Solutions for 1-st round IZhO 2018

1. Let a, B, v be the angles of a triangle opposite to the sides a, b, ¢ respectively. Prove the inequality
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2 (C082 a + cos? 8 + cos? 7)

Solution. By the Law of Sines, RHS equals sina, __sin®f sin’y

sin? B+sin? v sin? a+sin? sin? a+sinZ B °

Applying Cauchy-Bunyakowski inequality we have

2

sin? v = sin?(B + ) = (sin B cosy + siny cos 3)? < (sin? B + sin® ) (cos? v + cos? 3),
therefore cos? 8 + cos? vy > %

Adding similar inequalities for cos? v + cos? o and cos? a + cos? 3 we get the desired result.

2. Points N, K, L lie on the sides AB, BC, C' A of a triangle ABC respectively so that AL = BK and CN is the bisector
of the angle C. The segments AK and BL meet at the point P. Let I and J be the incentres of the triangles APL and
BPK respectively. The lines CN and I.J meet at point Q). Prove that IP = JQ.

Solution. The case CA = CB is trivial. If CA # CB, we may suppose, without loss of generality, that C N meets the
segment PK.

Let the circumcircles wy and ws of the triangles APL and BPK respectively
meet again at point 7. Then

LLAT = /TPB = /TKB. (1)

. L (\
and ZALT = ZAPT = /T BK, that is, NALT = AK BT, hence nL_—= ‘ -

‘\‘ ,

It follows from (1) that the quadrilateral ACKT is cyclic; together with (2) A
this means that ZACT = ZTCK, i.e. T lies on the bisector of C V.

Let IJ meet wy and wy at I; and J; respectively. Since w; and wy have
equal radii and AL = BK, the triangles ALI; and BKJ; are equal. We use
Mansion’s lemma: the midpoint of arc XY of the circumcircle of XY Z lies at
equal distances from the ends of this arc and the incentre. It follows from this
lemma that 1 = L = Jy K = J;J. Moreover, /PI[1T = /PAT = /PKT =
/ZPJiT, therefore, 1T = J;T. Thus T lies on the median bisector of I;J; and
on the median bisector of I.J.

It remains to prove that T lies on the median bisector of PQ. Let R = AK NCT. Then ZART = ZRAC + ZACR =
/RAC + ZAKT = /RAC + /KAT = /LAT = /BPT. Since PQ bisects the angle RPB, /PQT = /PRT + ZRPQ =
/PBT + Z/BPJ = ZTPQ), therefore T belongs to the median bisector of PQ and IP = JQ.

Figure 1: image

3. Prove that there exist infinitely many pairs (m,n) of positive integers such that m + n divides (m!)” 4+ (n))™ + 1.
Solution. We shall find a pair such that m +n = p is prime and n is even. Applying Wilson’s theorem we have

m!=(p—n)! =
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Tt follows from Fermat’s Little Theorem that (n!)? = n! (mod p), therefore

n™ +nl+ (n)"
(nt)"

thus it suffices to prove that the number n™ + n! + (n!)™ has a prime divisor p > n for infinitely many even n.

We prove that this condition is satisfied, for instance, by all the numbers of the form n = 2¢q, where ¢ > 2 is prime. Let
A = (29)% + (29)! + ((2¢)!)??. For a prime p and integer k we denote by v, (k) the largest integer £ such that p’ divides k.

If » < 2q is prime and r ¢ {2,¢} then A = (2¢)?? # 0 (mod 7). The largest degree of ¢ dividing (2q)! is ¢?, while for
(2¢)%7 and ((2¢)")?? it is 2¢ and 4q respectively, therefore v (A) = 2.

Finally, v2((2g)!) = [2241] + [%Tq] + [%] +-0 < 27,; + %Tq + %q + - = 2q, so v12((29)!) < v2((2¢)??) and obviously
v2((29)!) < v2((2¢)!1?7), thus va(A) < 2¢ — 1. On the other hand, A > (2¢)%¢ > 2207142 therefore A has a prime divisor
p > 2q, q.e.d.

(ml)" + ()™ 4+ 1 = (ﬁ)" ()P 1=

! (mod p);



4. The Crocodile thought of four unit squares of a 2018 x 2018 forming a rectangle with sides 1 and 4. The Bear can
choose any square formed by 9 unit squares and ask whether it contains at least one of the four Crocodile’s squares. What
minimum number of questions should he ask to be sure of at least one affirmative answer?

The answer is % = 226464.

