
Algebra

A1. Denote Z>0 = {1, 2, 3, . . .} the set of all positive integers. Determine all functions
f : Z>0 → Z>0 such that, for each positive integer n,

i)
n∑
k=1

f(k) is a perfect square, and

ii) f(n) divides n3.
Albania

Solution. Induct on n to show that f(n) = n3 for all positive integers n. It is readily
checked that this f satisfies the conditions in the statement. The base case, n = 1, is
clear.

Let n > 2 and assume that f(m) = m3 for all positive integers m < n. Then∑n−1
k=1 f(k) = n2(n−1)2

4 , and reference to the first condition in the statement yields

f(n) =

n∑
k=1

f(k)−
n−1∑
k=1

f(k) =

(
n(n− 1)

2
+ k

)2

− n2(n− 1)2

4
= k(n2 − n+ k),

for some positive integer k.
The divisibility condition in the statement implies k(n2 − n + k) 6 n3, which is

equivalent to (n− k)(n2 + k) > 0, showing that k 6 n.
On the other hand, n2 − n+ k must also divide n3. But, if k < n, then

n <
n3

n2 − 1
6

n3

n2 − n+ k
6

n3

n2 − n+ 1
<

n3 + 1

n2 − n+ 1
= n+ 1,

therefore n3

n2−n+k cannot be an integer.

Consequently, k = n, so f(n) = n3. This completes induction and concludes the
proof.



A2. If a, b, c are positive real numbers such that 1
a + 1

b + 1
c = 3, prove that

a+ b+ c− 1√
2

>

√
a+ b

c +
√
b+ c

a +
√
c+ a

b

3

When does equality hold?
Albania

Solution. The inequality is equivalent to

12(a+ b+ c− 1) >
∑
cyc

4

√
2

(
a+

b

c

)
.

From AM-GM inequality we have

∑
cyc

2

√
2

(
a+

b

c

)
6
∑
cyc

(
2 + a+

b

c

)
= 6 + a+ b+ c+

a

b
+
b

c
+
c

a
.

Again from AM-GM inequality we have

2a

b
+

2b

c
+

2c

a
> 3

3

√
2a

b
· 2b

c
· 2c

a
= 3

3
√

8 = 6.

Hence, ∑
cyc

2

√
2

(
a+

b

c

)
6 a+ b+ c+

3a

b
+

3b

c
+

3c

a
. (1)

Again, from AM-GM inequality we have

∑
cyc

2

√
2

(
a+

b

c

)
=
∑
cyc

2

√
2a

c

(
c+

b

a

)
6
∑
cyc

(
2a

c
+ c+

b

a

)
= a+ b+ c+

3a

c
+

3b

a
+

3c

b
.

(2)

Adding (1) and (2) we get,

∑
cyc

4

√
2

(
a+

b

c

)
6 2(a+ b+ c) + 3

(
a+ b

c
+
b+ c

a
+
c+ a

b

)
.

Now, using the asumption we have

a+ b

c
+
b+ c

a
+
c+ a

b
= (a+ b+ c)

(
1

a
+

1

b
+

1

c

)
− 3 = 3(a+ b+ c− 1).

Hence, ∑
cyc

4

√
2

(
a+

b

c

)
6 11(a+ b+ c)− 9.

So, it is enough to prove

11(a+ b+ c)− 9 6 12(a+ b+ c− 1) ⇐⇒ a+ b+ c > 3.
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Last inequality is true since using AM −HM and condition we have,

a+ b+ c

3
>

3
1
a + 1

b + 1
c

= 1⇒ a+ b+ c > 3.

It is known that equality in AM −HM is achieved only when a = b = c and, since
1
a + 1

b + 1
c = 3, a = b = c = 1. Clearly, for a = b = c = 1 equality holds.
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A3. Let P (x), Q(x) be distinct polynomials of degree 2020 with non-zero coefficients.
Suppose that they have r common real roots counting multiplicity and s common coef-
ficients. Determine the maximum possible value of r + s.

Demetres Christofides, Cyprus

Solution. We claim that the maximum possible value is 3029.
The polynomials

P (x) = (x2 − 1)1009(x2 + 1) and Q(x) = (x2 − 1)1009(x2 + x+ 1)

satisfy the conditions, have 2018 common roots, and have 1011 common coefficients (all
coefficients of even powers). So r + s > 3029.

Suppose now that P (x), Q(x) agree on the coefficients of x2020, x2019, . . . , x2021−k,
disagree on the coefficient of x2020−k, and agree on another s − k coefficients. The
common roots of P (x), Q(x) are also non-zero roots of the polynomial P (x) − Q(x)
which has degree x2020−k. (The condition on the non-zero coefficients guarantees that
0 is not a root of P and Q.) So P (x) − Q(x) has at most 2020 − k real roots. On
the other hand, P (x) − Q(x) has exactly s − k coefficients equal to zero. So by the
following Lemma it has at most 2[(2020− k)− (s− k)] = 4040− 2s real non-zero roots.

Averaging we get r 6

⌊
6060− 2s− k

2

⌋
6 3030 − s. Thus r + s 6 3030. Furthermore,

if equality occurs, we must have k = 0 and r = 2020 − k = 4040 − 2s. In other words,
we must have r = 2020 and s = 1010. But if r = 2020, then Q(x) is a multiple of P (x)
and since P (x), Q(x) have non-zero coefficients, then s = 0, a contradiction. Therefore
r + s 6 3029 as required.

Lemma. Let f be a polynomial of degree n having exactly t coefficients equal to 0.
Then f has at most 2(n− t) real non-zero roots.

Proof of Lemma. Since f has n+ 1− t non-zero coefficients, by Descartes’ rule of
signs it has at most n − t sign changes and therefore at most n − t positive real roots.
Similarly it has at most n− t negative real roots.

Note. Counting the roots with multiplicity is not essential. We can demand ‘r
common distinct real roots’ by changing the (x2 − 1)1009 in the example to

(x2 − 1)(x2 − 2) · · · (x2 − 1009).
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A4. Let P (x) = x3 + ax2 + bx + 1 be a polynomial with real coefficients and three
real roots ρ1, ρ2, ρ3 such that |ρ1| < |ρ2| < |ρ3|. Let A be the point where the graph
of P (x) intersects yy′ and the points B(ρ1, 0), C(ρ2, 0), D(ρ3, 0). If the circumcircle of
4ABD intersects yy′ for a second time at E, find the minimum value of the length of
the segment EC and the polynomials for which this is attained.

