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The problems of this contest are to be kept confidential until they are posted on the
official IGO website: igo-official.com

Problem 1. Find the angles of the pentagon ABCDE in the figure below.
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Problem 2. An isosceles trapezoid ABCD (AB ∥ CD) is given. Points E and F lie on the
sides BC and AD, and the points M and N lie on the segment EF such that DF = BE and
FM = NE. Let K and L be the foot of perpendicular lines from M and N to AB and CD,
respectively. Prove that EKFL is a parallelogram.

Problem 3. Let ABCDE be a convex pentagon such that AB = BC = CD and ∠BDE =
∠EAC = 30◦. Find the possible values of ∠BEC.

Problem 4. Let AD be the internal angle bisector of triangle ABC. The incircles of triangles
ABC and ACD touch each other externally. Prove that ∠ABC > 120◦. (Recall that the incircle
of a triangle is a circle inside the triangle that is tangent to its three sides.)

Problem 5. a) Do there exist four equilateral triangles in the plane such that each two have
exactly one vertex in common, and every point in the plane lies on the boundary of at most two
of them?
b) Do there exist four squares in the plane such that each two have exactly one vertex in common,
and every point in the plane lies on the boundary of at most two of them?
(Note that in both parts, there is no assumption on the intersection of interior of polygons.)

Time: 4 hours.
Each problem is worth 8 points.

https://igo-official.com/


9th Iranian Geometry Olympiad

Intermediate level
October 14, 2022

The problems of this contest are to be kept confidential until they are posted on the
official IGO website: igo-official.com

Problem 1. In the figure below we have AX = BY . Prove that ∠XDA = ∠CDY .
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Problem 2. Two circles ω1 and ω2 with equal radius intersect at two points E and X. Arbitrary
points C,D lies on ω1, ω2. Parallel lines to XC,XD from E intersect ω2, ω1 at A,B, respectively.
Suppose that CD intersect ω1, ω2 again at P,Q, respectively. Prove that ABPQ is concyclic.

Problem 3. Let O be the circumcenter of triangle ABC. Arbitrary points M and N lie on
the sides AC and BC, respectively. Points P and Q lie in the same half-plane as point C with
respect to the line MN , and satisfy △CMN ∼ △PAN ∼ △QMB (in this exact order). Prove
that OP = OQ.

Problem 4. We call two simple polygons P , Q compatible if there exists a positive integer k such
that each of P,Q can be partitioned into k congruent polygons similar to the other one. Prove
that for every two even integers m,n ≥ 4, there are two compatible polygons with m and n sides.
(A simple polygon is a polygon that does not intersect itself.)

Problem 5. Let ABCD be a quadrilateral inscribed in a circle ω with center O. Let P be the
intersection of two diagonals AC and BD. Let Q be a point lying on the segment OP . Let E
and F be the orthogonal projections of Q on the lines AD and BC, respectively. The points M
and N lie on the circumcircle of triangle QEF such that QM ∥ AC and QN ∥ BD. Prove that
the two lines ME and NF meet on the perpendicular bisector of segment CD.

Time: 4 hours and 30 minutes.
Each problem is worth 8 points.

https://igo-official.com/


9th Iranian Geometry Olympiad

Advanced level
October 14, 2022

The problems of this contest are to be kept confidential until they are posted on the
official IGO website: igo-official.com

Problem 1. Four points A, B, C, and D lie on a circle ω such that AB = BC = CD. The
tangent line to ω at point C intersects the tangent line to ω at point A and the line AD at points
K and L. The circle ω and the circumcircle of triangle KLA intersect again at M . Prove that
MA = ML

Problem 2. We are given an acute triangle ABC with AB ̸= AC. Let D be a point on BC
such that DA is tangent to the circumcircle of triangle ABC. Let E and F be the circumcenters
of triangles ABD and ACD, respectively, and let M be the midpoint of EF . Prove that the line
tangent to the circumcircle of AMD through D is also tangent to the circumcircle of ABC.

Problem 3. In triangle ABC (∠A ̸= 90◦), let O,H be the circumcenter and the foot of the
altitude from A respectively. Suppose M,N are midpoints of BC,AH respectively. Let D be
the intersection of AO and BC and let H ′ be the reflection of H about M . Suppose that the
circumcircle of OH ′D intersects the circumcircle of BOC at E. Prove that NO and AE are
concurrent on the circumcircle of BOC.

Problem 4. Let ABCD be a trapezoid with AB ∥ CD. Its diagonals intersect at a point P . The
line passing through P parallel to AB intersects AD and BC at Q and R, respectively. Exterior
angle bisectors of angles DBA, DCA intersect at X. Let S be the foot of X onto BC. Prove
that if quadrilaterals ABPQ,CDQP are circumscribed, then PR = PS.