Solution. We call checked any square chosen by the Bear, and all its unit squares. The position of a unit square in the

table can be defined by the numbers of its row and column, that is, the square (z,y) is in the z-th row and y-th column.
673°—1
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First we prove that questions is enough even on a 2019 x 2019 table. Let us divide this table into 3 x 3 squares
and apply chess colouring to these large squares so that the corners are white. Thet it is enough to check all the black 3 x 3
squares: no row or column contains four consecutive white squares.

To prove that we need so many questions, we select all the unit squares with coordinates (3m + 1,3n + 1), where
0 <m,n < 672. A 3 x 3 square obviously can not contain two selected unit squares. On the other hand, if two selected
squares lie at distance 3 (i.e., one of them is (z,y), and another is (z,y + 3) or (# + 3,y)), the Bear must check at least one
of these two squares (because if neither is checked, then so are the two unit squares between them, and the Crocodile can

place his rectangle on the unchecked squares).
67321
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Thus it is enough to produce pairs of selected unit squares at distance 3. One can take pairs (6k + 1,3n + 1),
(6k+4,3n4+1),0< k<335,0< n< 672 and (2017,6n+ 1), (2017,6n+4), 0 < n < 335.

5. Find all real a for which there exists a function f : R — R such that f(z — f(y)) = f(x) + a[y] for every real z n y
([y] denotes the integral part of y).

Answer: a = —n? for arbitrary integer n.
Solution. First note that a = 0 satisfies the problem condition (for example, the equation is satisfied by the function
f(z) =0).

Now suppose a # 0.

Lemma. f(y) = f(z) if and only if [y] = [2].

Suppose f(y) = f(z) for some y, z. Then the given equation implies f(z)+aly] = f(e—f(y)) = fle—f(2)) = f(x)+alz]
whence [y] = [z]. Conversely, if [y] = [z] then f(x — f(y)) = f(z) +aly] = f(x )—|—a[z = f(z = f(2))]. Tt follows from previous
observation that [z — f(y)] = [x — f(2)] for all z. Set = L then [ (y) } = {—f(y) HHE }, so f(y) = f(z). The

lemma is proved.

Now we claim that f(m) € Z for any m € Z. Setting y = m in the given equation we obtain f(x — f(m)) = f(z) + am
for any m € Z, x € R. Suppose that f(m) ¢ Z for some m € Z. Choose t € (0, 1) such that [f(m)] = [f(m) +¢]. Then for
z = 0 we have f(—f(m)) = f(0) + am and for # = —t we have f(—t — f(m)) = f(—t) + am. Using the lemma we have
F(=f(m)) = f(=t = f(m)), so f(0) = f(—t) = f(—1), which contradicts the lemma.

From now on we will use in the given equation f(z — f(y)) = f(#) + ay (1) only integer numbers z, y. Setting y = 1 in
(1) we obtain that a € Z. Further, for y = 0 we have f(x — f(0)) = f(x) and therefore z — f(0) = & (by lemma), whence
f(0) = 0. Now set # = f(y), then f(f(y)) = —ay (2); replacing y by f(y) in (1) we get f(z + ay) = f(x) + af(y) (3).
Denoting f(1) by n and setting y = 1 in (3) we obtain f(z 4+ a) = f(2) + an (4). Applying (4) to # = 0 we get f(a) = an.
From (4) we easily conclude that f(ka) = kan for any k € Z; in particular f(an) = an®?. Now setting y = a in (2) gives
—a? = f(f(a)) = an? as stated.

It remains to note that if @ = —n? then the function f(x) = n[z] satisfies the given condition: n[z — n[y]] = n[z] — n?[y],
which is obvious.

6. A convex hexagon ABCDEF is inscribed in a circle with radius R. Diagonals AD and BE, BE and C'F; AD and
CF of the hexagon meet at points M, N, K respectively. Let r1, 72, r3, 71, 75, 76 be the inradii of the triangles ABM,
BCN,CDK, DEM, EFN, AFK respectively. Prove that r1 + 72 +r3 4+ r4+ 154+ 76 < RV3.

Solution.

We start with a lemma.

Lemma. Let R be the circumradius of a quadrilateral XY Z7T'| the diagonals of XY ZT meet at U, and ¢ = %LXUY.
Then the radii r; and rs of the incentres of XY U and ZTU satisfy

ri+
R
Indeed, let LZUXY = 2¢, ZUYX = 29, then LZUTZ = LUXY = 2¢, LUZT = ZUYX = 29 (and obviously

Y +9+¢=7%). Wehave XY 4 ZT = (ry + r2)(cot ¢ + cot ¥) = 2Rsin ZXTY 4 2Rsin(2¢p — ZXTY) = 2R(sin ZXTY +
sin(2¢ — ZXTY) = 2R - 2sinpcos(p — LXTY) < 4Rsin . Therefore

< 2tan (1 —singp). (1)

T+ 7o 4sin __Adsinpsinysing  4sin psinysin J
R T coty+cotd  sin(y+9) cos

=4tanpsiny siny =

=4tangp %(cos(d) — ) —cos(¢p + ¥)) < 2tan (1l —sin ),

q.e.d.
Returning to the problem, let ZAM B = 2o, ZBNC =283, ZCKD = 27, then a + 4+ v = 5.
Applying the inequality (1) to the quadrilaterals ABDE, BCEF u CDF A we get

it retratratrs+re _ ritre T2+ rs  ratrs
R R R R

< 2tana(l —sina) + 2tan B(1 —sin ) + 2 tany(1 — sin7y).



