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ALGEBRA

Al
Let a,b,c be positive real numbers such that abc =1. Prove that

— + " + ] 4

@+ 4+t B4 +at ¢ +a +b-

Solution
First we remark that
a@ +b Eub(a3 +b3).
Indeed
d+b 2ab@ +b) & @ -a'b-ab*+p 20 o ata-b)-b*a-b)20

& (a-b)a* -bH20 o (a-b)(a* +b*)a+b)=0.

We rewrite the inequality as

| |
- -+
a5+h3+ﬂﬁt3 h5+c5+ba::ﬂ3 & +a° +cab’

+ " v

On the other hand the following inequality is true
a’ +bﬁ +ﬂb¢:‘3 Eab(a3 +b3 +::3} 5
and similar for the other two.
Finally, using AM-GM we get:
| [ | [ ] | 1y a+b+c
+ + < TR =
ﬂﬁ-i-hﬁ +'|'-'I hﬁ‘l'l'.'i +u2 rS +ﬂi +h1 HS 'l‘-hj +'I:'3 ﬂfj ,b{_' L‘ﬂ] a_‘l +153 +f‘3

- ,ir#jﬂ?‘_ i {ﬂ*i-fl-i-i'}l - [33}::!::' ]:
[T
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A2

Xy

Consider the sequence of rational numbers defned by x :% and x,,| == nzl.

¥
Xy =% +]

n

Show that the numerator of the lowest term expression of each sum ) x; is a perfect
k=1

square.

Solution

It is easily seen that the x,, are all rational numbers greater than 1. Rewrite the recurrence

formula in the form x, = Ll 551, %0 get
S =
ﬁx _ 1 =.1'21,,—::1.",,,+I_3={:h:i,.‘,-Z)l2
k=1 k Xp—=1 x-1 X, =1 x,=1 °

Finally, express the positive rational number x, —1 in lowest terms, x, —1= %. to deduce that

2 n
{ag? expresses Y, x; the lowest terms.
k=1

Since ged(a,b)=1 = ged(a-b,b)=1 = gcd((a—b)z,b)=l. Similarly we can prove

that ged((a—b)?,a) =1, which implies that ged((a—b)>,ab) =1.

The conclusion follows.
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A3
Find all the functions f :N — N such that:

n+ f(m)| f(n)+nf(m) (1)

forany m,ne N

Solution

We will consider 2 cases, whether the range of the functions is infinite or finite or in other
words the function take infinite or finite values.

Case 1. The Function has an infinite range. Let's fix a random natural number » and let m
be any natural number. Then using (1) we have

n+f{m)|f(n)+nf{m)=f(n}-—n2+n{f{m)+n) - n+f(m)[f(n}-n2.

. . 2 .
Since n is a fixed natural number, then f(n)—»n" is as well a fixed natural number, and
since the above results is true for any m and the function f has an infinite range, we can

choose m such that H+f(m:|>|f{ﬂ}'—ﬂz | . This implies that f(n}=n2 for any natural
number n. We now check that it is a solution. Since

n+ f(m)=n+ m*
and
f(n)+nf(m)= n> +nm’ =n(ﬂ+m2}
it IS straightforward that n+ f(m)| f(n)+nf(m)

Case 2. The Function has a finite range. Since the function takes finite values, then 1t exists a
natural number k such that [ < f(n) <k for any natural number ». [t is clear that it exists at

least one natural number s (where 1 <5 <k) such that f(n)=s for infinite natural numbers
n.Let m,n be any natural numbers such that f(m) = f(n)=s. Using (1) we have

2

n+s|s+ns=5s-s"+s(n+s) — n+s[52—s,

Since this is true for any natural number » such that f(n)=s and since exist infinite natural
7
numbers » such that f(n)=s, we can choose the natural number n such that n+s>s5" -5,

which implies that P =sos= |, or in other words f(n)=1 for an infinite natural number

n
Let's fix a random natural number m and let » be any natural number f(n)=1. Then using

(1) we have

n+f{m]fl+nf{m)=l—{f{m)}2+f{m){n+f{m}) = n+f{m)l{f{m})2 —1

) . " 2 . .
Since m is a fixed a random natural number, then (f(m))” —1 is a fixed non-negative
integer and since » 1s any natural nummber such that f(n)=1 and since exist infinite

numbers n such that f(n)=1, we can choose the the natural number »n such that

n+f{m}:~(f(m))2 —1. This implies f(m) =1 for any natural number m . We now check
that it is a solution. Since
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n+ f(m)=n+l
and
f(n)+nf(m)=1+n
it is straightforward that n + f(m)| f(n)+nf(m).

So, all the functions that satisfy the given condition are f(n) =n? for any neN or f(n)=1
forany neN.
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A4
Let M={(ﬂ,b,C)ER3:U{H,D,C{%wﬂthﬂ+b+c=]} and f:M —> R givenas

f(a.b.c) =4(i-+%+%) -1
Find the best (real) bounds @ and £ such that

f(M)Y={f(a,b,c):(a,b,c)e M} cC|a, f]
and determine whether any of them is achievable.

Solution
Let V(a,b,c)eM, a < f(a,b,c)< f and supose that there are no better bounds, i.e. a 1Is
the largest possible and £ is the smallest possible. Now,
a< fla,b,c)s f < aabc<4(ab+bc+ca)-1< Pabe

< (a-8)abc<4(ab+bc+ca)-8abc-1<(f~-8)abc

< (a—8)abc<1-2(a+b+c)+dab+bc+ca)—-8abc <(f—8)abc

< (a—8)abc <(1-2a)1-2b)1-2c)<(f-8)abc
For & <8, we have

(1-2a)1-2bX1-2¢) 20> (a—-8)abc.

So a =28 . But if we take £ >0 small and a=b=#+£* £‘=j2-—2E,WE'“ have:
—_gyl 1 1_ A . 1
(a 3){4+E}(4+£)(2 2¢) < (2 25](2 2e)4¢

Taking £¢—>0" , we get a—-8<0 . So a=8 and it can never be achieved.
For the right side, note that there is a triangle whose side-lengths are a,b,c . For this triangle,

denote p=~.1; the half-perimeter, § the area and r,R respectively the radius of

incircle,outcircle. Using the relations R = %.-' and § = pr . we will have:

(1-2a)1-2b)1~-2c)<(f-8)abc < (P—ﬂ}(p—b){p—c}g'[ﬂ'ﬁ}ahf

2 J i
o 35 < (B-8)ahc
P 8
= ziifﬁ—ﬂ}ﬂﬁf
P 45
= %azm—sr‘

Since the least value of {i is 2 (this is a well-known classic inequality), and it is achievable

1
3
Answer: a =8 not achievable and g =9 achievable.

ata=b=c==,wemust have =9,




34" Balkan Mathematical Olympiad 2017

AS
Consider integers m 22 and » > 1. Show that there is a polynomial P(x) of degree equal to n

with integer coefficients such that P(0), P(l),..., P(n) are all perfect powers of m .

