Algebra

A1. Denote $\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$ the set of all positive integers. Determine all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that, for each positive integer n,
i) $\sum_{k=1}^{n} f(k)$ is a perfect square, and
ii) $f(n)$ divides n^{3}.

Albania
Solution. Induct on n to show that $f(n)=n^{3}$ for all positive integers n. It is readily checked that this f satisfies the conditions in the statement. The base case, $n=1$, is clear.

Let $n \geqslant 2$ and assume that $f(m)=m^{3}$ for all positive integers $m<n$. Then $\sum_{k=1}^{n-1} f(k)=\frac{n^{2}(n-1)^{2}}{4}$, and reference to the first condition in the statement yields

$$
f(n)=\sum_{k=1}^{n} f(k)-\sum_{k=1}^{n-1} f(k)=\left(\frac{n(n-1)}{2}+k\right)^{2}-\frac{n^{2}(n-1)^{2}}{4}=k\left(n^{2}-n+k\right)
$$

for some positive integer k.
The divisibility condition in the statement implies $k\left(n^{2}-n+k\right) \leqslant n^{3}$, which is equivalent to $(n-k)\left(n^{2}+k\right) \geqslant 0$, showing that $k \leqslant n$.

On the other hand, $n^{2}-n+k$ must also divide n^{3}. But, if $k<n$, then

$$
n<\frac{n^{3}}{n^{2}-1} \leqslant \frac{n^{3}}{n^{2}-n+k} \leqslant \frac{n^{3}}{n^{2}-n+1}<\frac{n^{3}+1}{n^{2}-n+1}=n+1
$$

therefore $\frac{n^{3}}{n^{2}-n+k}$ cannot be an integer.
Consequently, $k=n$, so $f(n)=n^{3}$. This completes induction and concludes the proof.

A2. If a, b, c are positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3$, prove that

$$
\frac{a+b+c-1}{\sqrt{2}} \geqslant \frac{\sqrt{a+\frac{b}{c}}+\sqrt{b+\frac{c}{a}}+\sqrt{c+\frac{a}{b}}}{3}
$$

When does equality hold?
Albania
Solution. The inequality is equivalent to

$$
12(a+b+c-1) \geqslant \sum_{\text {cyc }} 4 \sqrt{2\left(a+\frac{b}{c}\right)}
$$

From AM-GM inequality we have

$$
\sum_{c y c} 2 \sqrt{2\left(a+\frac{b}{c}\right)} \leqslant \sum_{c y c}\left(2+a+\frac{b}{c}\right)=6+a+b+c+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} .
$$

Again from AM-GM inequality we have

$$
\frac{2 a}{b}+\frac{2 b}{c}+\frac{2 c}{a} \geqslant 3 \sqrt[3]{\frac{2 a}{b} \cdot \frac{2 b}{c} \cdot \frac{2 c}{a}}=3 \sqrt[3]{8}=6
$$

Hence,

$$
\begin{equation*}
\sum_{\text {cyc }} 2 \sqrt{2\left(a+\frac{b}{c}\right)} \leqslant a+b+c+\frac{3 a}{b}+\frac{3 b}{c}+\frac{3 c}{a} . \tag{1}
\end{equation*}
$$

Again, from AM-GM inequality we have

$$
\begin{array}{r}
\sum_{\mathrm{cyc}} 2 \sqrt{2\left(a+\frac{b}{c}\right)}=\sum_{\mathrm{cyc}} 2 \sqrt{\frac{2 a}{c}\left(c+\frac{b}{a}\right)} \leqslant \sum_{\mathrm{cyc}}\left(\frac{2 a}{c}+c+\frac{b}{a}\right) \tag{2}\\
=a+b+c+\frac{3 a}{c}+\frac{3 b}{a}+\frac{3 c}{b} .
\end{array}
$$

Adding (1) and (2) we get,

$$
\sum_{\mathrm{cyc}} 4 \sqrt{2\left(a+\frac{b}{c}\right)} \leqslant 2(a+b+c)+3\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right) .
$$

Now, using the asumption we have

$$
\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3=3(a+b+c-1) .
$$

Hence,

$$
\sum_{\mathrm{cyc}} 4 \sqrt{2\left(a+\frac{b}{c}\right)} \leqslant 11(a+b+c)-9
$$

So, it is enough to prove

$$
11(a+b+c)-9 \leqslant 12(a+b+c-1) \Longleftrightarrow a+b+c \geqslant 3
$$

Last inequality is true since using $A M-H M$ and condition we have,

$$
\frac{a+b+c}{3} \geqslant \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=1 \Rightarrow a+b+c \geqslant 3 .
$$

It is known that equality in $A M-H M$ is achieved only when $a=b=c$ and, since $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3, a=b=c=1$. Clearly, for $a=b=c=1$ equality holds.

A3. Let $P(x), Q(x)$ be distinct polynomials of degree 2020 with non-zero coefficients. Suppose that they have r common real roots counting multiplicity and s common coefficients. Determine the maximum possible value of $r+s$.

Demetres Christofides, Cyprus
Solution. We claim that the maximum possible value is 3029 .
The polynomials

$$
P(x)=\left(x^{2}-1\right)^{1009}\left(x^{2}+1\right) \quad \text { and } \quad Q(x)=\left(x^{2}-1\right)^{1009}\left(x^{2}+x+1\right)
$$

satisfy the conditions, have 2018 common roots, and have 1011 common coefficients (all coefficients of even powers). So $r+s \geqslant 3029$.

Suppose now that $P(x), Q(x)$ agree on the coefficients of $x^{2020}, x^{2019}, \ldots, x^{2021-k}$, disagree on the coefficient of x^{2020-k}, and agree on another $s-k$ coefficients. The common roots of $P(x), Q(x)$ are also non-zero roots of the polynomial $P(x)-Q(x)$ which has degree x^{2020-k}. (The condition on the non-zero coefficients guarantees that 0 is not a root of P and Q.) So $P(x)-Q(x)$ has at most $2020-k$ real roots. On the other hand, $P(x)-Q(x)$ has exactly $s-k$ coefficients equal to zero. So by the following Lemma it has at most $2[(2020-k)-(s-k)]=4040-2 s$ real non-zero roots. Averaging we get $r \leqslant\left\lfloor\frac{6060-2 s-k}{2}\right\rfloor \leqslant 3030-s$. Thus $r+s \leqslant 3030$. Furthermore, if equality occurs, we must have $k=0$ and $r=2020-k=4040-2 s$. In other words, we must have $r=2020$ and $s=1010$. But if $r=2020$, then $Q(x)$ is a multiple of $P(x)$ and since $P(x), Q(x)$ have non-zero coefficients, then $s=0$, a contradiction. Therefore $r+s \leqslant 3029$ as required.

Lemma. Let f be a polynomial of degree n having exactly t coefficients equal to 0 . Then f has at most $2(n-t)$ real non-zero roots.

Proof of Lemma. Since f has $n+1-t$ non-zero coefficients, by Descartes' rule of signs it has at most $n-t$ sign changes and therefore at most $n-t$ positive real roots. Similarly it has at most $n-t$ negative real roots.

Note. Counting the roots with multiplicity is not essential. We can demand 'r common distinct real roots' by changing the $\left(x^{2}-1\right)^{1009}$ in the example to

$$
\left(x^{2}-1\right)\left(x^{2}-2\right) \cdots\left(x^{2}-1009\right) .
$$

A4. Let $P(x)=x^{3}+a x^{2}+b x+1$ be a polynomial with real coefficients and three real roots $\rho_{1}, \rho_{2}, \rho_{3}$ such that $\left|\rho_{1}\right|<\left|\rho_{2}\right|<\left|\rho_{3}\right|$. Let A be the point where the graph of $P(x)$ intersects $y y^{\prime}$ and the points $B\left(\rho_{1}, 0\right), C\left(\rho_{2}, 0\right), D\left(\rho_{3}, 0\right)$. If the circumcircle of $\triangle A B D$ intersects $y y^{\prime}$ for a second time at E, find the minimum value of the length of the segment $E C$ and the polynomials for which this is attained.

