
Solutions for 1-st round IZhO 2018

1. Let α, β, γ be the angles of a triangle opposite to the sides a, b, c respectively. Prove the inequality

2
(
cos2 α+ cos2 β + cos2 γ

)
≥ a2

b2 + c2
+

b2

a2 + c2
+

c2

a2 + b2
.

Solution. By the Law of Sines, RHS equals sin2 α
sin2 β+sin2 γ

+ sin2 β
sin2 α+sin2 γ

+ sin2 γ
sin2 α+sin2 β

.
Applying Cauchy-Bunyakowski inequality we have

sin2 α = sin2(β + γ) = (sinβ cos γ + sin γ cosβ)2 ≤ (sin2 β + sin2 γ)(cos2 γ + cos2 β),

therefore cos2 β + cos2 γ ≥ sin2 α
sin2 β+sin2 γ

.

Adding similar inequalities for cos2 γ + cos2 α and cos2 α+ cos2 β we get the desired result.

2. Points N , K, L lie on the sides AB, BC, CA of a triangle ABC respectively so that AL = BK and CN is the bisector
of the angle C. The segments AK and BL meet at the point P . Let I and J be the incentres of the triangles APL and
BPK respectively. The lines CN and IJ meet at point Q. Prove that IP = JQ.

Solution. The case CA = CB is trivial. If CA 6= CB, we may suppose, without loss of generality, that CN meets the
segment PK.
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Figure 1: image

Let the circumcircles ω1 and ω2 of the triangles APL and BPK respectively
meet again at point T . Then

∠LAT = ∠TPB = ∠TKB. (1)

and ∠ALT = ∠APT = ∠TBK, that is, 4ALT = 4KBT , hence

AT = TK. (2)

It follows from (1) that the quadrilateral ACKT is cyclic; together with (2)
this means that ∠ACT = ∠TCK, i.e. T lies on the bisector of CN .

Let IJ meet ω1 and ω2 at I1 and J1 respectively. Since ω1 and ω2 have
equal radii and AL = BK, the triangles ALI1 and BKJ1 are equal. We use
Mansion’s lemma: the midpoint of arc XY of the circumcircle of XY Z lies at
equal distances from the ends of this arc and the incentre. It follows from this
lemma that I1I = I1L = J1K = J1J . Moreover, ∠PI1T = ∠PAT = ∠PKT =
∠PJ1T , therefore, I1T = J1T . Thus T lies on the median bisector of I1J1 and
on the median bisector of IJ .

It remains to prove that T lies on the median bisector of PQ. Let R = AK ∩ CT . Then ∠ART = ∠RAC + ∠ACR =
∠RAC + ∠AKT = ∠RAC + ∠KAT = ∠LAT = ∠BPT . Since PQ bisects the angle RPB, ∠PQT = ∠PRT + ∠RPQ =
∠PBT + ∠BPJ = ∠TPQ, therefore T belongs to the median bisector of PQ and IP = JQ.

3. Prove that there exist infinitely many pairs (m,n) of positive integers such that m+ n divides (m!)n + (n!)m + 1.
Solution. We shall find a pair such that m+ n = p is prime and n is even. Applying Wilson’s theorem we have

m! = (p− n)! =
(p− 1)!

(p− n+ 1) . . . (p− 2)(p− 1)
≡ −1

−(n− 1) . . . (−2)(−1)
≡ 1

(n− 1)!
≡ n

n!
(mod p).

It follows from Fermat’s Little Theorem that (n!)p ≡ n! (mod p), therefore

(m!)n + (n!)m + 1 ≡
( n
n!