Solution

Let ag,a,...,a, be integers 10 be chosen later, and consider the polynomial P(x) =L-Q(x)

where

n
0x)=Y (- *Da T (x-i).
k=0 ﬂ:’.;:-;n
I#

Observe that for / € {0,1,....n} wc have

P =L-0" ey T U-0)
0<i<n
il

=L gt -1"" -1y
So P(x) is the unique polynomial of degree at most » such that P(/)=a;. (Any two

polynomials of degree at most » agreeing on n+1 distinct values are equal.) Note in
particular that

z{“l}ﬂ_k{i’] [1 (x-i)=n' (*)
k=0 0<i<n
i#k

If p is a pnme dividing n!, we let r, be maximal such that prf’ divides »!. If p divides m,
then there is an integer d,, such that m? =0 (mod p'?), for example d p=rp Willdo. If p
does not divide m, then there is an integer d p such that mdF = | (mod pr” ). for example, by
Euler's theorem, d), =¢(p ?) will do. Let d = d|d,..d,, and observe that for every positive

integer + we have m'® =0 (mod p'?) if p|m and m" =1(mod p7) if ptm.

%d we will show

Now let f,....1,, be positive integers to be chosen later and define a; = m
that the polynomial P(x) has integer coefficients. We will also show that there is an
appropriate choice of 1y,...,7, such that P(x) has degree exactly equal to ».

To show that P(x) has integer coefficients it is enough to show that for every p dividing n!,

all coefficients of Q(x) are multiples of pr" . This is immediate if p divides m as all a; 's are

multiples of p'? . If p does not divide m then we have a; = | (mod prp} forevery 0 <k <n
and so by (*)
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Q(x) = i (-l}n_k(f} [l (x-i)=n!'=0(mod pP).
k=0 0<i<n
1#k

This shows that all coefficients of Q(x) are indeed multiples of p7 . It remains to show that
there is a choice of t,....1,, guaranteeing that the degree of P(x) is exactly equal to n. One
such choice is {p =2 and f; =...=1, = 1. This works because if P(x) had degree less than n,
then looking at the values P(1),...,P(n) we would get that P(x) is constant. But this is
impossible as P(0) = P(1).

Note. Looking at the coefficient of x” in the definition of P(x) it is not difficult to see that if
we fix any #,....1,, and pick 7y large enough we will get that this coefficient is non-zero. In

particular, we can additionally guarantee that P(0), P(1),..., P(n) are distinct perfect powers
of m.
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A6
Find all functions f: R — R satisfying

fx+yf(x*) = f(x) +5f ()
for all real numbers x and y.

Solution
Let P(x,y) be the assertion f[x+_1ﬂx2]}=j'(.r]+xf{xv}. P(1,0) yields f(0)=0. If there
exists xy # 0 satisfying f(.té):'ﬂ. then considering P(xy,y), we get f(xyy)=0 for all

y € R. In this case, since xy # 0, we can write any rcal number ¢ in the form xgy for some
y and hence we conclude that f(c¢) = 0. It is clear that the zero function satisfies the given

equation. Now assumc that f (.rz )20 forall x#0.
By P(l,y) we have
S+ =M+ f(p).
If f£(1) =1, there cxists a real number y satisfying 1+ yf(1) = y which means that (1) =0
which is a contradiction since f{x‘?) #0 for all x#0 . Therefore we get f(l)=1.

Considering P(x,—x/ f(x%)) for x #0, we obtain that

f(x)=~3f (-
f(x%)
Replacing x by —x in (1), we obtain f(x)=-f(-x) forall x#0._Since f(0)=0, we have

f(x)=-f(-x) forall xeR. Since [ is odd, P(x,~y) implies

fx=y(*) = f(x) -3 ()
and hence by adding P(x,y) and P(x,-y), we get

Fx+ AN+ f(x-y(x*) =2f(x) Vx,yeR

Putting y=x/ f (xz) for x 20 we get
f(2x)=2f(x) VxeR

) VxeR\{0}. (1)

and hence we have

f{x+ﬂ(xz))+f(x—yf(xz)) = f(2x) Vx,ye R

It is clear that for any two real numbers » and v with u # —v_ we can choose

X = H+V H.I'Id § V—u
. TS
yielding
S)+ f(v)= f(u+v). (2)

Since f is odd, (2) is also true for u = -v and hence we obtain that

J(x)+ f(y)=f(x+y) Vx,yeR
Therefore, P(x,y) implies

10
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FOr(2) =xf () ¥x,yeR

Hence we have

F(f(*) =xf(x) VxeR

and

ff (x*) =xf(x*) VxeR.
Using (2) and (3), we get
xf(x)+yf (¥)+xf(¥)+ 3 (x) = (x+ ) f(x)+ f(»))
= f(f((x+)?)
= f(f(x* +20:+ %))

= (76D + 16D+ @)

= f(S N+ 1(SOPN+ (S (2x))
=xf(x)+y(f(¥Y)+ [(f(2xv))
= xf(x)+ (S () + 2/ (f(xp))

and hence

2f(f(xy)=xf(y)+)f(x) Vx,yeR.
Using (5), we have

2f(f(x))=x+ f(x) VxeR.
Using (3) and (6), we obtain that

2xf(x) =21 (f(x*) = x* + f(x?) Vxek.
Putting y = f(x%) in (5) yields
2f(f (S (PN = (f(x*)+ () f(x) VxeR
Using (4), we get f(f(xf(x*))) = x7(x*) and by (3) and (8) we have

23 (x*) = 2 (fF &) = X (F 2N+ () f(x) =X f(x)+ f(x*) f(x) VxeR

Now using (7), write f(x>)=2xf(x)—x* in (9) to obtain that
2x(2xf (x)—x7) = X* £ (x) + 2%/ (x) - x*) (%)

which is equivalent to

Zx(x—f(x})z =0 Vxelk.

3)

(4)

(5)

(6)

(7)

(8)

9)

This shows that f(x)=x VxeR which satisfies the original equation. Therefore all

solutions are f(x)=0 VxelR and f(x)=x VxeR.

11
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NUMBER THEORY

NTI1
Find all pairs (x, y) of positive integers such that

x3+y3 =xz+42,1y+y2.

Solution
et d =(x,y) be the greatest common divisor of positive integers x and y.

So, x=ad, y=bd, where d e N, (a,b)=1, a,beN. We have
Yy =xt+@xy+y? o d(@ +b)=d*(a® +42ab+b?)
o d{a+b}(a2 —ab+b2}=a2 +42ab + b*
& (da+db-1)a*—ab+b%)=43ab.