Problem 5. Let ABC be an acute triangle inscribed in a circle ω with center O. Points E,F
lie on its sides AC,AB, respectively, such that O lies on EF and BCEF is cyclic. Let R, S be
the intersections of EF with the shorter arcs AB,AC of ω, respectively. Suppose K,L are the
reflection of R about C and the reflection of S about B, respectively. Suppose that points P and
Q lie on the lines BS and RC, respectively, such that PK and QL are perpendicular to BC.
Prove that the circle with center P and radius PK is tangent to the circumcircle of RCE if and
only if the circle with center Q and radius QL is tangent to the circumcircle of BFS.

Time: 4 hours and 30 minutes.
Each problem is worth 8 points.

https://igo-official.com/
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Elementary Level

1





Problems

Problem 1. Find the angles of the pentagon ABCDE in the figure below.
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(→ p.5)

Problem 2. An isosceles trapezoid ABCD (AB ∥ CD) is given. Points E and F lie on the
sides BC and AD, and the points M and N lie on the segment EF such that DF = BE and
FM = NE. Let K and L be the foot of perpendicular lines from M and N to AB and CD,
respectively. Prove that EKFL is a parallelogram.

(→ p.6)

Problem 3. Let ABCDE be a convex pentagon such that AB = BC = CD and ∠BDE =
∠EAC = 30◦. Find the possible values of ∠BEC.

(→ p.7)

Problem 4. Let AD be the internal angle bisector of triangle ABC. The incircles of triangles
ABC and ACD touch each other externally. Prove that ∠ABC > 120◦. (Recall that the incircle
of a triangle is a circle inside the triangle that is tangent to its three sides.)

(→ p.8)

Problem 5. a) Do there exist four equilateral triangles in the plane such that each two have
exactly one vertex in common, and every point in the plane lies on the boundary of at most two
of them?
b) Do there exist four squares in the plane such that each two have exactly one vertex in common,
and every point in the plane lies on the boundary of at most two of them?
(Note that in both parts, there is no assumption on the intersection of interior of polygons.)

(→ p.9)
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Solutions

Problem 1. Find the angles of the pentagon ABCDE in the figure below.
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Proposed by Morteza Saghafian - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.
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It’s easy to see that the triangles △CBX,△CXY,△CYD,△ABX,△AXZ,△EDY,△EY Z are
all congruent. So 360◦ = ∠CXY + ∠CXB + ∠BXA + ∠AXZ + ∠Y XZ = 4∠CXY + 60◦.
So ∠CXY = 75. So ∠ABC = ∠CDE = 150◦ and ∠BCD = 90◦. So ∠BAE + ∠DEA =
540◦ − ∠ABC − ∠BCD − ∠CDE = 150◦.Because ∠BAE and ∠DEA are equal, then they are
each 75◦

5



6 Elementary Level

Problem 2. An isosceles trapezoid ABCD (AB ∥ CD) is given. Points E and F lie on the
sides BC and AD, and the points M and N lie on the segment EF such that DF = BE and
FM = NE. Let K and L be the foot of perpendicular lines from M and N to AB and CD,
respectively. Prove that EKFL is a parallelogram.

Proposed by Mahdi Etesamifard - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let the line at F parallel to BC intersect AB,CD in P and Q respectively.
Since BP∥QC and PQ∥BC the quadrilateral PBCQ is a parallelogram.
We have FP = AF because ∡FPA = ∡FAP , hence FP = AF = EC
Letting O be the midpoint of MN :

OF = OE,FP = EC,∡PFO = ∡CEO

in fact PFO ∼= CEO. Now excluding the points A and D the figure is completely symmetric
with respect to O hence FK = EL,FK∥EL, therefore FKEL is a parallelogram.
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Solutions 7

Problem 3. Let ABCDE be a convex pentagon such that AB = BC = CD and ∠BDE =
∠EAC = 30◦. Find the possible values of ∠BEC.

Proposed by Josef Tkadlec - Czech Republic
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Answer: 60◦.

A

B C

D

E ′

30 30
60

Fix A,B,C,D such that AB = BC = CD and ABCD is convex. Note that the point E is
uniquely determined by the angle conditions.
Let E ′ be a point such that BCE ′ is equilateral (and A,E ′, D all lie on the same side of BC).
By inscribed angles we have ∠BDE ′ = 1

2
∠BCE ′ = 30◦ and likewise ∠E ′AC = 30◦. Hence

E ′ ≡ E and ∠BEC = ∠BE ′C = 60◦.



8 Elementary Level

Problem 4. Let AD be the internal angle bisector of triangle ABC. The incircles of triangles
ABC and ACD touch each other externally. Prove that ∠ABC > 120◦. (Recall that the incircle
of a triangle is a circle inside the triangle that is tangent to its three sides.)

Proposed by Volodymyr Brayman - Ukraine
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Denote by ω(I, r) and ω1(I1, r1) the incircles of triangles ABC and ACD, respectively.
Let T be the point where ω1 touches AD. Point I1 lies on the segment CI, so the distance from
I1 to BC is less than the distance from I to BC. Hence r1 < r. Consider right triangle II1T
(∠ITI1 = 90◦). Since II1 = r + r1 > 2r1 = 2I1T , we have ∠TI1I > 60◦. On the other hand,
∠TI1I + 90◦ = ∠AIC = 1

2
∠ABC + 90◦. Thus 1

2
∠ABC > 60◦ , or ∠ABC > 120◦.

