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Problems

Problem 1. With putting the four shapes drawn in the following figure together make a shape
with at least two reflection symmetries.

(→ p.5)

Problem 2. Points K, L, M , N lie on the sides AB, BC, CD, DA of a square ABCD,
respectively, such that the area of KLMN is equal to one half of the area of ABCD. Prove that
some diagonal of KLMN is parallel to some side of ABCD.

(→ p.6)

Problem 3. As shown in the following figure, a heart is a shape consist of three semicircles with
diameters AB, BC and AC such that B is midpoint of the segment AC.
A heart ω is given. Call a pair (P, P ′) bisector if P and P ′ lie on ω and bisect its perimeter.
Let (P, P ′) and (Q,Q′) be bisector pairs. Tangents at points P , P ′, Q, and Q′ to ω construct a
convex quadrilateral XY ZT . If the quadrilateral XY ZT is inscribed in a circle, find the angle
between lines PP ′ and QQ′.

A
B

C

(→ p.8)
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4 Elementary Level

Problem 4. In isosceles trapezoid ABCD (AB ∥ CD) points E and F lie on the segment CD in
such a way that D, E, F and C are in that order and DE = CF . Let X and Y be the reflection
of E and C with respect to AD and AF . Prove that circumcircles of triangles ADF and BXY
are concentric.

(→ p.10)

Problem 5. Let A1, A2, . . . , A2021 be 2021 points on the plane, no three collinear and

∠A1A2A3 + ∠A2A3A4 + · · ·+ ∠A2021A1A2 = 360◦,

in which by the angle ∠Ai−1AiAi+1 we mean the one which is less than 180◦ (assume that A2022 =
A1 and A0 = A2021). Prove that some of these angles will add up to 90◦.

(→ p.13)



Solutions

Problem 1. With putting the four shapes drawn in the following figure together make a shape
with at least two reflection symmetries.

Proposed by Mahdi Etesamifard - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. One can put the figures together like the below figure.
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6 Elementary Level

Problem 2. Points K, L, M , N lie on the sides AB, BC, CD, DA of a square ABCD,
respectively, such that the area of KLMN is equal to one half of the area of ABCD. Prove that
some diagonal of KLMN is parallel to some side of ABCD.

Proposed by Josef Tkadlec - Czech Republic
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1. Let [P ] denote the area of a polygon P . Suppose that LN ∦ AB and let N ′ ̸= N
be the point on AD such that LN ′ ∥ AB. Note that [KLMN ′] = 1

2
[ABCD]. Thus [KLMN ] =

[KLMN ′], hence [KMN ] = [KMN ′] implying that KM ∥ NN ′ = AD.

A B

CD

K

L

M

N

N ′

Solution 2 (Proposed Solution from Slovakia).

Denote the length as on the figure and let the side of ABCD be a. The sum of the areas of the
right triangles in the corners is a2/2 and so

1

2
wx+

1

2
(1− x)y +

1

2
(1− y)(1− z) +

1

2
z(1− w) =

1

2
a2

which can be modifier into (x − z)(w − y), and so x = z or y = w, which gives the desired
conclusion.

ww

xx

yy

zz

AA BB

CCDD

KK

LL

MM

NN



Solutions 7

Solution 3 (Proposed Solution from Slovakia).
Without loss of generality assume that AK > DM . There are two cases: AN < BL and
AN > BL. In the first case, ABCD can be split into three rectangles BLXK,CMY L,DNZM
and remaning concave hexagon AKXY ZN . We see that the sum of areas of the right triangles
is less than the area of KLMN . Analogously, if AN > BL, we will show the opposite.

AA BB

CCDD

KK

LL

MM

NN

XX
YY

ZZ

AA BB

CCDD

KK

LL

MM

NN

XXYY

ZZ
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Problem 3. As shown in the following figure, a heart is a shape consist of three semicircles with
diameters AB, BC and AC such that B is midpoint of the segment AC.
A heart ω is given. Call a pair (P, P ′) bisector if P and P ′ lie on ω and bisect its perimeter.
Let (P, P ′) and (Q,Q′) be bisector pairs. Tangents at points P , P ′, Q, and Q′ to ω construct a
convex quadrilateral XY ZT . If the quadrilateral XY ZT is inscribed in a circle, find the angle
between lines PP ′ and QQ′.

A
B

C

Proposed by Mahdi Etesamifard - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. We prove the statement of the problem for both convex and non-convex quadrilaterals.

Lemma 1. If a pair (P, P ′) is bisector, then the points P , P ′, and B are collinear.

Proof. Without loss of generality suppose that P lies on the arc AC in such a way that the
intersection of PB with the arc AB is P ′′. It’s clear that the length of the arc P ′′A is equal to

2∠P ′′BA

180◦
× (the perimeter of the semicircle with diameter AB)

and length of the arc PC is equal to

∠PBC

180◦
× (the perimeter of the semicircle with diameter AC)

We know that the perimeter of semicircle with diameter AB is π·AB
2

and the perimeter of semicircle

with diameter AC is π·AC
2

thus the length of the arc P ′′A is equal to 2∠P ′′BA
180◦

× π·AB
2

and the length
of the arc PC is equal to ∠PBC

180◦
× π·AC

2
which are equal with each other. So (P, P ′′) is a bisector

pair. But there is exactly one point for each P like P ′ such that the pair (P, P ′) is bisector, so
P ′ ≡ P ′′. Hence PP ′ passes through B.