If we denote ¢ =da+db—-1e N, then the equality a”c — abc + b2c =43ab implies the
relations

blcaz =) b[c} =5 ‘bl
alch? = alc

& c=mab, meN"

=% m{az-ab+bz)=43

= (a*-ab+b*)|43

& a’-ab+b*=1 or a’-ab+b® =43
If a® —ab+b* =1, then (a—b)° =1-ab=20 = a=b=1, 2d =44, (x,y)=(22,22).
[faz-ab+bz=43, then, by virtue of simmetry, we suppose that x=2y = az=2b. We
obtain that 43=a” -ab+b> >ab>b* = be(1,2,3,4,5,6).
Ifb=1, then a=7, d=1, (x,y)=(71) or (x,y)=(17).

If 6=6, then a=17, d=+§ﬁ! N,

For b €{2,3,4,5} there no positive integer solutions for a .
Finally, we have (x, y) € {(1,7).(7.1),(22,22)}.

12
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o=

NT2

Find all functions [ :Z.y — Z. such that the number x/(x)+ f 2 (¥)+2xf(y) is a perfect
square for all positive integers x, y .

Solution
Let pbe a prime number. Then for x = y = p the given condition gives us that the number

f 1( p)+3pf(p) is a perfect square. Then, f 2i{ p)+3pf(p)= k* for some positive integer k.
Completing the square gives us that (2/(p)+ Ii,c::r)2 —sz = 4k° , or

(2/(p)+3p-2k)2/ (P)+3p+2k)=9p° (1)
Since 2 f(p)+3p+3k >3p, we have the following 4 cases.

ﬁ_zf(p}+3p+2k:9p - 2f(P]+3P+2k=p2
2/(p)+3p-2k=p 2f(p)+3p-2k=9

2f(p)+3p+2k =3p? o |27y +3p+2k=9p7
12f{p)+3p-2k=3 2f(p)+3p—2k =1
Solving the systems, we have the following cases for f(p).

or

2 -1.2
Jf(p)=p or f(p)={%—3)z or f(p)==F _45"’_3 or f(.v)=(3’; o

In all cases, we see that f(p) can be arbitrary large whenever p grows.

Now fix a positive integer x. From the given condition we have that

(S +x) +5 (x)-%°
is a perfect square. Since for y being a prime, let y =g, f(g) can be arbitrary large and
.1j"{.r.:]—.1:r:Jl is fixed, it means that Jgf{x}—xz should be zero, since the difference of
{f(4:;')+.1n:+l]2 and (_)"{u:;r)+.1r)2 can be arbitrary large.

After all, we conclude that If{x)zxz . S0 f(x)=x, which clearly satisfies the given
condition,

13
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EE o —————-—

NT3
Prove that for all positive integer n, there is a positive integer m , that 7" |3 +5" —1.

Solution
We prove this by induction on n. The case n=1 1s indeed trivial for m =1. Assume that the

statement of the problem holds true for n, and we have 3™ +5™ -1 =7"1 for some positive
integer / which is not divisible by 7 (if not we are done). Since 3{’ =]l (mod7) and
5% =1 (mod 7) we conclude that,
37" 2 1(mod7"),587" " =1(mod7") .
Since
v (37 Z1y=v,(3° ~1)+v(7" ")=n and v?(sf“‘"" “D=v (¢ -1+ v (7" Y =n.

3'5.?"4

n-1
Thus we can say that: =1+7"r, 587" =147"s for some positive integers r,s. We

find the reminder of r.s module 7. Note that:
7k~ 671

k
yT -1 = y-I I-lr_lla'+.,+;,|f-“‘r'r 4y +...ty (*)
?k+| e 7 7

We use the above identity for y=3ﬁ,56. Note that in both cases y = (mod 7). Now we use
the following lemma
[.emma. Let p be an odd prime such that p|a—-1 then 5'%! p ( mudpzl.
Proof. Take a—1=5,then p|b now
al -1 _ (b+1)P -1
a-\ b
since all the binomial coefficients is divisible by p . So our proof is completc. »

Then by use of the lemma repeatedly we find that all the terms of the above identity (*)

except the first term is congruent to 1 modulo 7. Thus we can find that :
”

-1 w
yn-n " F'f H(mod 7)

= pP-! +...+(f]b+p =p ( modpzjl

Since
Yoo 104=-1,57 = 2232 = ~(mod 7)
we find that r = s = —1(mod 7), and by use of binomial theorem, we can casily find that

n-—| -1
T 147 (mod ™), S%T =14+ 7 st(mod 77 1)
for all positive integers .

Now take m +61-7" " instead of m .(while we will specify the number ¢ later) we can find
that:

-1 n-| n-| n-1
3ﬂl+'ﬁl“r‘l +5M+ﬂ? _I =3m _3&[? +5m _5&\"? "I

14
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Taking modulo 7”*! we can find that, the above expression is reduced to
3MA+7"r)+ 5" A +T7"s0)=1=3" 45" <1457 -7 st +3" 7"t
=7"(1+(5"s+3"r)t) (mod7"*")
Now, the problem reduced to finding a positive integer ¢ such that
[+(5"s+3"r) =0 (mod7)
since
55 +3"p=-5"-3"=|(mod 7).

Since 3" +5™ —1=0 (mod 7) whence, we find that ged(5" s+ 3™ r,7) = 1. Thus such integer
[ exisls, so we are done!

I5
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NT4
Find all pairs of positive integers (x, y), such that x2 is divisible by 2xy* — > +1.

Solution

If y=1, then 2x|x> < x=2n, neN. So, the pairs (x,y)=(2n, 1), neN satisfy the
required divizibility.

Let y >1 such, that x? is divisible by hyz ~_v3 +1. There exist m € N such that
x? =Jr:rl{2:vty2 —y3 +1), et x° —anzzxﬂmyj -m)=0.
The discriminant of last quadratic equation is equal 1o A= 4m’ y4 — 4my3 +4m . Denote

A=4m(y* )+ (y-1)%, B=am(y* +1)-(y+1)%.
For y>1, ye N and me N we have

A>0, B=4m(y2 +l]*—(y+l)2 > Z[yz +I)~(y+l)‘j' :(_v--l)2 20 = B>0.
We obtain the following estimations for the discriminant A:
A+A=C2my? -y+1)2 20 = A<(2m’ -y +1)%:
A-B=02m? -y-1?20 = A>(Q2m?-y-1)°
Because the discriminant A must be a perfect square, we obtain the equalities:
A=4m?y* —amy® +d4m=02m> -y)? < vV =4m = y=2k, keN, m=k* keN.

The equation x> —8k*x+k(8k*—k)=0 has the solutions x=k and x=8k"*—k , where
kelN

Finaly, we obtain that all pairs of positive integers (x,y), such that x* is divisible by
Zlyz—y3+l, are equal to (x,y) e {(2&,1],{&.,2&],(8&4 -k.2k)| k e N},

16
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NTS

Given a positive odd integer n, show that the arithmetic mean of fractional parts { }

k = l,...,%—__ is the same for infinitely many primes p .