Brazitikos Silouanos, Greece

Solution. Let O be the origin. Since P (0) = 1, A is the point (0, 1), so OA=1.
From Vieta’s relations we have ρ1ρ2ρ3 = −1, so |ρ1ρ2ρ3| = 1. (1)

A

B C DO

E

From the power of the point O we have

OB ·OD = OA ·OE ⇒ |ρ1| · |ρ3| = 1 ·OE,

hence OE = 1
|ρ2| .

Finally, from Pythagoras’ theorem we have

CE2 = OE2 +OC2 = |ρ2|2 +
1

|ρ2|2
> 2,

hence CE >
√

2.
The equality holds for |ρ2| = 1 ⇐⇒ ρ2 = ±1. In the first case we have the family

P (x) = (x− 1)(x+ a)

(
x− 1

a

)
,

while in the second case we have

P (x) = (x+ 1)(x− a)

(
x− 1

a

)
.
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Combinatorics

C1. Let s > 2 and n > k > 2 be integes, and let A be a subset of {1, 2, . . . , n}k of size
at least 2sk2nk−2 such that any two members of A share some entry. Prove that there
are an integer p 6 k and s + 2 members A1, A2, . . . , As+2 of A such that Ai and Aj
share the p-th entry alone, whenever i 6= j.

Miroslav Mironov, Bulgaria

Solution. Fix a member A of A. Note that there are at most
(
k
2

)
nk−2 k-tuples that

share at least two entries with A. Indeed, there are nk−2 k-tuples sharing any two given
entries. The bound now follows, since the two entries can be chosen in

(
k
2

)
different

ways.
Therefore, the number of members of A that share a single entry with A is at least

|A| −
(
k

2

)
nk−2 > 2sk2nk−2 − k2nk−2 > sk2nk−2.

Letting Bp be the set of all members of A that share the p-th entry alone with A,

the above estimate yields
∑k

p=1 |Bp| > sk2nk−2, and hence |Bp| > sknk−2 for some p.

Let B be an arbitrary member of this Bp. Then there are at most (k − 1)nk−2 k-
tuples that share the p-th entry and some other entry with B. Now, let t be maximal
with the property that there are B1, B2, . . . , Bt in Bp such that any two Bi and Bj
share the p-th entry alone for i 6= j. Hence any other member B′ of Bp shares with some
Bi at least one entry different from the p-th. Consequently, |Bp| 6 t(k − 1)nk−2.

Finally, compare the two bounds for |Bp| to get t > s, and conclude that A, B1, . . . ,
Bt are t+ 1 > s+ 2 members of A every two of which share the p-th entry alone.

Remark. The argument in the solution shows that the conclusion holds under the less
restrictive condition |A| > (s+ 1/2)k(k − 1)nk−2.
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C2. Let k be a positive integer. Determine the least integer n > k + 1 for which the
game below can be played indefinitely:

Consider n boxes, labelled b1, b2, . . . , bn. For each index i, box bi con-
tains initially exactly i coins. At each step, the following three substeps are
performed in order:

(1) Choose k + 1 boxes;

(2) Of these k+ 1 boxes, choose k and remove at least half of the coins from
each, and add to the remaining box, if labelled bi, a number of i coins.

(3) If one of the boxes is left empty, the game ends; otherwise, go to the
next step.

Demetres Christofides, Cyprus

Solution. The required minimum is n = 2k + k − 1.
In this case the game can be played indefinitely by choosing the last k + 1 boxes,

b2k−1, b2k , . . . , b2k+k−1, at each step: At step r, if box b2k+i−1 has exactly mi coins,
then dmi/2e coins are removed from that box, unless i ≡ r − 1 (mod k + 1), in which
case 2k + i − 1 coins are added. Thus, after step r has been performed, box b2k+i−1
contains exactly bmi/2c coins, unless i ≡ r − 1 (mod k + 1), in which case it contains
exactly mi + 2k + i − 1 coins. This game goes on indefinitely, since each time a box is
supplied, at least 2k − 1 coins are added, so it will then contain at least 2k coins, good
enough to survive the k steps to its next supply.

We now show that no smaller value of n works. So, let n 6 2k+k−2 and suppose, if
possible, that a game can be played indefinitely. Notice that a box currently containing
exactly m coins survives at most w = blog2mc withdrawals; this w will be referred to as
the weight of that box. The sum of the weigths of all boxes will referred to as the total
weight. The argument hinges on the lemma below, proved at the end of the solution.

Lemma. Performing a step does not increase the total weight. Moreover, supplying one
of the first 2k − 2 boxes strictly decreases the total weight.

Since the total weight cannot strictly decrease indefinitely, n > 2k−2, and from some
stage on none of the first 2k − 2 boxes is ever supplied. Recall that each step involves
a (k + 1)-box choice. Since n 6 2k + k − 2, from that stage on, each step involves a
withdrawal from at least one of the first 2k − 2 boxes. This cannot go on indefinitely,
so the game must eventually come to an end, contradicting the assumption.

Consequently, a game that can be played indefinitely requires n > 2k + k − 1.

Proof of the Lemma. Since a withdrawal from a box decreases its weight by at least
1, it is sufficient to show that supplying a box increases its weight by at most k; and if
the latter is amongst the first 2k − 2 boxes, then its weight increases by at most k − 1.
Let the box to be supplied be bi and let it currently contain exactly mi coins, to proceed
by case analysis:

If mi = 1, the weight increases by blog2(i+ 1)c 6 blog2(2
k + k − 1)c 6 blog2(2

k+1 −
2)c 6 k; and if, in addition, i 6 2k − 2, then the weight increases by blog2(i + 1)c 6
blog2(2

k − 1)c = k − 1.

If mi = 2, then the weight increases by blog2(i+2)c−blog2 2c 6 blog2(2
k+k)c−1 6

k − 1.
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If mi > 3, then the weight increases by

blog2(i+mi)c − blog2mic 6 blog2(i+mi)− log2mic+ 1

6

⌊
log2

(
1 +

2k + k − 2

3

)⌋
+ 1 6 k,

since 1 + 1
3(2k + k − 2) = 1

3(2k + k + 1) < 1
3(2k + 2k+1) = 2k.