Brazitikos Silouanos, Greece
Solution. Let O be the origin. Since $P(0)=1, A$ is the point $(0,1)$, so $O A=1$.
From Vieta's relations we have $\rho_{1} \rho_{2} \rho_{3}=-1$, so $\left|\rho_{1} \rho_{2} \rho_{3}\right|=1$. (1)

From the power of the point O we have

$$
O B \cdot O D=O A \cdot O E \Rightarrow\left|\rho_{1}\right| \cdot\left|\rho_{3}\right|=1 \cdot O E
$$

hence $O E=\frac{1}{\left|\rho_{2}\right|}$.
Finally, from Pythagoras' theorem we have

$$
C E^{2}=O E^{2}+O C^{2}=\left|\rho_{2}\right|^{2}+\frac{1}{\left|\rho_{2}\right|^{2}} \geqslant 2
$$

hence $C E \geqslant \sqrt{2}$.
The equality holds for $\left|\rho_{2}\right|=1 \Longleftrightarrow \rho_{2}= \pm 1$. In the first case we have the family

$$
P(x)=(x-1)(x+a)\left(x-\frac{1}{a}\right)
$$

while in the second case we have

$$
P(x)=(x+1)(x-a)\left(x-\frac{1}{a}\right)
$$

Combinatorics

C1. Let $s \geqslant 2$ and $n \geqslant k \geqslant 2$ be integes, and let \mathcal{A} be a subset of $\{1,2, \ldots, n\}^{k}$ of size at least $2 s k^{2} n^{k-2}$ such that any two members of \mathcal{A} share some entry. Prove that there are an integer $p \leqslant k$ and $s+2$ members $A_{1}, A_{2}, \ldots, A_{s+2}$ of \mathcal{A} such that A_{i} and A_{j} share the p-th entry alone, whenever $i \neq j$.

Miroslav Mironov, Bulgaria
Solution. Fix a member A of \mathcal{A}. Note that there are at most $\binom{k}{2} n^{k-2} k$-tuples that share at least two entries with A. Indeed, there are $n^{k-2} k$-tuples sharing any two given entries. The bound now follows, since the two entries can be chosen in $\binom{k}{2}$ different ways.

Therefore, the number of members of \mathcal{A} that share a single entry with A is least

$$
|\mathcal{A}|-\binom{k}{2} n^{k-2} \geqslant 2 s k^{2} n^{k-2}-k^{2} n^{k-2}>s k^{2} n^{k-2}
$$

Letting \mathcal{B}_{p} be the set of all members of \mathcal{A} that share the p-th entry alone with A, the above estimate yields $\sum_{p=1}^{k}\left|\mathcal{B}_{p}\right|>s k^{2} n^{k-2}$, and hence $\left|\mathcal{B}_{p}\right|>s k n^{k-2}$ for some p.

Let B be an arbitrary member of this \mathcal{B}_{p}. Then there are at most $(k-1) n^{k-2} k$ tuples that share the p-th entry and some other entry with B. Now, let t be maximal with the property that there are $B_{1}, B_{2}, \ldots, B_{t}$ in \mathcal{B}_{p} such that any two B_{i} and B_{j} share the p-th entry alone for $i \neq j$. Hence any other member B^{\prime} of \mathcal{B}_{p} shares with some B_{i} at least one entry different from the p-th. Consequently, $\left|\mathcal{B}_{p}\right| \leqslant t(k-1) n^{k-2}$.

Finally, compare the two bounds for $\left|\mathcal{B}_{p}\right|$ to get $t>s$, and conclude that A, B_{1}, \ldots, B_{t} are $t+1 \geqslant s+2$ members of \mathcal{A} every two of which share the p-th entry alone.

Remark. The argument in the solution shows that the conclusion holds under the less restrictive condition $|\mathcal{A}|>(s+1 / 2) k(k-1) n^{k-2}$.

C2. Let k be a positive integer. Determine the least integer $n \geqslant k+1$ for which the game below can be played indefinitely:

Consider n boxes, labelled $b_{1}, b_{2}, \ldots, b_{n}$. For each index i, box b_{i} contains initially exactly i coins. At each step, the following three substeps are performed in order:
(1) Choose $k+1$ boxes;
(2) Of these $k+1$ boxes, choose k and remove at least half of the coins from each, and add to the remaining box, if labelled b_{i}, a number of i coins.
(3) If one of the boxes is left empty, the game ends; otherwise, go to the next step.

Demetres Christofides, Cyprus
Solution. The required minimum is $n=2^{k}+k-1$.
In this case the game can be played indefinitely by choosing the last $k+1$ boxes, $b_{2^{k}-1}, b_{2^{k}}, \ldots, b_{2^{k}+k-1}$, at each step: At step r, if box $b_{2^{k}+i-1}$ has exactly m_{i} coins, then $\left\lceil m_{i} / 2\right\rceil$ coins are removed from that box, unless $i \equiv r-1(\bmod k+1)$, in which case $2^{k}+i-1$ coins are added. Thus, after step r has been performed, box $b_{2^{k}+i-1}$ contains exactly $\left\lfloor m_{i} / 2\right\rfloor$ coins, unless $i \equiv r-1(\bmod k+1)$, in which case it contains exactly $m_{i}+2^{k}+i-1$ coins. This game goes on indefinitely, since each time a box is supplied, at least $2^{k}-1$ coins are added, so it will then contain at least 2^{k} coins, good enough to survive the k steps to its next supply.

We now show that no smaller value of n works. So, let $n \leqslant 2^{k}+k-2$ and suppose, if possible, that a game can be played indefinitely. Notice that a box currently containing exactly m coins survives at most $w=\left\lfloor\log _{2} m\right\rfloor$ withdrawals; this w will be referred to as the weight of that box. The sum of the weigths of all boxes will referred to as the total weight. The argument hinges on the lemma below, proved at the end of the solution.
Lemma. Performing a step does not increase the total weight. Moreover, supplying one of the first $2^{k}-2$ boxes strictly decreases the total weight.

Since the total weight cannot strictly decrease indefinitely, $n>2^{k}-2$, and from some stage on none of the first $2^{k}-2$ boxes is ever supplied. Recall that each step involves a $(k+1)$-box choice. Since $n \leqslant 2^{k}+k-2$, from that stage on, each step involves a withdrawal from at least one of the first $2^{k}-2$ boxes. This cannot go on indefinitely, so the game must eventually come to an end, contradicting the assumption.

Consequently, a game that can be played indefinitely requires $n \geqslant 2^{k}+k-1$.
Proof of the Lemma. Since a withdrawal from a box decreases its weight by at least 1 , it is sufficient to show that supplying a box increases its weight by at most k; and if the latter is amongst the first $2^{k}-2$ boxes, then its weight increases by at most $k-1$. Let the box to be supplied be b_{i} and let it currently contain exactly m_{i} coins, to proceed by case analysis:

If $m_{i}=1$, the weight increases by $\left\lfloor\log _{2}(i+1)\right\rfloor \leqslant\left\lfloor\log _{2}\left(2^{k}+k-1\right)\right\rfloor \leqslant\left\lfloor\log _{2}\left(2^{k+1}-\right.\right.$ $2)\rfloor \leqslant k$; and if, in addition, $i \leqslant 2^{k}-2$, then the weight increases by $\left\lfloor\log _{2}(i+1)\right\rfloor \leqslant$ $\left\lfloor\log _{2}\left(2^{k}-1\right)\right\rfloor=k-1$.

If $m_{i}=2$, then the weight increases by $\left\lfloor\log _{2}(i+2)\right\rfloor-\left\lfloor\log _{2} 2\right\rfloor \leqslant\left\lfloor\log _{2}\left(2^{k}+k\right)\right\rfloor-1 \leqslant$ $k-1$.

