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Problems and Solutions

Problem 1. We say that a quadruple of nonnegative real numbers (a, b, c, d) is balanced if

a+ b+ c+ d = a2 + b2 + c2 + d2.

Find all positive real numbers x such that

(x− a)(x− b)(x− c)(x− d) > 0

for every balanced quadruple (a, b, c, d).

(Ivan Novak)

First Solution. We’ll call any x ∈ 〈0,∞〉 satisfying the problem’s condition great. Let (a, b, c, d) be a balanced quadru-
ple. Without loss of generality let a > b > c > d. We can rewrite the equation a2 + b2 + c2 + d2 = a + b + c + d
as (

a− 1

2

)2

+

(
b− 1

2

)2

+

(
c− 1

2

)2

+

(
d− 1

2

)2

= 1,

which implies (a− 1
2
)2 6 1, meaning that a 6 3

2
.

6 points.

If we take x > 3
2
, the values of x− a, x− b, x− c and x− d are all nonnegative. Thus, any x > 3

2
is great.

1 point.

If we take (a, b, c, d) = ( 3
2
, 1
2
, 1
2
, 1
2
), then for any x ∈ 〈 1

2
, 3
2
〉 we have (x− a)(x− b)(x− c)(x− d) < 0. Thus, no x ∈ 〈 1

2
, 3
2
〉

is great.

2 points.

If we take (a, b, c, d) = (1, 0, 0, 0), then for any x ∈ 〈0, 1〉 we have (x− a)(x− b)(x− c)(x− d) < 0. Thus, no x ∈ 〈0, 1〉 is
great.

1 point.

We conclude that a number x is great if and only if x > 3
2
.

Second Solution. Here we present another way to conclude that all x > 3
2
satisfy the condition. As in the first solution,

we call any x ∈ 〈0,∞〉 which satisfies the problem’s condition great, and without loss of generality let (a, b, c, d) be a
balanced quadruple satisfying a > b > c > d. We notice that for all y ∈ R we have(

y − 1

2

)2

> 0 =⇒ y2 > y − 1

4
.

Applying this inequality to b, c and d separately and summing the inequalities we get the following:
b2 > b− 1

4

c2 > c− 1
4

d2 > d− 1
4

=⇒ b2 + c2 + d2 > b+ c+ d− 3

4
.
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3 points.

Using the equality b2 + c2 + d2 = a+ b+ c+ d− a2 transforms the inequality above into

a > a2 − 3

4
=⇒ 1 >

(
a− 1

2

)2

,

which implies a 6 3
2
,

3 points.

meaning that all x > 3
2
are great.

1 point.

The rest of the solution is the same as the previous solution.
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Problem 2. Let ABC be an acute-angled triangle such that |AB| < |AC|. Let X and Y be points on the
minor arc BC of the circumcircle of ABC such that |BX| = |XY | = |Y C|. Suppose that there exists a point
N on the segment AY such that |AB| = |AN | = |NC|. Prove that the line NC passes through the midpoint of
the segment AX.

(Ivan Novak)

A

C

N

B

X Y

First Solution. Let the line CN intersect the circumcircle of ABC at T 6= C.
Since |BX| = |XY | = |Y C|, we have ^BAX = ^XAY = ^Y AC. Denote that angle by ϕ. Furthermore, since
|AN | = |NC|, we have ^NAC = ^NCA = ϕ, which means that |AT | = |CY |.

1 point.

Furthermore, from |AB| = |AN | and ^BAX = ^XAY it follows that AX is the perpendicular bisector of BN , so
|XN | = |BX|. Since |BX| = |CY | = |AT |, we have |XN | = |AT |.

3 points.

Now ATBX is an isosceles trapezoid because |AT | = |BX| and because it’s cyclic, which means that |AB| = |TX|,
which, combined with the fact that |AB| = |AN |, yields |TX| = |AN |.

3 points.

Therefore, from |TX| = |AN | and |XN | = |AT | we have that triangles ATX and ANX are congruent, as well as triangles
ATN and XTN . Therefore, ^ATX = ^ANX and ^TAN = ^TXN , which means that ATXN is a parallelogram.
Now, as NT and AX are diagonals of a parallelogram, NT passes through the midpoint of AX, which proves the claim.

3 points.

Second Solution. Let l be the line parallel to AB through C, and let P be the intersection of l and AY . Let α denote
the angle ∠BAC.

From |AN | = |NC| it follows that ∠ABX = ∠XAN = ∠NAC = ∠NCA = α
3
. Then it’s easy to see that ∠CNP =

∠NAC + ∠NCA = 2α
3
.

1 point.

Similarly, ∠NPC = ∠PAB = 2α
3

by definition of P .

2 points.
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Thus, the triangle CNP is isosceles. Therefore, we conclude that |CN | = |PC|.

1 point.

However, |CN | = |AN | = |AB|, which implies |AB| = |PC|. Since AB and PC are parallel, this means that ABPC is
a parallelogram.

2 points.

This implies that AY is the A-median of triangle ABC. Since AX is isogonal to AY with respect to ^BAC, we conclude
that AX is the A-symmedian in the triangle ABC.