AA
BB

CC

PP

P ′′P ′′
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Without loss of generality suppose P and Q are on the arc AC. Now we consider these 2 cases:
Case 1. P and Q lie on the arc AC in such a way that P ′ and Q′ both lie on the arc AB.
Notice that ∠PBQ = 2∠XPQ = 2∠XQP and ∠P ′BQ′ = ∠ZP ′Q′ = ∠ZQ′P ′. Therefore

180◦ = ∠PXQ+ ∠P ′Q′X = (180◦ − ∠PBQ) + (180◦ − 2∠P ′BQ′ = 360◦ − 3∠PBQ,

hence ∠PBQ = 60◦.

AA
BB CC

PP

P ′P ′

QQ

XX

Q′Q′

ZZ

YY

TT

Case 1

AA BB CC

PP

P ′P ′

QQ

Q′Q′

YY
TT

ℓℓZZ

XX

Case 2

Case 2. P and Q lie on the arc AC in such a way that P ′ lies on the arc AB and Q′ lies on the
arc BC.
Let ℓ be the tangent line from B to the heart. Thus ∠P ′Bℓ = ∠BP ′Z and ∠Q′Bℓ = ∠BQ′Z. So
∠P ′ZQ′ = 360◦ − 2∠P ′BQ′. Now it’s not hard to see that ∠PBQ = 2∠XPQ = 2∠XQP , hence
∠PXQ = 180◦ − ∠PBQ. Thus we must have

180◦ = ∠PXQ+ ∠P ′ZQ′ = (180◦ − ∠PBQ) + (360◦ − 2∠P ′BQ′) = 540◦ − 3∠PBQ,

so ∠PBQ = 120◦.
Hence in both cases the angle between the lines PP ′ and QQ′ is 60◦.
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Problem 4. In isosceles trapezoid ABCD (AB ∥ CD) points E and F lie on the segment CD in
such a way that D, E, F and C are in that order and DE = CF . Let X and Y be the reflection
of E and C with respect to AD and AF . Prove that circumcircles of triangles ADF and BXY
are concentric.

Proposed by Iman Maghsoudi - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1. Consider point Z on AB in such a way that AZFD is an isosceles trapezoid hence
it is cyclic. Let O be the circumcenter of △AFD. Since X and Y are the reflections of E and C
with respect to AD and AF , and ZBCF is a parallelogram, then

ED = XD = CF = FY = ZB

Suppose that AF meets CY at H. Now notice that

∠OZB = ∠OZF + ∠FZB = 90◦ − ∠ZDF + ∠BCD = 90◦ − ∠AFD + ∠ADC

∠ODX = ∠ODA+ ∠ADX = 90◦ − ∠AFD + ∠ADC

∠OFY = 180◦ − ∠OFA− ∠Y FH = 180◦ − (90◦ − ∠ADC)− ∠HFC = 90◦ − ∠AFD + ∠ADC

These three equality with ZB = XD = FY and OZ = OD = OF gives us that

△OZB ∼= △ODX ∼= △OFY =⇒ OB = OX = OY

Which concludes the proof.

A B

CD
E

FF

X

Y

Z

H

OO

Solution 2. Let ω be the circumcircle of AFD with center O and let this circle meets AB, XD,
and Y F at T , K, and L respectively. Clearly AX = AE, AC = AY and ABFE is an isosceles
trapezoid, since X and Y are reflections of E and C with respect to AD and AF , and DE = CF .
Then

∠BAE = ∠AED = ∠AXD

∠ABE = ∠AFD = ∠AKX
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These two equality with AX = AE show that △ABE ∼= △AXK and it yields that AB = XK.
Similarly one can show that AB = Y L. Now notice that

PB
ω = BT · AB = OB2 −OD2

PX
ω = XD ·XK = OX2 −OD2

P Y
ω = Y F · Y L = OY 2 −OD2

We have already shown that AB = XK = Y L and BT = XD = Y F . So the power of the points
B, X, and Y with respect to ω are all equal, hence OB = OX = OY and the conclusion follows.

AA BB

CCDD
EE

FF

XX

YY

OO

TT

KK

LL

Solution 3 (Proposed Solution from Slovakia).
Lemma 1. Let ABCD be a parallelogram and D′ be the reflection of D in AC. Then the

perpendicular bisector of AC coincidences with the perpendicular bisector of BD′ (which in case
B = D′ degenerated to the perpendicular line to AC through B).

Proof. Obvious when we place AC horizontally:

AA
BB

CCDD

D′D′
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Let G be such a point on opposite ray AB such that AG = CF (which equals do ED). Clearly,
DEAG and FCAG are parallelograms. If we apply our lemma to them, we can conclude that
the perpendicular bisectors of line pairs (GX,AD) and (GY,AF ) coincidence, which gives that
triangles GXY and ADF have a common circumcenter O.
To finish the proof, we need to show that B lies on the circle GXY . Let H be the second
intersection point of circumcircle of △ADF and AB. Then AHFD is an isosceles trapezoid and
clearly HBCF is a parallelogram, and so AG = CF = BH. Then △OAG ∼= △OHB, and so
OG = OB, therefore points X, Y,B,G are concyclic and we’re done.