)n
+ (n!)p−n + 1 ≡ nn + n! + (n!)n

(n!)n
(mod p);

thus it suffices to prove that the number nn + n! + (n!)n has a prime divisor p > n for infinitely many even n.
We prove that this condition is satisfied, for instance, by all the numbers of the form n = 2q, where q > 2 is prime. Let

A = (2q)2q + (2q)! + ((2q)!)2q. For a prime p and integer k we denote by vp(k) the largest integer ` such that p` divides k.
If r < 2q is prime and r /∈ {2, q} then A ≡ (2q)2q 6≡ 0 (mod r). The largest degree of q dividing (2q)! is q2, while for

(2q)2q and ((2q)!)2q it is 2q and 4q respectively, therefore vq(A) = 2.
Finally, v2((2q)!) =

[
2q
2

]
+

[
2q
4

]
+

[
2q
8

]
+ · · · < 2q

2 + 2q
4 + 2q

8 + · · · = 2q, so v2((2q)!) < v2((2q)2q) and obviously
v2((2q)!) < v2((2q)!2q), thus v2(A) ≤ 2q − 1. On the other hand, A > (2q)2q > 22q−1q2, therefore A has a prime divisor
p > 2q, q.e.d.
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4. The Crocodile thought of four unit squares of a 2018� 2018 forming a rectangle with sides 1 and 4. The Bear canchoose any square formed by 9 unit squares and ask whether it contains at least one of the four Crocodile's squares. Whatminimum number of questions should he ask to be sure of at least one a�rmative answer?The answer is 6732�12 = 226464.Solution. We call checked any square chosen by the Bear, and all its unit squares. The position of a unit square in thetable can be de�ned by the numbers of its row and column, that is, the square (x; y) is in the x-th row and y-th column.First we prove that 6732�12 questions is enough even on a 2019� 2019 table. Let us divide this table into 3 � 3 squaresand apply chess colouring to these large squares so that the corners are white. Thet it is enough to check all the black 3� 3squares: no row or column contains four consecutive white squares.To prove that we need so many questions, we select all the unit squares with coordinates (3m + 1; 3n + 1), where0 6 m;n 6 672. A 3 � 3 square obviously can not contain two selected unit squares. On the other hand, if two selectedsquares lie at distance 3 (i.e., one of them is (x; y), and another is (x; y + 3) or (x+ 3; y)), the Bear must check at least oneof these two squares (because if neither is checked, then so are the two unit squares between them, and the Crocodile canplace his rectangle on the unchecked squares).Thus it is enough to produce 6732�12 pairs of selected unit squares at distance 3. One can take pairs (6k + 1; 3n+ 1),(6k + 4; 3n+ 1), 0 6 k 6 335, 0 6 n 6 672, and (2017; 6n+ 1), (2017; 6n+ 4), 0 6 n 6 335.5. Find all real a for which there exists a function f : R! R such that f(x � f(y)) = f(x) + a[y] for every real x ¨ y([y] denotes the integral part of y).Answer: a = �n2 for arbitrary integer n.Solution. First note that a = 0 satis�es the problem condition (for example, the equation is satis�ed by