A

B CD

ω

ω1

T

I
I1

Remark. It can be shown that triangle ABC satisfies condition of the problem if and only if
2 cos B

2
= 1− sin C

2
.
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Problem 5. a) Do there exist four equilateral triangles in the plane such that each two have
exactly one vertex in common, and every point in the plane lies on the boundary of at most two
of them?
b) Do there exist four squares in the plane such that each two have exactly one vertex in common,
and every point in the plane lies on the boundary of at most two of them?
(Note that in both parts, there is no assumption on the intersection of interior of polygons.)

Proposed by Hesam Rajabzadeh - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. a) The answer is no. We begin with a lemma.

Lemma. Given two segments AB,CD of equal length, there is at most one point Z such that the
(clockwise or counter-clockwise) rotation of angle 60◦ with center Z maps AB to CD.

Proof. Consider Cartesian coordinate system on the plane and suppose that in this coordinate

system the vector
−→
AB lies on x-axis and points to the right. Suppose that there is Z such that

the rotation of 60◦ with center Z maps exactly A to C and B to D (by symmetry, other cases

are similar). Therefore, this rotation maps vector
−→
AB to

−−→
CD. In particular,

−−→
CD makes angle

60◦ with the positive direction of x-axis. We claim that such point Z is unique. Note that both
triangles ZAC,ZBD are equilateral, so Z lies on the perpendicular bisectors of AC,BD. This
intersection point is unique unless AC ∥ BD. In this case, Z is the intersection point of lines
AB,CD.
Now, if there is another point Z ′ such that the rotation of 60◦ with center Z ′ maps exactly A to

D and B to C, by similar arguments
−−→
DC makes angle 60◦ with the positive direction of x-axis

which is a contradiction with the angle between
−−→
CD and the positive direction of x-axis. The

proof of lemma is complete.

We return to the main problem. Assume to the contrary that there exist four equilateral triangles
△1,△2,△3,△4 satisfying the conditions. The conditions imply that there are six points in the
plane; each is the vertex of exactly two of △i’s.
First suppose that △i’s are mutually non-congruent. Suppose that △1 = XAC and △2 = XBD,
and the labels of the vertices are so that the counter-clockwise rotation of 60◦ with center X
maps A to C and B to D, respectively. So this rotation will map vector

−→
AB to

−−→
CD (in particular

AB = CD).
Next, denote the common vertex of △3,△4 by Y . We have several cases.

• △3 = Y AB,△4 = Y CD. In this case, we have

Y B = Y A = AB = CD = Y C = Y D.

So △3 ≡ △4, contradicting our assumption.

• The remaining two triangles are △3 = Y AD,△4 = Y BC. In this case, either △Y BD ≡
△Y AC or △Y CD ≡ △Y BA. In the former case, we have AC = BD and so △1 ≡ △2.
This leads to contradiction with the assumption of triangles not being congruent. In the
latter case, we get a rotation of angle 60◦ with center Y maps AB to CD. Note that the
point X has the same property so in view of lemma we must have X = Y . This leads to a
contradiction with the assumptions as X is a common vertex of all triangles.

Now suppose that two equilateral triangles △1 = XAC,△2 = XBD are congruent. This implies
that points A,B,C,D lie on the same circle with center X. So in particular, X lies on the
perpendicular bisectors of any pair from {A,B,C,D}. Assume that the labels of the points are
chosen so that the counter-clockwise rotation of 60◦ with center X maps A to C and B to D,



10 Elementary Level

respectively. By arguments similar to what we have done before, the angle between lines AB,CD
is 60◦.
Denote the common vertex of the remaining two triangles by Y . We have several cases.

• The remaining two triangles are △3 = Y AB,△4 = Y CD. So, Y lies on the perpendicular
bisector of AB,CD. Since AB is not parallel to CD, their perpendicular bisectors meet at
the unique point X and so X = Y . This leads to contradiction as X = Y became a vertex
of all four triangles.

• The remaining two triangles are △3 = Y AD,△4 = Y BC. So, Y lies on the perpendicular
bisector of AD,BC. Now, if AD ̸∥ BC, similar to the previous item, we get X = Y ,
contradiction. But if AD ∥ BC, since ∠BY C = ∠DY A = 60◦, Y should be the intersection
point of AC,BD and A,X,D are collinear. This also leads to a contradiction, as point X
is on the boundary of three triangles XBD,XAC,AY D.

So the proof is complete.

b) The answer is yes. First consider three squares Q1, Q2, Q3, as figure below.

2k

2k

2

A

B

C

O

Q1

Q2

Q3

Q1

Q2

Q3

Q4

D

Note, if we denote the vertices of the squares by A,B,C,D (as in the left figure above) and the
center of Q3 by O, then right-angled triangles ABD and AOC are congruent. So, AC = AB and

∠CAB = ∠CAO + ∠DAB = 90◦.