AA BB

CCDD
EE

FF

GG HH

XX

YY

OO
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Problem 5. Let A1, A2, . . . , A2021 be 2021 points on the plane, no three collinear and

∠A1A2A3 + ∠A2A3A4 + · · ·+ ∠A2021A1A2 = 360◦,

in which by the angle ∠Ai−1AiAi+1 we mean the one which is less than 180◦ (assume that A2022 =
A1 and A0 = A2021). Prove that some of these angles will add up to 90◦.

Proposed by Morteza Saghafian - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let αi be the angle ∠Ai−1AiAi+1 which is less than 180◦.

Ai+1 Ai

Ai−1

αi

Starting from A1, we walk on the perimeter of the (not necessarily simple) polygon A1A2 . . . A2021.
As we reach a vertex Ai, we turn by angle 180◦ − αi in clockwise or counterclockwise direction.
After walking one round and returning back to the edge A1A2, we have turned by a multiple of
360◦ in total. Therefore, the signed sum of turning angles is a multiple of 360◦. More formally, if
we define C1 and C2 for the set of clockwise and counterclockwise angles, then for some integer
number k we have

360◦k =
∑
αi∈C1

(180◦ − αi)−
∑
αj∈C2

(180◦ − αj)

But the total number of angles we have is 2021 which is an odd number, so if we cancel numbers
180 as much as possible from the above expression, we can conclude that

360◦t+ 180◦ =
∑
αi∈C1

αi −
∑
αj∈C2

αj

for some integer number t. On the other hand, by the assumption of the problem, the sum∑
αi∈C1

αi +
∑

αj∈C2
αj is equal to 360◦. This implies that

∑
αi∈C1

αi −
∑

αj∈C2
αj = ±180◦.

Therefore, the two sums should be 90◦ and 270◦.
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Problems

Problem 1. Let ABC be a triangle with AB = AC. Let H be the orthocenter of ABC. Point
E is the midpoint of AC and point D lies on the side BC such that 3CD = BC. Prove that
BE ⊥ HD.

(→ p.19)

Problem 2. Let ABCD be a parallelogram. Points E, F lie on the sides AB, CD respectively,
such that ∠EDC = ∠FBC and ∠ECD = ∠FAD. Prove that AB ≥ 2BC.

(→ p.20)

Problem 3. Given a convex quadrilateral ABCD with AB = BC and ∠ABD = ∠BCD = 90◦.
Let point E be the intersection of diagonals AC and BD. Point F lies on the side AD such that
AF

FD
=

CE

EA
. Circle ω with diameter DF and the circumcircle of triangle ABF intersect for the

second time at point K. Point L is the second intersection of EF and ω. Prove that the line KL
passes through the midpoint of CE.

(→ p.23)

Problem 4. Let ABC be a scalene acute-angled triangle with its incenter I and circumcircle Γ.
Line AI intersects Γ for the second time at M . Let N be the midpoint of BC and T be the point
on Γ such that IN ⊥ MT . Finally, let P and Q be the intersection points of TB and TC,
respectively, with the line perpendicular to AI at I. Show that PB = CQ.

(→ p.24)

Problem 5. Consider a convex pentagon ABCDE and a variable point X on its side CD.
Suppose that points K, L lie on the segment AX such that AB = BK and AE = EL and that
the circumcircles of triangles CXK and DXL intersect for the second time at Y . As X varies,
prove that all such lines XY pass through a fixed point, or they are all parallel.

(→ p.26)

17
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Solutions

Problem 1. Let ABC be a triangle with AB = AC. Let H be the orthocenter of ABC. Point
E is the midpoint of AC and point D lies on the side BC such that 3CD = BC. Prove that
BE ⊥ HD.

Proposed by Tran Quang Hung - Vietnam
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let G be the centroid of triangle ABC. Notice that

CD

BC
=

1

3
=

EG

EB
,

hence GD ∥ EC. Since H is orthocenter of ABC, BH ⊥ AC, we deduce that BH ⊥ GD.
Combining with GH ⊥ BC, we get that H is the orthocenter of triangle BGD, therefore DH ⊥
BE. This completes the proof.

A

B C
D

E

GG

H

19
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Problem 2. Let ABCD be a parallelogram. Points E, F lie on the sides AB, CD respectively,
such that ∠EDC = ∠FBC and ∠ECD = ∠FAD. Prove that AB ≥ 2BC.

Proposed by Pouria Mahmoudkhan Shirazi - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1. First we do some angle-chasing. It’s clear that ∠DAF = ∠ECB = ∠CEB and
∠EBC = ∠ADF . Hence △DAF ∼ △BEC and it yields that AD

BE
= DF

BC
. Similarly we can show

that CF
AD

= BC
AE

. Multiplying these two equality gives that

CF

BE
=

DF

AE
=⇒ EF ∥ AD ∥ BC.