the functionf(x) � 0).Now suppose a 6= 0.Lemma. f(y) = f(z) if and only if [y] = [z].Suppose f(y) = f(z) for some y, z. Then the given equation implies f(x)+a[y] = f(x�f(y)) = f(x�f(z)) = f(x)+a[z]whence [y] = [z]. Conversely, if [y] = [z] then f(x� f(y)) = f(x) + a[y] = f(x) + a[z = f(x� f(z))]. It follows from previousobservation that [x� f(y)] = [x� f(z)] for all x. Set x = f(y)+f(z)2 , then hf(y)�f(z)2 i = h� f(y)�f(z)2 i, so f(y) = f(z). Thelemma is proved.Now we claim that f(m) 2Zfor any m 2Z. Setting y = m in the given equation we obtain f(x � f(m)) = f(x) + amfor any m 2Z, x 2 R. Suppose that f(m) =2Zfor some m 2Z. Choose t 2 (0; 1) such that [f(m)] = [f(m) + t]. Then forx = 0 we have f(�f(m)) = f(0) + am and for x = �t we have f(�t � f(m)) = f(�t) + am. Using the lemma we havef(�f(m)) = f(�t � f(m)), so f(0) = f(�t) = f(�1), which contradicts the lemma.From now on we will use in the given equation f(x� f(y)) = f(x) + ay (1) only integer numbers x, y. Setting y = 1 in(1) we obtain that a 2Z. Further, for y = 0 we have f(x � f(0)) = f(x) and therefore x � f(0) = x (by lemma), whencef(0) = 0. Now set x = f(y), then f(f(y)) = �ay (2); replacing y by f(y) in (1) we get f(x + ay) = f(x) + af(y) (3).Denoting f(1) by n and setting y = 1 in (3) we obtain f(x + a) = f(x) + an (4). Applying (4) to x = 0 we get f(a) = an.From (4) we easily conclude that f(ka) = kan for any k 2 Z; in particular f(an) = an2. Now setting y = a in (2) gives�a2 = f(f(a)) = an2 as stated.It remains to note that if a = �n2 then the function f(x) = n[x] satis�es the given condition: n[x�n[y]] = n[x]�n2[y],which is obvious.6. A convex hexagon ABCDEF is inscribed in a circle with radius R. Diagonals AD and BE, BE and CF , AD andCF of the hexagon meet at points M , N , K respectively. Let r1, r2, r3, r4, r5, r6 be the inradii of the triangles ABM ,BCN , CDK, DEM , EFN , AFK respectively. Prove that r1 + r2 + r3 + r4 + r5 + r6 6 Rp3.Solution.We start with a lemma.Lemma. Let R be the circumradius of a quadrilateral XY ZT , the diagonals of XY ZT meet at U , and ' = 12\XUY .Then the radii r1 and r2 of the incentres of XY U and ZTU satisfyr1 + r2R 6 2 tan'(1� sin'): (1)Indeed, let \UXY = 2 , \UYX = 2#, then \UTZ = \UXY = 2 , \UZT = \UY X = 2# (and obviously + # + ' = �2 ). We have XY + ZT = (r1 + r2)(cot + cot#) = 2R sin\XTY + 2R sin(2' � \XTY ) = 2R(sin\XTY +sin(2'� \XTY ) = 2R � 2 sin' cos('� \XTY ) 6 4R sin'. Thereforer1 + r2R 6 4 sin'cot + cot# = 4 sin' sin sin#sin( + #) = 4 sin' sin sin#cos' = 4 tan' sin sin# == 4 tan' � 12(cos( � #)� cos( + #)) 6 2 tan'(1 � sin');q.e.d.Returning to the problem, let \AMB = 2�, \BNC = 2�, \CKD = 2
, then �+ � + 
 = �2 .Applying the inequality (1) to the quadrilaterals ABDE, BCEF ¨ CDFA we getr1 + r2 + r3 + r4 + r5 + r6R = r1 + r4R + r2 + r5R + r3 + r6R 6 2 tan�(1� sin�) + 2 tan �(1 � sin �) + 2 tan
(1 � sin
):