1 point.

From a well-known lemma, it now follows that CB is the C-symmedian in the triangle AXC. Note that

∠BCX = ∠BAX = ∠NAC = ∠NCA.

We now see that CN and CB are isogonal with respect to ∠ACX. Hence, CN is the C-median of triangle ACX and
we are done.

3 points.

Third Solution. Denote the angles of ABC by α, β and γ in a standard way, so that α = ∠BAC, β = ∠CBA and
γ = ∠ACB.

Note that ∠BCX = α
3
and ∠WCA = ∠NCA = ∠NAC = α

3
since NCA is isosceles. Thus, ∠WCX = ∠BCA = γ.

Also, note that ∠WAC = 2α
3
.

From sine law in triangle ANC, we have |AN|
sin α

3
= |AC|

sin 2α
3

. Using the fact that |AB|
|AC| = sin γ

sin β
and |AB| = |AN |, we get the

equality

sin γ sin
2α

3
= sinβ sin

α

3
. (1)

3 points.

Let W denote the intersection of AX and NC. From sine law in triangle AWC, we have

|AW |
|WC| =

sin α
3

sin 2α
3

.

1 point.

From sine law in WXC, we have
|WX|
|WC| =

sin γ

sinβ
.

1 point.

From these two equalities we get
|AW |
|WX| =

sinβ sin α
3

sin γ sin 2α
3

,

which equals 1 by (1). Thus, |AW | = |WX|.

5 points.

Notes on marking:

• In the second solution, proving that it suffices to prove that AY is the A-median of ABC (last 4 points) is worth
at most 2 points if a student doesn’t prove the parts before that.
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Problem 3. Let ` be a positive integer. We say that a positive integer k is nice if k! + ` is a square of an
integer. Prove that for every positive integer n > `, the set {1, 2, . . . , n2} contains at most n2 − n + ` nice
integers.

(Theo Lenoir)

Solution. We claim that for every k > `+ 1, at most one number among k2 − 1 and k2 is nice.

1 point.

Suppose for the sake of contradiction that both k2 − 1 and k2 are nice for some k > `+ 1.
Let u =

√
(k2 − 1)! + ` and v =

√
(k2)! + `. Then

v2 − ` = (k2)! = k2(u2 − `),

which can be rearranged into
(ku)2 − v2 = (k2 − 1)`. (1)

2 points.

Note that this implies ku > v and, furthermore,

(ku)2 − v2 = (ku− v)(ku+ v) > ku+ v > ku > k
√

(k2 − 1)! =
√

(k2)!

Furthermore, we have the following bounds:

(k2)! > k2(k2 − 1)(k2 − 2) > k2(k2 − 1)(k − 1)2 > (k2 − 1)2(k − 1)2 > (k2 − 1)2`2,

where we used the fact that k2 − 2 > (k − 1)2 = k2 − 2k + 1 for k > 2 and the assumption ` 6 k − 1. But this implies
that the left hand side in (1) is greater than the right hand side, which is a contradiction.

7 points.

Thus, there is at least one integer which is not good among {k2 − 1, k2} for every k ∈ {`+ 1, . . . , n}, which means there
are at least n− ` integers which aren’t good. Thus, the claim is proven.

Partial solution. This is a sketch of a partial solution using analytic number theory. This is not a solution to the
original problem, but it provides a better asymptotic bound on the number of nice integers. This solution is worth 5
points in total.
We first solve the case where ` is not a perfect square. Let p be a prime such that νp(`) is odd. Then for every k > 2p,
we have νp(k! + `) = νp(`), which is odd. Hence, every k > 2p is not nice, so there are at most 2` nice numbers and
2` 6 n2 − n+ ` for ` > 2.

1 point.

Now consider the case when ` is a square. Then `+ 1 is not a perfect square. Note that (p− 2)! ≡ 1 (mod p) for every
prime number p, and thus (p − 2)! + ` ≡ ` + 1 (mod p). If we pick p to be a prime such that ` + 1 is not a quadratic
residue modulo p, we conclude that (p− 2)! + ` is not a square.

1 point.

Note that, by quadratic reciprocity, `+1 being a quadratic residue modulo p for p > `+1 depends only on the remainder
of p modulo 8(`+1), and since `+1 is not a square, there must exist a class of residues modulo 8(`+1) such that `+1
is not a quadratic residue modulo primes from that class.

1 point.

By Dirichlet’s theorem on arithmetic progressions, the number of primes less than some N which are from a given class
of residues modulo 8(`+ 1) is asymptotically

1

ϕ(8(`+ 1))
π(N),

where π(N) is the number of primes less than N and ϕ is the Euler’s Totient function. By Prime number theorem, π(N)
is asymptotically N/ log(N). Hence, for large n, the number of integers less than n2 which are not nice is at least

c · n2

log(n2)
,

where c > 0 is some constant. For n large enough, this is obviously bigger than n− `.
2 points.

Notes on marking:

• In the second solution, if a contestant isn’t rigorous enough with the bounds in the end, they shouldn’t get more
than 1 point for the last part.