Therefore, A,C,B are three vertices of a square, say Q4. Then, Q1, Q2, Q3, Q4 satisfy all required
conditions (see figure right above).
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Problems

Problem 1. In the figure below we have AX = BY . Prove that ∠XDA = ∠CDY .

A X Y B

C

D

ω

(→ p.15)

Problem 2. Two circles ω1 and ω2 with equal radius intersect at two points E and X. Arbitrary
points C,D lies on ω1, ω2. Parallel lines to XC,XD from E intersect ω2, ω1 at A,B, respectively.
Suppose that CD intersect ω1, ω2 again at P,Q, respectively. Prove that ABPQ is concyclic.

(→ p.16)

Problem 3. Let O be the circumcenter of triangle ABC. Arbitrary points M and N lie on
the sides AC and BC, respectively. Points P and Q lie in the same half-plane as point C with
respect to the line MN , and satisfy △CMN ∼ △PAN ∼ △QMB (in this exact order). Prove
that OP = OQ.

(→ p.17)

Problem 4. We call two simple polygons P , Q compatible if there exists a positive integer k such
that each of P,Q can be partitioned into k congruent polygons similar to the other one. Prove
that for every two even integers m,n ≥ 4, there are two compatible polygons with m and n sides.
(A simple polygon is a polygon that does not intersect itself.)

(→ p.18)

Problem 5. Let ABCD be a quadrilateral inscribed in a circle ω with center O. Let P be the
intersection of two diagonals AC and BD. Let Q be a point lying on the segment OP . Let E
and F be the orthogonal projections of Q on the lines AD and BC, respectively. The points M
and N lie on the circumcircle of triangle QEF such that QM ∥ AC and QN ∥ BD. Prove that
the two lines ME and NF meet on the perpendicular bisector of segment CD.

(→ p.19)

13
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Solutions

Problem 1. In the figure below we have AX = BY . Prove that ∠XDA = ∠CDY .

A X Y B

C

D

ω

Proposed by Iman Maghsoudi - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let O be the circumcenter of ω. Since OY ⊥ AB,OD ⊥ AD, we obtain that AY OD
is a square, therefore OY = AD,∠OY B = ∠DAX = 90◦, it implies that triangles DAX,OY B
are congruent. Hence ∠XDA = ∠BOY = ∠CDY .

A X Y B

C

D

ω

O

15



16 Intermediate Level

Problem 2. Two circles ω1 and ω2 with equal radius intersect at two points E and X. Arbitrary
points C,D lies on ω1, ω2. Parallel lines to XC,XD from E intersect ω2, ω1 at A,B, respectively.
Suppose that CD intersect ω1, ω2 again at P,Q, respectively. Prove that ABPQ is concyclic.

Proposed by Ali Zamani - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Since two circles are equal and EA ∥ XC, we have ∠ECX =

>
EX
2

= ∠EAX =
180◦ − ∠AXC, it shows that AX ∥ EC and AXCE is parallelogram. Similarly BEDX is
parallelogram. From these we get AE = XC,BE = XD,∠AEB = ∠CXD, then two triangles
EAB,XCD are congruent and AB ∥ CD.
On the other hand

∠AQP = ∠AQD = ∠AQE + ∠EQX + ∠XQD

= ∠XPC + ∠EPX + ∠BPE

= ∠BPC = ∠BPQ

Hence ABPQ is isosceles trapezoid and we are done.

ω1 ω2

E

X

P
Q

B A

C D
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Problem 3. Let O be the circumcenter of triangle ABC. Arbitrary points M and N lie on
the sides AC and BC, respectively. Points P and Q lie in the same half-plane as point C with
respect to the line MN , and satisfy △CMN ∼ △PAN ∼ △QMB (in this exact order). Prove
that OP = OQ.

Proposed by Medeubek Kungozhin - Kazakhstan
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. From the statement we get quadrilaterals ANCP and BMCQ are concyclic, so

∠ACP = ∠ANP = 180◦ − ∠APN − ∠PAN

= 180◦ − ∠ACB − ∠BMQ

= 180◦ − ∠ACB − ∠BCQ

It implies that the points P,C,Q are collinear.
Let MN meet circumcircles of triangles ANC,BMC again at E,F . We have

∠ANP = ∠ENC,∠CMF = ∠BMQ

A

B C

O

M

N

P

Q

E

F

It shows that quadrilaterals AEPC,BQFC are isosceles trapezoids, then O lies on perpendicular
bisectors of EP, FQ(since O lies on perpendicular bisectors of AC,BC). Also we have

∠NEP = ∠NCQ = 180− ∠CQF = 180− ∠PQF

Therefore the quadrilateral EPQF is inscribed in a circle centered at O and this completes the
proof.
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Problem 4. We call two simple polygons P , Q compatible if there exists a positive integer k such
that each of P,Q can be partitioned into k congruent polygons similar to the other one. Prove
that for every two even integers m,n ≥ 4, there are two compatible polygons with m and n sides.
(A simple polygon is a polygon that does not intersect itself.)

Proposed by Hesam Rajabzadeh - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. We begin the solution with a lemma.

Lemma. Compatibility is an equivalence relation.