If $m_{i} \geqslant 3$, then the weight increases by

$$
\begin{aligned}
\left\lfloor\log _{2}\left(i+m_{i}\right)\right\rfloor-\left\lfloor\log _{2} m_{i}\right\rfloor & \leqslant\left\lfloor\log _{2}\left(i+m_{i}\right)-\log _{2} m_{i}\right\rfloor+1 \\
& \leqslant\left\lfloor\log _{2}\left(1+\frac{2^{k}+k-2}{3}\right)\right\rfloor+1 \leqslant k
\end{aligned}
$$

since $1+\frac{1}{3}\left(2^{k}+k-2\right)=\frac{1}{3}\left(2^{k}+k+1\right)<\frac{1}{3}\left(2^{k}+2^{k+1}\right)=2^{k}$.
Finally, let $i \leqslant 2^{k}-2$ to consider the subcases $m_{i}=3$ and $m_{i} \geqslant 4$. In the former subcase, the weight increases by

$$
\left\lfloor\log _{2}(i+3)\right\rfloor-\left\lfloor\log _{2} 3\right\rfloor \leqslant\left\lfloor\log _{2}\left(2^{k}+1\right)\right\rfloor-1=k-1,
$$

and in the latter by

$$
\begin{aligned}
\left\lfloor\log _{2}\left(i+m_{i}\right)\right\rfloor-\left\lfloor\log _{2} m_{i}\right\rfloor & \leqslant\left\lfloor\log _{2}\left(i+m_{i}\right)-\log _{2} m_{i}\right\rfloor+1 \\
& \leqslant\left\lfloor\log _{2}\left(1+\frac{2^{k}-2}{4}\right)\right\rfloor+1 \leqslant k-1
\end{aligned}
$$

since $1+\frac{1}{4}\left(2^{k}-2\right)=\frac{1}{4}\left(2^{k}+2\right)<2^{k-2}+1$. This ends the proof and completes the solution.

C3. Odin and Evelyn are playing a game, Odin going first. There are initially $3 k$ empty boxes, for some given positive integer k. On each player's turn, they can write a non-negative integer in an empty box, or erase a number in a box and replace it with a strictly smaller non-negative integer. However, Odin is only ever allowed to write odd numbers, and Evelyn is only allowed to write even numbers. The game ends when either one of the players cannot move, in which case the other player wins; or there are exactly k boxes with the number 0, in which case Evelyn wins if all other boxes contain the number 1, and Odin wins otherwise. Who has a winning strategy?

Agnijo Banerjee, United Kingdom

Solution. Evelyn has a winning strategy. Begin by noticing that any legal move by Odin involves writing an odd number n, so Evelyn is allowed to replace it with the even number $n-1$. In particular, the game cannot end because Evelyn is unable to move.

Evelyn's strategy is described in terms of the following valuation: Collect the numbers in all non-empty boxes to form $\mathbf{a}=\left(a_{1}, \ldots, a_{\ell}\right)$, where $\ell \leqslant 3 k$, and define the valuation of a by

$$
V(\mathbf{a})=\sum_{i=1}^{\ell}(-1 / 2)^{a_{i}} .
$$

Notice that when Odin makes a move, the valuation strictly decreases; and when Evelyn makes a move, the valuation strictly increases.

Since the boxes are initially all empty, the game starts with a zero valuation, and after the first move (by Odin) the valuation is strictly negative. Evelyn's strategy consists in making the valuation at most zero after each of her moves. Consequently, after each legal move by Odin, the valuation is strictly negative.

To show that Evelyn can always achieve this, distinguish the two possible cases below.
Case 1: There is at least one empty box, and the current valuation is $-v$ for some strictly positive v. Then Evelyn should choose any even number n making $2^{n} v \geqslant 1$, and write n in an empty box.
Case 2: There are no empty boxes, so $3 k$ numbers contributing to the evaluation. Then $V(\mathbf{a}) \equiv 0(\bmod 3)$, since $(-1 / 2)^{a} \equiv 1(\bmod 3)$. It is not possible that all numbers be zero, for otherwise the game would already have come to an end. Letting n be the largest entry of the current \mathbf{a}, it then follows that $V(\mathbf{a}) \leqslant-3 / 2^{n}$, since $V(\mathbf{a})$ is strictly negative and congruent to zero modulo 3 .

If n is odd, respectively even, then replacing n by $n-1$, respectively $n-2$, increases the valuation by $3 / 2^{n}$. Consequently, in either case, Evelyn can make a move to yield a valuation that does not exceed zero.

To prove Evelyn's strategy winning, notice that she can ensure that the game ends either with Odin unable to move, or with k zeroes and a valuation $V\left(\mathbf{a}_{\text {end }}\right) \leqslant 0$. In the latter case, notice that the contribution of each non-zero number to the valuation is at least $-1 / 2$, so

$$
V\left(\mathbf{a}_{\mathrm{end}}\right) \geqslant k+(\underbrace{-1 / 2-1 / 2-\cdots-1 / 2}_{2 k})=0,
$$

forcing the non-zero numbers to be all equal to 1. Consequently, Evelyn's strategy is indeed winning.

C4. A strategical video game consists of a map of finitely many towns. In each town there are k directions, labelled from 1 through k. One of the towns is designated as initial, and one - as terminal. Starting from the initial town the hero of the game makes a finite sequence of moves. At each move the hero selects a direction from the current town. This determines the next town he visits and a certain positive amount of points he receives

Two strategical video games are equivalent if for every sequence of directions the hero can reach the terminal town from the initial in one game, he can do so in the other game, and, in addition, he accumulates the same amount of points in both games.

For his birthday John receives two strategical video games - one with N towns and one with M towns. He claims they are equivalent. Marry is convinced they are not. Marry is right. Prove that she can provide a sequence of at most $N+M$ directions that shows the two games are indeed not equivalent.

Stefan Gerdjikov, Bulgaria

Solution 1. Without loss of generality we may assume that the set of directions is $D=\{1,2, \ldots, k\}$. Let us enumerate the towns in the first game from 1 through N and the towns in the second game from $N+1$ through $N+M$. Without loss of generality we may assume that the initial and terminal towns in the first game are 1 and N, whereas in the second game these are $-N+1$ and $N+M$, respectively

Next we consider a directed labelled graph $G=(V, \lambda)$ where $V=\{1,2, \ldots, N+M\}$ and $\lambda: V \times D \rightarrow V \times \mathbb{N}$ maps a current town u and direction d to $\lambda(v, d)=(u, p)$, where u is the next town and p is the amount of points awarded for this move. In particular if $v \leqslant N$ if and only if $u \leqslant N$. For each vertex $v \in V$, we denote with $L_{n}(v)=L_{n, G}(v)$ the set of all pairs (s, p), where s is a sequence of directions of length less than or equal to n that leads from v to a terminal town and p is total amount of points awarded for this sequence. $L(v)$ is the union of all sets $L_{n}(v)$ for $n \in \mathbb{N} \cup\{0\}$. With this notion we want to prove that:

$$
L(1)=L(N+1) \quad \text { if and only if } \quad L_{n}(1)=L_{n}(N+1) \quad \text { for all } n \leqslant N+M .
$$

To this end, we first slightly modify the games by awarding the hero points he deserves as soon as possible. Formally, let:

$$
c(v)=\min \left\{p:(s, p) \in L_{M+N}(v) \text { for some } s\right\} .
$$

Since the points are always positive, every cycle in G brings a positive amount of points. Therefore, $p^{\prime} \geqslant c(v)$ for every n and every pair $\left(s^{\prime}, p^{\prime}\right) \in L_{n}(v)$. In particular, if $\lambda(v, d)=$ (u, p) then since the hero can win $p+c(u)$ points starting from v, we obtain $p+c(u) \geqslant$ $c(v)$. Note that if $c(1) \neq c(N+1)$, then $L_{N+M}(1)=L_{N+M}(N)$ are vacuously distinct and we are done. Thus, we may assume that $c(1)=c(N+1)$.

Let $G^{\prime}=\left(V, \lambda^{\prime}\right)$ be defined by $\lambda^{\prime}(v, d)=(u, p+c(u)-c(v))$ whenever $\lambda(v, d)=(u, p)$. By the above argument every move in G^{\prime} is awarded with non-negative amount of points. Furthermore, an easy inductive argument shows that $(s, p) \in L_{n}(v)$ if and only if $(s, p-c(v)) \in L_{n}^{\prime}(v)$, where $L_{n}^{\prime}(v)=L_{n, G^{\prime}}(v)$. Hence $L_{n}(1)=L_{n}(N+1)$ if and only if $L_{n}^{\prime}(1)=L_{n}^{\prime}(N+1)$.