• Points from the second solution are not additive with the points from the first solution.
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Problem 4. Let n be a positive integer. Morgane has coloured the integers 1, 2, . . . , n. Each of them is coloured
in exactly one colour. It turned out that for all positive integers a and b such that a < b and a+ b 6 n, at least
two of the integers among a, b and a+ b are of the same colour. Prove that there exists a colour that has been
used for at least 2n/5 integers.

(Vincent Juge)

First Solution. Throughout the solution, instead of colourings, we will consider partitions, and ’being coloured in the
same colour’ will be interpreted as ’being in the same element of a partition’, and the colours will be interpreted as the
blocks of partitions.
Let A denote the first colour that appears, i.e. the block that contains 1. Also, let B denote the block which contains
the first integer not in A.
We shall prove that either A or B has at least 2n/5 elements.
Let C be the union of all blocks other than A and B, and let b be the smallest element of B.

Lemma 1. For any x, if x ∈ C then x− 1 ∈ A and either x+ 1 ∈ A or x = n.

Proof. We’ll actually prove a stronger claim: If x ∈ C, then x−1, x−2, . . . , x−(b−1) ∈ A and x+1, x+2, . . . , x+(b−1) ∈ A
if they’re not greater than n.

1 point.

For the sake of contradiction, consider the least x for which this claim doesn’t hold. But then x − j 6∈ C for any j < b
since otherwise x− j would be the least counterexample since (x− j) + j ∈ C. Since j ∈ A for j < b, we conclude that
x− j ∈ A for all j < b.
Now, for any i < b, we have b ∈ B and x+ i− b ∈ A, which implies x+ i ∈ A∪B. We also have x ∈ C and i ∈ A, which
implies x+ i ∈ C ∪A. Hence, x+ i ∈ A. But then x+ 1, . . . , x+ b− 1 are all in A, a contradiction.
We conclude that the stronger claim holds for every x. Thus, the lemma is proven.

1 point.

Lemma 2. There do not exist x and y such that x ∈ B, x+ 1 ∈ B, y ∈ C, y + 2 ∈ C.

Proof. Assume that there exist such x and y and assume that such x is minimal. Note that then x− 1 6∈ B and 1 ∈ A,
so x− 1 ∈ A.
We now distinguish two cases, depending on whether x > y or not.

• If x > y, consider the integer r = x− y = (x+ 1) − (y + 1). Since x ∈ B and y ∈ C, r ∈ B ∪ C. Since x+ 1 ∈ B
and y + 1 ∈ A, r ∈ B ∪ A. Hence, r ∈ B. Similarly, consider r + 1 = (x + 1) − y = x − (y − 1). Since x + 1 ∈ B
and y ∈ C, r + 1 ∈ B ∪ C. Since x ∈ B and y − 1 ∈ A, r + 1 ∈ A ∪B. Hence, r + 1 ∈ B.

• If x < y, consider the integer r = (y + 1) − x = (y + 2) − (x + 1). Since y + 1 ∈ A and x ∈ B, r ∈ A ∪ B. Since
y + 2 ∈ C and x+ 1 ∈ B, e r ∈ C ∪B. We conclude that r ∈ B.
However, y ∈ C and y + 1− x ∈ B implies that the integer x− 1 = y − (y + 1− x) is either in B or C, but we’ve
already proven that x− 1 ∈ A. Thus, we’ve reached a contradiction.

3 points.

However, since r = x− y < x, this contradicts the minimality of x and we’ve reached a contradiction again.

3 points.

Now we’ve proved that there either doesn’t exist x ∈ B such that x+1 ∈ B, or that there doesn’t exist y ∈ C such that
y + 2 ∈ C.
In the first case, for every x ∈ B, we have x− 1 6∈ B and 1 ∈ A. Hence, x− 1 ∈ A. But then |A| > n/2, since x 7→ x− 1
is an injective function from B ∪ C to A.

1 point.

In the second case, for every y ∈ C, both y+1 and y− 1 are either in A or greater than n, while y+2 and y− 2 are not
in A. Thus, y 7→ y− 1 and y 7→ y+1 are injective functions from C to A and A∪ {n+1} respectively, and their images
are disjoint. Additionally noting that 1 ∈ A and 1 6= y − 1, y + 1 for any y ∈ C, we conclude that |C| 6 |A|

2
. But then

n = |A|+ |B|+ |C| 6 3|A|+2|B|
2

, so either |A| or |B| must be greater than or equal to 2n
5
.

1 point.
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Second Solution. We give an alternative proof of Lemma 1.
Assume for the sake of contradiction that there are two consecutive integers x and x+ 1 such that both are in C. Let x
be the smallest integer with that property. Consider the integer (x+1)− b = x− (b− 1). Since x+1 ∈ C and b ∈ B, we
have either x+ 1− b ∈ C or x+ 1− b ∈ B. Since x ∈ C and b− 1 ∈ A, we have either x+ 1− b ∈ C or x+ 1− b ∈ A.
We conclude that x+ 1− b ∈ C.
Furthermore, considering x − b = (x + 1 − b) − 1, we have x ∈ C, b ∈ B, x + 1 − b ∈ C and 1 ∈ A. We conclude that
x− b ∈ C, but then x− b and x+1− b are both in C, contradicting the minimality of x. We conclude that there are no
consecutive integers in C.