Let F ′ be the reflection of F in E. So BCEF ′ and ADEF ′ are parallelograms. Thus ∠BF ′E =
∠BCE = ∠BAF and ∠AF ′E = ∠ADE = ∠ABF . Summing up these two equality implies that
∠AF ′B = 180◦ − ∠AFB. Therefore the quadrilateral AF ′BF is cyclic. It means that

AE · EB = EF · EF ′ = EF 2 = BC2.

Finally, by AM-GM inequality we have

BC2 = AE · EB ≤
(
AE + EB

2

)2

=

(
AB

2

)2

=⇒ 2BC ≤ AB.

AA BB

CCDD

EE

FF

F ′F ′

Solution 2. Let CE and DE meet AD and BC at X and Y , respectively. It’s clear that the
quadrilaterals DY BF and CXAF are cyclic. The power of the points C and D with respect to
the circumcircles of these quadrilaterals gives that CF ·CD = CB ·CY and DF ·CD = DA ·DX.
Summing up these two equations implies that

(CF +DF ) · CD = CB · CY +DA ·DX

=⇒ CD2 = CB · CY + CB ·DX

=⇒ CD2 = (CY +DX) · CB (1)

Now let the line parallel to BC from E intersects CD at G. Then

DX

EG
=

CD

CG
=⇒ DX =

CD · EG

CG
=

CD ·BC

CG

CY

EG
=

CD

DG
=⇒ CY =

CD · EG

DG
=

CD ·BC

DG
.
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AA BB

CCDD

EE

F ≡ GF ≡ G

XX

YY

Thus

DX + CY = CD ·BC

(
1

CG
+

1

DG

)
.

By applying AM-HM inequality on the last equation we get

CD ·BC ·

(
1

CG
+

1

DG

)
≥ CD ·BC · 4

CG+DG

= CD ·BC · 4

CD
= 4BC.

Now from (1) we have

CD2

BC
= DX + CY ≥ 4BC =⇒ CD2 ≥ 4BC2

=⇒ AB ≥ 2BC,

as required.

Remark. From the first solution we know that the points F and G are the same but in the
second solution we do not need to prove that.

Solution 3 (Proposed Solution from Slovakia).
As in the official solution, we prove that AD ∥ EF ∥ BC. Along the way, we have △EAD ∼
△BCF . Therefore:

AB

AD
=

AE +BE

AD
=

AE

AD
+

BE

AD
=

BC

CF
+

CF

BC
≥ 2
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AA EE BB

CC
FF

DD

Solution 4 (Proposed Solution from Slovakia).
As in every solution, we notice △ADF ∼ △EBC and △ADE ∼ △CFB. Now, denote lengths

as on the picture. The similarities give us
AD

DF
=

EB

CB
, i.e. b2 = (a − x)y, and

AD

AE
=

CF

CB
, i.e.

b2 = (a− y)x. By comparing these two, we have (a− x)y = (a− y)x, i.e. ay = ax, and so x = y.
Therefore b2 = (a − x)x, which modifies as x2 − ax + b2 = 0. This quadratic equation has a
discriminant of a2 − 4b2, which must be non-negative, which already gives a ≥ 2b.

AA EE BB

CCFF
DD yy

xx a− xa− x

a− ya− y

bb
bb
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Problem 3. Given a convex quadrilateral ABCD with AB = BC and ∠ABD = ∠BCD = 90◦.
Let point E be the intersection of diagonals AC and BD. Point F lies on the side AD such that
AF

FD
=

CE

EA
. Circle ω with diameter DF and the circumcircle of triangle ABF intersect for the

second time at point K. Point L is the second intersection of EF and ω. Prove that the line KL
passes through the midpoint of CE.

Proposed by Mahdi Etesamifard and Amir Parsa Hosseini - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let K ′ be a point such that the triangles ABC and AK ′D are spirally similar. We
claim that K and K ′ are the same point. Since AE

EC
= DF

FA
, the triangles FK ′D and EBA are also

similar. Then ∠FK ′D = ∠ABE = 90◦, so to prove the claim it suffices to show that A, B, F ,
and K ′ lie on a circle. From the other hand

∠DEC = 90◦ − ∠BAC = 90◦ − ∠BCA = ∠DCE, (1)

hence DC = DE. Also since ABC and AK ′D are spirally similar, we have △ABK ′ ∼ △ACD.
Therefore

∠ABK ′ = ∠ACD
(1)
= ∠DEC = ∠AEB = ∠K ′FD,

so ABK ′F is cyclic and the claim is proved.
Now we are ready to prove the statement of problem. Let M be the midpoint of CE. Notice that
∠DME = 90◦, since DC = DE. It yields that the points E, L, D, and M lie on a circle. Then

∠MLD = ∠MED = ∠AEB = ∠KFD = ∠KLD,

which implies the desired collinearity.

A

B

C

D

E

FF

K ≡ K ′K ≡ K ′

ω

LL

M
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Problem 4. Let ABC be a scalene acute-angled triangle with its incenter I and circumcircle Γ.
Line AI intersects Γ for the second time at M . Let N be the midpoint of BC and T be the point
on Γ such that IN ⊥ MT . Finally, let P and Q be the intersection points of TB and TC,
respectively, with the line perpendicular to AI at I. Show that PB = CQ.