Assume that $L^{\prime}(u)=L^{\prime}(v)$ and consider an arbitrary direction d. If $\left(u^{\prime}, p^{\prime}\right)=\lambda(u, d)$ and $\left(v^{\prime}, q^{\prime}\right)=\lambda(v, d)$, we claim that $L^{\prime}\left(u^{\prime}\right)=L^{\prime}\left(v^{\prime}\right)$ and $p^{\prime}=q^{\prime}$. Indeed, let s be such a sequence of moves that $\left(s, c\left(u^{\prime}\right)\right) \in L\left(u^{\prime}\right)$. Hence $\left((d, s), p^{\prime}\right) \in L^{\prime}(u)$. Since $L^{\prime}(u)=L^{\prime}(v)$
and there are no negative points along the arcs, we get $q^{\prime} \leqslant p^{\prime}$. Similarly, $p^{\prime} \leqslant q^{\prime}$ and therefore $p^{\prime}=q^{\prime}$. Now, it is easy to see that if $(s, p) \in L^{\prime}\left(u^{\prime}\right)$ then $\left((d, s), p+p^{\prime}\right) \in$ $L^{\prime}(u)=L^{\prime}(v)$ and therefore $(s, p) \in S(v)$ where we used that $p^{\prime}=q^{\prime}$. To reverse inclusion proceed similarly.

Finally, consider the equivalence relations $\equiv^{(n)}$ recursively defined below:
$u \equiv \equiv^{(0)} v$ if and only if either $u, v \in\{N, M+N\}$ or $u, v \notin\{N, M+N\}$,
$u \equiv^{(n+1)} v$ if and only if $u \equiv^{(n)} v$, and $u^{\prime} \equiv^{(n)} v^{\prime}$ and $p^{\prime}=q^{\prime}$ for all $d \leqslant D$,
where $\left(u^{\prime}, p^{\prime}\right)=\lambda^{\prime}(u, d)$ and $\left(v^{\prime}, q^{\prime}\right)=\lambda^{\prime}(v, d)$. Since $\equiv^{(n+1)}$ is contained in $\equiv^{(n)}$, and each equivalence relation has no more than $N+M$ classes, it follows that $\equiv^{(n)}$ and $\equiv{ }^{(n+1)}$ coincide for some $n<N+M$. Therefore, for this particular n, an easy inductive argument shows that $\equiv^{(m)}$ and $\equiv^{(n)}$ are the same for all $m \geqslant n$. Hence if $u \equiv^{(n)} v$ an induction on the length of the sequence of moves reveals that $(s, p) \in L^{\prime}(u)$ if and only if $(s, p) \in L^{\prime}(v)$. Consequently, $L^{\prime}(u)=L^{\prime}(v)$.

This proves that if $L^{\prime}(1) \neq L^{\prime}(N+1)$, then $1 \not \equiv^{(n)} N+1$. Finally, we show that if $u \not \equiv^{(n)} v$, then $L_{n}(u) \neq L_{n}(v)$. This is obvious for $n=0$ and $n=1$. Assume that the statement holds for some n and all $u, v \in V$ and consider some $u \not \equiv^{(n+1)} v$. We need to prove that $L_{n+1}(u) \neq L_{n+1}(v)$. By the inductive hypothesis we may assume that $u \equiv^{(n)} v$. In particular, $u \equiv^{(1)} v$. Therefore, $\lambda^{\prime}(u, d)=\left(u^{\prime}, p\right)$ for all $d \leqslant k$, and $\lambda^{\prime}(v, d)=\left(v^{\prime}, q\right)$ implies that $p=q$. Therefore, the fact that $u \equiv{ }^{(n+1)} v$ is due to some $d \leqslant k$ such that $u^{\prime} \not \equiv^{(n)} v^{\prime}$. By the inductive hypothesis $L_{n}^{\prime}\left(u^{\prime}\right) \neq L_{n}^{\prime}\left(v^{\prime}\right)$. It should now be clear that $L_{n+1}^{\prime}(v) \neq L_{n+1}^{\prime}\left(v^{\prime}\right)$.

Remarks. In fact, this is a straightforward implication of the minimisation algorithm for (sub)sequential transducers. It consists of two steps, each of which contains an interesting idea:

1. Pushing forward the costs - in this case, awarding the hero the maximum amount of points that he has already guaranteed. This is also related to potentials in weighted graphs, often used to accelerate the Minimum Cost Paths Problem. However, in this case the issue is not only of algorithmic flavour, but is conceptual.
2. The bisimulation and Nerode-Myhill relation that stabilises in at most $O(|Q|)$ steps.

Solution 2. One can also approach the problem from algebraic perspective. Again, consider the towns in the first and the second game as natural numbers from 1 through N, and from $N+1$ through $N+M$, respectively; initial and terminal towns - 1 and N in the first game; $N+1$ and $N+M$ - in the second.

For every direction d let A_{d} be the $(N+M) \times(N+M)$ matrix whose entries $a_{d}(i, j)$ are defined by

$$
a_{d}(i, j)= \begin{cases}2^{p}, & \text { if starting from town } i \text { and following direction } d \\ \text { the hero gets to town } j \text { and is awarded } p \text { points }, \\ 0, & \text { otherwise. }\end{cases}
$$

With this notion, for any sequence of directions $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ the (i, j) entry of the product matrix $A_{d_{1}} A_{d_{2}} \cdots A_{d_{n}}$ is 2^{p} if the hero, following the sequence \mathbf{d} and starting from town i, arrives in town j and wins p points.

Let e_{i} be the standard unit vector in \mathbb{R}^{N+M} whose i-th entry is 1 and the other entries are all 0 . Write $s=e_{1}-e_{N+1}$ and $f=e_{N}+e_{N+M}$.

Since there are no connections between towns in the two games, we have to prove that $s^{T} A f=0$ for all $A=A_{d_{1}} \cdots A_{d_{n}}$ if and only if $s^{T} A f=0$ for all $A=A_{d_{1}} \cdots A_{d_{n}}$ with $n \leqslant N+M$.

To prove this, let $V_{0}=\{s\}$ and let $V_{n+1}=V_{n} \cup\left\{v^{T} A_{d}: v \in V_{n}\right.$ and $\left.d \leqslant k\right\}$. Clearly, each V_{n} spans a linear space of dimension at most $N+M$. Hence, dimspan $V_{n}=$ dim span V_{n+1} for some $n<N+M$, and so every vector from V_{n+1} is a linear combination of vectors from V_{n}. A simple inductive argument then shows that the vectors in V_{m} are linear combinations of vectors from V_{n} for all $m \geqslant n$. In particular, if the vectors in V_{n} are all orthogonal to f, then so are the vectors in V_{m} for any $m \in \mathbb{N}$.

Remark. Both solutions have been provided by the author.

Geometry

G1. Let $A B C$ be an isosceles triangle, $A B=A C$, let D be the midpoint of the side $A C$, and let γ be the vircumcircle of the triangle $A B D$. The tangent of γ at A crosses the line $B C$ at E. Let O be the circumcentre of the triangle $A B E$. Prove that the midpoint of the segment $A O$ lies on γ.

Sam Bealing, United Kingdom
Solution. Let Γ be the image of γ under the homothety of centre A and factor 2 . Clearly, Γ is also tangent yo $A E$ at A, and the conclusion is equivalent to Γ passing through O, which is the same as $A E$ being tangent to the circle $A C O$.

Alternatively, but equivalently, this amounts to $\angle O A E=\angle O C A$. Write $\angle O A E=$ $90^{\circ}-\angle E B A$ and $\angle O C A=\angle O C B-\angle A C B=\angle O C B-\angle C B A=\angle O C B-\angle E B A$, to infer that the equality of the two angles is equivalent to C being the midpoint of the segment $B E$.

To prove the latter, it is sufficient to show that the triangles $A B E$ and $D B C$ are similar, for then $B E / B C=A B / C D=A C / C D=2$ which implies that C is indeed the midpoint of the segment $B E$.