Solution
We show that the arithmetic mean in question 18 % for infinitely many primes congruent to |

modulo 4.
Notice that {IE }— , where 7, is the remainder k%" leaves upon division by p. Clearly,
the r; are quadratic res:ducs modulo p.

If p is prime, and p—1 and » are relatively prime, then the 7, & :I,...,FT_I, are pairwise

distinct, since the k2", k=1,.. 2 , arc pairwise distinct modulo p, by Fermat's little

theorem. In this case, the ., k=1,.. ,P—— form the set R of all £— quadratlc residues

modulo p in the range | through p-1.
If, in addition, p is congruent to 1 modulo 4, then -1 is a quadratic residue modulo p. and
the assignment » - p—r, r € R, defines a permutation of R . In this case,

Sr=3(p-r)=B2-Fr,
rek rek reR

Z,.__&L”.
rel

and the arithmetic mean in question is +.

2

Finally, since n is odd, infinitely many primes congruent to 1 modulo 4 are also congruent to
2 modulo n, by Dirichlet's theorem on arithmetic sequences of integers, for such a prime p .

the numbers p—1 and n are clearly relatively prime. This completes the proof.

17
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GEOMETRY

Gl
Let ABC be an acute triangle. Variable points £ and F are on sides AC and 4B

respectively such that BC?> =B4.-BF+CE-CA . As E and F vary prove that the
circumcircle of AEF passes through a fixed point other than A .

Solution 1
Let H be the ortocenter of ABC and K.L,M be the feet of perpendiculars respectively from

A, B,C 1o their opposite sides of ABC . Also let D be the intersection point of lines BE and
CF . From power of point we have

BA-BM = BC-BK (1
and
CA-CL=CB-CK (2)
Adding (1) and (2) we have:
CA-CL+BA-BM = BC-BK +CB-CK = BC(BK +CK) = BC> (3)

Combining (3) with the problem statement BC? = BA-BF + CE -CA we have:
BA-BF - BA-BM =CA-CL-CE-CA
BA(BF — BM)=CA(CL-CE)
BA-FM =CA- LE
E _AB .. PBL
yo7ie (4)

AC CM

18
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Where the last equality follows from A A4MC ~aALB . Now since ’{ﬂz {%— and

AFMC = £ELB =90° we get that tnangles aFMC ~aELB . From this similarity we get
ALAED = XAEB = £LEB = AMFC =180 — XAFC =180 - £AFD.

meaning points A, D, E F are concylic.
Since both pairs {£,F} and {M, L} satisfy the problem condition, we must have this fixed
point we are looking for is the second intersection of the circumcircles around AFDE and
AMHL . Let this point be .X . We now prove that X 1s fixed on the circumcircle of AMHL
(which would imply X 1is fixed).
From the concylicity we have

LXLE =180 — LXLA= ANMA = LXMF and £LXEL = AXEA=180 - £XFA=£XFM
and from here we get a XLE ~a YMF . This similarity gives us

Koo LB
XM MF [5)

Now combining (4) and (5) we get -‘—;;LT= j"‘f—: which is a fixed quantity. Since points M L,

the circumcircle of AML , and ratio 2L are fixed, this implics that point X is fixed.

XM
Solution 2
Let the D be the ntersection of BE and CF and let circumcircle of triangle CFA4 intersect
BC at point G . From power of point we have
BG-BC =BF - -BA. (6)

A

G

Combining (6) with the problem statement we get
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BC? = BA-BF +CE -CA= BG-BC +CE -CA
and from here we get
CE-CA=BC(BC-BG)=BC-CG. (7)
(7) implies that £, 4, B,G are concyclic as well.

This gives us

ALGAC = LGAE = LGBE = £LCBD

and
ABAC — £GAC = £GAB = £LGAF = AGCF = £BCD.
Adding these two equalities gives us
£BAC = £CBD + £BCD =180 - £BDC .

This implies that 4,E.D,F are concyclic. Now let the second intersection of the
circumcircles of BDC and AFDE be X . We have

AXAB = LXAF = £XDF =180 - £XDC = £XBC (8)
and

AXAC = £XAE =180 - £LXDE = £XDB = £XCB (9)
(8) and (9) imply that BC is tangent to the circumcircles of a XAB and a X4C respectively.
Let AX , the radical axis of the two circumcircles, intersect BC' at 0. Now we have by

power of point
OB* = QX -Q4 = OC?
giving up that AX bisects BC. So X is the point on the median from A to side BC such

that £BXC =180 — £BAC . This point is unique and we have proven that it is always on the
circumcircle of 4EDF .
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G2
Let ABC be an acute triangle and D a variable point on side AC . Point £ is on BD such

W2 e .
that BE = &€ ;’%’{4. As D varies on side AC prove that the circumcircle of ADE passes

through a fixed point other than 4.

Solution

Let the circumcircle of triangle CED intersect BC at point & . From power of point we have
BG-BC=BE-BD. (1)

Combining (1) with the problem statement we get

BG-BC _ pp — BCP-CDCA

BD B

and from here we get
CD:-CA=BC(BC-BG)=BC-CG. (2)
(2) implies that D, 4, B,G are concyclic as well. This gives us

ABEC = £BGD =180 — £BAD =180 - £CAB.
Now let the circumcircle of ADE and BEC intersect again at .Y . Since
£LXCB = £XEB =180 — XXED = £XAD = £XAC
and
ABXC = £BEC =180 - £BAC
we have that X 1s on the unique circle through 4 and C tangent to side BC at point C and

circumcircle of BHC where H is the ortocenter of triangle ABC . This intersection is
unique and we are done.
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G3

Let ABC be a tnangle with AB < AC inscribed into a circle ¢. The tangent of ¢ at the point
C meets the parallel from B to AC at the point D. The tangent of ¢ at the point B meets
the parallel from C to AB at the point £ and the tangent of ¢ at the point C at the point L .
Suppose that the circumcircle ¢, of the tnangle BDC meets AC at the point 7 and the

circumcircle ¢ of the tnangle BEC meets AB at the point § . Prove that the lines
ST,BC, AL are concurrent.

Solution
We will prove first that the circle ¢; is tangent to A8 at the point B8 . In order to prove this,

we have to prove that £BDC = £ABC . Indeed, since BD| AC , we have that

£LDBC = £LACB . Additionally, £BCD = £BAC (by chord and tangent), which means that
the triarigles ABC, BDC have two equal angles and so the third ones are also equal. It

follows that £BDC = £ABC , so ¢ is tangent to AB at the point B .
Similarly, the circle ¢, is tangentto AC at the point C.

As a consequence, £ABT = £LACB (by chord and tangent) and also £BSC = LACB .

By the above, we have that £4BT = £BSC , so the lines BT, SC are parallel.