Proposed by Patrik Bak - Slovakia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1. Let S be the midpoint of arc BAC of Γ and let Q′ be the reflection of S in the per-
pendicular bisector of IC. We will prove that Q = Q′, which would mean that SI = CQ.
Analogously, we would have SI = PB, and so the proof would be finished.

A

B CNN

I

M

Γ
Q′

S

T

It is well-known that M is the circumcenter of BIC, so the perpendicular bisector of CI passes
through M . Since MS is a diameter of Γ, we have SC ⊥ MC, and by the symmetry subsequently
Q′I ⊥ MI. Now, it is enough to show that Q′, C, T are collinear.
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We have ∠IQ′M = ∠MSC = ∠NCM . Notice also MN ⊥ NC. Together, triangles MIQ′,
MNC are directly similar, which gives that triangles MIN , MQ′C are also directly similar.
Since IN ⊥ MT and ST ⊥ MT , we have ST ∥ IN , so ∠MCT = ∠MST = ∠SNI. This
together with ∠INM = ∠Q′CM finally gives us that points T , C, and Q′ are collinear, which
concludes the proof.
Solution 2 (Proposed Solution from Slovakia). We define P and Q as the points on the line
perpendicular to AI at I such that △MBC and △MPQ are spirally similar. The equality MB =
MC then implies MP = MQ. Since N and I are the midpoints of BC and PQ, respectively,
spiral similarity gives that all triangles △MPB,△MIN and △MQC are similar. The similarity
gives ∠MPB = ∠MQC, which means that if we define T as the intersection point of lines CQ
and PB, then P, T,Q,M are concyclic, and so 180◦ − ∠CTB = ∠QTP = ∠QMP = ∠CMB,
therefore T lies on Γ. To finish our proof, we need to show that IN ⊥ MT :

∠MIN + ∠TMI = ∠MIN + ∠TMQ+ ∠QMI

= ∠MPB + ∠TPQ+ ∠IMP

= ∠MPI + ∠IMP = 90◦
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Problem 5. Consider a convex pentagon ABCDE and a variable point X on its side CD.
Suppose that points K, L lie on the segment AX such that AB = BK and AE = EL and that
the circumcircles of triangles CXK and DXL intersect for the second time at Y . As X varies,
prove that all such lines XY pass through a fixed point, or they are all parallel.

Proposed by Josef Tkadlec - Czech Republic
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let ωb, ωe be the circles centered at B, E and passing through A (note that K ∈ ωb

and L ∈ ωe). By (XY Z) we denote the circumcircle of triangle XY Z. Let ∠(p, q) denote the
directed angle between lines p, q.
First we show that all the circles (DXL) pass through a fixed point D′ on ωe. Motivated by the
limiting case X = D, let L′ = AD∩ωe and let D′ be the intersection of ωe and the circle through
L′ and D tangent to CD. Then D′ is the fixed point: Indeed, for any X and the corresponding
L we have

∠(D′L,D′D) = ∠(D′L,D′L′) + ∠(D′L′, D′D) = ∠(AL,AL′) + ∠(DL′, DX)

= ∠(AX,AD) + ∠(DA,DX) = ∠(XA,XD) = ∠(XL,XD),

hence (XLD) passes through D′. Similarly, all circles (CXK) pass through a fixed point C ′ on
ωb.
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Now the problem can be conveniently rephrased with respect to a (fixed) quadrilateral C ′CDD′.
Note that the angle ∠(Y C ′, Y D′) is fixed: Indeed,

∠(Y C ′, Y D′) = ∠(Y C ′, Y X) + ∠(Y X, Y D′) = ∠(CC ′, CX) + ∠(DX,DD′) = ∠(CC ′, DD′).

We conclude by distinguishing two cases.

1. Y ∈ C ′D′:

Since ∠(Y C ′, Y X) = ∠(CC ′, CX) is fixed, all lines XY form the same angle with line C ′D′

and are thus parallel.

2. Y ̸∈ C ′D′:

Since ∠(Y C ′, Y X) = ∠(CC ′, CX) is fixed, lines XY all intersects (Y C ′D′) at a fixed point.
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Problems

Problem 1. Acute-angled triangle ABC with circumcircle ω is given. Let D be the midpoint
of AC, E be the foot of altitude from A to BC, and F be the intersection point of AB and DE.
Point H lies on the arc BC of ω (the one that does not contain A) such that ∠BHE = ∠ABC.
Prove that ∠BHF = 90◦.

(→ p.31)

Problem 2. Two circles Γ1 and Γ2 meet at two distinct points A and B. A line passing through
A meets Γ1 and Γ2 again at C and D respectively, such that A lies between C and D. The tangent
at A to Γ2 meets Γ1 again at E. Let F be a point on Γ2 such that F and A lie on different sides
of BD, and 2∠AFC = ∠ABC. Prove that the tangent at F to Γ2, and lines BD and CE are
concurrent.

(→ p.32)

Problem 3. Consider a triangle ABC with altitudes AD, BE, and CF , and orthocenter H. Let
the perpendicular line from H to EF intersects EF , AB and AC at P , T and L, respectively.
Point K lies on the side BC such that BD = KC. Let ω be a circle that passes through H and
P , that is tangent to AH. Prove that circumcircle of triangle ATL and ω are tangent, and KH
passes through the tangency point.