Finally, to prove the above similarity, write $\angle E B A=\angle C B A=\angle A C B=\angle D C B$ and $\angle B D C=\angle B A D+\angle D B A=\angle B A D+\angle D A E=\angle B A E$. This completes the proof.

G2. Let G, H be the centroid and orthocentre of $\triangle A B C$ which has an obtuse angle at $\angle B$. Let ω be the circle with diameter $A G . \omega$ intersects $\odot A B C$ again at $L \neq A$. The tangent to ω at L intersects $\odot A B C$ at $K \neq L$.

Given that $A G=G H$, prove $\angle H K G=90^{\circ}$.
Sam Bealing, United Kingdom
Solution. Let L^{\prime} be the midpoint of $A H$. Then we claim L^{\prime} lies on $\odot A B C$.

Indeed, let D be the foot of the A-altitude on $B C$. Then:

$$
A G=G H \Rightarrow \angle G L^{\prime} A=90^{\circ} \Rightarrow G L^{\prime} \| B C \Rightarrow D L^{\prime}=\frac{A L^{\prime}}{2}=\frac{H L^{\prime}}{2} \Rightarrow D L^{\prime}=H D
$$

where in the last step we have used that if M is the midpoint of $B C, A G: G M=2: 1$ and that $\angle B$ is obtuse so H, A lie on opposite sides of line $B C$. This means that L^{\prime} is the reflection of H in $B C$, which is well-known to lie on $\odot A B C$. Also $A G=G H \Rightarrow$ $\angle G L^{\prime} A=90^{\circ}$ so L^{\prime} lies on ω and hence in fact $L \equiv L^{\prime}$.

Let O be the midpoint of $A G$; then $O L \perp L K$. Homothety of factor 2 at A takes $O L \rightarrow H G$ so $H G \| O L$ and hence $L K \perp H G$. But the centre of $\odot A B C$ lies on $H G$ so this means K is the reflection of L across line $H G$ and hence as $\angle H L G=90^{\circ}$ it follows $\angle H K G=90^{\circ}$.

Remark. The midpoint of $A H$ lies on the circumcircle of $\odot A B C$ iff $\angle A=90^{\circ}$ or if:

$$
a^{4}+a^{2}\left(b^{2}+c^{2}\right)-2\left(b^{2}-c^{2}\right)^{2}=0
$$

The latter condition is exactly equivalent to $A G=G H$.

G3. Let $A B C$ be a triangle. On the sides $B C, C A, A B$ of the triangle, construct outwardly three squares with centres O_{a}, O_{b}, O_{c} respectively. Let ω be the circumcircle of $\triangle O_{a} O_{b} O_{c}$.

Given that A lies on ω, prove that the centre of ω lies on the perimeter of $\triangle A B C$.
Sam Bealing, United Kingdom
Solution. Let the vertices of the squares be $A C_{1} C_{2} B, B A_{1} A_{2} C, C B_{1} B_{2} A$.
Lemma: $B B_{2}=C C_{1}$ and $B B_{2} \perp C C_{1}$.
Proof: Notice that by rotating $\triangle A C_{1} C$ by 90° we get $\triangle A B B_{2}$ proving the lemma.
Claim: $A O_{a} \perp O_{b} O_{c}$
Proof: Let M be the midpoint of $A B$. By our lemma applied at vertex C we get $A A_{2}=B B_{1}$ and they are perpendicular. By homothety of factor 2 at A and then B we get:

$$
M O_{b}=\frac{1}{2} B B_{1}=\frac{1}{2} A A_{2}=M O_{a} \quad \text { and } \quad M O_{b}\left\|B B_{1}, M O_{a}\right\| A A_{2}
$$

Hence $M O_{a}, M O_{b}$ are also perpendicular so in fact $\triangle O_{b} M O_{a}$ is an isosceles right triangle. This is also trivially the case for $\triangle A M O_{c}$. Now applying our lemma to $\triangle A M O_{b}$ at vertex M we get $O_{b} O_{c}$ and $A O_{a}$ are perpendicular which is exactly what we wanted.

Similarly we get $B O_{b} \perp O_{a} O_{c}$ and $C O_{c} \perp O_{a} O_{b}$ so lines $A O_{a}, B O_{b}, C O_{c}$ concur at H, the orthocentre of $\triangle O_{a} O_{b} O_{c}$. As A lies on ω and on $O_{a} H$ it follows A is the reflection of H in line $O_{b} O_{c}$.

Claim: $H=B$ or $H=C$
Proof: Assume not. By the previous observations we get $O_{c} H=O_{c} A=O_{c} B$. Hence as $O_{c} O_{a} \perp B H$ and $B \neq H$ this means B is the reflection of H in $O_{c} O_{a}$ so B lies on ω.

Similarly, C lies on ω. But then we get:

$$
\angle A C B=180^{\circ}-\angle B O_{c} A=90^{\circ} \quad \text { and } \quad \angle C B A=180^{\circ}-\angle A O_{b} C=90^{\circ}
$$

so $\angle A C B+\angle C B A=180^{\circ}$ which is absurd so in fact one of B, C is equal to H.
WLOG $B=H$. As A, H, O_{a} and C, H, O_{c} are collinear this means in fact B lies on these lines. Hence:

$$
\angle A O_{c} C=\angle A O_{c} B=90^{\circ}
$$

Also $\angle A O_{b} C=90^{\circ}$ hence C also lies on ω and ω in fact has diameter $A C$ and so its circumcentre is the midpoint of $A C$ which lies on the perimeter of $\triangle A B C$.

G4. Let $M A Z N$ be an isosceles trapezium inscribed in a circle (c) with centre O. Assume that $M N$ is a diameter of (c) and let B be the midpoint of $A Z$. Let (ε) be the perpendicular line on $A Z$ passing through A. Let C be a point on (ε), let E be the point of intersection of $C B$ with (c) and assume that $A E$ is perpendicular to $C B$. Let D be the point of intersection of $C Z$ with (c) and let F be the antidiametric point of D on (c). Let P be the point of intersection of $F E$ and $C Z$. Assume that the tangents of (c) at the points M and Z meet the lines $A Z$ and $P A$ at the points K and T respectively. Prove that $O K$ is perpendicular to $T M$.

Theoklitos Parayiou, Cyprus

Solution. We will first prove that $P A$ is the tangent of (c) at A. Since $E D Z A$ is cyclic, then $\angle E D C=\angle E A Z$. By the similarity of the triangles $C A E$ and $A B E$ we have $\angle E A Z=\angle E A B=\angle A C B$, so $\angle E D C=\angle E A Z$. Since $\angle F E D=90^{\circ}$, then

$$
\angle E P D=90^{\circ}-\angle E D C=90^{\circ}-\angle A C B=\angle E A C
$$

So the points E, A, C, P are concyclic. It follows that $\angle C P A=90^{\circ}$, therefore the triangle $A P Z$ is right-angled. Since also B is the midpoint of $A Z$, then $P B=A B=B Z$.

We have

$$
\angle B P E=\angle A B C-\angle B P Z=\angle A B C-\angle P Z B
$$

and

$$
\angle P A E=\angle P C E=90^{\circ}-\angle A C B-\angle C Z A=\angle A B C-\angle C Z A=\angle A B C-\angle P Z B
$$

Therefore $\angle B P E=\angle P A E$.
Since also $\angle E P D=\angle E A C=\angle E B A$, then $P E B Z$ is a cyclic quadrilateral and we get $\angle B P E=\angle E Z B$. Therefore $\angle P A E=\angle E Z B$, i.e. $P A$ is the tangent of (c) at A.