Now, let ST intersect BC at the point K . It suffice to prove that K belongs to AL .

From the trapezoid B7CS we get that
BK _ BT (1)
KC SC

and from the similar triangles ABT, ASC . we have that
BT AB
SC AS

By (1), (2) we get that
BK AB
KC AS

From the power of point theorem, we have that

AC? = 4B AS = 45 = A€~
AB
Going back into (3), it gives that
BK  AB’
KC 4c*
From the last one, it follows that X' belongs to the symmedian of the triangle ABC .
Finally, recall that the well known fact that since LB and LC are tangents, it follows that AL

1s the symmedian of the tnangle ABC . so K belongs to AL . as needed.

(2).
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G4

The acuteangled triangle ABC with circumcenter O is given. The midpoints of the sides BC,
CA and AB are D, E and F respectivelly. An arbitrary point M on the side BC, different of D,
is choosen. The straight lines AM and EF intersects at the point N and the straight line ON cut
again the circumscribed circle of the triangle ODM at the point P. Prove that the reflection of
the point M with respect to the midpoint of the segment DP belongs on the nine points circle
of the triangle ABC.

Solution.

The straight lines DO, EQO and FO are the perpendicular bisectors of the sides BC. CA and AB
respectively. It follows that [OM] is the diameter of the circumscribed circle of the triangle
ODM and MP L ON . The point O is the ortocenter of the triangle DEF (see the picture)

Let O be the circumcenter of the triangle DEF and /1 be the diametrically opposite point of

D. The circumscribed circle of the triangle DEF is the nine points circle of the triangle ABC.
It follows that EH L DE, FH 1L FD and ED || AF, DF|| AE . So, the point H is the

ortocenter of the triangle AEF.

A
Let ADNEF ={ 1} and R is the reflection of the point N with respect to the point 7/, ie.
Re(EF), NI =RI. The point / is the sismmetry center of the parallelogram AEDF. It
follows that the point / is the midpoint of the segment [OH] and the quadrilaterals AEDF',
ANDR, HNOR are all parallelograms.
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Let Q be the reflection of the point M with respect to the midpoint of the segment DFP. It
follows that the quadnlaterals PODM and MNRD are the parallelograms, which imply that
the quadnlateral PORN is a parallelogram. So, NO || HR, NP|| RQ . which imply that the

points /, R and O are collinear. We obtain that m (ZDQH )=90", i.c. the point O belongs on
the nine points circle of the triangle ABC.
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G5

Let ABC be an acute angled triangle with ortocenter / , centroid G and circumcircle o .
Let D and M respectively be the intersection of lines A/ and AG with side BC . Rays
MH and DG interect @ again at P and Q respectively. Prove that PD and OM intersect

on @ .

Solution 1
Note that it 1s enough to prove that LDPA+ LMQOA=180°.

Without loss of generality assume that AB < AC . Let the reflection of // in point M be H'.
Since BHCH ' 1s a paralelogram we get

£BH C = £BHC =180° - £BAC
which means /' lies on @ . Also we gel

AABH = £ABC + £CBH = £ABC + £BCH =90°

since CH L AB. This mean AH ' is the diameter of @ . This means £ MPA = £H PA=90°.
Since LMPA=ALMDA=90° we getthat M,D,P, A are concyclic.

'4
LAV AN
N

5

This gives us LDPA+ £LAMD =180°. So now 1t 1s enough to prove that LAMB = LMQOA .

Taking the homothety with center & and factor -2 (the homothety taking the 9 point circle
to the circumcircle of ABC' ), we get that 0 and A are images of D and M respectively.

P
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This means AQ || DM giving AQ|| BC . Since AQ||BC and A,B.C.Q are concyclic this
means ABCQ is an iscoseles trapezoid.

This means M lies on the perpendicular bisector of AQ . This gives us MA = MQ . Since
AQ|| BC this gives us LAQM = LOAM = £LAMB which concludes our problem.

Solution 2
We prove that M, D P, A are concyclic same as in solution 1. Let PDintersect @ again at §

. We see that this gives us £SAH = £SPH = ADPM = £DAM . Combining this with
ABAH'= £CAD we get:

£SAH + £SAB=&H AB = LCAD = LDAM + AMAC

N
RO

T

Combining (*) with £458 = LACB = LACM we get triangles ASB and ACM are similar.
This gives us

AM  CM
Analogously we get tnangles ASC and ABM are similar. This gives us

AB _ SB (**).
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AC _ SC (***)
AM  BM
Combining (**) and (***) we get

since BM =CM . Let SM intersect @ again at Q'. Let Q'D intersect AM at G'. We wish

to prove that Q'=Q and G'=G . It is enough to prove that AG =2G'M .
Since triangles SMB and CMQ' are similar we get

S8 _CQ

SM (M~ (2)
Analogously SMC and BMQ' are similar and we get

M _ BM

SC T BQY (3)
Multiplying (2) and (3) we get 32 = ";g: _Combining that with (1) we get

4B _ €O

a8 - 25 (4)

Since Q' and A4 are on the same side of BC (4) gives us AQ'|| BC . This means that
ABCQ' 1s an 1sosceles trapezoid.
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Let Q'S intersect 4D at point 7. Since MD || AQ"', MA= MQ' and LTAQ"'=90° we get
that M 1s center of the circumcircle of the rnight triangle 740".

Applying Menelaus' theorem on D-G —(' and triangle AMT we get

AG MO p _

MG' TO' AD ! ()
Since MA = MT and MD 1 AT this means

DA= DT . (6)
Also since M s the circumcenter of triangle 740" we get

2MQ =TQ". (7)

Combining (5) with (6) and (7) we get 2MG = AG'. This givesus G'=G and Q'=(Q, thus
proving the problem statement.
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G6
Construct outside the acute-angled tnangle ABC the 1sosceles triangles ABAgp, ABB, .
ACA, ACC 4, BCB¢- and BCCpg, so that

AB=ABy = BAg, AC = AC 4 =CAr, BC = BCpg =CB
and
ABAB = £ABAg = LCAC 4 = £ACA; = £BCB = £CBCp = a <90°.
Prove that the perpendiculars from A to B4C 4, from B to AzCpx and from C to A-Bg are

concurrent.

Solution.

Lemma. If BCD is the isoceles triangle which is outside the triangle ABC and has
not

LCBD = £BCD=90°-a: = f3,
then ADJ.BACA

Proof of the lemma. Construct an isosceles
triangle ABE outside the tnangle ABC, so that
£ABE = £AEB= 8.