1 point.

Now, for all x ∈ C, the integers x − 1 and x + 1 must either be equal to n + 1 or belong to A, since 1 ∈ A, x − 1 6∈ C
and x+ 1 6∈ C.

1 point.

We also give a slightly different proof of Lemma 2.

Proof. We first prove that if x and x+ 1 are both in B and are greater than y ∈ C, then x− y + 1 and x− y are both
in B. Note that y + 1 ∈ A and y − 1 ∈ A by Lemma 1.
Note that x− y = (x+1)− (y+1), so x− y ∈ B ∪C and x− y ∈ B ∪A, which implies x− y ∈ B. Similarly, considering
(x+ 1)− y = x− (y − 1), we can conclude that x− y + 1 ∈ B.

2 points.

To now prove Lemma 2, it suffices to consider the case x < y, where x and y are from the statement of the lemma.

1 point.

We deal with that case in the same way as in the first solution.

3 points.

The remainder of the solution is the same.

2 points.

Notes on marking:

• Lemma 2 is worth 6 points. If a contestant states Lemma 2 and they don’t prove any of its two subcases, they
should get 1 point for Lemma 2.

• In the second solution, proving the first part of Lemma 2 is worth less than the case x > y in the first solution,
because one can prove this part without stating Lemma 2. Proving this part in the context of Lemma 2 is worth
3 points, and without the context of Lemma 2 it’s worth 2 points.
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Problem 1. Alice drew a regular 2021-gon in the plane. Bob then labelled each vertex of the 2021-gon with a
real number, in such a way that the labels of consecutive vertices differ by at most 1. Then, for every pair of
non-consecutive vertices whose labels differ by at most 1, Alice drew a diagonal connecting them. Let d be the
number of diagonals Alice drew. Find the least possible value that d can obtain.

(Ivan Novak)

First Solution. Consider the following labelling of the vertices, where the i-th number of the 2021-tuple below is the
label of the i-th vertex:

(0.5, 1.5, 2.5, . . . , 1009.5, 1010.5, 1010, 1009, 1008, . . . , 2, 1).

It’s easy to see that in this case, Alice will draw 2018 diagonals, those connecting the vertices whose pairs of labels are
{1.5, 1}, {2.5, 2}, . . . , {1009.5, 1009} and {1.5, 2}, {2.5, 3}, . . . , {1009.5, 1010}.

3 points.

We now prove that 2018 is the minimum amount of diagonals Alice could have drawn. Call any labelling of a convex
n-gon which satisfies the condition that consecutive vertices have labels which differ by at most 1 a sweet labelling, and
also call the corresponding n-gon sweet.
We will prove by mathematical induction that for every n > 3, in any sweet labelling of an n-gon, there are at least n−3
pairs of nonconsecutive vertices whose labels differ by at most 1. The claim is obvious for n = 3. Suppose that the claim
is true for some positive integer n.
Consider a sweet labelling of some n + 1-gon P . Consider a vertex v with the maximum label, L. Then both of its
neighbouring vertices have labels in the set [L− 1, L], which means that their labels differ by at most 1.

1 point.

Then the n-gon P ′ obtained from P by erasing v and connecting its neighbouring vertices is also sweet.

2 points.

Applying the inductive hypothesis on it, there are at least n− 3 pairs of nonconsecutive vertices of P ′ whose labels differ
by at most 1. Adding the pair of neighbours of v, we conclude that P has at most n − 2 pairs of such vertices. This
completes the step of the induction.

4 points.

Second Solution. The example which achieves the desired bound is the same as in the previous solution.

3 points.

Let the labels of the vertices of the 2021-gon be v1, . . . , v2021, where we assume the labels to be ordered so that
v1 6 . . . 6 v2021. Note that this is not necessarily the order in which the values appear on the 2021-gon.

We claim that |vi − vi+2| 6 1, for all i = 1, 2, . . . , 2019.
Assume for the sake of contradiction that there exists an i ∈ {1, 2, . . . , 2019} for which vi+2−vi > 1. Start a circular walk
around the 2021-gon, going from the vertex which has the value v1, visiting all of the vertices one by one, and returning
back to the starting vertex. Doing so visits the values v1, . . . , v2021 in a certain permuted order, starting and ending on v1.
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We look at the first time during the walk when we step on a value whose index is greater than or equal to i + 2. Let
this index be j > i + 2. Let’s say that on the previous step, we were on value vb, where b 6 i + 1. Note that if b 6 i,
then vj − vb > vi+2 − vi > 1, so it must be the case that b = i+ 1. Next, we look at the first time we return to an index
which is smaller than or equal to i. Such an index must exist since we eventually return back to v1, and we’ll denote it
by k. A similar argument as for vj shows that in the step before reaching vk, we must have been on index b. This is a
contradiction as no vertex can be visited more than once, except for the one we started with.

5 points.