Since $A Z$ is parallel to $M N$ then $T B \perp A Z$ and $T O \perp M N$.
The quadrilateral $K B O M$ is a rectangle. Consider the circumcircle of the rectangle and a tangent of this at K. Let X be a point on this tangent. So $X K \perp K O$. Since the triangle $O B A$ and $O T A$ are similar then $O A^{2}=O T \cdot O B$. Since $O A=O M$ and $K M=O B$ we get $O M^{2}=O T \cdot K M$ so $\frac{O T}{O M}=\frac{O M}{K M}$. Since also $\angle K M O=\angle T O M=90^{\circ}$, the triangles $T O M$ and $O M K$ are similar. Therefore

$$
\angle M T O=\angle K O M=\angle X K M
$$

Since $K M$ is parallel to $T O$ we have $\angle M T O=\angle K M T$. Therefore $\angle X K M=\angle K M T$. I.e. the tangent at point K is parallel to $M T$ and since $X K \perp K O$ we get $O K \perp T M$.

G5. Let $A B C$ be an isosceles triangle with $A B=A C$ and $\angle A=45^{\circ}$. Its circumcircle (c) has center O, M is the midpoint of $B C$ and D is the foot of the perpendicular from C to $A B$. With center C and radius $C D$ we draw a circle which internally intersects $A C$ at the point F and the circle (c) at the points Z and E, such that Z lies on the small arc $\overparen{B C}$ and E on the small arc $\overparen{A C}$. Prove that the lines $Z E, C O, F M$ are concurrent.

Brazitikos Silouanos, Greece

Solution. Since $Z E$ is the common chord of the two circles, the line of the centres $C O$ is its perpendicular bisector. This means that $C O$ passes through the midpoint of $Z E$, let it be T. Thus, it suffices to prove that $F M$ passes through T. To this end, we will prove that $F Z M E$ is a parallelogram: we will precisely show that the segments $F E$ and $Z M$ are parallel and equal.

Let K be the intersection point of $Z E$ and $A C$. Then K lies on the radical axis of the two circles, so it has equal powers to both circles. The power of the point K with respect to the one circle is $K A \cdot K C$, while the power to the other circle is $R^{2}-K C^{2}=C D^{2}-K C^{2}$.

From the theorem of Pythagoras in triangle $A D C$ we get $A C^{2}=2 C D^{2}$. We set $K A=x, K C=y$, and combining all the above yields $x y=\frac{(x+y)^{2}}{2}-y^{2}$, hence $2 x y=$ $x^{2}+y^{2}+2 x y-y^{2}$, i.e. $x=y$.

This means that K is the midpoint of $A C$. Moreover, we have $\angle A D C=\angle A M C=$ 90°, so the points A, D, M, C are on the same circle - let it be $\left(c_{1}\right)$ - and the center of this circle is K.

From the cyclic quadrilateral we have that $\angle D M B=45^{\circ}$, but we have also that $\angle O C B=45^{\circ}$, so the lines $O C, D M$ are parallel, hence $K Z \perp D M$ and, since $D M$ is a chord of the circle, $Z D=Z M$. (1)

The triangle $C D F$ is isosceles and $C O$ is bisector, so $C O \perp D F$, and this means that $Z E \| D F$. It follows that $D F E Z$ is an isosceles trapezium, so $D Z=F E$ (2), and from (1) and (2) we have that $Z M=F E\left(^{*}\right)$.

From the isosceles trapezium we also have that $\angle F E Z=\angle D Z E$ (3). Since $Z K$ is an altitude in the isosceles triangle $D Z M$, it will be also angle bisector, so $\angle D Z E=\angle M Z E$ (4).

From (3) and (4) we conclude that $\angle F E Z=\angle M Z E$, so $F E \| Z M\left({ }^{* *}\right)$. From (*) and $\left({ }^{* *}\right)$ we get that $F Z M E$ is a parallelogram, which is the desired result.

Number Theory

N1. Determine all positive integers n such that $\frac{a^{2}+n^{2}}{b^{2}-n^{2}}$ is a positive integer for some positive integers a and b.

Turkey
Solution. The required numbers are all even positive integers alone. Indeed, if n is even, then let $a=n^{2} / 2-1$ and $b=n^{2} / 2+1$, to check that $\left(a^{2}+n^{2}\right) /\left(b^{2}-n^{2}\right)=$ $\left(n^{4} / 4+1\right) /\left(n^{4} / 4+1\right)=1$.

Suppose now that such a and b exist for some positive odd integer n. Notice that we may and will assume $\operatorname{gcd}(n, a, b)=1$. Note also that $n^{2} \equiv 1(\bmod 4)$. If b is odd, then $b^{2}-n^{2}$ is divisible by 4 , and hence so is $a^{2}+n^{2}$. Since n is odd, $a^{2}+1$ is therefore divisible by 4 , which is impossible. Thus, b must be even. Then $b^{2}-n^{2} \equiv 3(\bmod 4)$, so $b^{2}-n^{2}$ has a prime factor $p \equiv 3(\bmod 4)$. Then $a^{2}+n^{2}$ is divisible by p, and it follows that so are both a and n, since $p \equiv 3(\bmod 4)$. On the other hand, since n and $b^{2}-n^{2}$ are both divisible by p, so is b. Consequently, a, b and n are all divisible by p, contradicting the assumption $\operatorname{gcd}(n, a, b)=1$.

N2. A number of N children are at a party, and they sit in a circle to play a game of Pass the Parcel. Because the host has no other form of entertainment, the parcel has infinitely many layers. On turn i, starting with $i=1$, the following two things happen in order:
(1) The parcel is passed i^{2} positions clockwise; and
(2) The child currently holding the parcel unwraps a layer and claims the prize inside. For what values of N will every child receive a prize?

Patrick Winter, United Kingdom
Solution. Every child receives a prize if and only if $N=2^{a} 3^{b}$ for some non-negative integers a and b. For convenience, say N is good if every child receives a prize.

Number the children $0, \ldots, N-1$ clockwise around the circle, child number 0 starting with the parcel. After n turns, the parcel will have been passed $1^{2}+2^{2}+\cdots+n^{2}=n(n+$ $1)(2 n+1) / 6$ places around the circle. For convenience, write $s_{n}=n(n+1)(2 n+1) / 6$. Thus, child m receives the parcel, and hence a prize, if and only if $m \equiv s_{n}(\bmod N)$ for some n, so N is good if and only if s_{n} assumes every possible value modulo N.

To rule out the case where N is divisible by a prime $p>3$, it is sufficient to show that s_{n} misses some value modulo p. The latter follows from the fact that 6 has a multiplicative inverse modulo p, and $s_{n} \equiv 0(\bmod p)$ if $n \equiv 0$ or $-1(\bmod p)$, so s_{n} assumes at most $p-1$ values modulo p. Consequently, such an N is certainly not good.

We now show that each N of the form $2^{a} 3^{b}$ is good. We do this by showing that, if N is good, then so are both $2 N$ and $3 N$; since 1 is clearly good, this is sufficient to prove goodness of $2^{a} 3^{b}$ inductively on $a+b$.

To show that, if N is good, then so is $2 N$, refer to goodness of the former to infer that, for each m modulo $2 N$, there exists an n such that $s_{n} \equiv m$ or $m+N(\bmod 2 N)$. Clearly, only the case $s_{n} \equiv m+N(\bmod 2 N)$ is to be dealt with. In this case,

$$
s_{n+6 N}=s_{n}+\left(6 n^{2}+6 n+1\right) N+18(2 n+1) N^{2}+72 N^{3} \equiv s_{n}+N \equiv m(\bmod 2 N) .
$$

Consequently, $2 N$ is indeed good.
To show that, if N is good, then so is $3 N$, refer again to goodness of the former to infer that, for each m modulo $3 N$, there exists an n such that $s_{n} \equiv m$ or $m+N$ or $m+2 N$ $(\bmod 3 N)$. Clearly, only the last two cases are to be dealt with. In the former case,
$s_{n+12 N}=s_{n}+2\left(6 n^{2}+6 n+1\right) N+72(2 n+1) N^{2}+2^{6} 3^{2} N^{3} \equiv s_{n}+2 N \equiv m(\bmod 3 N)$,
and in the latter,

$$
s_{n+6 N}=s_{n}+\left(6 n^{2}+6 n+1\right) N+18(2 n+1) N^{2}+72 N^{3} \equiv s_{n}+N \equiv m(\bmod 3 N) .
$$

Consequently, $3 N$ is indeed good.