(→ p.34)

Problem 4. 2021 points on the plane in the convex position, no three collinear and no four
concyclic, are given. Prove that there exist two of them such that every circle passing through
these two points contains at least 673 of the other points in its interior.
(A finite set of points on the plane are in convex position if the points are the vertices of a convex
polygon.)

(→ p.38)

Problem 5. Given a triangleABC with incenter I. The incircle of triangleABC is tangent toBC
at D. Let P and Q be points on the side BC such that ∠PAB = ∠BCA and ∠QAC = ∠ABC,
respectively. Let K and L be the incenter of triangles ABP and ACQ, respectively. Prove that
AD is the Euler line of triangle IKL.
(The Euler line of a triangle is the line going through the circumcenter and orthocenter of that
triangle.)

(→ p.39)
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Solutions

Problem 1. Acute-angled triangle ABC with circumcircle ω is given. Let D be the midpoint
of AC, E be the foot of altitude from A to BC, and F be the intersection point of AB and DE.
Point H lies on the arc BC of ω (the one that does not contain A) such that ∠BHE = ∠ABC.
Prove that ∠BHF = 90◦.

Proposed by Harris Leung - Hong Kong
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Note that DC = DE = DA since ∠CEA = 90◦. Thus

∠EFA = ∠DEA− ∠FAE = (90◦ − ∠C)− (90◦ − ∠B) = ∠B − ∠C,

and
∠EHA = ∠BHE − ∠BHA = ∠B − ∠C = ∠EFA.

This implies A,E,H, F are concyclic. Therefore

∠BHF = ∠AHF − ∠AHB = ∠AEF − ∠C = (90◦ + ∠C)− ∠C = 90◦.
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Remark.When AB > AC, F lies on the other side, so some of the arguments should be modified.
Though the result still holds.
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Problem 2. Two circles Γ1 and Γ2 meet at two distinct points A and B. A line passing through
A meets Γ1 and Γ2 again at C and D respectively, such that A lies between C and D. The tangent
at A to Γ2 meets Γ1 again at E. Let F be a point on Γ2 such that F and A lie on different sides
of BD, and 2∠AFC = ∠ABC. Prove that the tangent at F to Γ2, and lines BD and CE are
concurrent.

Proposed by Tak Wing Ching - Hong Kong
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1.
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Clearly, the point F is uniquely determined. We redefine the point F as follows. Let BD meet
CE at P , and let F be the contact point of the tangent from P to Γ2 that lies on different side
of BD as A. It suffices to prove that ∠AFC = 1

2
∠ABC. By (XY Z) we denote the circumcircle

of triangle XY Z.
First, since ∠ECB = ∠EAB = ∠ADB, the line CP is tangent to (CBD). Therefore

PC =
√
PB · PD = PF.

Then

∠FBC = ∠BFP + ∠FPC + ∠PCB

= ∠BDF + (180◦ − 2∠CFP ) + ∠CDB

= ∠CDF + 180◦ − 2∠CFP.

(Note that ∠FBC may refer to a reflex angle in some configurations.) It follows that

∠ABC = ∠FBC − ∠FBA

= (∠CDF + 180◦ − 2∠CFP )− (180◦ − ∠ADF )

= 2∠CDF − 2∠CFP

= 2∠AFP − 2∠CFP

= 2∠AFC,
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and this completes the proof.
Solution 2 (Proposed Solution from Czech republic).
We apply inversion centered at A.
inverted problem: Let C ′B′D′ be a triangle. On sides C ′B′ and C ′D′ are points E ′ and A
respectively, such that AE ′ ∥ D′B′. Point F ′ lies on D′B′ such that 2∠F ′C ′A = ∠B′C ′A. Denote
ω1 circle passing through A and F ′ that is touching D′B′ at F ′. Denote ω2 circumcircle AB′D′

and ω3 circumcircle C ′AE ′. Prove that these three circles pass through fixed point different from
A.
From statement we get that C ′F ′ is angle bisector of ∠B′C ′D′. Denote G′ intersection of external
bisector of ∠B′C ′D′ with C ′D′. Denote Ω circle with diameter G′F ′. Denote ω4 circumcircle of
(C ′, B′, D′). We will prove that Ω is perpendicular to all three circles ω1, ω2 and ω3. For ω1 it’s
immediate as they have perpendicular diameters. Then because (G,B′, F ′, D′) is harmonic, we
have that ω2 ⊥ Ω and ω4 ⊥ Ω. And from homothethy we have that ω3 and ω4 are parallel at A.
Hence ω3 ⊥ Ω. Denote S center of Ω. From perpendicular circles we have that S has the same
power to all three circles ω1, ω2 and ω3. But so does point A. Hence these circles form a pencil,
hence they pass through another fixed point.

Remark. the point P cannot be defined if Γ1 passes through the centre of Γ2, since in that
case CE and BD are parallel. Indeed, in that case the three lines are parallel to each other, so
the assertion of this question should be changed to ’concurrent or parallel’.
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Problem 3. Consider a triangle ABC with altitudes AD, BE, and CF , and orthocenter H. Let
the perpendicular line from H to EF intersects EF , AB and AC at P , T and L, respectively.
Point K lies on the side BC such that BD = KC. Let ω be a circle that passes through H and
P , that is tangent to AH. Prove that circumcircle of triangle ATL and ω are tangent, and KH
passes through the tangency point.