We now have |vi − vj | 6 1, for all i = 3, . . . , 2019 and j ∈ {i − 1, i − 2, i + 1, i + 2}, |v1 − vi| 6 1 for j ∈ {2, 3} and
|vj − v2021| 6 1 for j ∈ {2019, 2020}, which gives at least 1

2
(2 + 3 + 4 · 2017 + 3 + 2)− 2021 = 2018 diagonals.

2 points.

Third Solution. The example which achieves the desired bound is the same as in the previous solution.

3 points.

Note that
We label the vertices v1, v2, . . ., v2021, and, respectively, their labels x1, x2, . . ., x2021 and view the indices modulo 2021.
We’ll say vertices (vi, vj) are a nigh pair if their labels differ by at most 1.
Without loss of generality, let 1 and g be the indices among {1, 2, . . . , 2021} of the vertices with the smallest and greatest
label, respectively. Without loss of generality we can also assume g 6 1011 since we can otherwise mirror the 2021-gon.
Additionally, we will assume that g > 4 , and the cases g = 3 and g = 2 are dealt with separately. We make use of the
following lemmas.
Lemma 1. For every 1 < k < g, there are at least two indices g 6 i, j 6 2022 such that (vk, vi) and (vk, vj) are pairs of
nigh vertices. Similarly, for every g < k < 2022, there are at least two indices 1 6 i, j 6 g such that (vk, vi) and (vk, vj)
are pairs of nigh vertices.
Proof. As the statement is obviously symmetric, we will only prove the first half. Let m and M be the smallest and the
biggest label, respectively. If xk 6 m + 1, v2021 and v1 satisfy the condition of the lemma. Similarly, if xk > M − 1,
vg and vg+1 satisfy the condition of the lemma. Otherwise, there are at least two indices within the desired range with
labels in [x− 1, x+ 1] due to the Intermediate Value Theorem. Namely, if we imagine jumping along the vertices from v1
do vg, at the vertex v1 the label is less than x−1 and at the vertex vg the label is greater than x+1. Then at some point
in between we must have been at a vertex whose label is from [x−1, x) and at a vertex whose label is from [x, x+1).

4 points.

Lemma 2. At most one of the vertices v2021 and v2 and at most one of the vertices vg−1 and vg+1 can be elements of
three nigh pairs.
Proof. Clearly, due to Lemma 1, both v2021 and v2 are elements of at least three nigh pairs. Assume both vertices are
elements of exactly three nigh pairs. Assume that x2021 6 x2. It follows that x2 − 1 6 x1 6 x2020 6 x2021 + 1 6 x2 + 1,
therefore, v2020, v2021, v1 and v3 are four vertices forming nigh pairs with v2, a contradiction. We treat the other cases
analogously.

2 points.

Finally, due to Lemma 1, each vertex not neighbouring with g or 1 forms at least 4 nigh pairs. The vertices v1 and vg
form at least 2 nigh pairs and at most two of their neighbouring vertices form 3 nigh pairs. The minimal number of nigh
pairs is therefore 1

2
· (2017 · 4 + 2 · 3 + 2 · 2) = 4039.

1 point.

Assume g 6 3. If g = 2, all the pairs of vertices are nigh as their labels are all in the set [x1, x2]. If g = 3, each vertex
forms a nigh pair with at least one of v1 or v3. Without loss of generality, more than half of the remaining vertices form
nigh pairs with v1. But then all of those vertices are nigh as well, so there are at least

(
1015
2

)
> 4039 nigh pairs, making

this case suboptimal as well.

0 points.

Notes on marking:

• Points from different solutions are not additive. Student’s score should be the maximum of points scored over all
solutions.

• Miscounting the number d in the optimal example or making a similar minor mistake in that part should be awarded
2 points out of possible 3 for that part of the solution.

• In the first solution, just stating the idea of induction is worth no points on its own.

• In the third solution, dealing with the case g 6 3 is worth no points on its own. However, a contestant who doesn’t
comment these cases can get at most 9 points for their solution.
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Problem 2. Let ABC be a triangle and letD, E and F be the midpoints of sides BC, CA and AB, respectively.
Let X 6= A be the intersection of AD with the circumcircle of ABC. Let Ω be the circle through D and X,
tangent to the circumcircle of ABC. Let Y and Z be the intersections of the tangent to Ω at D with the
perpendicular bisectors of segments DE and DF , respectively. Let P be the intersection of Y E and ZF and
let G be the centroid of ABC. Show that the tangents at B and C to the circumcircle of ABC and the line
PG are concurrent.

(Jakob Jurij Snoj)

A

B

CD

E

X

F

P

G

Y

Z

First Solution. Due to the collinearity of A, X and D, there is a homothety at X sending the circumcircle of ABC to
Ω. This homothety also sends the tangent at A to the circumcircle of ABC to the tangent at D of Ω.

1 point.

The homothety in G with ratio − 1
2
sends the circumcircle of ABC to its nine-point circle and the tangent at A to the

circumcircle to the tangent at D to the nine-point circle. These tangents are therefore parallel. It follows that Ω and
the nine-point circle of ABC share a tangent at D.

2 points.