Then AE=AB=AB, and £EAB, =a ,s0 a

rotation of center 4 and angle « sends ("4 to

(" and B, to E, hence £(B,4C 4,EC)=a (the

angle between vectors 1s considered oriented).
Also triangles £BA and BCD are similar, so a
rotation of center B and angle . followed by

¥ I - y .L{'ﬁ-. — ﬂ_‘- 3 I
a dilation of ratio T il 77 sends £ to 4 and

(' to D, hence i{ﬁ,,A_HD}: f (also oriented angle).
This shows that
£(B4C4.AD) = £(B4C 4, EC)+ £(EC.AD) =a+ f=90° . m
Returning to the solution of the problem. denote A' the intersection of BC with the
perpendicular from 4 to B4C . Then A' belongs to the segment BC and

A'B _ ABsin(B+f)
A'C ACsin(C+f)

Since similar relations are true for the intersections B'.C’' of the other two perpendiculars
with the opposite sides, this yields

A'B B'C C'4_ ABsin(B+f) BCsn(C+f) CAsin(A+f)
A'C B'A C'B ACsin(C+p) BAsin(A+f) CBsin(B+7)

whence the conclusion.
Remark. The conditions "acute-angled' and 'ar < 90°" are not essential, but without them there
are cases when 4' does not belong to the segment BC', or the perpendiculars become parallel.
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G7

Let ABC be an acute triangle with 48 # AC and circumcirle [". The angle bisector of BAC
intersects BC and I" at D and E respectively. Circle with diameter DE intersects [” again
at FF# E. Point P is on AF such that PB=PC and X and Y are feet of perpendiculars
from P to AB and AC respectively. Let H and H' be the ortocenters of ABC and AXY
respectively. AH meets [" again at Q. If AH' and HH ' intersect the circle with diameter
AH again at points S and 7 . respectively. prove that the lines A7 , HS and FQ are
concurrent.

Solution
WLOG, assume AB < AC . Let M be the midpoint of side BC and let the circumcircle of
DFE intersect AF again at K . Since

90’ + KMED = 180" — KMDE = £ABC +<B3C - ¢ AFE = XDFE + £AFD =90 + LAFD

.~

L it follows that

LAFD = “”‘-";‘f"”’ = AMED

Because
LDKE = LDME =90°

and

AKED = LKFE = LMED
we get aKDE =a MDE from
which it follows that DE 1s the
perpendicular bisector of MK
and here we get

LFAD = AKAD = AMAD .
It 1s obvious that P s the
y intersection of ME and AF . Let

ME intersect | again at L .

7 ..
K

\\ From the angle bisector theorem

in triangle a AMP we get
F Ll - AL - L (1)
ME  AM M

( LA 1s the external angle bi-
sector of KMAP since LE is the
diameter of 1'). Now we prove
that CE and CL are angle

bisectors of LMCP . Let M' be
the point on LE such that

AM CE = £ECP . From the angle bisector theorem we get
ME_CM' _M'L
PE (P PL

&

(2)
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Multiplying (1) and (2) we get ML

IM M'IL
which it follows that M = M ' and thus CE and CL are the bisectors of LMCP .

Now we have

=M E adding 1 on both sides we get LM = LM ' from

AMPC =90 - LMCP =90 -2LMCE =90 -2LEAC =90 - LBAC.

L

T
\ ~

e

e
tively. Since HN passes through
the midpoint of side BC and

£LBHC =180- £BAC = £BNC
it follows that BNCH is a para-
lelogram. From here we get that

ENCB=&£LHBC =90 - £ACB
giving us LNCA =90 and simila-
nly £KNBA=90 . This means AN
1s the diameter of I, so

ANAS = ANA A=90°
= LHSA = LHSA'
and from here we have HS || A'N .
Now since HS||A'N and M is

the midpoint of HN (because
BHCN 1s a paralelogram) we get

Since X' and Y are perpendicular
to AB and AC we have BXPM
and CYPM are concyclic. Here
we get

LMYC = LMPC =90 - £LBAC
and 1t follows that YM L AY .
Similanily we get XM 1 AY and
so M is the ortocentar of a AXY
givingus M =H".

Since ATHS and ATQF are both
concyclic 1t 1s enough to prove
that HSFQ 1s concyclic. Since

£BOC =180 — £BAC
= £LBHC
and /O L BC 1t follows that BC

is the perpendicular bisector of
HQ . It 1s enough to prove that

BC 1s the perpendicular bisector
of SF. Let AM and TH meet [

again at points A' and N respec-
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that //SNA' is a paralclogram. Since
KFAE = LEAM = LEAA’

o —

HS. AT are concurrent.

we get that FA'BC 1s an
1socelese  trapezoid  which
means that ME 1s the perpen-
dicular bisector of FA4' (since
it 1s the perpendicular bisector
of BC).

This gives us BF =CA'= BS
and CF = BA'=(CS giving us
that SBFC 1s a deltoid, mea-
ning that BC 1s the perpendi-
cular bisector of £S5 . This
means that /SFQ 1s an 1soce-

les trapezoid. Now from the
radical axis theorem of the cir-
cumcircles of HSFQ , HSAT

and ATQF we get that OF
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G8

Given an acute tnangle aABC (AC # AB) and let (C') be 1ts circumcircle. The excircle (C)
corresponding to the vertex A4, of center /,, tangents to the side BC at the point D and to
the extensions of the sides 4B, AC at the pomnts £.7Z respectively. Let /[ and L are the
intersection points of the circles (') and (C)), H the orthocenter of the tnangle aEDZ and
N the midpoint of segment EZ . The parallel line through the point /, to the line HL meets
the line /7 at the point (& . Prove that the perpendicular line (e) through the point N to the
to the line BC and the parallel line (&) through the point G to the line /L meet each other
on the hine /.

Solution
‘\- -l"
A H ;
\ e
ANY (e)
e L
e] “
ll". .
I - ‘\
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¥ = .
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' ".' .-'F"
‘ |
[ &
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#
'l' -
- !
[
E ]
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: / a

We have (e) L BC and Iuj'l' L BC [so (e)||/,D. Let T.S§ be the midpoints of the segments
HI,.HD respectively and ¥ the pomnt of intersection of the lines HD_ EZ Then, IS || /1,D.
TS L BC and SY 1 EZ .

The Euler circle (w) of the tnangle £DZ passes through the points V.Y S . Therefore, the
segment SN i1s a diameter of the circle (@) . Thus, the center of (@). let 7', 1s the midpoint

of the segment SN
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On the other hand, we know that the center of Euler circle (@) is the midpoint T of H/ . So
I'=T". Therefore, the line (e) passes through the points 7.§ .

Therefore, we get that the quadrilateral /HS/,N is parallelogram and its diagonals meet each
other at the point 7.

We consider the inversion /(/,./,2% ). As 1,2> =1,4-1,N we have /{N)= A. Similarly.
if M{.M, the midpoints of the segments DE _DZ respectively. we get. /(M;)=8 and
I(M>)=C.