Proof. We only need to check transitivity, i.e. whenever a polygon Q is compatible to both
polygons P and R, then P is compatible with R. The other properties are trivial from the
definition.
Clearly, if P can be partitioned into m congruent polygons Q1, . . . , Qm similar to Q, and Q can
be partitioned into n congruent polygons R1, . . . , Rn similar to R, then one can partition each of
Qi’s into n congruent polygons Ri,1, . . . , Ri,n similar to R. Note that every pair of polygons of
the from Ri,j are congruent (because they have equal area), so {Ri,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a
partition of P into mn congruent polygons similar to R. Similarly, one can show that R can be
partitioned into mn congruent polygons similar to P and the proof is complete.

In view of above lemma, it suffices to introduce a polygon P such that for every even number d
there is simple d-gon compatible to P . We claim that one can take P to be a square.
For every k ≥ 1, consider the following staircase (2k + 2)-gon with two sides of length 2k and 2k
sides of length 2 and denote it by Pk.

2k

2k

2

Obviously, Pk can be partitioned into 4k(k+1)
2

= 2k(k + 1) unit squares. On the other hand, one
can partition a rectangle with side lengths 2k, 2k + 2 into two polygons congruent to Pk, and a
square with side length 2k(k + 1) can be partitioned into k(k + 1) of such rectangles. Putting
these together, a square can be partitioned into 2k(k + 1) polygons congruent to Pk. This shows
that for every k ≥ 2, Pk is compatible with the unit square and so by the lemma, for every pair
k, k′ ∈ N of even numbers, Pk and P ′

k are compatible and the proof is complete.
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Problem 5. Let ABCD be a quadrilateral inscribed in a circle ω with center O. Let P be the
intersection of two diagonals AC and BD. Let Q be a point lying on the segment OP . Let E
and F be the orthogonal projections of Q on the lines AD and BC, respectively. The points M
and N lie on the circumcircle of triangle QEF such that QM ∥ AC and QN ∥ BD. Prove that
the two lines ME and NF meet on the perpendicular bisector of segment CD.

Proposed by Tran Quang Hung - Vietnam
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. We reformulate the problem into a triangle version as follows
Problem. Let ABC be a triangle. The circle (K) passing through B,C cuts the segments
CA,AB again at E,F , respectively. BE meets CF at H. Let P be a point lying on the segment
KH. The circle with diameter PA meets CA,AB again at M,N , respectively. Points S, T lie on
the circle with diameter PA such that PS ∥ BE,PT ∥ CF . Prove that MS and NT intersect
on the perpendicular bisector of BC.

A

B C

E

F

H

K

P
N

M

S

T

G

L

Q

Two circumcircles of triangles AEF and ABC meet again at G. Easily seen AG ⊥ GK (from the
property of Miquel point) so G lies on the circle with diameter AP . Let GK meet the circumcircle
of triangle AEF again at L, then AL is the diameter of circumcircle of triangle AEF , therefore
AL ⊥ BC. Let MS meet NT at Q, we need to prove that KQ ⊥ BC. Indeed, we see that
PS ∥ BE and PM ⊥ AC, angles chasing give us

∠NMQ = ∠NMP + ∠MSP + ∠MPS

= 180◦ − ∠MPN + 90◦ − ∠BEC

= ∠BAC − ∠BEC + 90◦

= 90◦ − ∠EBA

= ∠FEK.
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Similarly, ∠EFK = ∠MNQ. From these, triangles QMN and KEF are isosceles. Hence
△QMN ∼ △KEF . We have △GEF ∼ △GMN (since G is the center of spiral similarity which
transforms MN 7→ EF ), so △GFK ∼ △GNQ, this implies that △GFN ∼ △GKQ. Hence, we
have angle chasing again

∠GKQ = ∠GFN = 180◦ − ∠GFA = 180◦ − ∠GLA = ∠ALP.

This leads to KQ ∥ AL. We are done.
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Problems

Problem 1. Four points A, B, C, and D lie on a circle ω such that AB = BC = CD. The
tangent line to ω at point C intersects the tangent line to ω at point A and the line AD at points
K and L. The circle ω and the circumcircle of triangle KLA intersect again at M . Prove that
MA = ML

(→ p.25)

Problem 2. We are given an acute triangle ABC with AB ̸= AC. Let D be a point on BC
such that DA is tangent to the circumcircle of triangle ABC. Let E and F be the circumcenters
of triangles ABD and ACD, respectively, and let M be the midpoint of EF . Prove that the line
tangent to the circumcircle of AMD through D is also tangent to the circumcircle of ABC.

(→ p.26)

Problem 3. In triangle ABC (∠A ̸= 90◦), let O,H be the circumcenter and the foot of the
altitude from A respectively. Suppose M,N are midpoints of BC,AH respectively. Let D be
the intersection of AO and BC and let H ′ be the reflection of H about M . Suppose that the
circumcircle of OH ′D intersects the circumcircle of BOC at E. Prove that NO and AE are
concurrent on the circumcircle of BOC.