N3. Given an integer $k \geqslant 2$, determine all functions f from the positive integers into themselves such that $f\left(x_{1}\right)!+f\left(x_{2}\right)!+\cdots+f\left(x_{k}\right)!$ is divisible by $x_{1}!+x_{2}!+\cdots+x_{k}$! for all positive integers $x_{1}, x_{2}, \ldots, x_{k}$.

Albania
Solution. The identity is the only function satisfying the condition in the statement. Begin by letting the x 's be all equal to n to infer that $f(n)$! is divisible by n !, so $f(n) \geqslant n$ for all positive integers n.

Claim. $f(p-1)=p-1$ for all but finitely many primes p.
Assume the Claim for the moment to proceed as follows: Fix any positive integer n, and let p be a large enough prime, e. g., $p>f(n)!-n!$. Then let one of the x 's be equal to 1 and the remaining $k-1$ be all equal to $p-1$, and use the Claim to infer that the number

$$
(f(n)!-n!)+(n!+(k-1)(p-1)!)=f(n)!+(k-1) f(p-1)!
$$

is divisible by $n!+(k-1)(p-1)$!, and hence so is $f(n)!-n!$. Since p is large enough, this forces $f(n)!=n!$, and since $f(n) \geqslant n$, it follows that $f(n)=n$, as desired.
Proof of the Claim. If k is even, let $p>f(1)$!, and let half of the x 's be all equal to 1 and the other half be all equal to $p-1$, to infer that $f(p-1)$! $+f(1)$! is divisible by $(p-1)!+1$. By Wilson's theorem, the latter is divisible by p, and hence so is the former. Since $p>f(1)$!, the number $f(1)$! is not divisible by p, so $f(p-1)$! is not divisible by p either, forcing $f(p-1) \leqslant p-1$. Recall now that $f(p-1) \geqslant p-1$, to conclude that $f(p-1)=p-1$.

If k is odd, let $p>f(2)!+\frac{1}{2}(k-3) f(1)$!, let $\frac{1}{2}(k+1)$ of the x 's be all equal to $p-1$, let one of the x 's be equal to 2 , and let the remaining ones (if any) be all equal to 1 , to infer that $\frac{1}{2}(k+1) f(p-1)!+f(2)!+\frac{1}{2}(k-3) f(1)!$ is divisible by $\frac{1}{2}(k+1)(p-1)!+2+\frac{1}{2}(k-3)=$ $\frac{1}{2}(k+1)((p-1)!+1)$. By Wilson's theorem, the latter is divisible by p, and hence so is the former. Since $p>f(2)!+\frac{1}{2}(k-3) f(1)$!, the number $f(2)!+\frac{1}{2}(k-3) f(1)!$ is not divisible by p, so $\frac{1}{2}(k+1) f(p-1)$! is not divisible by p either, forcing $f(p-1) \leqslant p-1$. Recall again that $f(p-1) \geqslant p-1$, to conclude that $f(p-1)=p-1$.

N4. Let $a_{1}=2$ and, for every positive integer n, let a_{n+1} be the smallest integer strictly greater than a_{n} that has more positive divisors than a_{n} has. Prove that $2 a_{n+1}=3 a_{n}$ only for finitely many indices n.

Macedonia
Solution. Begin with a mere remark on the terms of the sequence under consideration.
Lemma 1. Each a_{n} is minimal amongst all positive integers having the same number of positive divisors as a_{n}.
Proof. Suppose, if possible, that for some n, some positive integer $b<a_{n}$ has as many positive divisors as a_{n}. Then $a_{m}<b \leqslant a_{m+1}$ for some $m<n$, and the definition of the sequence forces $b=a_{m+1}$. Since $b<a_{n}$, it follows that $m+1<n$, which is a contradiction, as a_{m+1} should have less positive divisors than a_{n}.

Let $p_{1}<p_{2}<\cdots<p_{n}<\cdots$ be the strictly increasing sequence of prime numbers, and write canonical factorisations into primes in the form $N=\prod_{i \geqslant 1} p_{i}^{e_{i}}$, where $e_{i} \geqslant 0$ for all i, and $e_{i}=0$ for all but finitely many indices i; in this notation, the number of positive divisors of N is $\tau(N)=\prod_{i \geqslant 1}\left(e_{i}+1\right)$.
Lemma 2. The exponents in the canonical factorisation of each a_{n} into primes form a non-strictly decreasing sequence.
Proof. Indeed, if $e_{i}<e_{j}$ for some $i<j$ in the canonical decomposition of a_{n} into primes, then swapping the two exponents yields a smaller integer with the same number of positive divisors, contradicting Lemma 1.

We are now in a position to prove the required result. For convenience, a term a_{n} satisfying $3 a_{n}=2 a_{n+1}$ will be referred to as a special term of the sequence.

Suppose now, if possible, that the sequence has infinitely many special terms, so the latter form a strictly increasing, and hence unbounded, subsequence. To reach a contradiction, it is sufficient to show that:
(1) The exponents of the primes in the factorisation of special terms have a common upper bound e; and
(2) For all large enough primes p, no special term is divisible by p.

Refer to Lemma 2 to write $a_{n}=\prod_{i \geqslant 1} p_{i}^{e_{i}(n)}$, where $e_{i}(n) \geqslant e_{i+1}(n)$ for all i.
Statement (2) is a straightforward consequence of (1) and Lemma 1. Suppose, if possible, that some special term a_{n} is divisible by a prime $p_{i}>2^{e+1}$, where e is the integer provided by (1). Then $e \geqslant e_{i}(n)>0$, so $2^{e_{1}(n) e_{i}(n)+e_{i}(n)} a_{n} / p_{i}^{e_{i}(n)}$ is a positive integer with the same number of positive divisors as a_{n}, but smaller than a_{n}. This contradicts Lemma 1. Consequently, no special term is divisible by a prime exceeding 2^{e+1}.

To prove (1), it is sufficient to show that, as a_{n} runs through the special terms, the exponents $e_{1}(n)$ are bounded from above. Then, Lemma 2 shows that such an upper bound e suits all primes.

Consider a large enough special a_{n}. The condition $\tau\left(a_{n}\right)<\tau\left(a_{n+1}\right)$ is then equivalent to $\left(e_{1}(n)+1\right)\left(e_{2}(n)+1\right)<e_{1}(n)\left(e_{2}(n)+2\right)$. Alternatively, but equivalently, $e_{1}(n) \geqslant$ $e_{2}(n)+2$. The latter implies that a_{n} is divisible by 8 , for either $e_{1}(n) \geqslant 3$ or a_{n} is a large enough power of 2 .

Next, note that $9 a_{n} / 8$ is an integer strictly between a_{n} and a_{n+1}, so $\tau\left(9 a_{n} / 8\right) \leqslant$ $\tau\left(a_{n}\right)$, which is equivalent to

$$
\left(e_{1}(n)-2\right)\left(e_{2}(n)+3\right) \leqslant\left(e_{1}(n)+1\right)\left(e_{2}(n)+1\right),
$$

so $2 e_{1}(n) \leqslant 3 e_{2}(n)+7$. This shows that a_{n} is divisible by 3 , for otherwise, letting a_{n} run through the special terms, 3 would be an upper bound for all but finitely many $e_{1}(n)$, and the special terms would therefore form a bounded sequence.

Thus, $4 a_{n} / 3$ is another integer strictly between a_{n} and a_{n+1}. As before, $\tau\left(4 a_{n} / 3\right) \leqslant$ $\tau\left(a_{n}\right)$. Alternatively, but equivalently,

$$
\left(e_{1}(n)+3\right) e_{2}(n) \leqslant\left(e_{1}(n)+1\right)\left(e_{2}(n)+1\right),
$$

so $2 e_{2}(n)-1 \leqslant e_{1}(n)$. Combine this with the inequality in the previous paragraph to write $4 e_{2}(n)-2 \leqslant 2 e_{1}(n) \leqslant 3 e_{2}(n)+7$ and infer that $e_{2}(n) \leqslant 9$. Consequently, $2 e_{1}(n) \leqslant 3 e_{2}(n)+7 \leqslant 34$, showing that $e=17$ is suitable for (1) to hold. This establishes (1) and completes the solution.