Therefore, the circumcircle (C') of the triangle ABC is the image of the circle (@) under the
inversion / and the points of the intersection of the circles and (@) are invariant under this

inversion. But it 1s well known that the circle of inversion passes through the points of the
intersection of the circles (C') and (w). Thus. the Euler circle (@) passes through the points

L.L:.
Also, we consider the inversion J(/ .r:} with

r*=HX -HZ = HD-HY = HW - HE
where X WY the traces of the aluitudes of the tnangle £DZ on its sides. Then, J(Z7) = \.
J(D)=Y and J(E)=W . Therefore, the circumcircle (C)) of the tnangle ABC is the image
of the circle (@) under the inversion /. Thus, the circle of inversion J passes through the
points /, L .
We conclude that H/ = HL and HI, L /L and since (d)|| /L, we have HI, L (o).
If, R 1s the point of intersection of the lines (J), /L . we get that quadrilateral HRI,G 1s
parallelogram and its diagonals meet ¢ach other at the point 7. So, the perpendicular line (e)
through the point N to the to the line BC and the parallel line (&) through the point (G to
the line /L , meet each other on the line H/ , .
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COMBINATORICS

Cl

A grasshopper 1s sitting at an integer point in the Euclidean plane. Each second 1t jumps to
another integer point in such a way that the jump vector 1s constant. A hunter that knows
neither the starting point of the grasshopper nor the jump vector (but knows that the jump
vector for each second is constant) wants to catch the grasshopper. Each second the hunter

can choose one integer point in the plane and, if the grasshopper is there, he catches it. Can
the hunter always catch the grasshopper in a finite amount of time?

Solution
The hunter can catch the grasshopper. Here is the strategy for him. Let / be any bijection
between the set of positive integers and the set {((x, v).(u,v)): x, v.u,ve Z} , and denote

S(O) = ((xp, y0), (14, v,)) .
In the second r, the hunter should hunt at the point (x, +fu,, y, +tv,). Let us show that this

strategy indeed works.
Assume that the grasshopper starts at the point (x', y") and that the jump vector is (u',v').
Then in the second r the grasshopper is at the point (x'+ ', v'+1v'). Let

'rl :f_I{(Ir.,_}?I}.,(HI.,Vr}}.
The hunter's strategy dictates that in the second ' he searches for the grasshopper at the point
(x;+ 'up, ypo+t'vp), which is actually (x'+7'u', y'+1'v"), and this 1s precisely the point

where the grasshopper is in the second " This completes the proof.
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C2
Let n.a.b,c be natural numbers. Every point on the coordinate plane with integer coordinates

is colored in one of » colors. Prove there exists ¢ tnangles whose vertices are colored in the
same color, which are pairwise congruenl, and which have a side whose lenght 1s divisible by
a and a side whose lenght is divisible by 5.

Solution
Let the colors be dy.d5.d5....d,,. Look at the coordinates

(k.O+(n+Dabr),(k,ab+(n+Dabr), (k.2ab+(n+abr).... (k.nab+(n+1)abr)

for integers & and r. By the pigeonhole principle there are two points of the same color. For
every pair (k,r) we say the color 4, is (k.r)-good if at least two coordinates

(k,O+(n+Dabr),(k.ab+(n+Dabr).(k.2ab+(n+1)abr).,....(k.nab+(n+)abr)
are colored by color d,. Fixing r and taking & =0,ab,2ab.....n"ab get that some color, say

d\, was (k.r)-good for at least n+1.

Among the n+1 pairs (x,y) there exists two which share the same x cordinate. We call

such quadruple r-great. In every r-great quadruple there are two triangle whose vertecies are
all the same color and whose two sides are divisible by ab. Taking

2
=012 ..n(c(" Dy e+

we gel that there is one color which is in a r-great quadruple for at least

2
E{{["HH; +”)+|}+[
different values of r. Let this color be d;. Since there are less than {{””“gh”’] possible

2
triangles in any r-great quadruple (among c{('"”“; Hhyan+1 r-greal quadruples with the

color d|) we get that there are ¢ +1 triangles which are the same and the same color d| and

with two sides divisible by ab . This concludes the problem.
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C3
LLet n=4 points in the plane, no three of them are collinear. Prove that the number of

2
parallelograms of area 1, formed by these points, is at most ﬂ—;iﬂ,

Solution

Fix a direction in the plane. We cannot have three points in the same line parallel to the
direction so suppose that in that direction there are k pairs of points, each pair belonging to a
parallel line to the fixed direction. Then there are at most k —1 parallelograms of areca |
formed by these & pairs of points.

Summing over all directions we get that the number of parallelograms of area 1 are at most

(5)—s where s is the number of different directions. But in that way we count every

(5)—a

parallelogram two times, so the that the number of parallelograms of area | is at most

We will prove that s > n. Indeed, taking the convex hull of the »n points, let x be a point on
the boundary of the convex hull. Because the convex hull has at least three points on its
boundary, we can take two points which are neighbors of x in the convex hull, say y, - these

points. Then every segment starting from x has different direction from y=. So we have at

least n—1+1=n different directons. So the number of parallelograms 1s at most

Il.i:l

)
()-n _ p~—3n
2 4
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C4
For any set of points A4, 4,...., A, on the plane, one defines r(4.4,..... A,) as the radius of

the smallest circle that contains all of these points. Prove that if n = 3, there are indices i. j &
such that
r(A, 4. A =r(A4. A, A).

Solution.

We start with a lemma.

Lemma. II the tnangle AB8C 1s acute, r(A,B,C) 1s its circumradius and if it 1s obtuse.
r(A, B.C') 1s half the length of its longest side.

Proof.

Let us do the acute case first. The P
circumcircle contains the vertices. so

r(A,B,C) 1s not greater than the

circumradius. Now, let us prove that no

smaller circle contains all three vertices.

[f there 1s a smaller circle, lel its center f

be P . Further, let the circumcenter be O Tad
Since ABC is acute, () i1s in the

interior. Consider the line that passes

through O and is parallel to BC. Let us

call it /4 and define /y and /- similarly. ( {3

Now, consider the set of points that are
on the opposite side of /4 with respect to

A. Call this set S§4 and define S5 and

S¢: similarly. It is easily seen (by geometry) that S, Sz NS =9 . As such. assume

P ¢ § 4 without loss of generality. That is to say, £ is on the same side of /4 as 4. Now.
consider the perpendicular bisector of BC' and assume that P, w.l.o.g. i1s on the same side of
this line as C'. Under these circumstances. | PB |2 OB|. Thus, the smaller circle centered at
P must exclude B.