(→ p.28)

Problem 4. Let ABCD be a trapezoid with AB ∥ CD. Its diagonals intersect at a point P . The
line passing through P parallel to AB intersects AD and BC at Q and R, respectively. Exterior
angle bisectors of angles DBA, DCA intersect at X. Let S be the foot of X onto BC. Prove
that if quadrilaterals ABPQ,CDQP are circumscribed, then PR = PS.

(→ p.31)

Problem 5. Let ABC be an acute triangle inscribed in a circle ω with center O. Points E,F
lie on its sides AC,AB, respectively, such that O lies on EF and BCEF is cyclic. Let R, S be
the intersections of EF with the shorter arcs AB,AC of ω, respectively. Suppose K,L are the
reflection of R about C and the reflection of S about B, respectively. Suppose that points P and
Q lie on the lines BS and RC, respectively, such that PK and QL are perpendicular to BC.
Prove that the circle with center P and radius PK is tangent to the circumcircle of RCE if and
only if the circle with center Q and radius QL is tangent to the circumcircle of BFS.

(→ p.33)

23
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Solutions

Problem 1. Four points A, B, C, and D lie on a circle ω such that AB = BC = CD. The
tangent line to ω at point C intersects the tangent line to ω at point A and the line AD at points
K and L. The circle ω and the circumcircle of triangle KLA intersect again at M . Prove that
MA = ML

Proposed by Mahdi Etesamifard - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Observe that BC∥AD, an easy angle chase gives :

∡KMA = ∡KLA = ∡KCB =

>
BC

2
=

>
AB

2
= ∡BMA

thus points K, B and M are collinear. But the two triangles KBC and KBA are congruent
hence ∡AKB = ∡CKB which implies that MA = ML as desired.

A

B C

D

ω

K

L

M
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Problem 2. We are given an acute triangle ABC with AB ̸= AC. Let D be a point on BC
such that DA is tangent to the circumcircle of triangle ABC. Let E and F be the circumcenters
of triangles ABD and ACD, respectively, and let M be the midpoint of EF . Prove that the line
tangent to the circumcircle of AMD through D is also tangent to the circumcircle of ABC.

Proposed by Patrik Bak - Slovakia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Without loss of generality assume AB < AC. This means that B lies between D and
C. Triangle DBA is obtuse with the obtuse angle at B. Therefore, E lies in the half-plane DBC
containing A. Similarly, angle DAC, equal to 180◦ − ∠CBA, is obtuse, therefore F lies in the
opposite half-plane. Simple angle chasing gives

∠CDE = ∠BDE = 90◦ − 1

2
∠DEB = 90◦ − ∠DAB = 90◦ − ∠ACB

and

∠FDC = ∠FDB = 90◦ − 1

2
∠DFC

= 90◦ − (180◦ − ∠DAC)

= ∠DAC − 90◦

= ∠DAB + ∠BAC − 90◦

= ∠ACB + ∠BAC − 90◦

= 90◦ − ∠CBA

These two equalities show that DE ⊥ AC and DF ⊥ AB, respectively.

A

B C

D

E

F

M
O

P

Denote by O the circumcenter of triangle ABC. Since FO is the perpendicular bisector of AC,
we have FO ⊥ AC, therefore DE ∥ FO. Analogously, EO is the perpendicular bisector of AB,
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and so DF ∥ EO. Together, we have that DFOE is a parallelogram, therefore M is the midpoint
of DO. Since DA ⊥ AO, we have MD = MO = MA.
Let P be the reflection of A in line DMO. Clearly, P lies on the circumcircle of ABC. Since
DA ⊥ AO, then OP ⊥ DP , and so line DP is tangent to the circumcircle of ABC. Finally,
simple angle chasing shows that ∠PDM = ∠MDA = ∠DAM , therefore DP is also tangent to
the circumcircle of AMD, which concludes the proof.
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Problem 3. In triangle ABC (∠A ̸= 90◦), let O,H be the circumcenter and the foot of the
altitude from A respectively. Suppose M,N are midpoints of BC,AH respectively. Let D be
the intersection of AO and BC and let H ′ be the reflection of H about M . Suppose that the
circumcircle of OH ′D intersects the circumcircle of BOC at E. Prove that NO and AE are
concurrent on the circumcircle of BOC.

Proposed by Mehran Talaei - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1. Let the line OH intersect the circumcircle BOC in F

Claim 1. F,D,E are collinear

Proof. Since OM ⊥ BC and MH = MH ′ we have ∡OHH ′ = ∡OH ′H. But OH ′ED is cyclic
and ∡OH ′D = ∡OED. The claim is easily proven considering the fact that OB = OC

Now let A′ be the A− antipode in the circumcircle ABC.It’s easy to see that

OH.OF = OB2 = OC2 = OA2

since FH is the bisector of ∡BFC, so OA is tangent to the circumcircle AHF , thus
∡HAO = ∡HFA or

∡A′AF = ∡OAF = ∡OHA (1)

D lies on the radical axis of the two circumcircles ABC and BOC :