As Y and Z lie on the perpendicular bisectors of DE and DF , respectively, it follows that |Y D| = |Y E| and Y E is also
tangent to the nine-point circle of ABC - similarly, ZF is also tangent to this circle. We conclude that the nine-point
circle of ABC is the incircle of PY Z.

3 points.

Finally, the homothety at G sending the circumcircle of ABC to its nine-point circle sends the tangents through A, B
and C to the circumcircle of ABC respectively to the tangents at D, E and F to the nine-point circle of ABC. It,
therefore, sends the intersection of tangents at B and C to the circumcircle of ABC to the point P , thus proving the
desired collinearity.

4 points.
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Ω

A

B CD

EF

X

Y

Z

G

P

T

Q

Second Solution. As in the previous solution, we prove that the tangent at D to Ω is parallel to the tangent at A to
the circumcircle of ABC.

1 point.

Let ^BAC = α, ^ABC = β, ^ACB = γ. Let Q be the intersection of the tangents at B and C to the circumcircle of
ABC. It now suffices to prove that G lies on PQ.

0 points.

Let T be the point on BC such that the line TA is tangent to the circumcircle of ABC at A. By the tangent-chord
theorem, we have ^TAB = γ, which implies ^ATB = β − γ. Since ZY ‖ TA and ^Y DC = ^ATB = β − γ.

1 point.

By definion of Y , we have |EY | = |DY |. Since DE is a midline of ABC, we have ^EDC = ^ABC = β. Thus

^DEY = ^EDY = ^EDC − ^Y DC = β − (β − γ) = γ.

2 points.

Furthermore, note that ^BED + ^DBE = ^EDC = β, and ^QBC = α, by the tangent-chord theorem. This implies

^QBE + ^BEY = (^QBC + ^DBE) + (^BED + ^DEY ) = α+ β + γ = 180◦

so QB ‖ PE. By analogous reasoning we conclude that QC ‖ PF .
2 points.

Since EF is a midline of ABC, we have that the sides EP , PF , EF of triangle PEF are parallel to the sides QB, QC,
BC of triangle QBC, respectively. Those triangles are not congruent because EF = BC

2
, so there exists a homothety

which maps PEF to QBC. The centre of the homothety is the intersection of BE, CF , and PQ, which implies that G
lies on PQ and we are done.

4 points.

Notes on marking:

• In the second solution, once we obtain ^DEY = ^EDY = γ, we can conclude that Y E is tangent to the circumcircle
of DEF and finish as in the first solution.

• The final 4 points in either solution can only be awarded if the student correctly proves the other steps of the
problem. Otherwise, a contestant can only obtain up to 2 points for this part of the solution.

• No points are deducted if the student fails to argue that 4PY Z and the triangle formed by the tangents through
A, B and C to the circumcircle of ABC are not congruent.

• Analytic approaches are only awarded points if their results are correctly interpreted by geometric means.
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Problem 3. Let N denote the set of all positive integers. Find all functions f : N→ N such that

x2 − y2 + 2y(f(x) + f(y))

is a square of an integer for all positive integers x and y.

(Ivan Novak)

First Solution. Throughout the solution, let P (a, b) denote the assertion "a2−b2 +2b(f(a)+f(b)) is a perfect square".

Let p be a prime. Then P (p, p) implies 4pf(p) is a perfect square, which implies p | f(p).

1 point.

Let y be any positive integer, and let p be any prime. P (p, y) implies p2 + 2yf(p) + 2yf(y) − y2 is a perfect square.
Taking the assertion modulo p, it follows that 2yf(y)− y2 is a quadratic residue modulo p. It is a well known fact that
if a positive integer is a quadratic residue modulo all primes, it must be a perfect square. We conclude that 2yf(y)− y2
is a perfect square for all y ∈ N.

3 points.

Define g(y) to be
√

2yf(y)− y2.
P (1, y) implies 1− y2 + 2yf(1) + 2yf(y) = g(y)2 + 2yf(1) + 1 is a perfect square, and since

g(y)2 + 2yf(1) + 1 > g(y)2,

we have a following chain of inequalities:

g(y)2 + 2yf(1) + 1 > (g(y) + 1)2 =⇒ 2yf(1) + 1 > 2g(y) + 1 =⇒

yf(1) > g(y) =⇒ y2f(1)2 > 2yf(y)− y2 =⇒ f(1)2 + 1

2
y > f(y).

1 point.

Since p | f(p) and f(p)
p

6 f(1)2+1
2

for any prime p, it follows from Pigeonhole principle that there exists a positive integer
a such that f(p) = ap for infinitely many primes p.

2 points.

Let p be any prime such that f(p) = ap and let n be any positive integer. P (p, n) implies

p2 − n2 + 2nap+ 2nf(n) = (p+ na)2 − n2a2 − n2 + 2nf(n)

is a perfect square.

However, this means that 2nf(n)− n2 − n2a2 can be written as a difference of squares in infinitely many ways, which is
only possible if it equals 0. Thus, 2nf(n) = n2a2 + n2, or, equivalently, f(n) = n(a2+1)

2
for all n ∈ N. This also implies

a2+1
2

= a, which gives us a = 1.
Therefore, f(n) = n for all n ∈ N. It can be easily checked that the identity function is indeed a solution.

