} .
$$

By the rearrangement inequality we have

$$
\begin{aligned}
& \frac{a^{3}}{a+b}+\frac{b^{3}}{b+c}+\frac{c^{3}}{c+a} \leq \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b}, \\
& \frac{a^{3}}{c+a}+\frac{b^{3}}{a+b}+\frac{c^{3}}{b+c} \leq \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b}
\end{aligned}
$$

Adding these inequalities and then dividing by 2 , we get

$$
\frac{1}{2}\left(\frac{a^{3}+b^{3}}{a+b}+\frac{b^{3}+c^{3}}{b+c}+\frac{c^{3}+a^{3}}{c+a}\right) \leq \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b}
$$

Finally, since
we have

$$
\frac{x^{3}+y^{3}}{x+y}=x^{2}-x y+y^{2} \geq \frac{x^{2}+y^{2}}{2}
$$

$\frac{a^{2}+b^{2}+c^{2}}{2}=\frac{1}{2}\left(\frac{a^{2}+b^{2}}{2}+\frac{b^{2}+c^{2}}{2}+\frac{c^{2}+a^{2}}{2}\right) \leq \frac{1}{2}\left(\frac{a^{3}+b^{3}}{a+b}+\frac{b^{3}+c^{3}}{b+c}+\frac{c^{3}+a^{3}}{c+a}\right) \leq \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b}$, i.e.

$$
\frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b} \geq \frac{a^{2}+b^{2}+c^{2}}{2}, \text { q.e.d. }
$$

Equality holds true iff $a=b=c$.

REFERENCES

Arslanagić, Š. (2005). Matematika za nadarene. Sarajevo: Bosanska riječ.
Cvetkovski, Z. (2012). Inequalities - Theorems, Techniques ans Selected Problems. Berlin, Heidelberg: Springer Verlag.
Engel, A. (1998). Problem-Solving Strategies. New York: Springer Verlag. Ganga, M. (1991). Teme si probleme de matematica. Bucuresti: Editura Tehnica.
Hanjš, Ž. (2017). Međunarodne metematičke olimpijade. Zagreb: Element.
Grozdev, S. (2007). For High Achievements in Mathematics: The Bulgaria Experience (Theory and Practice). Sofia: ADE (ISBN 978-954-92139-1-1).
Hung, P. K. (2007). Secrets in Inequalities, Volume 1 - basic Inequalities. Zalau (Romania): GIL Publishing House.
Malčeski, R. (2016). Elementarni algebarski i analitički neravenstva. Skopje Sojuz na matematičari na Makedonija.