DF.DE = DB.DC = DA′.DA (2)

by (2) the quadrilateral AEA′F is cyclic :

∡A′EF = ∡A′AF (3)

letting OM intersect the circumcircle BOC in P we have OP∥AH

∡POF = ∡OHA (4)

Combining (1) , (3) , (4) points E,A′, P are collinear

O

B

A

C
H M

N

H′D

E

P

F

A′

K
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Let AO intersect the circumcircle BOC for the second time in K

Claim 2. (AA′, DK) = −1

Proof. We have ∡PBC = ∡PCB = ∡A, PB and PC are tangent to the circumcircle ABC.
Hence the line BC is the polar of P wrt the circumcircle ABC and by La Hire’s Theorem the
polar of D wrt the circumcircle ABC passes through P . Since ∡PKO = 90, the line PK is this
polar and the claim is proved!

Now projecting from O onto the line AH we have:

−1 = (∞N,AH) = (PX,KF )

where X is the intersection point of NO and the circumcircle BOC. Taking a look at claim (2)
and projecting from E

−1 = (AA′, DK) = (Y P, FK)

Where Y is the intersection point of AE and the circumcircle BOC Considering the last two
projections X ≡ Y .
Solution 2. Let OD and OH ′ intersect the circumcircle BOC in K and L respectively.
Easy to see that ∡OKL = ∡OH ′D = ∡OHD.
Define P = KL ∩BC. Then the quadrilateral HPOK is cyclic.

O

B

A

C

H

M H′D

K

L

E
P

Apply the inversion about the circumcircle ABC. The following problem is the figure after
mapping :

Problem 1. In triangle ABC the line AO intersects side BC and circumcircle BOC in D,K
respectively. H is the foot of the A− altitude. The line BC intersects the circumcircle OHK in
P and Q is the second intersection of this line with the circumcircle AOP . Prove that OQ bisects
AH.
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Proof.

O

B

A

CH

A′

K

P
QD

N

Let A′ be the A− antipode in the circumcircle ABC.
D is the radical center of the three circumcircles OHK,ABC,BOC, hence

DH.DP = DO.DK = DA′.DA

implying that the quadrilateral AHA′P is cyclic

∡HA′A = ∡HPA = ∡QOD

therefore the lines HA′ and OQ are parallel.
But O is the midpoint of AA′ thus QO bisects AH as desired !
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Problem 4. Let ABCD be a trapezoid with AB ∥ CD. Its diagonals intersect at a point P . The
line passing through P parallel to AB intersects AD and BC at Q and R, respectively. Exterior
angle bisectors of angles DBA, DCA intersect at X. Let S be the foot of X onto BC. Prove
that if quadrilaterals ABPQ,CDQP are circumscribed, then PR = PS.

Proposed by Dominik Burek - Poland
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. We start with the following simple lemma.

Lemma 1. Let KLMN be a circumscribed trapezoid with KL ∥ MN . Suppose that rays
−−→
KN,

−−→
LM , intersect at O. Let K ′ be the projection of K onto MN . Then KO = OM +K ′M .

Proof. Let X, Y, Z, T be the points of tangency of the incircle with KL,LM,MN,NK, respec-
tively. Then

KO = KT + TO = KX + Y O = K ′Z +OM +MY = K ′Z +OM +MZ = K ′M +OM

N M

LK

O

K ′

X

Y

Z

T

Let A′, D′ be the feet of A,D onto PQ. Applying lemma for circumscribed trapezoids ABPQ
and DCPQ we obtain DP + A′P = AD = AP +D′P .

Without loss of generality assume that ∠BAD ≤ 90◦. Denote the foot of D onto AB by D′′.
Then AD′′ = A′D′ = A′P −D′P = AP −DP .

Choose D′′′ on AP such that PD′′′ = PD. Then AD′′′ = AP −D′′′P = AP −DP = AD′′. Hence
internal angle bisectors of D′′AD′′′ and DPD′′′ coincide with perpendicular bisectors of D′′D′′′

and DD′′′. It follows that the circumcenter X ′ of DD′′D′′′ coincides with the A-excenter of ABP .
But it lies on perpendicular bisector of DD′′ as well, which is the line parallel to AB and CD
equidistant from them. It follows that the A-excircle ω of ABP is tangent to CD. It is easy
to see now that X ′ lies on the exterior angle bisectors of DBA and DCA, hence X ′ = X. Let
K,L,M,N be the points of tangency of ω with AB,CD,AC,BD, respectively. Let X∞ be the
point at infinity of lines AB,CD,PR. Brianchon theorem for quadrilateral BX∞CP shows that
MK and NL intersect at R.
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A B

CD

P
Q

R

S
X ′ ≡ X

A′

D ′

D ′′

D ′′′

ω

K

L

M

N

Since PR ∥ AK and AK = AM , we have PR = PM . Similarly, PN = PR, and, obviously,
PQ = AB · DP