3 points.

Second Solution. Similarly as in the first solution, we conclude that p | f(p). Also, from P (4p, 4p), we also conclude
that p | f(4p) for every odd prime p.

1 point.

Fix an odd prime number p, and let A = f(p)
p

and B = f(4p)
p

.

Now, from P (4p, p), we have that 15p2 +2p2(A+B) is a square, which means 15+2(A+B) is also a square. Multiplying
by 4 yields the fact that 60 + 8(A+B) is a square.
From P (p, 4p), we have that −15p2 + 8p2(A+B) is a square, which means −15 + 8(A+B) is a square.
We then have

75 = 60 + 8(A+B)− (−15 + 8(A+B)).

Since there are finitely many ways to write 75 as a difference of two squares, we conclude that A + B can take only
finitely many different values as p ranges over all primes. The same is true for A.

4 points.

Therefore, by Pigeonhole principle, there exists a positive integer a such that f(p) = ap for infinitely many primes p.

2 points.
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The problem can now be finished the same way as in the first solution.

3 points.

Notes on marking:

• Both solutions follow a similar structure. In the first part, a constant a is found such that f(p) = ap for infinitely
many primes p, and in the second part the problem is completed using the first fact. The points from different
solutions are not additive.

• In the first solution, it is not expected from the students to prove the key lemma about quadratic residues that is
used; it suffices to state it. On the other hand, merely stating the lemma is not worth any points on its own.

• If a student solves the problem under the assumption that f(p) = ap for infinitely many p, but they don’t prove
this fact, they can get at most 1 point out of the last 3 points.

• In the second solution, if a student discusses P (1, 4) and P (4, 1) similarly to how P (p, 4p) and P (4p, p) are discussed,
and concludes that f(1) and f(4) can take on finitely many different values, they should get 1 point out of 4 for
that part of the solution.
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Problem 4. Find all positive integers d for which there exist polynomials P (x) and Q(x) with real coefficients
such that degree of P equals d and

P (x)2 + 1 = (x2 + 1)Q(x)2.

(Ivan Novak)

First Solution.
P (x)2 + 1 = (x2 + 1)Q(x)2 (1)

Let P and Q be polynomials satisfying the conditions. Note that the degree of the left hand side in (1) the equality is
2d, and the degree of the right hand side is 2 + 2 degQ, which implies degQ = d− 1.
Suppose that r is a real root of Q. Then P (r)2 + 1 = 0, which is clearly impossible. We conclude that Q has no real
roots. Since Q has real coefficients, we conclude that Q has even degree since its roots must come in conjugate pairs.
Thus, d must be odd.

1 point.

Now we prove that for any odd d, there exist polynomials satisfying the conditions. Let R[x,
√
x2 + 1] be the set of all

functions of the form A + B
√
x2 + 1, where A and B are polynomials with real coefficients. Note that each element of

R[x, x2 + 1] can be uniquely associated with a pair of polynomials (A,B). Consider a function n : R[x,
√
x2 + 1] → R

defined by
n(A+B

√
x2 + 1) = A2 − (x2 + 1)B2

for all real polynomials A and B. Note that the equality (1) is equivalent to the equality

n(P +
√
x2 + 1Q) = −1.

1 point.

Note that

n((A+
√
x2 + 1B)(C+

√
x2 + 1D)) = n(AC+(x2+1)BD+

√
x2 + 1(AD+BC)) = (AC+(x2+1)BD)2−(x2+1)(AD+BC)2.

On the other hand,

n(A+
√
x2 + 1B)n(C +

√
x2 + 1D) = (A2 − (x2 + 1)B2)(C2 − (x2 + 1)D2).

It can easily be checked that the two expressions are equal. Hence, the function n is multiplicative.

1 point.

Note that n(x+
√
x2 + 1) = −1.

1 point.

Then, using the multiplicative property, n((x+
√
x2 + 1)d) = −1 as well. Let (x+

√
x2 + 1)d = P +

√
x2 + 1Q for some

polynomials P and Q. By binomial theorem, we have

P +
√
x2 + 1Q = (x+

√
x2 + 1)d =

∑
j odd

(
d

j

)
xd−j(x2 + 1)

d−j
2 +

∑
j even

(
d

j

)
xj(x2 + 1)

d−1−j
2

√
x2 + 1.

It’s now easy to see that P has degree d, since it is a sum of polynomials which have degree d and positive leading
coefficients, and P and Q satisfy the starting equality. Thus, all odd positive integers are solutions.

6 points.

Second Solution.
P (x)2 + 1 = (x2 + 1)Q(x)2 (2)

Similarly as in the first solution, we conclude that d needs to be odd.

1 point.

Let us now prove that for every odd d such polynomials P (x) and Q(x) exist. Fix an odd positive integer d. Observing
the roots of polynomials P (x) and Q(x), we can easily see from (2) that P (x) and Q(x) don’t have a common root.
Differentiating (2), we get :

P ′(x)P (x) = x ·Q(x)2 + (x2 + 1) ·Q′(x)Q(x) = Q(x)
(
x ·Q(x) + (x2 + 1) ·Q′(x)

)
. (3)

Since P (x) and Q(x) don’t have common roots, from (3) we conclude that Q(x) must divide P ′(x). Since they have the
same degree, there must exist a real number u such that uP ′(x) = Q(x).