Finally, let i 6 2k − 2 to consider the subcases mi = 3 and mi > 4. In the former
subcase, the weight increases by

blog2(i+ 3)c − blog2 3c 6 blog2(2
k + 1)c − 1 = k − 1,

and in the latter by

blog2(i+mi)c − blog2mic 6 blog2(i+mi)− log2mic+ 1

6

⌊
log2

(
1 +

2k − 2

4

)⌋
+ 1 6 k − 1,

since 1 + 1
4(2k − 2) = 1

4(2k + 2) < 2k−2 + 1. This ends the proof and completes the
solution.
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C3. Odin and Evelyn are playing a game, Odin going first. There are initially 3k
empty boxes, for some given positive integer k. On each player’s turn, they can write a
non-negative integer in an empty box, or erase a number in a box and replace it with a
strictly smaller non-negative integer. However, Odin is only ever allowed to write odd
numbers, and Evelyn is only allowed to write even numbers. The game ends when either
one of the players cannot move, in which case the other player wins; or there are exactly
k boxes with the number 0, in which case Evelyn wins if all other boxes contain the
number 1, and Odin wins otherwise. Who has a winning strategy?

Agnijo Banerjee, United Kingdom

Solution. Evelyn has a winning strategy. Begin by noticing that any legal move by
Odin involves writing an odd number n, so Evelyn is allowed to replace it with the even
number n− 1. In particular, the game cannot end because Evelyn is unable to move.

Evelyn’s strategy is described in terms of the following valuation: Collect the num-
bers in all non-empty boxes to form a = (a1, . . . , a`), where ` 6 3k, and define the
valuation of a by

V (a) =
∑`

i=1(−1/2)ai .

Notice that when Odin makes a move, the valuation strictly decreases; and when
Evelyn makes a move, the valuation strictly increases.

Since the boxes are initially all empty, the game starts with a zero valuation, and after
the first move (by Odin) the valuation is strictly negative. Evelyn’s strategy consists
in making the valuation at most zero after each of her moves. Consequently, after each
legal move by Odin, the valuation is strictly negative.

To show that Evelyn can always achieve this, distinguish the two possible cases
below.

Case 1: There is at least one empty box, and the current valuation is −v for some
strictly positive v. Then Evelyn should choose any even number n making 2nv > 1, and
write n in an empty box.

Case 2: There are no empty boxes, so 3k numbers contributing to the evaluation. Then
V (a) ≡ 0 (mod 3), since (−1/2)a ≡ 1 (mod 3). It is not possible that all numbers be
zero, for otherwise the game would already have come to an end. Letting n be the
largest entry of the current a, it then follows that V (a) 6 −3/2n, since V (a) is strictly
negative and congruent to zero modulo 3.

If n is odd, respectively even, then replacing n by n− 1, respectively n− 2, increases
the valuation by 3/2n. Consequently, in either case, Evelyn can make a move to yield a
valuation that does not exceed zero.

To prove Evelyn’s strategy winning, notice that she can ensure that the game ends
either with Odin unable to move, or with k zeroes and a valuation V (aend) 6 0. In the
latter case, notice that the contribution of each non-zero number to the valuation is at
least −1/2, so

V (aend) > k + (−1/2− 1/2− · · · − 1/2︸ ︷︷ ︸
2k

) = 0,

forcing the non-zero numbers to be all equal to 1. Consequently, Evelyn’s strategy is
indeed winning.
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C4. A strategical video game consists of a map of finitely many towns. In each town
there are k directions, labelled from 1 through k. One of the towns is designated as
initial, and one – as terminal. Starting from the initial town the hero of the game makes
a finite sequence of moves. At each move the hero selects a direction from the current
town. This determines the next town he visits and a certain positive amount of points
he receives.

Two strategical video games are equivalent if for every sequence of directions the
hero can reach the terminal town from the initial in one game, he can do so in the other
game, and, in addition, he accumulates the same amount of points in both games.

For his birthday John receives two strategical video games – one with N towns and
one with M towns. He claims they are equivalent. Marry is convinced they are not.
Marry is right. Prove that she can provide a sequence of at most N +M directions that
shows the two games are indeed not equivalent.

Stefan Gerdjikov, Bulgaria

Solution 1. Without loss of generality we may assume that the set of directions is
D = {1, 2, . . . , k}. Let us enumerate the towns in the first game from 1 through N and
the towns in the second game from N+1 through N+M . Without loss of generality we
may assume that the initial and terminal towns in the first game are 1 and N , whereas
in the second game these are – N + 1 and N +M , respectively.

Next we consider a directed labelled graph G = (V, λ) where V = {1, 2, . . . , N +M}
and λ : V ×D → V ×N maps a current town u and direction d to λ(v, d) = (u, p), where
u is the next town and p is the amount of points awarded for this move. In particular
if v 6 N if and only if u 6 N . For each vertex v ∈ V , we denote with Ln(v) = Ln,G(v)
the set of all pairs (s, p), where s is a sequence of directions of length less than or equal
to n that leads from v to a terminal town and p is total amount of points awarded for
this sequence. L(v) is the union of all sets Ln(v) for n ∈ N ∪ {0}. With this notion we
want to prove that:

L(1) = L(N + 1) if and only if Ln(1) = Ln(N + 1) for all n 6 N +M.

To this end, we first slightly modify the games by awarding the hero points he deserves
as soon as possible. Formally, let:

c(v) = min{p : (s, p) ∈ LM+N (v) for some s}.

Since the points are always positive, every cycle in G brings a positive amount of points.
Therefore, p′ > c(v) for every n and every pair (s′, p′) ∈ Ln(v). In particular, if λ(v, d) =
(u, p) then since the hero can win p+ c(u) points starting from v, we obtain p+ c(u) >
c(v). Note that if c(1) 6= c(N + 1), then LN+M (1) = LN+M (N) are vacuously distinct
and we are done. Thus, we may assume that c(1) = c(N + 1).

Let G′ = (V, λ′) be defined by λ′(v, d) = (u, p+c(u)−c(v)) whenever λ(v, d) = (u, p).
By the above argument every move in G′ is awarded with non-negative amount of
points. Furthermore, an easy inductive argument shows that (s, p) ∈ Ln(v) if and only
if (s, p− c(v)) ∈ L′n(v), where L′n(v) = Ln,G′(v). Hence Ln(1) = Ln(N + 1) if and only
if L′n(1) = L′n(N + 1).