We claim that if o + 3 4 v = 7 then
2tan o1 — sin o) + 2 tan (1 — sin ) 4 2 tan v(1 — siny) < V3.

To prove that we consider the function f(r) = 2tanx(1 —sinz) for x € (0; §).
Since f’(z) = _gllsine)lteosts ) o 4 e (0; 5), it follows from Jensen’s inequality that

cos3 ¢

F(0) + £(8) + Fv) <3 (%) = 375) = VA

Thus (2) is proved, and ry + ra + r3 +r4 + 75 + 75 < V3R.



X1V Mescdyrnapodras XKaymurosckan oasumnuada no mamemamure

Aamamn, 2018

12 aaBapsa 2018 roma, 9.00-13.30
IlepBLlii neHb
(Kazknas samaqa orennBaercs B 7 6as10B)

1. Ilycts o, f m v — yIoibl TpeyrojbHUKaA, MPOTUBOJEKAIINE CTOpOHAM a, b u ¢
cooTBeTCTBeHHO. [loKaKuTe HEPpABEHCTBO

a? b? c?

> .
= bz—l—cz—I_az—l—cz—l_az—l—b2

2 (cos2 a -+ cos? 0+ cos? ’y)

2. Ila cropornax AB, BC' u C A tpeyrosbunka ABC coOTBETCTBEHHO B3ATHI TOTKU
N, K u L tax, vto AL = BK u CN - ouccexktpuca yrima C. Otpesku AKX u BL
nmepecekatorca B Touke P. Obosuadum wepes I u J 1MeHTPHI BOUCAHHBIX OKPYKHOCTEH
tpeyroabiankoB APL m BPK cootBerctBermo. Ilycth ) — ToUKa mepecedeHns MpsaMbIX
CN u IJ. Hoxkaxwure, ato I[P = JQ.

3. HokazKuTe, 9TO CyNIECTBYET GECKOHETHO MHOTO map (m,n) HATYyPadbHBIX THUCE
Takux, 9ro ducao (m!h)"® 4+ (n!)™ + 1 nesurcs vHa m + n.



X1V Mescdyrnapodras XKaymurosckan oasumnuada no mamemamure

Aamamn, 2018

13 aaBapsa 2018 roma, 9.00-13.30
Bropoii nenn
(Kazknas samaqa orennBaercs B 7 6as10B)

4. Kpoxommn saramasn gerbipe kiaeTku tadbsautsl 2018 x 2018, obpasyrotine mpsamo-
yroabHUK co ctoponamu 1 u 4. MenBenb MokeT BbIOpaTh B TabJUIE 000N KBaIpar,
obpasoBaHHbIN 9 KJIeTKaMi, U CIPOCHTh, €CTh JIU B HEM XOTs OBl OIHA W3 3aralaHHBIX
KJIETOK. 3a KaKoe HauMeHbIlee KOJINTIECTBO TaKnX BompocoB MenBemns HaBepHAKA CMO-
JKeT TOJIYIUTh YTBEPIUTETbHBIN OTBET?

5. IlaiimuTe Bce BelllecTBEHHbBIE @, TPU KOTOPBIX cymiecTByeT pyukimsa f : R — R
takad, 910 f(x — f(y)) = f(x) + aly] nnsa Beex BemectBenubix ¢ u y ([y] obosHagaeT
HEJTYIO 9aCTh THUCTIa Y ).

6. B okpyxuocts ¢ pammycom R Bnmcan Bbinmykibiii mectuyroiabiuk ABCDEF.
Huaronamu AD w BE, BE u CF, AD u C'F mectuyronbanka ABC DEF nepecekaiorcsa
B Toukax M, N u K coorBerctBenno. Ilycts ry, ra, 13, 14, s, r¢ — PAANYCHI OKPY KHOCTEI,
BIucanubix B Tpeyroabauku ABM, BCN, CDK, DEM, EFN, AFK cooTBeTCTBEHHO.
Hokaxute, 910 11 + 19 + 73 + 74 + 75 + 76 < RV3.
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