Proposed by Mahdi Etesamifard - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1. Perform an inversion centered at H with radius −AH ·HD. The images of the points
are denoted by primes. It’s clear that F ′ ≡ C and E ′ ≡ B so P ′ lies on the circumcircle of triangle
HBC and ∠HCP ′ = 90◦. Also T ′ and L′ lie on the line HP ′ such that ∠CT ′H = ∠BL′H = 90◦,
since circumcircle of triangles EHD and FHD passes through T ′ and L′, respectively. Note that
ACP ′B is a parallelogram, so by symmetry one can show that P ′K ⊥ BC. Therefore P ′K is the
image of ω under the inversion and it suffices to show that P ′K touch the circumcircle of triangle
DT ′L′.
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Let M and N be the midpoints of BC and BH. Then

∠L′DH = ∠L′BH = ∠FEH = ∠FAH.

It implies that DL′ ∥ AB. Also MN ⊥ AB so MN must be the perpendicular bisector of DL′,
since NL′ = ND. This means ML′ = MD. Similarly, one can show that MT ′ = MD. Also it
is clear that MD = MK, therefore the quadrilateral DL′KT ′ is inscribed in a circle centered at
M . Now since ∠MKP ′ = 90◦ the result follows.
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Solution 2 (Proposed Solution from Slovakia).
Tangency part. Consider the spiral similarity which maps LE to TF . Since A = LE ∩ TF , its
center S lies on the circumcircles of △ATL and △AEF . Moreever, S is also the center of the
spiral similarity mapping TL to EF . Since P = TL∩EF , S lies on the circumcircle of △PTF
. A simple angle chasing then gives:

∠AHS = ∠AFS = ∠TFS = ∠TPS

which means AH is tangent to the circumcircle of △SPH.
(Note that the proven tangency holds in a general situation: E and F can be arbitrary points
on AC and AB, P can be an arbitrary point on EF , and H can be an arbitrary point on the
circumcircle of △AEF .)
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To prove the tangency of the circumcircles of ALTS and △SPH, we will show that the needed
condition is the equality of angles ∠ASH and ∠TPF , which in our situation is trivial (as they
are both right). The criterion for tangency is that ∠ASH equals to the sum of angle of arc (AS)
of the circumcircle of ATSL and the angle of arc (SH) of the circumcircle of △SPH. This sum
equals to:

∠STF + ∠SPT = ∠STF + ∠SFT = ∠TPF

Collinearity. First of all, we will redefine the tagency point S as the second intersection point
of KH and the circumcircle of AFHE. We will be finished when we prove ∠HSP = ∠AHP ,
which subsequently means that AH and the circumcircle of △SPH are tangent.
Let A′ be the point for which ABA′C is a paralellogram. Then B,A′, C,H are concyclic and lie
on the circle with a diameter A′H.
Note that A′, H, P are collinear. This is a simple angle chasing exercise, but can also be seen like
this: In triangle △HBC, HA′ is a line through the circumcenter, whereas in triangle △HEF
, HP is a line through the orthocenter. Since triangles △HBC and △HEF are isogonal, lines
HA′ and HP must be the same.
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Clearly A′K ∥ AD, so we have ∠AHP = ∠DHA′ = ∠KA′H = ∠KA′P . To prove ∠AHP =
∠HSP , we just need to show that points S, P,K,A′ are concyclic. Notice A, S,D,K are concyclic
due to right angles ∠ASK and ∠ADK. Therefore, we need just to prove that A,P,D,A′ are
concyclic, then we would have

HS ·HK = HA ·HD = HP ·HA′

whih would show that S, P,K,A′ are concyclic.

Notice we have got rid of point S. We now need to show that ∠APA′ = ∠ADA′. Since ∠EPH =
∠ADC = 90◦, we only need to prove ∠APE = ∠A′DC. This will be easy: Triangles △HBC
and △HEF are similar and in this similarity, point D corresponds to P ,which gives BD : CD =
FP : PE . Also, triangles △AEF and △A′CB are similar, and so in this similarity, points P
and D correspond, which gives ∠APE = ∠A′DC, which was needed to show.



Solutions 37

AA

BB
CC

A′A′

HH

PP
FF

EE

DD



38 Advanced Level

Problem 4. 2021 points on the plane in the convex position, no three collinear and no four
concyclic, are given. Prove that there exist two of them such that every circle passing through
these two points contains at least 673 of the other points in its interior.
(A finite set of points on the plane are in convex position if the points are the vertices of a convex
polygon.)

Proposed by Morteza Saghafian - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Call the points P1, P2, . . . , P2021. We need two lemmas for the statement.

Lemma 1. Call a triangle good if its circumcircle covers all the other points. All the good
triangles form a triangulation of the 2021-gon P1P2 . . . P2021.