Assume that L′(u) = L′(v) and consider an arbitrary direction d. If (u′, p′) = λ(u, d)
and (v′, q′) = λ(v, d), we claim that L′(u′) = L′(v′) and p′ = q′. Indeed, let s be such a
sequence of moves that (s, c(u′)) ∈ L(u′). Hence ((d, s), p′) ∈ L′(u). Since L′(u) = L′(v)

10



and there are no negative points along the arcs, we get q′ 6 p′. Similarly, p′ 6 q′ and
therefore p′ = q′. Now, it is easy to see that if (s, p) ∈ L′(u′) then ((d, s), p + p′) ∈
L′(u) = L′(v) and therefore (s, p) ∈ S(v) where we used that p′ = q′. To reverse
inclusion proceed similarly.

Finally, consider the equivalence relations ≡(n) recursively defined below:

u ≡(0) v if and only if either u, v ∈ {N,M +N} or u, v 6∈ {N,M +N},
u ≡(n+1) v if and only if u ≡(n) v, and u′ ≡(n) v′ and p′ = q′ for all d 6 D,

where (u′, p′) = λ′(u, d) and (v′, q′) = λ′(v, d). Since ≡(n+1) is contained in ≡(n), and
each equivalence relation has no more than N + M classes, it follows that ≡(n) and
≡(n+1) coincide for some n < N +M . Therefore, for this particular n, an easy inductive
argument shows that ≡(m) and ≡(n) are the same for all m > n. Hence if u ≡(n) v an
induction on the length of the sequence of moves reveals that (s, p) ∈ L′(u) if and only
if (s, p) ∈ L′(v). Consequently, L′(u) = L′(v).

This proves that if L′(1) 6= L′(N + 1), then 1 6≡(n) N + 1. Finally, we show that
if u 6≡(n) v, then Ln(u) 6= Ln(v). This is obvious for n = 0 and n = 1. Assume that
the statement holds for some n and all u, v ∈ V and consider some u 6≡(n+1) v. We
need to prove that Ln+1(u) 6= Ln+1(v). By the inductive hypothesis we may assume
that u ≡(n) v. In particular, u ≡(1) v. Therefore, λ′(u, d) = (u′, p) for all d 6 k, and
λ′(v, d) = (v′, q) implies that p = q. Therefore, the fact that u ≡(n+1) v is due to some
d 6 k such that u′ 6≡(n) v′. By the inductive hypothesis L′n(u′) 6= L′n(v′). It should now
be clear that L′n+1(v) 6= L′n+1(v

′).

Remarks. In fact, this is a straightforward implication of the minimisation algorithm
for (sub)sequential transducers. It consists of two steps, each of which contains an
interesting idea:

1. Pushing forward the costs – in this case, awarding the hero the maximum amount
of points that he has already guaranteed. This is also related to potentials in
weighted graphs, often used to accelerate the Minimum Cost Paths Problem. How-
ever, in this case the issue is not only of algorithmic flavour, but is conceptual.

2. The bisimulation and Nerode-Myhill relation that stabilises in at most O(|Q|)
steps.

Solution 2. One can also approach the problem from algebraic perspective. Again,
consider the towns in the first and the second game as natural numbers from 1 through
N , and from N + 1 through N +M , respectively; initial and terminal towns – 1 and N
in the first game; N + 1 and N +M – in the second.

For every direction d let Ad be the (N +M)× (N +M) matrix whose entries ad(i, j)
are defined by

ad(i, j) =


2p, if starting from town i and following direction d

the hero gets to town j and is awarded p points,
0, otherwise.

With this notion, for any sequence of directions d = (d1, d2, . . . , dn) the (i, j) entry of
the product matrix Ad1Ad2 · · ·Adn is 2p if the hero, following the sequence d and starting
from town i, arrives in town j and wins p points.
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Let ei be the standard unit vector in RN+M whose i-th entry is 1 and the other
entries are all 0. Write s = e1 − eN+1 and f = eN + eN+M .

Since there are no connections between towns in the two games, we have to prove
that sTAf = 0 for all A = Ad1 · · ·Adn if and only if sTAf = 0 for all A = Ad1 · · ·Adn
with n 6 N +M .

To prove this, let V0 = {s} and let Vn+1 = Vn ∪ {vTAd : v ∈ Vn and d 6 k}. Clearly,
each Vn spans a linear space of dimension at most N + M . Hence, dim spanVn =
dim spanVn+1 for some n < N+M , and so every vector from Vn+1 is a linear combination
of vectors from Vn. A simple inductive argument then shows that the vectors in Vm are
linear combinations of vectors from Vn for all m > n. In particular, if the vectors in Vn
are all orthogonal to f , then so are the vectors in Vm for any m ∈ N.

Remark. Both solutions have been provided by the author.
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Geometry

G1. Let ABC be an isosceles triangle, AB = AC, let D be the midpoint of the side
AC, and let γ be the vircumcircle of the triangle ABD. The tangent of γ at A crosses
the line BC at E. Let O be the circumcentre of the triangle ABE. Prove that the
midpoint of the segment AO lies on γ.

Sam Bealing, United Kingdom

Solution. Let Γ be the image of γ under the homothety of centre A and factor 2.
Clearly, Γ is also tangent yo AE at A, and the conclusion is equivalent to Γ passing
through O, which is the same as AE being tangent to the circle ACO.

A

B C E

D

L

O

�
�

Alternatively, but equivalently, this amounts to ∠OAE = ∠OCA. Write ∠OAE =
90◦ − ∠EBA and ∠OCA = ∠OCB − ∠ACB = ∠OCB − ∠CBA = ∠OCB − ∠EBA,
to infer that the equality of the two angles is equivalent to C being the midpoint of the
segment BE.

To prove the latter, it is sufficient to show that the triangles ABE and DBC are
similar, for then BE/BC = AB/CD = AC/CD = 2 which implies that C is indeed the
midpoint of the segment BE.

Finally, to prove the above similarity, write ∠EBA = ∠CBA = ∠ACB = ∠DCB
and ∠BDC = ∠BAD + ∠DBA = ∠BAD + ∠DAE = ∠BAE. This completes the
proof.
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G2. Let G,H be the centroid and orthocentre of 4ABC which has an obtuse angle at
∠B. Let ω be the circle with diameter AG. ω intersects �ABC again at L 6= A. The
tangent to ω at L intersects �ABC at K 6= L.