N5. Consider an integer $n \geqslant 2$ and an odd prime p. Let U be the set of all positive integers (strictly) less than p^{n} that are not divisible by p, and let N be the number of elements of U. Does there exist a permutation $a_{1}, a_{2}, \ldots, a_{N}$ of the numbers in U such that the sum $\sum_{k=1}^{N} a_{k} a_{k+1}$, where $a_{N+1}=a_{1}$, be divisible by p^{n-1}, but not by p^{n} ?

Alexander Ivanov, Bulgaria

Solution. The answer is in the affirmative. Letting \equiv denote congruence modulo p^{n} throughout the argument, we will show that there exists a permutation $a_{1}, a_{2}, \ldots, a_{N}$ of the numbers in U such that $\sum_{k=1}^{N} a_{k} a_{k+1} \equiv p^{n-1}$.

Let $m=p^{n-1}-1$, so $N=p^{n-1}(p-1)=(m+1)(p-1)$, and write $U=\left\{u_{1}, u_{2}, \ldots, u_{N}\right\}$, where $u_{k}=k+\lfloor k /(p-1)\rfloor^{*}, k=1,2, \ldots, N$, and $\lfloor t\rfloor^{*}$ denotes the largest integer (strictly) less than the real number t.

That the u_{k} are pairwise distinct and they all lie in U follows from the fact that every k in the range $1,2, \ldots, N$ is uniquely expressible in the form $k=(p-1) j+i$ for some j in the range $0,1, \ldots, m$ and some i in the range $1,2, \ldots, p-1$. Thus, $u_{k}=u_{(p-1) j+i}=p j+i$, so the u_{k} are indeed pairwise distinct and they all lie in U.

For k in the range $1,2, \ldots, N-1$, notice that $u_{k+1}-u_{k}=1$, unless k is divisible by $p-1$, in which case $u_{k+1}-u_{k}=2$. Setting $u_{N+1}=u_{1}$, it is readily checked that $u_{N+1}-u_{N}=2-p^{n} \equiv 2$, so $u_{k+1}-u_{k} \equiv 2$ for all k divisible by $p-1$.

Letting now a_{k} be the multiplicative inverse of u_{k} modulo p^{n}, i. e., a_{k} is the unique member of U satisfying $a_{k} u_{k} \equiv 1$, we show that the a_{k} form the desired permutation of U.

To begin with, notice that $a_{k} a_{k+1} \equiv a_{k}-a_{k+1}$, unless k is divisible by $p-1$, in which case $a_{k} a_{k+1} \equiv \frac{1}{2}\left(a_{k}-a_{k+1}\right)$. This is easily established by multiplying both sides of each congruence by $u_{k} u_{k+1}$, and noticing that $\left(a_{k}-a_{k+1}\right) u_{k} u_{k+1} \equiv u_{k+1}-u_{k} \equiv 1$ or 2 .

We are now in a position to evaluate the sum $S=\sum_{k=1}^{N} a_{k} a_{k+1}$ modulo p^{n}. Write

$$
S=\sum_{k=1}^{N} a_{k} a_{k+1}=\sum_{j=0}^{m} \sum_{i=1}^{p-1} a_{(p-1) j+i} a_{(p-1) j+i+1}
$$

and consider the inner sum for a fixed j in the range $0,1, \ldots, m$:

$$
\begin{aligned}
\sum_{i=1}^{p-1} a_{(p-1) j+i} a_{(p-1) j+i+1} & =\sum_{i=1}^{p-2} a_{(p-1) j+i} a_{(p-1) j+i+1}+a_{(p-1) j(j+1)} a_{(p-1)(j+1)+1} \\
& \equiv \sum_{i=1}^{p-2}\left(a_{(p-1) j+i}-a_{(p-1) j+i+1}\right)+\frac{1}{2}\left(a_{(p-1) j(j+1)}-a_{(p-1)(j+1)+1}\right) \\
& \equiv a_{(p-1) j+1}-a_{(p-1)(j+1)}+\frac{1}{2}\left(a_{(p-1) j(j+1)}-a_{(p-1)(j+1)+1}\right) \\
& \equiv a_{(p-1) j+1}-\frac{1}{2} a_{(p-1) j(j+1)}-\frac{1}{2} a_{(p-1)(j+1)+1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
S & \equiv \sum_{j=0}^{m} a_{(p-1) j+1}-\frac{1}{2} \sum_{j=0}^{m} a_{(p-1)(j+1)}-\frac{1}{2} \sum_{j=0}^{m} a_{(p-1)(j+1)+1} \\
& \equiv\left(a_{1}+\sum_{j=1}^{m} a_{(p-1) j+1}\right)-\frac{1}{2} \sum_{j=1}^{m+1} a_{(p-1) j}-\frac{1}{2}\left(\sum_{j=1}^{m} a_{(p-1) j+1}+a_{N+1}\right) \\
& \equiv \frac{1}{2} \sum_{j=1}^{m+1} a_{(p-1) j+1}-\frac{1}{2} \sum_{j=1}^{m+1} a_{(p-1) j} .
\end{aligned}
$$

Since $u_{(p-1) j+1}=p j+1$, the $a_{(p-1) j+1}$ form a permutation of the $p j+1$, therefore $\sum_{j=1}^{m+1} a_{(p-1) j+1} \equiv \sum_{j=1}^{m+1}(p j+1)$. Similarly, $u_{(p-1) j}=p j-1$, so the $a_{(p-1) j+1}$ form a permutation of the $p j-1$, and hence $\sum_{j=1}^{m+1} a_{(p-1) j} \equiv \sum_{j=1}^{m+1}(p j-1)$. Consequently,

$$
S \equiv \frac{1}{2} \sum_{j=1}^{m+1}((p j+1)-(p j-1)) \equiv m+1 \equiv p^{n-1}
$$

as stated in the first paragraph. This completes the solution.
Remark. Multiplication modulo p^{n} makes U into the group of units of the ring $\mathbb{Z}_{p^{n}}$. Since p is odd, U is cyclic. Let g be a generator, i. e., a primitive root modulo p^{n}. In this setting, the sum in question is $S_{g, \alpha} \equiv \sum_{k=1}^{N} g^{\alpha_{k}+\alpha_{k+1}}$, where α is a permutation of 1,2 , \ldots, N. The solution shows that $S_{g, \alpha} \equiv p^{n-1}$ for the permutation given by $a_{k}=g^{\alpha_{k}}$; for instance, if $n=2, p=5$ and $g=2$, this permutation has disjoint cycle decomposition

$$
(12010 \text { 11) (2 } 19941831316 \text {) (5 } 121471786 \text { 15). }
$$

Evaluating $S_{g, \alpha}$ is not an easy task, unless α exhibits particular features. Consider the identity permutation, in which case $S_{g, \text { id }} \equiv 2 g^{3} \sum_{k=0}^{N / 2-1} g^{2 k}$, so $\left(g^{2}-1\right) S_{g, \text { id }} \equiv$ $2 g^{3}\left(g^{N}-1\right) \equiv 0$. If $p>3$ and g is a primitive root modulo p, then $S_{g, \text { id }} \equiv 0$, so such a g is not a candidate. In particular, this rules out the standard choice for g modulo p^{n} as a primitive root modulo p such that $g^{p-1}-1$ is not divisible by p^{2}. A good candidate for g ($p=3$, inclusive) would be a primitive root modulo p^{2} such that $g^{2}-1$ is divisible by p. In this case, $g^{2}-1$ is divisible by p but not by p^{2}, and $g^{N}-1$ is divisible by p^{n} but not by p^{n+1}, so $S_{g, \text { id }}$ satisfies the required condition. This is the case if $p=3$: The primitive roots modulo 3^{2} are 2 and 5 , and the identity permutation works for both modulo 3^{2}. Unfortunately, no such g exists if $p=5$: The primitive roots g modulo 5^{2} are $\pm 2, \pm 3$ and ± 8, no $g^{2}-1$ is divisible by 5 , so $S_{g \text {,id }}$ is divisible by 5^{2}, showing the identity inadequate modulo 5^{2}.