Proof. Note that on every side of this polygon we can construct exactly one good triangle by
simply selecting the smallest angle formed by some other vertex. Now start from a good triangle
say PiPjPk and pick one of its sides say PiPj. Note that all the vertices on the same side of PiPj

as Pk subtend a larger angle with Pi and Pj as the endpoints, while all the vertices X on the
other side fulfill ∠PiXPj + ∠PiPkPj > 180◦. Taking point Pl so that ∠PiPlPj is minimal and
Pl, Pk are on the different sides of PiPj will also create PiPlPj as a good triangle, because:

• For all points X on the same side of PiPj as Pl, ∠PiXPj is larger than or equal to ∠PiPlPj.

• Among all of angles ∠PiXPj so that X and Pl are on different sides of PiPj, ∠PiPkPj is
the smallest angle and hence ∠PiXPj + ∠PiPlPj > 180◦.

Continuing this process we reach a triangulation of the 2021-gon and call it T . Also note that any
triangle from the triangulation uniquely determines the rest. Suppose now there exists a triangle
not belonging to the previous triangulation but still being good. Go ahead and apply the same
procedure as in the previous case and suppose we reach a triangulation T ′. Fix a certain side of
the 2021-gon say the side P1P2. Note that this side is part of only one good triangle and hence
T, T ′ share a triangle however then we have T = T ′ and hence we are done.

Lemma 2. In the above triangulation T of P1P2 . . . P2021, there exists a drawn diagonal with at
least 673 points on each side.

Proof. Consider a regular 2021-gon Q1Q2 . . . Q2021 and draw the diagonals between Qis of similar
indices as in T . Obviously, we get a triangulation T ′ of Q1Q2 . . . Q2021. Now let O, the circum-
center of Q1Q2 . . . Q2021, be in the one of the triangles in T ′. Then this triangle, say QiQjQk is an
acute-angled triangle (because its circumcenter lies in its interior). Let QiQj be its longest side.
So the angle ∠QiQkQj is acute and at least 60◦ and this means there are at least 673 of other
Qls on each side of QiQj.
Now moving back to P1P2 . . . P2021, the diagonal PiPj has the desired property.

Finally notice that the two points Pi, Pj in Lemma 2 satisfy the statement of the problem since
every circle passing through these two points covers all the points on either one side of PiPj.
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Problem 5. Given a triangleABC with incenter I. The incircle of triangleABC is tangent toBC
at D. Let P and Q be points on the side BC such that ∠PAB = ∠BCA and ∠QAC = ∠ABC,
respectively. Let K and L be the incenter of triangles ABP and ACQ, respectively. Prove that
AD is the Euler line of triangle IKL.
(The Euler line of a triangle is the line going through the circumcenter and orthocenter of that
triangle.)

Proposed by Le Viet An - Vietnam
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let Γ, O and H be the circumcircle, circumcenter and orthocenter of triangle IKL,
respectively.

Claim 1. A lies on OH.

Proof. Suppose that Γ meets HK, HL, OK, and OL at M , N , K ′, and L′, respectively. Also
ML′ intersects NK ′ at A′. Applying Pascal’s theorem to the hexagon MKK ′NLL′ implies that
the points H, O, and A′ are collinear.
It is easy to see that ∠AKI = ∠ABK+∠BAK

2
= ∠B+∠C

2
and

∠IKN = ∠ILH = 90◦ − (180◦ − ∠BIC) = 90◦ − ∠B + ∠C
2

.

Hence ∠AKN = ∠AKI +∠IKN = 90◦. It yields that AK ∥ A′K ′. Similarly, one can show that
AL ∥ A′L′. Combining with KL ∥ K ′L′ (by symmetry about center O), follows that two triangles
AKL and A′K ′L′ are homothetic. Therefore AA′, KK ′, and LL′ are concurrent and this proves
the claim.
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Claim 2. D lies on OH.
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Proof. Let HK and HL intersect BC at E and F . Point A′ is the symmetric point to A with
respect to BI. Then

∠KA′B = ∠KAB =
1

2
∠BAP =

1

2
∠C = ∠ICB.

It follows thatKA′ ∥ CI, so ∠A′KE = 90◦. Now notice that ∠A′IK = ∠AIK = 90◦+ ∠C
2
. On the

other hand, note thatKE ⊥ CI so ∠A′EK = 90◦−∠ICE = 90◦−∠C
2
. Hence ∠A′IK+∠A′EK =

180◦ that implies quadrilateral A′IKE is inscribed.
Let X be the midpoint of A′E. Since ∠A′IE = 90◦, X is the circumcenter of triangle EKI. It
yields that

∠IXD = ∠IXA′ = 2∠IKA′ = 2∠IKA = 2(∠KAB + ∠KBA) = ∠C + ∠B.

Similarly, if Y be the circumcenter of triangle ILF , one can show that Y lies on BC and ∠IY D =
∠B + ∠C. So the triangle IXY is isosceles at I. It yields that XE = XI = Y I = Y F . From
the other hand, ID ⊥ XY that implies D is the midpoint of XY and EF . Finally note that OX
and OY are perpendicular bisectors of IK and IL, so OX ∥ HF and OY ∥ HE. It implies that
triangles OXY and HFE are similar. Now note that DO and DH are medians of this triangles
so ∠HDE = ∠ODY and the conclusion follows.

AA

B C

II

P Q

KK

L

DD

O

H

EE F

A′A′

X YY

These two claims together yields the desired result.
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