Given that AG = GH, prove ∠HKG = 90◦.
Sam Bealing, United Kingdom

Solution. Let L′ be the midpoint of AH. Then we claim L′ lies on �ABC.

A

L L= ’
DH

B
O

K

G

C

�

Indeed, let D be the foot of the A-altitude on BC. Then:

AG = GH ⇒ ∠GL′A = 90◦ ⇒ GL′ ‖ BC ⇒ DL′ =
AL′

2
=
HL′

2
⇒ DL′ = HD

where in the last step we have used that if M is the midpoint of BC, AG : GM = 2 : 1
and that ∠B is obtuse so H,A lie on opposite sides of line BC. This means that L′ is
the reflection of H in BC, which is well-known to lie on �ABC. Also AG = GH ⇒
∠GL′A = 90◦ so L′ lies on ω and hence in fact L ≡ L′.

Let O be the midpoint of AG; then OL ⊥ LK. Homothety of factor 2 at A takes
OL→ HG so HG ‖ OL and hence LK ⊥ HG. But the centre of �ABC lies on HG so
this means K is the reflection of L across line HG and hence as ∠HLG = 90◦ it follows
∠HKG = 90◦.

Remark. The midpoint of AH lies on the circumcircle of �ABC iff ∠A = 90◦ or if:

a4 + a2(b2 + c2)− 2(b2 − c2)2 = 0

The latter condition is exactly equivalent to AG = GH.
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G3. Let ABC be a triangle. On the sides BC, CA, AB of the triangle, construct
outwardly three squares with centres Oa, Ob, Oc respectively. Let ω be the circumcircle
of 4OaObOc.

Given that A lies on ω, prove that the centre of ω lies on the perimeter of 4ABC.
Sam Bealing, United Kingdom

Solution. Let the vertices of the squares be AC1C2B, BA1A2C, CB1B2A.

Lemma: BB2 = CC1 and BB2 ⊥ CC1.
Proof: Notice that by rotating 4AC1C by 90◦ we get 4ABB2 proving the lemma.

Claim: AOa ⊥ ObOc
Proof: Let M be the midpoint of AB. By our lemma applied at vertex C we get
AA2 = BB1 and they are perpendicular. By homothety of factor 2 at A and then B we
get:

MOb =
1

2
BB1 =

1

2
AA2 = MOa and MOb ‖ BB1 , MOa ‖ AA2

Hence MOa,MOb are also perpendicular so in fact 4ObMOa is an isosceles right trian-
gle. This is also trivially the case for 4AMOc. Now applying our lemma to 4AMOb
at vertex M we get ObOc and AOa are perpendicular which is exactly what we wanted.

Similarly we get BOb ⊥ OaOc and COc ⊥ OaOb so lines AOa, BOb, COc concur at
H, the orthocentre of4OaObOc. As A lies on ω and on OaH it follows A is the reflection
of H in line ObOc.

B

C

M

H

B1
C1

A2

B2

C2

Ob

Oc

Oa

A

Claim: H = B or H = C
Proof: Assume not. By the previous observations we get OcH = OcA = OcB. Hence
as OcOa ⊥ BH and B 6= H this means B is the reflection of H in OcOa so B lies on ω.

Similarly, C lies on ω. But then we get:

∠ACB = 180◦ − ∠BOcA = 90◦ and ∠CBA = 180◦ − ∠AObC = 90◦

so ∠ACB + ∠CBA = 180◦ which is absurd so in fact one of B,C is equal to H.
WLOG B = H. As A,H,Oa and C,H,Oc are collinear this means in fact B lies on

these lines. Hence:
∠AOcC = ∠AOcB = 90◦

Also ∠AObC = 90◦ hence C also lies on ω and ω in fact has diameter AC and so its
circumcentre is the midpoint of AC which lies on the perimeter of 4ABC.
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G4. Let MAZN be an isosceles trapezium inscribed in a circle (c) with centre O.
Assume that MN is a diameter of (c) and let B be the midpoint of AZ. Let (ε) be the
perpendicular line on AZ passing through A. Let C be a point on (ε), let E be the point
of intersection of CB with (c) and assume that AE is perpendicular to CB. Let D be
the point of intersection of CZ with (c) and let F be the antidiametric point of D on
(c). Let P be the point of intersection of FE and CZ. Assume that the tangents of (c)
at the points M and Z meet the lines AZ and PA at the points K and T respectively.
Prove that OK is perpendicular to TM .

Theoklitos Parayiou, Cyprus

Solution. We will first prove that PA is the tangent of (c) at A. Since EDZA is
cyclic, then ∠EDC = ∠EAZ. By the similarity of the triangles CAE and ABE we
have ∠EAZ = ∠EAB = ∠ACB, so ∠EDC = ∠EAZ. Since ∠FED = 90◦, then

∠EPD = 90◦ − ∠EDC = 90◦ − ∠ACB = ∠EAC

So the points E,A,C, P are concyclic. It follows that ∠CPA = 90◦, therefore the
triangle APZ is right-angled. Since also B is the midpoint of AZ, then PB = AB = BZ.

We have
∠BPE = ∠ABC − ∠BPZ = ∠ABC − ∠PZB

and

∠PAE = ∠PCE = 90◦ − ∠ACB − ∠CZA = ∠ABC − ∠CZA = ∠ABC − ∠PZB

Therefore ∠BPE = ∠PAE.
Since also ∠EPD = ∠EAC = ∠EBA, then PEBZ is a cyclic quadrilateral and we

get ∠BPE = ∠EZB. Therefore ∠PAE = ∠EZB, i.e. PA is the tangent of (c) at A.