We claim that if �+ � + 
 = �2 then2 tan�(1� sin�) + 2 tan�(1 � sin �) + 2 tan 
(1 � sin 
) 6 p3: (2)To prove that we consider the function f(x) = 2 tanx(1� sinx) for x 2 (0; �2 ).Since f 00(x) = �2 (1�sin x)2+cos4 xcos3 x < 0 for x 2 (0; �2 ), it follows from Jensen's inequality thatf(�) + f(�) + f(
) 6 3f ��+ � + 
3 � = 3f(�6 ) = p3:Thus (2) is proved, and r1 + r2 + r3 + r4 + r5 + r6 6 p3R.



XIV �¥¦¤ã­ à®¤­ ï � ãâëª®¢áª ï ®«¨¬¯¨ ¤  ¯® ¬ â¥¬ â¨ª¥�«¬ âë, 201812 ï­¢ àï 2018 £®¤ , 9.00-13.30�¥à¢ë© ¤¥­ì(� ¦¤ ï § ¤ ç  ®æ¥­¨¢ ¥âáï ¢ 7 ¡ ««®¢)1. �ãáâì �, � ¨ 
 { ã£«ë âà¥ã£®«ì­¨ª , ¯à®â¨¢®«¥¦ é¨¥ áâ®à®­ ¬ a; b ¨ cá®®â¢¥âáâ¢¥­­®. �®ª ¦¨â¥ ­¥à ¢¥­áâ¢®2 �cos2 �+ cos2 � + cos2 
� > a2b2 + c2 + b2a2 + c2 + c2a2 + b2 :2. �  áâ®à®­ å AB, BC ¨ CA âà¥ã£®«ì­¨ª  ABC á®®â¢¥âáâ¢¥­­® ¢§ïâë â®çª¨N , K ¨ L â ª, çâ® AL = BK ¨ CN { ¡¨áá¥ªâà¨á  ã£«  C. �âà¥§ª¨ AK ¨ BL¯¥à¥á¥ª îâáï ¢ â®çª¥ P . �¡®§­ ç¨¬ ç¥à¥§ I ¨ J æ¥­âàë ¢¯¨á ­­ëå ®ªàã¦­®áâ¥©âà¥ã£®«ì­¨ª®¢ APL ¨ BPK á®®â¢¥âáâ¢¥­­®. �ãáâì Q { â®çª  ¯¥à¥á¥ç¥­¨ï ¯àï¬ëåCN ¨ IJ . �®ª ¦¨â¥, çâ® IP = JQ.3. �®ª ¦¨â¥, çâ® áãé¥áâ¢ã¥â ¡¥áª®­¥ç­® ¬­®£® ¯ à (m;n) ­ âãà «ì­ëå ç¨á¥«â ª¨å, çâ® ç¨á«® (m!)n + (n!)m + 1 ¤¥«¨âáï ­  m+ n.



XIV �¥¦¤ã­ à®¤­ ï � ãâëª®¢áª ï ®«¨¬¯¨ ¤  ¯® ¬ â¥¬ â¨ª¥�«¬ âë, 201813 ï­¢ àï 2018 £®¤ , 9.00-13.30�â®à®© ¤¥­ì(� ¦¤ ï § ¤ ç  ®æ¥­¨¢ ¥âáï ¢ 7 ¡ ««®¢)4. �à®ª®¤¨« § £ ¤ « ç¥âëà¥ ª«¥âª¨ â ¡«¨æë 2018 � 2018, ®¡à §ãîé¨¥ ¯àï¬®-ã£®«ì­¨ª á® áâ®à®­ ¬¨ 1 ¨ 4. �¥¤¢¥¤ì ¬®¦¥â ¢ë¡à âì ¢ â ¡«¨æ¥ «î¡®© ª¢ ¤à â,®¡à §®¢ ­­ë© 9 ª«¥âª ¬¨, ¨ á¯à®á¨âì, ¥áâì «¨ ¢ ­ñ¬ å®âï ¡ë ®¤­  ¨§ § £ ¤ ­­ëåª«¥â®ª. �  ª ª®¥ ­ ¨¬¥­ìè¥¥ ª®«¨ç¥áâ¢® â ª¨å ¢®¯à®á®¢ �¥¤¢¥¤ì ­ ¢¥à­ïª  á¬®-¦¥â ¯®«ãç¨âì ãâ¢¥à¤¨â¥«ì­ë© ®â¢¥â?5. � ©¤¨â¥ ¢á¥ ¢¥é¥áâ¢¥­­ë¥ a, ¯à¨ ª®â®àëå áãé¥áâ¢ã¥â äã­ªæ¨ï f : R ! Râ ª ï, çâ® f(x � f(y)) = f(x) + a[y] ¤«ï ¢á¥å ¢¥é¥áâ¢¥­­ëå x ¨ y ([y] ®¡®§­ ç ¥âæ¥«ãî ç áâì ç¨á«  y).6. � ®ªàã¦­®áâì á à ¤¨ãá®¬ R ¢¯¨á ­ ¢ë¯ãª«ë© è¥áâ¨ã£®«ì­¨ª ABCDEF .�¨ £®­ «¨ AD ¨ BE, BE ¨ CF , AD ¨ CF è¥áâ¨ã£®«ì­¨ª  ABCDEF ¯¥à¥á¥ª îâáï¢ â®çª åM , N ¨K á®®â¢¥âáâ¢¥­­®. �ãáâì r1, r2, r3, r4, r5, r6 { à ¤¨ãáë ®ªàã¦­®áâ¥©,¢¯¨á ­­ëå ¢ âà¥ã£®«ì­¨ª¨ ABM , BCN , CDK, DEM , EFN , AFK á®®â¢¥âáâ¢¥­­®.�®ª ¦¨â¥, çâ® r1 + r2 + r3 + r4 + r5 + r6 6 Rp3.
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