1 point.

Comparing coefficients in (2), we get that u must be 1
d
or − 1

d
.
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1 point.

We’ll take u = 1
d
. Plugging in Q(x) = P ′(x)/d in (3), we get

P (x) =
1

d

(
1

d
x · P ′(x) +

1

d
(x2 + 1)P ′′(x)

)
. (4)

We will now find all polynomials P of degree d which satisfy (4). Note that, by multiplying both sides with P ′(x) and
integrating, each of these polynomials satisfies the equation P (x)2 + C = (x2 + 1) (P ′(x))2

d2
for some C ∈ R.

Denote P (x) =
∑d

i=0 aix
i. Then P ′(x) =

∑d
i=1 iaix

i−1 and P ′′(x) =
∑d

i=2 i(i− 1)aix
i−2. Writing out the coefficients in

(4), we get

d∑
i=0

aix
i =

1

d2

(
d∑

i=1

i2aix
i +

d∑
i=2

i(i− 1)aix
i−2

)

Comparing the coefficients of xk for all k on the left hand side and the right hand side of the above equation for k > 0,
we get:

ad−1 =
1

d2
(
(d− 1)2ad−1

)
which implies ad−1 = 0,

and also

ak =
1

d2
(
k2ak + (k + 2)(k + 1)ak+2

)
which can be rewritten as

ak+2 =
d2 − k2

(k + 2)(k + 1)
· ak for all 0 6 k 6 d− 2.

1 point.

From here, we now have that ak = 0 for all even 0 6 k 6 d − 2 and that for all odd 0 6 k 6 d − 2, we have ak = qka1
for some nonzero real coefficient qk which is uniquely determined by the above recursion.

1 point.

It’s easy to see that any such choice of coefficients (ak)k with a1 6= 0 gives a solution to (4) which has degree d.

As we’ve already said, any solution to (4) is a solution to P (x)2 +C = (x2 + 1) (P ′(x))2

d2
for some C ∈ R. Considering the

coefficient alongside x0 in both sides and noting a0 = 0, we get C = a21/d
2. Thus, taking a solution with a1 = d, we get

the solution to P (x)2 + 1 = (x2 + 1) (P ′(x))2

d2
, which proves that every odd d is a solution to the problem.

5 points.

Third Solution.
P (x)2 + 1 = (x2 + 1)Q(x)2 (5)

Similarly as in the first solution, we conclude that d needs to be odd.

1 point.

Note that d = 1 is a solution, taking P (x) = x and Q(x) = 1. Henceforth assume d > 3.
From x2 + 1 | P (x)2 + 1 we get x2 + 1 | P (x)2 − x2 =⇒ x2 + 1 | (P (x) − x)(P (x) + x). It is not hard to see that
the irreducible polynomial x2 + 1 divides exactly one of the two factors. We can replace P by −P , so without loss of
generality it is safe to assume that P (x) = A(x)(x2 + 1) + x for some real polynomial A. If we put this in (5), we obtain

(A(x) · x+ 1)2 +A(x)2 = Q(x)2.

We will find real polynomials α and β such that A(x) = 2α(x)β(x), Q(x) = α(x)2 + β(x)2, xA(x) + 1 = α(x)2 − β(x)2

and degα + deg β = d − 2. Note that then A(x) and Q(x) satisfy the conditions due to the identities for Pythagorean
triples.

2 points.

We thus need to find solutions to the equation

2xα(x)β(x) + 1 = α(x)2 − β(x)2 (6)

where α, β ∈ R[x] are polynomials with real coefficients. Notice that (α, β) = (1,−2x) is a pair of solutions.

1 point.
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If we look at (6) as a quadratic equation in α we have

α2 − α · 2xβ + 1− β2 = 0.

Roots α1, α2 must then satisfy α1 +α2 = 2xβ. It is now easily verified that if (α, β) is a pair of polynomials which satisfy
(6), then (β, 2xβ − α) is another such pair.

1 point.

Thus starting with solution (α0, β0) = (1,−2x), we can recursively generate a sequence of solutions

(αi+1, βi+1) = (βi, 2xβi − αi).

The degrees of (αi, βi)i>0 now follow the pattern

(0, 1), (1, 2), (2, 3), (3, 4) . . .

More precisely, degαi = i, deg βi = i+ 1 for all i > 0.
But then, if d = 2i+1 for some i > 0, the pair (αi, βi) gives a pair (A,Q) = (2αβ, α2+β2) such that (xA(x)+1)2+A(x)2 =
Q(x)2 and degA = i+ (i− 1) = d− 2. Then, taking P (x) = (x2 + 1)A(x) + x yields a pair (P,Q) satisfying the original
equation such that degP = d. We conclude that every odd d is a solution.

5 points.

Notes on marking:

• Points from different marking schemes are not additive.
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