N
Z

T

P

D

B
E

O

F

MK

C A

Since AZ is parallel to MN then TB ⊥ AZ and TO ⊥MN .
The quadrilateral KBOM is a rectangle. Consider the circumcircle of the rectangle

and a tangent of this at K. Let X be a point on this tangent. So XK ⊥ KO. Since
the triangle OBA and OTA are similar then OA2 = OT · OB. Since OA = OM and
KM = OB we get OM2 = OT ·KM so OT

OM = OM
KM . Since also ∠KMO = ∠TOM = 90◦,

the triangles TOM and OMK are similar. Therefore

∠MTO = ∠KOM = ∠XKM

Since KM is parallel to TO we have ∠MTO = ∠KMT . Therefore ∠XKM = ∠KMT .
I.e. the tangent at point K is parallel to MT and since XK ⊥ KO we get OK ⊥ TM .
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G5. LetABC be an isosceles triangle withAB = AC and ∠A = 45◦. Its circumcircle
(c) has center O, M is the midpoint of BC and D is the foot of the perpendicular from
C to AB. With center C and radius CD we draw a circle which internally intersects
AC at the point F and the circle (c) at the points Z and E, such that Z lies on the

small arc
_
BC and E on the small arc

_
AC. Prove that the lines ZE, CO, FM are

concurrent.
Brazitikos Silouanos, Greece

Solution. Since ZE is the common chord of the two circles, the line of the centres
CO is its perpendicular bisector. This means that CO passes through the midpoint of
ZE, let it be T . Thus, it suffices to prove that FM passes through T . To this end, we
will prove that FZME is a parallelogram: we will precisely show that the segments FE
and ZM are parallel and equal.

A
E

F

D

K

C

M

BZ

O
T

Let K be the intersection point of ZE and AC. Then K lies on the radical axis
of the two circles, so it has equal powers to both circles. The power of the point
K with respect to the one circle is KA · KC, while the power to the other circle is
R2 −KC2 = CD2 −KC2.

From the theorem of Pythagoras in triangle ADC we get AC2 = 2CD2. We set

KA = x,KC = y, and combining all the above yields xy = (x+y)2

2 − y2, hence 2xy =
x2 + y2 + 2xy − y2, i.e. x = y.

This means that K is the midpoint of AC. Moreover, we have ∠ADC = ∠AMC =
90◦, so the points A,D,M,C are on the same circle – let it be (c1) – and the center of
this circle is K.

From the cyclic quadrilateral we have that ∠DMB = 45◦, but we have also that
∠OCB = 45◦, so the lines OC, DM are parallel, hence KZ ⊥ DM and, since DM is a
chord of the circle, ZD = ZM . (1)

The triangle CDF is isosceles and CO is bisector, so CO ⊥ DF , and this means
that ZE ‖ DF . It follows that DFEZ is an isosceles trapezium, so DZ = FE (2), and
from (1) and (2) we have that ZM = FE (*).

From the isosceles trapezium we also have that ∠FEZ = ∠DZE (3). Since ZK is an
altitude in the isosceles triangleDZM , it will be also angle bisector, so ∠DZE = ∠MZE
(4).

From (3) and (4) we conclude that ∠FEZ = ∠MZE, so FE ‖ ZM (**). From (*)
and (**) we get that FZME is a parallelogram, which is the desired result.

17



Number Theory

N1. Determine all positive integers n such that
a2 + n2

b2 − n2
is a positive integer for some

positive integers a and b.

Turkey

Solution. The required numbers are all even positive integers alone. Indeed, if n is
even, then let a = n2/2 − 1 and b = n2/2 + 1, to check that (a2 + n2)/(b2 − n2) =
(n4/4 + 1)/(n4/4 + 1) = 1.

Suppose now that such a and b exist for some positive odd integer n. Notice that
we may and will assume gcd(n, a, b) = 1. Note also that n2 ≡ 1 (mod 4). If b is odd,
then b2−n2 is divisible by 4, and hence so is a2 +n2. Since n is odd, a2 + 1 is therefore
divisible by 4, which is impossible. Thus, b must be even. Then b2 − n2 ≡ 3 (mod 4),
so b2 − n2 has a prime factor p ≡ 3 (mod 4). Then a2 + n2 is divisible by p, and it
follows that so are both a and n, since p ≡ 3 (mod 4). On the other hand, since n and
b2 − n2 are both divisible by p, so is b. Consequently, a, b and n are all divisible by p,
contradicting the assumption gcd(n, a, b) = 1.

18



N2. A number of N children are at a party, and they sit in a circle to play a game of
Pass the Parcel. Because the host has no other form of entertainment, the parcel has
infinitely many layers. On turn i, starting with i = 1, the following two things happen
in order:

(1) The parcel is passed i2 positions clockwise; and
(2) The child currently holding the parcel unwraps a layer and claims the prize inside.

For what values of N will every child receive a prize?

Patrick Winter, United Kingdom

Solution. Every child receives a prize if and only if N = 2a3b for some non-negative
integers a and b. For convenience, say N is good if every child receives a prize.

Number the children 0, . . . , N−1 clockwise around the circle, child number 0 starting
with the parcel. After n turns, the parcel will have been passed 12+22+· · ·+n2 = n(n+
1)(2n+ 1)/6 places around the circle. For convenience, write sn = n(n+ 1)(2n+ 1)/6.
Thus, child m receives the parcel, and hence a prize, if and only if m ≡ sn (mod N) for
some n, so N is good if and only if sn assumes every possible value modulo N .

To rule out the case where N is divisible by a prime p > 3, it is sufficient to show
that sn misses some value modulo p. The latter follows from the fact that 6 has a
multiplicative inverse modulo p, and sn ≡ 0 (mod p) if n ≡ 0 or − 1 (mod p), so sn
assumes at most p− 1 values modulo p. Consequently, such an N is certainly not good.

We now show that each N of the form 2a3b is good. We do this by showing that,
if N is good, then so are both 2N and 3N ; since 1 is clearly good, this is sufficient to
prove goodness of 2a3b inductively on a+ b.

To show that, if N is good, then so is 2N , refer to goodness of the former to infer
that, for each m modulo 2N , there exists an n such that sn ≡ m or m+N (mod 2N).
Clearly, only the case sn ≡ m+N (mod 2N) is to be dealt with. In this case,

sn+6N = sn + (6n2 + 6n+ 1)N + 18(2n+ 1)N2 + 72N3 ≡ sn +N ≡ m (mod 2N).

Consequently, 2N is indeed good.

To show that, if N is good, then so is 3N , refer again to goodness of the former to
infer that, for eachmmodulo 3N , there exists an n such that sn ≡ m or m+N or m+2N
(mod 3N). Clearly, only the last two cases are to be dealt with. In the former case,

sn+12N = sn + 2(6n2 + 6n+ 1)N + 72(2n+ 1)N2 + 2632N3 ≡ sn + 2N ≡ m (mod 3N),

and in the latter,

sn+6N = sn + (6n2 + 6n+ 1)N + 18(2n+ 1)N2 + 72N3 ≡ sn +N ≡ m (mod 3N).