In the obtuse case, let £84C >290°. Then BC 1s the longest side. The circle with diameter

BC contains all three vertices. Therefore. r(.1. B,C’) 1s not greater than 5—| B(C|. But any

smaller circle will clearly exclude at leastone of B and (', =
Now, let us retumn to the original problem. Note that there must be points A, B, among

Ay . Ay ... A, such that the circumcircle of ABC' contains all » points. One can see this as

follows: First start with a large circle that contains all » points. Then shrink it while keeping
the center fixed. until one of the » points is on the circle and call this point 4. Then shrink it
keeping the point 4 in place and moving the center closer to 4. until another pomnt B 1s on
the circle. Then keep the line AB fixed while moving the center toward 1t or away from 1l so
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that another C among the n points appears on the circle. It is casy (o see that this procedure 1s
doable.
Consider all such triples A4, B.C such that the circumcircle of ABC contains all of

A . As..... A, Now choose the one among them with the smallest circumradius and let 1t be
A A A IE A4 A A 1s an acute triangle, any smaller circle will exclude one of 4,.4,, 4,

by the lemma above. Therefore,
r(A4y, Ay,... 4,) = circumradius of 4 A, 4 =r(4,.4,, 4;).

It 4,4,4; 15 an obtuse triangle, let A, be its obtuse angle. We wish to prove that the circle
with diameter A, .4, contains all n points. This will mean that

P(A. Ay Ag) = 5| A4 |=r(A4. A Ay)
and we will be done. If there are no points on the opposite side of A, 4, wrt. 4, then this
assertion 1s clear. If there are some points on that side, choose the one X such that £4, X4,
1s smallest possible. Then the circumcircle of 4, X4, contains all » points. However, by the
choice of 4, . the circumradius of A ,X4; cannot be less than that of 44,4, . Thus,

£A; XA, 2 £A4;4; 4, 290° . As such, the circle with diameter 4, 4; contains all n points.

‘-‘-‘_""—-r—"-'_

Figure 1: The circumcircles of 4,4, 4; and A, X4, as well as the circle with diameter 4, 4;

are shown.

Remark. The problem sclection committee recommended formulation of the task to improve.
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C5

We have n students sitting at a round table. Imtially each student 1s given one candy. At each
step each student having candies either picks one of its candies and gives it 1o one of 1S
neighbouring students, or distributes all of its candies to its neighbouring students in any way
he wishes. A distribution of candies i1s called legal if it can be reached from the imitial
distribution via a sequence of steps.

Determine the number of legal distributions. (All the candies are udentical. )

Solution

in _
)

i 2n:\ , ) ilfnis even.

The answer turns out to be (° n )ilmisoddand (°7, ") - 2(

Case |. Suppose n 1s odd, say n=2m+1. In this case we will show that any distnbution of

candies is legal. Thus the number of legal distributions is indeed (*"~').

In this case we can achieve the above claim by letting each student to always distribute all of
its candies to its two neighbouring students in some way. Thus at each step each candy will
move either one position clockwise or one anticlockwise.

We now look at the initial distribution of candies and the required final distribution. We
specify arbitrarily for each candy in the initial distribution, the position we wish this candy to
end up in the required final distribution. Because n is odd. either the clockwise distance or the
anticlockwise distance between the initial position of the candy and the required final
position is even and at most m .

Thus after an even number of steps (at most m ) we can move each candy 1o its required final
position. (Note that if the candy reaches the required position carlier. we can move 1t back
and forth until all candies reach their required position.) This completes the proof ol our
claim in this case.

Case 2. Suppose n is even, say n=2m. Lel xj....xy,, be the students in this cyclic order.
Observe that initially the students with even indices (even students) have at least one candy in
total, and so do the students with odd indices (odd students). This property is preserved after
each step.

We will show that every distribution in which the even students have at least one candy in
lotal and the odd students also have at least one candy in total is legal.

l.et us suppose that the required final distnbution has a candies 1n odd positions and b candies
in even positions. (Where a.b 21.) It will be enough to reach any position with a candies 1n
even positions and b candies in odd positions as then we can follow the same approach as in
Case |

To achieve this we will first move all candies to students x; and x, . This 1s casy by
specifying that at each step x; moves all of its candies to x; while for 1 <r <2m -1 student
X, 41 moves all of its candies to x,.

Suppose that we now have a+ k& candies at x; and b -k candies at x5 where without loss of
generality K =2 0. If k£ =0 we have reached our target. If not, 1n the next step x; moves a

candy to x, and x, moves a candy o x3. In the next step x; (itsull has a+k-1za>0
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candies) moves a candy 1o x5, x, moves a candy to x; and x3 moves a candy o x; . We
now have a+k -1 candies in x; and b+1-k in x, . Repeating this process another k - |
times we end up with a candies in x) and b candies in x5 as required.

[t remains to count the total number of legal configurations in this case. This is indeed equal
lo

n_

2n-1 ]
"p ]"_2{""}

!

in _

2n- . - . , I ..
as ('), ') counts the total number of configurations while ( 2, ) counts the number of illegal

configurations where either all » candies belong to the % odd positions or all n candies

] » ﬂ » » 1
belong to the < even positions.

=
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e ————— = e e

Cé
What is the least positive integer k such that, in every convex 101-gon, the sum of any &
diagonals 1s greater than or equal to the sum of the remaining diagonals”

Solution
Let PQ=1. Consider a convex 10l-gon such that one of its vertices 1s at P and the

remaining 100 vertices are within £ of O where £ 1s an arbitrarily small positive real. Lel
k +1 equal the total number 12128 = 4949 of diagonals. When & <4851. the sum of the &

shortest diagonals is arbitrarily small. When & > 4851, the sum of the k& shortest diagonals is
arbitrarily close to k —4851 = 98—/ and the sum of the remaining diagonals i1s arbitranly
close to /. Therefore. we need to have / <49 and k& = 4900 .

We proceed to show that &k =4900 works. To this end, colour all /=49 remaining
diagonals green. To each green diagonal 4B . apart from, possibly, the last one, we will
assign two red diagonals AC and CB so that no green diagonal is ever coloured red and no
diagonal is coloured red twice.

Suppose that we have already done this for 0 <i <48 green diagonals (thus forming /1 red-
red-green triangles) and let AB be up next. Let D be the set of all diagonals emanating from
A or B and distinct from AB : we have |D|=2-97=194 . Every red-red-green triangle
formed thus far has at most two sides in D . Therefore, the subset £ of all as-of-vet-
uncoloured diagonals in [ contains at least 194 - 2; elements.

When /<47, 194-2/2100 . The total number of endpoints distinct from 4 and B of

diagonals in D, however, is 99. Therefore, two diagonals in £ have a common endpoint
and we can assign AC" and (B to AB . as needed.

The case i =48 is slightly more tricky: this time, it 1s possible that no two diagonals in £
have a common endpoint other than 4 and B. bul, if so, then there are two diagonals in £
that intersect in a point interior to both. Otherwise, at least one (say, a) of the two vertices
adjacent to A is cut off from B by the diagonals emanating from A and at least one (say, b)
of the two vertices adjacent to B is cut off trom A4 by the diagonals emanating from A (and
a#b). This leaves us with at most 97 suitable endpoints and at least 98 diagonals in £. a
contradiction,

By the tnangle inequality, this completes the solution.
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