DB
= AB · CP

CA
= PR. Therefore M and N lie on the circle with diameter QR, so

∠QMR = π
2
and ∠RNQ = π

2
. Since KL is a diameter of ω, we have ∠KML = π

2
= ∠KNL. It

follows that Q,M,L are collinear and Q,N,K are collinear.
Since ML is polar of C with respect to ω and NK is polar of B with respect to ω, we obtain
that BC is polar of Q. In particular QX ⊥ BC, so the intersection of QX with BC is the foot
of X onto BC, i.e. the point S. Hence ∠QSR = π

2
, thus S lies on the circle with diameter QR,

so PS = PR.
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Problem 5. Let ABC be an acute triangle inscribed in a circle ω with center O. Points E,F
lie on its sides AC,AB, respectively, such that O lies on EF and BCEF is cyclic. Let R, S be
the intersections of EF with the shorter arcs AB,AC of ω, respectively. Suppose K,L are the
reflection of R about C and the reflection of S about B, respectively. Suppose that points P and
Q lie on the lines BS and RC, respectively, such that PK and QL are perpendicular to BC.
Prove that the circle with center P and radius PK is tangent to the circumcircle of RCE if and
only if the circle with center Q and radius QL is tangent to the circumcircle of BFS.

Proposed by Mehran Talaei - Iran
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let ω1, ω2 be the circumcircles of RCE and SBF and let Ω1,Ω2 be the circles with
centers P,Q and radius PK,QL respectively. Notice that AO ⊥ EF because ∠OAE = 90◦ −
∠ABC and ∠OEA = ∠ABC. So

>
AR =

>
AS = 90◦
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Claim 1. ω1 and Ω1 are tangent iff ∠BAC = 45◦.
First of all it is trivial to see this concludes the problem. Now to the proof:

Proof. First of all notice that ∠RBS = 90◦. Let G be the reflection of R about B. It is obvious
that BS is the perpendicular bisector of RG and GK is parallel to BC so by PK ⊥ BC, we
can conclude that GK is tangent to Ω1. Now if T is the reflection of K about BS, it is clear
that TR is also tangent to Ω1. So the circumcircle of ABC maps to the circumcircle of RTKG
with homothety with its center at R and 2 as its scale. Note that with a little angle chasing the
angle between the circumcircle of ABC and circumcircle of REC is 135◦, thus the angle between
circumcircle of REC and circumcircle of RTK is also 135◦. Now we can rewrite the problem from
the perspective of the triangle RTK:
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Problem 1. In triangle RTK, let Ω1 be a circle passing through K and tangent to RT at T . Also
let ω1 be a circle passing through R and C, midpoint of RK, which angle with the circumcircle
of RKT is 135◦. Prove that ω1 is tangent to Ω1 iff RKT = 45◦.

T

R

K

135
Ω1

Cω1

We prove the problem by performing an inversion centered at R with radius RK.RT and then
reflecting about the angle bisector of K ′RT ′. The following is the resulted problem: (The images
of the points are denoted by primes)

Problem 2. In triangle RK ′T ′, let C ′ be the reflection of R about K ′ and Z the reflection
of R about T ′. Let Ω′

1 be a a circle passing through K ′ and tangent to RT ′ at T ′ and let ω′
1 be a

line passing through C ′ which the angle between ω′
1 and C ′Z is 45◦. Then ω′

1 is tangent to Ω′
1 iff

∠RT ′K ′ = 45◦.

R

T ′
K ′

H

ZC ′

O

45

Ω1
′
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Part 1. ∠RT ′K ′ = 45◦

Let O be the circumcenter of Ω′
1. Notice that K ′O ∥ RZ ∥ ω′

1. Then K ′O is the midline of C ′

in triangle RC ′Z. Let E be the intersection of ω′
1 and K ′T ′ thus K ′ is the midpoint of T ′E. So

the reflection of T ′ about O ,H, lies on EC ′. So H is the tangent point of ω′
1 and Ω′

1 because
∠OHC = 90◦.

Part 2. ω′
1 is tangent to Ω′

1

R

T ′
K ′

H

ZC ′

O

E

45

Let α be the angle ∠RZC ′. It’s easy to see that 45◦ = ∠K ′EH =
>
T ′H−

>
K′H

2
and

>
T ′H+

>
K′H

2
=

180◦ −
>
K′T ′

2
= 180◦ −α. So

>
T ′H = 225◦ −α and

>
K ′H = 135◦ −α. Now we split the problem into

two the cases α > 45◦ and α < 45◦.
Case 1. α > 45◦

With easy angle chasing we conclude that ∠K ′C ′E > ∠K ′RT ′. Therefor K ′E > K ′T ′. So
(HK′

HT ′ )
2 = EK′

ET ′ >
1
2
. Thus:

sin(135
◦−α
2

)

sin(225
◦−α
2

)
>

1√
2

So if θ = 135◦−α
2

, then
√
2 sin θ > sin(θ + 45) =

√
2
2
sin θ +

√
2
2
cos θ, so sin θ > cos θ hence θ > 45◦

therefor α < 45◦, which is a contradiction.
Case 2. α < 45◦

It’s similar to the first case.
As shown above both cases cause a contradiction so α must be equal to 45◦, as requested.
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