Consequently, 3N is indeed good.
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N3. Given an integer k > 2, determine all functions f from the positive integers into
themselves such that f(x1)! + f(x2)! + · · · + f(xk)! is divisible by x1! + x2! + · · · + xk!
for all positive integers x1, x2, . . . , xk.

Albania

Solution. The identity is the only function satisfying the condition in the statement.
Begin by letting the x’s be all equal to n to infer that f(n)! is divisible by n!, so f(n) > n
for all positive integers n.

Claim. f(p− 1) = p− 1 for all but finitely many primes p.

Assume the Claim for the moment to proceed as follows: Fix any positive integer n,
and let p be a large enough prime, e. g., p > f(n)!−n!. Then let one of the x’s be equal
to 1 and the remaining k − 1 be all equal to p− 1, and use the Claim to infer that the
number

(f(n)!− n!) + (n! + (k − 1)(p− 1)!) = f(n)! + (k − 1)f(p− 1)!

is divisible by n! + (k − 1)(p − 1)!, and hence so is f(n)! − n!. Since p is large enough,
this forces f(n)! = n!, and since f(n) > n, it follows that f(n) = n, as desired.

Proof of the Claim. If k is even, let p > f(1)!, and let half of the x’s be all equal to 1
and the other half be all equal to p − 1, to infer that f(p − 1)! + f(1)! is divisible by
(p−1)!+1. By Wilson’s theorem, the latter is divisible by p, and hence so is the former.
Since p > f(1)!, the number f(1)! is not divisible by p, so f(p − 1)! is not divisible by
p either, forcing f(p − 1) 6 p − 1. Recall now that f(p − 1) > p − 1, to conclude that
f(p− 1) = p− 1.

If k is odd, let p > f(2)!+ 1
2(k−3)f(1)!, let 1

2(k+1) of the x’s be all equal to p−1, let
one of the x’s be equal to 2, and let the remaining ones (if any) be all equal to 1, to infer
that 1

2(k+1)f(p−1)!+f(2)!+ 1
2(k−3)f(1)! is divisible by 1

2(k+1)(p−1)!+2+ 1
2(k−3) =

1
2(k + 1)((p − 1)! + 1). By Wilson’s theorem, the latter is divisible by p, and hence so
is the former. Since p > f(2)! + 1

2(k − 3)f(1)!, the number f(2)! + 1
2(k − 3)f(1)! is not

divisible by p, so 1
2(k + 1)f(p− 1)! is not divisible by p either, forcing f(p− 1) 6 p− 1.

Recall again that f(p− 1) > p− 1, to conclude that f(p− 1) = p− 1.
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N4. Let a1 = 2 and, for every positive integer n, let an+1 be the smallest integer strictly
greater than an that has more positive divisors than an has. Prove that 2an+1 = 3an
only for finitely many indices n.

Macedonia

Solution. Begin with a mere remark on the terms of the sequence under consideration.

Lemma 1. Each an is minimal amongst all positive integers having the same number
of positive divisors as an.

Proof. Suppose, if possible, that for some n, some positive integer b < an has as many
positive divisors as an. Then am < b 6 am+1 for some m < n, and the definition of
the sequence forces b = am+1. Since b < an, it follows that m + 1 < n, which is a
contradiction, as am+1 should have less positive divisors than an.

Let p1 < p2 < · · · < pn < · · · be the strictly increasing sequence of prime numbers,
and write canonical factorisations into primes in the form N =

∏
i>1 p

ei
i , where ei > 0

for all i, and ei = 0 for all but finitely many indices i ; in this notation, the number of
positive divisors of N is τ(N) =

∏
i>1(ei + 1).

Lemma 2. The exponents in the canonical factorisation of each an into primes form a
non-strictly decreasing sequence.

Proof. Indeed, if ei < ej for some i < j in the canonical decomposition of an into
primes, then swapping the two exponents yields a smaller integer with the same number
of positive divisors, contradicting Lemma 1.

We are now in a position to prove the required result. For convenience, a term an
satisfying 3an = 2an+1 will be referred to as a special term of the sequence.

Suppose now, if possible, that the sequence has infinitely many special terms, so
the latter form a strictly increasing, and hence unbounded, subsequence. To reach a
contradiction, it is sufficient to show that:

(1) The exponents of the primes in the factorisation of special terms have a common
upper bound e; and

(2) For all large enough primes p, no special term is divisible by p.

Refer to Lemma 2 to write an =
∏
i>1 p

ei(n)
i , where ei(n) > ei+1(n) for all i.

Statement (2) is a straightforward consequence of (1) and Lemma 1. Suppose, if
possible, that some special term an is divisible by a prime pi > 2e+1, where e is the

integer provided by (1). Then e > ei(n) > 0, so 2e1(n)ei(n)+ei(n)an/p
ei(n)
i is a positive

integer with the same number of positive divisors as an, but smaller than an. This
contradicts Lemma 1. Consequently, no special term is divisible by a prime exceeding
2e+1.

To prove (1), it is sufficient to show that, as an runs through the special terms, the
exponents e1(n) are bounded from above. Then, Lemma 2 shows that such an upper
bound e suits all primes.

Consider a large enough special an. The condition τ(an) < τ(an+1) is then equivalent
to (e1(n) + 1)(e2(n) + 1) < e1(n)(e2(n) + 2). Alternatively, but equivalently, e1(n) >
e2(n) + 2. The latter implies that an is divisible by 8, for either e1(n) > 3 or an is a
large enough power of 2.
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Next, note that 9an/8 is an integer strictly between an and an+1, so τ(9an/8) 6
τ(an), which is equivalent to

(e1(n)− 2)(e2(n) + 3) 6 (e1(n) + 1)(e2(n) + 1),

so 2e1(n) 6 3e2(n)+7. This shows that an is divisible by 3, for otherwise, letting an run
through the special terms, 3 would be an upper bound for all but finitely many e1(n),
and the special terms would therefore form a bounded sequence.

Thus, 4an/3 is another integer strictly between an and an+1. As before, τ(4an/3) 6
τ(an). Alternatively, but equivalently,

(e1(n) + 3)e2(n) 6 (e1(n) + 1)(e2(n) + 1),

so 2e2(n) − 1 6 e1(n). Combine this with the inequality in the previous paragraph
to write 4e2(n) − 2 6 2e1(n) 6 3e2(n) + 7 and infer that e2(n) 6 9. Consequently,
2e1(n) 6 3e2(n) + 7 6 34, showing that e = 17 is suitable for (1) to hold. This
establishes (1) and completes the solution.
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N5. Consider an integer n > 2 and an odd prime p. Let U be the set of all positive
integers (strictly) less than pn that are not divisible by p, and let N be the number of
elements of U . Does there exist a permutation a1, a2, . . . , aN of the numbers in U such
that the sum

∑N
k=1 akak+1, where aN+1 = a1, be divisible by pn−1, but not by pn ?

Alexander Ivanov, Bulgaria

Solution. The answer is in the affirmative. Letting ≡ denote congruence modulo pn

throughout the argument, we will show that there exists a permutation a1, a2, . . . , aN
of the numbers in U such that

∑N
k=1 akak+1 ≡ pn−1.

Let m = pn−1−1, so N = pn−1(p−1) = (m+1)(p−1), and write U={u1, u2, . . . , uN},
where uk = k+bk/(p−1)c∗, k = 1, 2, . . . , N , and btc∗denotes the largest integer (strictly)
less than the real number t.

That the uk are pairwise distinct and they all lie in U follows from the fact that
every k in the range 1, 2, . . . , N is uniquely expressible in the form k = (p − 1)j + i
for some j in the range 0, 1, . . ., m and some i in the range 1, 2, . . . , p − 1. Thus,
uk = u(p−1)j+i = pj + i, so the uk are indeed pairwise distinct and they all lie in U .

For k in the range 1, 2, . . . , N − 1, notice that uk+1 − uk = 1, unless k is divisible
by p − 1, in which case uk+1 − uk = 2. Setting uN+1 = u1, it is readily checked that
uN+1 − uN = 2− pn ≡ 2, so uk+1 − uk ≡ 2 for all k divisible by p− 1.

Letting now ak be the multiplicative inverse of uk modulo pn, i. e., ak is the unique
member of U satisfying akuk ≡ 1, we show that the ak form the desired permutation of
U .

To begin with, notice that akak+1 ≡ ak−ak+1, unless k is divisible by p−1, in which
case akak+1 ≡ 1

2(ak − ak+1). This is easily established by multiplying both sides of each
congruence by ukuk+1, and noticing that (ak − ak+1)ukuk+1 ≡ uk+1 − uk ≡ 1 or 2.

We are now in a position to evaluate the sum S =
∑N

k=1 akak+1 modulo pn. Write

S =

N∑
k=1

akak+1 =

m∑
j=0

p−1∑
i=1

a(p−1)j+i a(p−1)j+i+1,

and consider the inner sum for a fixed j in the range 0, 1, . . . , m :

p−1∑
i=1

a(p−1)j+i a(p−1)j+i+1 =

p−2∑
i=1

a(p−1)j+i a(p−1)j+i+1 + a(p−1)j(j+1)a(p−1)(j+1)+1

≡
p−2∑
i=1

(
a(p−1)j+i − a(p−1)j+i+1

)
+ 1

2

(
a(p−1)j(j+1) − a(p−1)(j+1)+1

)
≡ a(p−1)j+1 − a(p−1)(j+1) + 1

2

(
a(p−1)j(j+1) − a(p−1)(j+1)+1

)
≡ a(p−1)j+1 − 1

2a(p−1)j(j+1) − 1
2a(p−1)(j+1)+1.
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Hence

S ≡
m∑
j=0

a(p−1)j+1 −
1

2

m∑
j=0

a(p−1)(j+1) −
1

2

m∑
j=0

a(p−1)(j+1)+1

≡

a1 +

m∑
j=1

a(p−1)j+1

− 1

2

m+1∑
j=1

a(p−1)j −
1

2

 m∑
j=1

a(p−1)j+1 + aN+1


≡ 1

2

m+1∑
j=1

a(p−1)j+1 −
1

2

m+1∑
j=1

a(p−1)j .

Since u(p−1)j+1 = pj + 1, the a(p−1)j+1 form a permutation of the pj + 1, therefore∑m+1
j=1 a(p−1)j+1 ≡

∑m+1
j=1 (pj + 1). Similarly, u(p−1)j = pj − 1, so the a(p−1)j+1 form a

permutation of the pj − 1, and hence
∑m+1

j=1 a(p−1)j ≡
∑m+1

j=1 (pj − 1). Consequently,

S ≡ 1

2

m+1∑
j=1

(
(pj + 1)− (pj − 1)

)
≡ m+ 1 ≡ pn−1,

as stated in the first paragraph. This completes the solution.

Remark. Multiplication modulo pn makes U into the group of units of the ring Zpn .
Since p is odd, U is cyclic. Let g be a generator, i. e., a primitive root modulo pn. In this
setting, the sum in question is Sg,α ≡

∑N
k=1 g

αk+αk+1 , where α is a permutation of 1, 2,
. . . , N . The solution shows that Sg,α ≡ pn−1 for the permutation given by ak = gαk ; for
instance, if n = 2, p = 5 and g = 2, this permutation has disjoint cycle decomposition

(1 20 10 11) (2 19 9 4 18 3 13 16) (5 12 14 7 17 8 6 15).

Evaluating Sg,α is not an easy task, unless α exhibits particular features. Consider

the identity permutation, in which case Sg,id ≡ 2g3
∑N/2−1

k=0 g2k, so (g2 − 1)Sg,id ≡
2g3(gN − 1) ≡ 0. If p > 3 and g is a primitive root modulo p, then Sg,id ≡ 0, so such a g
is not a candidate. In particular, this rules out the standard choice for g modulo pn as
a primitive root modulo p such that gp−1 − 1 is not divisible by p2. A good candidate
for g (p = 3, inclusive) would be a primitive root modulo p2 such that g2− 1 is divisible
by p. In this case, g2 − 1 is divisible by p but not by p2, and gN − 1 is divisible by
pn but not by pn+1, so Sg,id satisfies the required condition. This is the case if p = 3:
The primitive roots modulo 32 are 2 and 5, and the identity permutation works for both
modulo 32. Unfortunately, no such g exists if p = 5: The primitive roots g modulo 52

are ±2, ±3 and ±8, no g2 − 1 is divisible by 5, so Sg,id is divisible by 52, showing the
identity inadequate modulo 52.
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